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Abstract—In procedural content generation, it is often desir-
able to create artifacts which not only fulfill certain playability
constraints but are also able to surprise the player with unex-
pected potential uses. This paper applies a divergent evolutionary
search method based on surprise to the constrained problem of
generating balanced and efficient sets of weapons for the Unreal

Tournament III shooter game. The proposed constrained surprise
search algorithm ensures that pairs of weapons are sufficiently
balanced and effective while also rewarding unexpected uses of
these weapons during game simulations with artificial agents.
Results in the paper demonstrate that searching for surprise can
create functionally diverse weapons which require new gameplay
patterns of weapon use in the game.

I. INTRODUCTION

Procedural content generation has been used since the 1980s

in the game industry to quickly and computationally efficiently

create elaborate structures such as the dungeons of Rogue

(Toy and Wichman 1980) or the universe of ELITE (Acornsoft

1984). Commercially, procedural content generation (PCG) is

used primarily for two reasons: (a) to cut down on develop-

ment effort and time, and (b) to create unexpected, unique

experiences every time the game is played, thus increasing its

lifetime and replayability value. Due to the former, small teams

of game developers have been able to (procedurally) create

grandiose gameworlds such as those in Minecraft (Mojang

2011) and No Man’s Sky (Hello Games 2016). Due to the

latter, games such as Civilization V (Firaxis 2010) have been

immensely successful in retaining a userbase engaged despite

the lack of e.g. an overarching campaign.

Academic interest in PCG has often used search-based

processes [1] such as evolutionary computation to create game

content which optimize one or more game qualities deemed

important by the designers. To a degree, such gameplay

qualities are required from content in order to ensure the game

being playable and fair between players (e.g. in a competitive

game). On the other hand, a core motivation of commercial

PCG is the element of surprise it can elicit from players.

While the majority of PCG research focuses on creating

one final artifact which exemplifies the desired properties of

its type, there are several attempts at creating a diverse set

of content using e.g. multi-objective optimization [2], multi-

modal optimization [3] and novelty search [4].

This paper is inspired by earlier work on creating sets

of diverse artifacts [5], and applies a recently introduced

divergent search algorithm, namely surprise search [6], [7],

on the task of procedural content generation. In particular, the

goal is generating pairs of weapons for a competitive first-

person shooter game: the two weapons must be usable and

balanced between them, but also exhibit surprising behavioral

properties (i.e. different weapon pairs would allow different

types of gameplay or strategies to emerge). Towards that

end, constraints on usability and balance are satisfied via

a feasible-infeasible two-population approach (FI-2pop GA)

which guides infeasible content towards feasibility [8]. In

the feasible population, however, the weapon pairs evolve

towards surprising behaviors, i.e. behaviors that were not

predicted based on the previous generations. This constrained

surprise search algorithm is shown to create more diverse

content than objective-driven search. Moreover, its behavior

and performance is shown to be different than randomly

assigned fitness scores applied on the feasible population.

II. BACKGROUND

This section outlines the algorithm of surprise search which,

in this paper, is framed within constrained optimization for the

procedural content generation domain.

A. Procedural Content Generation

Compared to the historical use of procedural content gener-

ation in games, academic interest in PCG from the perspective

of artificial intelligence (AI) is relatively recent. PCG research

focuses on expanding the generative algorithms, going beyond

constructive approaches [1] which are carefully crafted scripts

used in the game industry to produce a limited range of content

which is however guaranteed to be playable. PCG research on

the other hand has used many different sets of algorithms, of-

ten revolving around evolutionary computation and constraint

satisfaction, among others. Broadly, evolutionary computation

under the umbrella term search-based PCG [1] evolves a large

population of artifacts towards a certain objective, usually

pertaining to in-game quality. Constraint satisfaction, on the

other hand, uses a carefully selected set of constraints to ensure

that all of the generated content is playable [9].

B. Constrained Optimization and PCG

While it would seem that constraint satisfaction and search-

based PCG are incompatible in terms of design approach, there

have been several attempts to integrate playability constraints

to search-based PCG [10], [4]. Often, the simplest solution is



to assign a minimal fitness score and kill off the infeasible

individual [3]. In highly constrained spaces, however, this is

not a desirable strategy as most genotypical information is lost

[11]. Indeed, if a population consists only of infeasible results

then assigning a minimal fitness results in random search. In-

stead, constrained optimization often utilizes penalty functions

[12] which reduce the fitness score of an infeasible individual.

