
This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Iannopollo, Antonio; Tripakis, Stavros; Sangiovanni-Vincentelli, Alberto
Constrained synthesis from component libraries

Published in:
Science of Computer Programming

DOI:
10.1016/j.scico.2018.10.003

Published: 15/02/2019

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Iannopollo, A., Tripakis, S., & Sangiovanni-Vincentelli, A. (2019). Constrained synthesis from component
libraries. Science of Computer Programming, 171, 21-41. https://doi.org/10.1016/j.scico.2018.10.003

https://doi.org/10.1016/j.scico.2018.10.003
https://doi.org/10.1016/j.scico.2018.10.003

Constrained Synthesis from Component Libraries

Antonio Iannopolloa,∗, Stavros Tripakisb,c, Alberto Sangiovanni-Vincentellia

aEECS Department, University of California at Berkeley, Berkeley, CA, USA
bDepartment of Computer Science, Aalto University, Aalto, Finland

cCCIS, Northeastern University, Boston, MA, USA

Abstract

Synthesis from component libraries is the problem of building a network of com-
ponents from a given library, such that the network realizes a given specification.
This problem is undecidable in general. It becomes decidable if we impose a
bound on the number of chosen components. However, the bounded problem
remains computationally hard and brute-force approaches do not scale. In this
paper, we study scalable methods for solving the problem of bounded synthesis
from libraries, proposing a solution based on the Counterexample-Guided In-
ductive Synthesis paradigm. Although our synthesis algorithm does not assume
a specific formalism a priori, we present a parallel implementation which instan-
tiates components defined as Linear Temporal Logic-based Assume/Guarantee
Contracts. We show the potential of our approach and evaluate our implemen-
tation by applying it to two industrial-relevant case studies.

Keywords: counterexample-guided inductive synthesis, assume-guarantee
contracts, component libraries, linear temporal logic, platform-based design

1. Introduction

While synthesis of an implementation given formal specifications in areas
such as program synthesis is a well-studied problem [1–7], the application of
synthesis techniques for Cyber-Physical Systems (CPS), where it is hard to
completely decouple cyber and physical aspects of design, is still in its infancy.

Synthesis from component libraries is the process of synthesizing a new com-
ponent by composing elements chosen from a library. This type of synthesis is
able to capture the complexity of CPS by restricting possible synthesis out-
comes to a set of well-tested, already available components. Library-based
design approaches are nowadays a de facto standard in many fields, such as

∗Corresponding author
Email addresses: antonio@berkeley.edu (Antonio Iannopollo),

stavros.tripakis@gmail.com (Stavros Tripakis), alberto@berkeley.edu (Alberto
Sangiovanni-Vincentelli)

Preprint submitted to Elsevier November 30, 2018

VLSI design, where the market for Intellectual Property (IP) blocks is grow-
ing well above 3 Billion US$ [8]. On the basis of this trend the interest of
system companies on library-based design, both for hardware and software, is
steadily increasing. This leads to the need for methodologies which guarantee
correct-by-construction designs.

The general problem of synthesis from component libraries, where the com-
ponents are state machines, is undecidable [2]. In this paper, we focus on a
decidable variant of the problem, where an explicit bound on the number of
components in a solution is provided. Our goal is to find a composition of com-
ponents which satisfies a specification while minimizing a certain cost function.

Although no particular formalism is assumed a priori, we cast a concrete
version of this problem using Linear Temporal Logic (LTL)-based Assume/
Guarantee (A/G) Contracts as the underlying specification of components. We
then show how it is possible to solve this problem presenting two variants of an
algorithm, a sequential and a parallel one, based on the Counterexample-Guided
Inductive Synthesis (CEGIS) paradigm [3, 7]. To reduce the solution search
space, this algorithm leverages designer hints, types, and other constraints over
components, possibly precomputed and stored in the libraries as additional com-
position rules. To the best of our knowledge, this is the first time that a concur-
rent synthesis algorithm is proposed for this problem, thanks to the decoupling
of a solution topology from its semantic evaluation.