Designing a penalty function can become as challenging as the

optimization problem itself, however, as very high penalties

can kill off all infeasible results while very low penalties can

lead to extraneous exploration of the infeasible search space.

A more recent solution to constrained optimization is the

feasible-infeasible two-population (FI-2pop) genetic algorithm

[8], which evolves two separate populations towards optimiz-

ing a problem-dependent objective (in the feasible population)

and minimizing the distance to feasibility (in the infeasible

population). The feasible population contains only individuals

which satisfy all constraints, while the infeasible population

contains individuals which fail one or more constraints; feasi-

ble offspring of infeasible individuals migrate to the feasible

population and vice versa. The benefit of the two-population

approach is that (a) there is no competition between feasible

and infeasible individuals, and (b) any search strategy can

be applied to either the feasible or the infeasible population.

Earlier research on game level generation has explored the

use of novelty search in the feasible population or in both

populations [4], in order to ensure that playable (due to the

constraints) yet diverse (due to the divergent search) game

levels were being produced. The current paper explores the

use of surprise search [7], a recent but promising divergent

search method, on the feasible population for the purposes of

creating balanced but surprising weapons.

C. Surprise search

Surprise search [6], [7] is a new algorithm for evolutionary

divergent search which rewards unexpected — rather than

unseen — behaviors. Surprise search uses a prediction model

to construct the expected outcomes at the current stage of

evolution; when evaluating the actual outcomes in the popu-

lation, it rewards those which deviate from the expected [13].

This mimics a self-surprise process [14], where individuals

who do not conform to the evolutionary trend are selected

and ensuingly create their own trend which new individuals

must again diverge from. The algorithm has been shown to

outperform objective search in deceptive problems and to be

more robust than novelty search in a maze navigation task [7].

Surprise search is composed by two main modules: a predic-

tive model based on past behaviors and a distance formula to

assess deviation from the expected outcomes. Surprise search

uses the prediction model (m) to create a speculative ‘cur-

rent’ population, based on h previous generations; the model

considers a degree of local (or global) behavioral information

(expressed by k). The predictive model is described in eq. (1);

more details about m, h and k are found in [7].

p = m(h, k) (1)

The surprise score, used for selecting individual i in the current

population, is based on the distance of the closest n prediction

points obtained with the prediction model m:

s(i) =
1

n

n
∑

j=0

ds(i, pi,j) (2)

where ds is the domain-dependent measure of behavioral

difference between an individual i and its expected behavior,

pi,j is the j-closest prediction point (expected behavior) to in-

dividual i and n is the number of prediction points considered;

n is a problem-dependent parameter determined empirically.

III. METHODOLOGY

The goal of the generative algorithms is the creation of

pairs of usable and balanced weapons which exhibit surpris-

ing behavioral characteristics. The weapons are used in the

commercially successful Unreal Tournament III (Epic Games

2007) game (UT3). Besides its commercial appeal, UT3 has

well-designed game levels and AI modules which allow for

simulations of game matches in order to derive behavioral

properties of the weapons. Weapons in UT3 are already quite

diverse, which allows the genetic algorithm to explore different

sets of parameters such as bouncing bullets, grenades affected

by gravity, or exploding projectiles.

A. Representation & Genetic Operators

In the genotype, each weapon is represented by 11 pa-

rameters with different value ranges and in-game properties

as shown in Table I. Since the generator evolves pairs of

weapons (one per player in a deathmatch FPS game), the

genotype therefore consists of 22 chromosomes, 11 for each

weapon. Evolution is carried out by applying simulated bi-

nary crossover with a 60% probability, and simulated binary

mutation with a 5% probability. These parameters have been

chosen empirically through pre-experimentation conducted in

[5]. Simulated binary crossover [15] applies a polynomial

probability distribution (controlled by the maximum and min-

imum values of each parameter in Table I) to chromosomes;

another parameter (η = 20 as suggested in [15]) controls

how much the offspring will resemble their parents. This

crossover strategy ensures that the weapon of each player will

be a combination of parameters of weapons used by the same

player (i.e. weapons cannot be assigned to a different player

from generation to generation). Simulated binary mutation

performs a similar modification with a chance of 5% for each

parameter in the gene. Using the same η value, modifications

via mutation depend on the value range of each weapon

parameter (e.g. low η values result in large mutations).

B. Simulations

The two weapons evolved in this scenario are tested by two

AI-controlled agents competing for the highest number of kills

in a UT3 level. Experiments in this paper use the Biohazard

UT3 level, which is small and thus ideal for one-versus-one

matches; moreover, it consists of two separate floors which

makes logging player positions easier. Each player is given



TABLE I
PARAMETERS OF EACH WEAPON WITH THEIR CORRESPONDING VALUE RANGE AND DESCRIPTION.

Name Value Range Description

Rate of Fire (ROF) [0, 4] Number of bullets shot per second
Spread (Spr) [0, 3] This parameter affects the random deviation of the bullets trajectory: the higher the spread

the less accurate the shooting.
ShotCost (SC) [1, 9] Number of bullets shot at once by the weapon.
Lifetime (L) [0, 100] Amount of time the bullets remain in game when shot.
Speed (Sp) [0, 10000] Speed of bullet when shot.
Damage (Dmg) [0, 100] The amount of damage that each shot deals when it hits an opponent. In case of SC > 1,

each bullet has Dmg/SC damage per bullet.
Collision Radius (CR) [0, 100] Radius of the collision sphere of bullets (for hitting enemies).
Gravity (Gr) [-250, 250] Gravity force applied to bullets: the larger the value, the stronger the g acceleration applied

to the bullet. For positive values, gravity is reversed (the bullet goes upwards).
Explosive (Exp) [0, 300] When a bullet hits a target (opponent, object or wall), it generates an explosion with radius

equal to this parameter. All players within the radius of an explosion receive splash damage
(a fraction of the weapon’s damage depending on distance).

Ammo (A) [1, 999] Maximum amount of ammunition; all ammo packs increase ammo up to this value.
Bounce (B) [0, 1] Boolean value that says if the projectile will bounce when it hits a wall.

one weapon and ammunition as defined in the genotype; if

they pick up any weapon or ammo in the level then the

ammo for their generated weapon increases by the ammo value

in the genotype (i.e. players cannot pick up other weapons,

including the other player’s weapon). This ensures that each

player tests only one weapon: these simulations allow for a

comparison in terms of balance of the weapons, as well as

for evaluating their effectiveness (if it manages to kill the

opponent often) and safety (if it does not result in the wielders

shooting themselves). Moreover, simulations are used to create

a map of the locations where each player died; these act

as behavioral characteristics of the weapons and are used to

assess unexpected behaviors in the surprise search algorithm.

Simulations last up to a time limit of 1200 seconds or until a

score limit of 20 is reached in terms of the total number of

kills of the two players.

Since simulations require that AI agents use weapons of

variable quality, the system provides suggestions to the AI

behavior based on each weapon’s parameters. For instance, if

the weapon is a fast repeater (i.e. a rate of fire above 2) the

AI is instructed to use it for long sequences of shots. Another

suggestion is based on the lifetime, speed and spread of bullets;

if these values are respectively greater than 50, 1000 and less

than 0.1, the AI is instructed to use it for long distance shots.

Finally if the bullet has an explosive value above 50, the AI

is instructed to treat it as a splash weapon (i.e. the AI knows

that the bullet can damage enemies near the point of contact).

C. Constraints

There are certain playability requirements for the generated

weapons: balance, effectiveness and safety. Each of these

properties can be evaluated as a scalar value, via heuristics

discussed below, based on simulations between AI controlled

agents. A pair of weapons is considered playable (i.e. feasible)

if each property is above a specific threshold. Moreover, for

infeasible individuals the heuristics can be used to derive the

distance from feasibility with regards to each constraint.

Balance is computed as the Shannon Entropy [16] of the

kills obtained by the two agents:

fb =
1

n

n
∑

j=0

(

ki

K
log

(

ki

K

))

(3)

where K is the total number of kills obtained by the two agents

in a simulation, ki are the kills obtained by i-th bot and n is

the number of players per simulation.

Effectiveness is calculated by dividing the total number of

kills obtained in the simulation by the maximum score limit:

fe =
K

Smax

(4)

where Smax is the score limit (Smax = 20 in this study) which

must be attained for the level to be considered completed

before the time limit expires.

Safety is introduced due to initial random weapons being

dangerous to the wielder (due to high explosive values), and its

goal is to make evaluations more robust against noise. Safety

is computed in eq. (5) where the exponent is the number of

suicides (i.e. deaths not scored as another player’s kill):

fs = 0.9D−K (5)

where D is the total number of agents’ deaths in a simulation.

The feasibility constraint is satisfied if fb ≥ 0.9; fe ≥ 1
(i.e. if exactly 20 kills are scored); fs ≥ 0.9 (i.e. if there’s at

most one suicide). The rationale for the strict thresholds for

effectiveness and safety are to avoid creating sparse heatmaps

of death locations (due to low effectiveness) or death locations

originating from suicides (due to low safety).

D. Constrained Surprise Search

Constrained surprise search fuses the properties of FI-

2pop constrained optimization [8] with the surprise search

[7] evolving the feasible population. The proposed algorithm

uses two populations which evolve towards different goals.

The feasible population contains individuals which satisfy

all constraints listed above, while the infeasible population

contains individuals which have at least one of safety, balance
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Fig. 1. An example of the prediction model of surprise search in this paper, at generation t. The first two sets of heatmaps are computed in the last two
generations, Ht−2 and Ht−1; the death location density is always normalized per floor. Using linear interpolation, the difference Ht−1 −Ht−2 is computed
and applied to Ht−1 to derive the predicted current population’s Ht truncated to [0, 1]. An inidividual’s death locations are mapped to Ht to calculate the
surprise score per eq. (6).

and efficiency below the minimal threshold. The infeasible

population assigns its members a fitness equal to fb+fe+fs,

regardless of whether some of the values of these properties are

above the feasibility threshold. This favors individuals which

satisfy more constraints to others which satisfy no constraints,

although some averaging artifacts may occur. Unlike tradi-

tional FI-2pop approaches, the infeasible population attempts

to maximize this value, as the three properties act as objectives

(with minimal value constraints).

Due to the highly constrained search space that evolution

has to tackle, several steps are taken to make search in the

feasible population more effective. Both populations select

parents based on tournament selection (tournament size of

3), but the best individual of each population is copied as-is

to the next (elitism of 1). This elitism ensures that at least

one feasible individual will remain in the feasible popula-

tion. Moreover, if the feasible population is smaller than the

infeasible population, an offspring boost [4] is applied: the

offspring boost forces the (larger) infeasible population to only

produce offspring equal to 50% of the total population while

the feasible population produces more offspring than it has

parents, equal also to 50% of the total population.

In the feasible population, surprise search attempts to devi-

ate from predicted behavioral trends of the current population.

Behavior of a weapon is considered to be the playtraces of

the player who wields it, and in particular the locations where

their opponent died in this one-versus-one deathmatch game.

Since the genotype contains two weapons and the Biohazard

level consists of two floors, this creates a total of 4 heatmaps

of death locations of each player. These heatmaps assign

each death on a tile of a low-resolution grid (10 by 13

tiles per floor), incrementing the value (or heat) of that tile;

example heatmaps are shown in Fig. 1. Note that heatmaps are

normalized to a range of [0, 1] based on the maximum heat

value of each map (i.e. per floor and per player).

Surprise search attempts to deviate, therefore, from the

expected heatmaps of this generation: i.e. have death locations

which are unexpected based on the current evolutionary trends.

Surprise search focuses on diverging from predictions p (see

eq. (1)) of the current population, calculated by observing the

previous generations’ behavioral changes. This paper uses only

the populations of the last two generations (h = 2; eq. (1)) to

predict the current population, applying a linear interpolation

(m is a linear regression model in eq. (1)). The model, m,

considers the population as a whole (k = 1; eq. (1)). In

short, when predicting the heatmaps Ht for a population at

generation t, the heatmaps of the population at t − 2 (Ht−2)

is subtracted from those of the population at t − 1 (Ht−1)

to calculate ∆H . The prediction of Ht is obtained by adding

∆H to Ht−1, ensuring that its values fall within [0, 1] in all

4 heatmaps. Figure 1 illustrates this procedure.

In order to derive a surprise score for an individual i (which

the surprise search algorithm attempts to maximize), the loca-

tions of its agents’ deaths are mapped to the appropriate cell of

predicted heatmaps Ht (depending on floor and player). The

surprise score is calculated in eq. (6), as the complementary

of the average cell values of Ht where deaths occured in

individual i. This rewards individuals which diverge from the

predicted consensus of the general population.

s(i) = 1−
1

D

∑

d∈D

Ht(d) (6)

where D is the number of deaths of all agents in individual

i and Ht(d) the cell value of Ht at the location of death

d. This rewards individuals which diverge from the predicted

consensus of the general population.

This evaluation of surprise is different from the of novelty

used in novelty search [17], as the latter deviates from the

actual population rather than its prediction. By using a predic-

tion of the population, surprise search creates data (heatmaps

in this case) which may never be attainable: diverging from

such may push search in unexpected areas of the space.

IV. EXPERIMENTS

This paper aims to generate surprising weapons which have

a modicum of balance, safety and efficiency. Towards evalu-

ating constrained surprise search in terms of these different

priorities, several tests are performed on the results of 25

independent optimization runs of constrained surprise search.

The algorithm is compared with two baseline algorithms in



terms of constraint satisfaction and diversity preservation;

the most diverse solutions of constrained surprise search are

then asessed in terms of their use by AI agents in game

simulations; finally, a sample set of weapons evolved by

constrained surprise search is presented in detail, showcasing

how the different weapons are surprising yet balanced.

A. Comparison with other methods

In order to assess the performance of constrained surprise

search, its outcomes and overall optimization progress will

be compared to two benchmarks: (a) objective search, which

attempts to optimize the sum of balance, safety and efficiency

(fb + fs + fe), (b) constrained random search, which uses

the FI-2pop paradigm but performs random search on the

feasible population. The objective search does not need two

populations, as it essentially amounts to the search in the infea-

sible population without minimal feasibility requirements. The

constrained random search evolves the infeasible population to

maximize fb + fs + fe while the feasible population assigns

a random fitness within [0, 1) to each of its members.

For the purposes of comparing the performance of the three

algorithms, it is not straightforward which performance met-

rics are most appropriate for evaluating surprise or diversity.

On one hand, it is relevant to evaluate how well-suited each

algorithm is for constrained optimization: for that reason we

use the number of feasible individuals as a measure of how

the different search methods on the feasible space (in the

case of surprise and random search) may create infeasible

offspring from feasible parents. In order to evaluate diversity

in the feasible population, we use the pairwise genotypic

distance of feasible individuals to measure how different (at

least in terms of weapon parameters) the genotypes are. The

genotypes’ values are normalized between [0,1] via min-max

normalization based on each parameter’s value range in Table

I. However, it should be noted that the number of feasible

individuals in the population may not be sufficiently diverse,

and thus a smaller set of the most diverse results would be

more appropriate both for in-game use and as a performance

metric. In previous work [3], this set of “solutions” was

discovered via k-medoids where k was a property specified

by the designer. In this paper, such solutions are obtained by

DBSCAN [18] which can return a variable number of clusters

(and their medoids) depending on the distribution of data.

Therefore, it is possible to gauge the diversity of the population

based on the number of different clusters found by DBSCAN.

DBSCAN is a density-based clustering technique [18] which

groups individuals based on their nearest neighbor distance.

DBSCAN depends on two parameters: a distance ǫ and the

minimum number of points within ǫ from a random point in

order to be considered a cluster; in this paper ǫ is 0.2 and the

minimum number of points is set to 1.

Reported results are collected from 25 independent opti-

mization runs per approach; evolution lasts for 50 generations

and is performed on a total population size of 50 individuals.

Reported significance is obtained from two-tailed Students t-

tests at a 5% significance level.
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(b) Feasible clusters obtained with
DBSCAN.

Fig. 2. Progress of two different performance metrics over the course of
evolution averaged from 25 independent runs. Error bars depict standard error.
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Fig. 3. Cumulative number of feasible clusters obtained with DBSCAN by
joining iteratively the final populations across 25 independent runs.

Figure 2a shows the number of feasible individuals for each

method, as evolution progresses. It is immediately obvious

that at the start of evolution there are no feasible individuals,

which indicates a highly constrained search space. Since

all methods evolve infeasible individuals towards the same

objectives (improving balance, safety and efficiency), it is not

surprising that all methods discover the first feasible individual

in approximately the same generation, i.e. generation 10 or so.

More interestingly, the number of feasible individuals (in a

total population of 50) keeps increasing throughout evolution

as more and more infeasible individuals approach the border

of feasibility. With the offspring boost, ideally the feasible

individuals would be equal to the infeasible ones; however,

feasible parents are more likely to create infeasible offspring

than the reverse and thus feasible individuals are fewer.

Objective-driven search tends to create more feasible results,

while interestingly random search on the feasible population is

not more destructive (in terms of feasible population size) than

surprise search. Objective-driven search is expected to create

more feasible individuals, primarily due to the fact that it uses

a single population: therefore, feasible results are more likely

to get selected (multiple times) and thus create more feasible

offspring. Despite the feasible offspring boost in the FI-2pop

approaches, this single population approach which continually

tries to improve upon the constraints (even after all constraints

are satisfied) is more efficient at creating feasible results.

DBSCAN is able to identify distinct clusters, so the number

of clusters should be an indication of the population’s diver-

sity: essentially, DBSCAN plays the role of a designer choos-

ing the most representative weapons (the clusters’ medoids).

The number of clusters found among feasible individuals

(for a threshold of 0.2) is shown in Fig. 2b. While the



TABLE II
PERFORMANCE METRICS AT THE END OF 50 GENERATIONS. RESULTS ARE

AVERAGED FROM 25 INDEPENDENT RUNS, WITH THE STANDARD ERROR

SHOWN IN PARENTHESES. DIVERSITY REFERS TO THE AVERAGE PAIRWISE

GENETIC DISTANCE.

Surprise Objective Random

Feasible Individuals 16.6 (1.28) 22.5 (1.98) 13.8 (1.29)
Feasible Clusters 5.8 (0.80) 4.0 (0.58) 3.0 (0.47)
Individuals’ Diversity 0.29 (0.03) 0.26 (0.02) 0.24 (0.02)
Medoids’ Diversity 0.33 (0.04) 0.28 (0.03) 0.26 (0.04)

objective-based approach creates more feasible individuals,

it is obvious that these individuals are genotypically similar

leading to fewer clusters than the smaller feasible population

of constrained surprise search. As the first feasible individuals

appear in the population, both objective-driven search and

surprise search start with a diverse population (and thus

many feasible clusters). However, as objective-based selection

prioritizes feasible individuals almost exclusively (i.e. when

the number of feasible individuals increases after generation

20), objective-driven search converges to a few promising

areas of the search space resulting in a drop in the number of

clusters. By comparison, the behavioral surprise prioritized by

surprise search manages to better preserve the genetic diversity

of the initial feasible individuals. It should be noted that in

the 25 runs performed for the reported results, there is a large

deviation, on average, between the number of clusters for every

approach, as can be gleaned from Fig. 2b.

Table II shows the final scores of the different performance

metrics at the end of 50 generations. While constrained

random search is able to maintain a sufficiently large feasible

population, the number of distinct clusters found by DBSCAN

is significantly lower (p < 0.05) than those of constrained sur-

prise search. Objective search creates significantly more fea-

sible individuals on average than constrained surprise search

(p < 0.05), but they are not as diverse (based on the number

of clusters); due to large deviations in the number of clusters,

significance can not be established. As additional metrics, the

average pairwise genotypic distance of all feasible individuals

and of the cluster medoids is compared. Constrained surprise

search tends to create more genotypically different medoids

than both objective search and constrained random search.

An interesting insight on how the three algorithms explore

the search space can be to look how they explore the search

space by joining the final feasible populations. The figure 3

shows for each algorithm the number of clusters found with

DBSCAN by joining iteratively the final feasible populations.

We can see that constrained surprise search is able to find more

feasible cluster from the 3th run, which demonstrates that this

implementation is able to explore more the feasible search

space, while objective search and constrained random search

are more attracted by the local optima found in each run, and

therefore less capable to find multiple feasible clusters.

TABLE III
GAMEPLAY METRICS OF ALL CLUSTER MEDOIDS OF ALL 25

INDEPENDENT RUNS OF CONSTRAINED SURPRISE SEARCH. RESULTS ARE

AVERAGED FROM 10 SIMULATIONS, WITH DEVIATION BETWEEN MEDOIDS

IN PARENTHESES.

Both floors 1st Floor 2nd Floor

Total Kills 15.14 (0.27) 10.81 (0.18) 4.29 (0.15)
Kills 1st 7.83 (0.21) 4.32 (0.22) 3.51 (0.08)
Kills 2nd 7.3 (0.21) 5.11 (0.18) 2.19 (0.08)
Balance 0.87 (0.009) 0.84 (0.011) 0.71 (0.016)

Entropy 1st 0.71 (0.002) 0.63 (0.001) 0.74 (0.003)
Entropy 2nd 0.72 (0.003) 0.64 (0.002) 0.76 (0.004)

B. Gameplay Qualities of Weapons

In order to assess not only the optimization performance, but

a modicum of the gameplay uses of the generated weapons, all

of the cluster medoids discovered in the 25 independent runs of

constrained surprise search were tested in 10 simulations each.

Table III shows certain gameplay metrics of these weapons,

averaged from 10 simulations: ‘1st’ and ‘2nd’ refers to the

first and second player, while ‘entropy’ refers to Shannon’s

Entropy of the death locations’ heatmaps on both floors.

From Table III, it is clear that the number of total kills are on

average below the minimal playability thresholds set in Section

III-C; this points to a very noisy simulation-based evaluation.

During optimization, it seems that a single simulation can

decide that a weapon pair is playable in one generation and

reject the same pair in the next. Based on the number of kills

for each player, the calculated balance for the weapon pair

is 0.87 on average, which is also slightly below the minimal

threshold for fb. Suicides on the other hand remain low at

an average of 0.44 (standard error of 0.04), and therefore the

safety constraint is always satisfied.

An interesting insight from Table III is the gameplay differ-

ence between the two floors: significantly more kills occur in

the 1st floor for both weapons (p < 0.05), which should not

be surprising since the second floor is not as accessible and

offers a better vantage point to fire at enemies below. On the

other hand, deaths in the second floor are significantly more

dispersed spatially (based on Shannon’s entropy) than those in

the first floor (p < 0.05): this is also obvious from Ht−1 and

Ht−2 of Fig. 1. This is can be traced to the fact that the second

floor is in theory larger; moreover the second floor includes

narrow bridges which partition the space and therefore players

tend to die on opposite ends of that floor. The differences in

both number of deaths and entropy of death locations could

affect the performance of surprise search, however, which

currently normalizes each heatmap individually; if the first

floor has far more deaths than the second floor, treating them

equally in terms of surprise places unecessary impact on the

second floor. A potential solution in future experiments could

be to normalize heatmaps based on the total number of deaths

rather than the number of deaths per floor and per player.



C. Sample Weapons

In order to discuss a sample of the generated weapons in

more detail, a weapon pair was chosen agnostically among

the DBSCAN cluster medoids for surprise search; there is

no assumption that this weapon pair exemplifies all generated

content. For the sake of screenshots, weapons use the shock

rifle weapon model and bullet effects in UT3.

Figure 4a shows a genotype collected after 50 generations

of constrained surprise search. The first weapon fires very

concentrated projectiles (maximum shot cost and very low

spread) with no gravity and very low speed; the second weapon

shoots very fast projectiles, with no spread and high damage.

Trying these two weapons as a player, one quickly realizes that

the first weapon creates ‘mines’ around the map (see Figure

4b): its bullets are extremely slow, with a large blast area

(explosive, high collision radius) and they can also bounce on

walls or the level’s floor. Moreover, these ‘mines’ are fired

in clusters (high shot cost) as seen in Fig. 4b, thus costing a

lot of ammo (of which the weapon has little). This weapon

seems over-powered, allowing its wielder to control the map;

however as the bullets do not have a long lifetime, they are

effective only if the opponent is nearby and running towards

the wielder. Meanwhile, the second weapon is very similar to

a rifle: high-damage fast bullets which shoot straight (trivial

gravity effects) with a very low collision radius, thus requiring

precise aiming. Unlike traditional rifles, however, the weapon’s

bullets have some explosive qualities. Obviously, a match-up

between these two weapons requires a very different strategy

from each player: the first weapon requires its wielder to

move around the level, laying ‘mines’ in chokepoints when

the other player is nearby. Meanwhile, the player with the

second weapon does not need to move as much (also in order

to avoid any mines) as she can fire her high-speed, precise and

lethal bullets from a remote location.

V. DISCUSSION

The primary goal of this paper was to discover balanced

and efficient, yet surprising weapons via constrained surprise

search. The results presented above indicate that constrained

surprise search tends to evolve genotypically more diverse

pairs of weapons, which have unexpected in-game uses. The

FI-2pop paradigm also allows this method to discover feasible

individuals quickly and consistently; preliminary experiments

with surprise search or random search on a single popula-

tion without constraints failed to find feasible results at any

point of their evolution during 50 generations. Comparing

constrained surprise search with constrained random search

shows a (statistically) significant improvement of the former

in terms of number of clusters: this indicates that surprise

search is substantially different in terms of both process and

results than random search. On the other hand, performing

objective search on a single population finds significantly more

feasible individuals; due to the selection pressure towards

feasible individuals, however, much of the genetic diversity

is eventually lost. While objective search has more feasible
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(a) Sample weapon pair evolved via constrained surprise search.

(b) Weapon 1, evolved via constrained surprise search.

Fig. 4. Example of weapons evolved via constrained surprise search

individuals, those are not necessarily as diverse or interesting

as in surprise search.

There is an obvious limitation to the generalizability of

the results reported in this paper, for several reasons: (a) the

high deviation in the performance metrics from one run to

the next makes assessing significance problematic, (b) there

are many parameters which could be fine-tuned to improve

both the algorithms and the assessment method. Regarding the

deviation found in reported values, the need for simulations

of full games (lasting up to 20 minutes) to assess each

individual prevents extensive experiments for parameter tuning

or for more runs to assess significance. Future work should

explore how surprise search performs with different behavioral

characteristics, as well as compare its performance against

more methods including two-population objective search or

two-population novelty search [4]. Finally, the choice of ǫ in

DBSCAN also affects the results and conclusions; with a much

lower ǫ the more numerous individuals of objective search

create more clusters (e.g. with one individual per cluster), and

with a much higher ǫ all methods create a single cluster.

Surprise search in this particular problem predicts the be-

havior of the population as a whole, based on the behavior of

the previous two populations. In the general predictive model

of eq. (1), the current approach uses the simplest predictive

model m (a linear model), the shortest history (h = 2)

and there is no locality as the model aggregates the entire

population (k = 1); for this reason the distance calculation in

eq. (2) considers one neighbor (n = 1). Obviously there is

a broad range of parameters to explore in order to improve



the performance of surprise search, such as using a non-

linear regression model or including a form of archive as

in novelty search [17]. Another possible improvement could

be choosing another behavioral characteristic to deviate from:

currently the system considers a “heatmap” of death locations;

this heatmap is relatively sparse, also considering that the

level has two floors. In many cases the differences between

two such heatmaps is circumstantial, also due to the high

stochasticity of combat; this was mitigated by using the lowest

locality for surprise search and aggregating a heatmap for the

entire population. Other behavioral characteristics could be

considered, such as players’ movements in the level or scalar

gameplay values such as the entropy and ratio of kills in each

floor or the distance between players at the time of death.

Finally, it should be noted that simulations with AI op-

ponents are a necessity due to the numerous matches which

need to be played per generation during evolution. The enemy

behavior in UT3 is quite well-designed and competitive (at

least for novice players), unlike many open-source games

such as Cube 2 used in other experiments [19]. However,

the AI in UT3 is designed for the weapons included in the

game which have specific parameters and uses; with generated

weapons, unexpected combinations of weapon parameters

such as high spread on a sniper rifle may result in less than

ideal agent performance. Currently, this is somewhat mitigated

when initializing simulations by instructing the AI that certain

weapons with certain properties should be treated as UT3

weapons (e.g. high lifetime weapons use the sniper rifle AI

module). However, completely unique weapons which do not

have any AI module may be impossible to use: for instance,

a mine weapon requires a very different navigational strategy,

going through chokepoints and leaving mines. While the AI

could be improved, it is perhaps more interesting to test the

final weapons generated by each approach in a user survey

with competing expert players. Observing emergent gameplay

strategies, and how the meta-game is affected by unexpected

uses of these weapons can offer a better insight of the usability

and balance of the generated weapon pairs.

VI. CONCLUSION

This paper introduced a constrained form of surprise search

and applied it on a procedural content generation problem.

The first goal of the generator is to create pairs of weapons

for Unreal Tournament III, which have a balanced and effi-

cient performance when played in simulated matches with AI

agents. Towards that end, a feasible-infeasible two-population

paradigm was employed to maximize balance, efficiency and

safety on an infeasible population until those values were

above a required threshold. The second goal of the generator

is to create pairs of weapons which have surprising properties

and can result in interesting, unconventional gameplay. For this

purpose, surprise search is applied on the feasible population,

attempting to deviate from the expected behaviors of the AI

agents (i.e. their death locations) which were predicted from

past generations. Results in the paper show that the feasible-

infeasible approach is able to find feasible individuals quickly

and reliably, and that surprise search tends to create more

diverse (if not always more) content. Since the reported experi-

ment is small-scale, there is a broad range of future directions

for improving surprise search and its parameters, testing it

against more algorithms, and exploring other behavioral or

gameplay characteristics other than death locations.
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