The implementation of the parallel version of the algorithm resulted in a tool
called pyco, able to exploit multiprocessor computer architectures to speed up
synthesis. We evaluate pyco by synthesizing two industrial-relevant designs:
first the controller, including both architectural and software aspects, of a Brush-
less DC Electric Motor (BLDC), and then the controller software for an aircraft
Electrical Power distribution System (EPS) [9]. This last problem, in particu-
lar, has already been studied using contracts [10, 11]. In these papers, however,
contracts have been used mostly for verification and to describe requirements,
without playing any role in the controller synthesis process itself, performed
using standard reactive synthesis techniques. Here, contracts collected in the
component library represent controllers for a number of EPS subsystems. Our
synthesis algorithm, for the first time, operates directly on those contracts to
compose a controller that satisfies all the requirements.

The contributions of this paper, both theoretical and methodological, can be
then summarized as: (i) definition and analysis of the problem of constrained
synthesis from component libraries (CSCL); (ii) design and implementation of
an algorithm to solve the CSCL problem when components are defined as LTL
A/G contracts, leveraging precomputed, library-specific composition rules; and
(iii) its application to two industrial-relevant case studies, i.e., synthesis of a
controller for a brushless DC electric motor and an aircraft EPS.

The rest of the paper is organized as follows. Section 2 provides references on
background concepts and describes related works, while in Section 3 we provide
some preliminaries on A/G contracts. In Section 4 we define the synthesis
problem we tackle and analyze its complexity, introducing a running example
to explain in detail the problem encoding and the approach we adopt. We

2

propose a solution for a concrete version of the problem in Section 5 and discuss
implementation aspects in Section 6, including the description of the parallel
variant of our algorithm. In Section 7 we present the case studies and empirical
results. We discuss how our work can fit in more general design methodologies
in Section 8, and we draw conclusions in Section 9.

This paper is a revised and extended version of our previous work published
in [12]. Additions in this version include:

• extension of our framework and problem formulation by introducing cost
functions;

• loosening of some of the synthesis constraints to allow for more flexibility
in the synthesis process, at the cost of a slightly wider search space;

• addition of a new case study and extension of previous results.

2. Previous work

Synthesis. Our work on synthesis from component libraries is inspired by two
major contributions in this field:

• In [1], Pnueli and Rosner show that the problem of synthesizing a set of
distributed finite-state controllers such that their network, which is given
and fixed, satisfies a given specification is undecidable. In that work,
each component in the network is controlled by a finite-state machine (or
program), and the goal is to synthesize programs that cooperate to satisfy
a certain linear temporal logic formula ϕ;

• In [2], Lustig and Vardi show that the problem of synthesis from compo-
nent libraries for data-flow compositions is also undecidable. Here com-
ponents are transducers, i.e., finite-state machines able to map a set of
input strings to a set of output strings. The specification, also in this
case, is a linear temporal logic formula ϕ. In data-flow compositions, the
output of a component is fed to another one, while all the components
work synchronously to satisfy the specification. The paper also analyzes
another type of composition, control-flow, where each component takes
full control of the system for a certain period of time, before releasing the
system resources to the other components.

Thus, [1] shows that fixing the topology of the network while letting the
synthesis process find the components is undecidable, while [2] shows that fixing
the components while letting the synthesis process find the topology (possibly by
replicating components) is also undecidable. In our work, we too focus on data-
flow compositions. Our components are, however, more general as we don’t
necessarily require specific formalisms (as programs or transducers) to define
components and the system specification, although in our implementation we
choose to use LTL A/G contracts. Yet, the undecidability results in [1] and
[2] are relevant for us as they define the theoretical frame of this work. In our

3

paper, we achieve decidability by imposing a bound on the total number of
component instances, which are chosen from a library, positioning our efforts in
between the two approaches presented above.

The general idea of synthesis from component libraries adopted here is rem-
iniscent of the work in [5, 6]. There, Jha et al. considered the problem of syn-
thesis of finite loop-free programs from libraries of atomic program statements.
Our work is different, however, as (i) we consider a more generic concept of
components (e.g., they can be also defined using temporal logic), considering
multiple output ports and port types, (ii) decouple topological properties from
the formalism used to describe the component, and (iii) introduce the idea, in
the context of synthesis from component libraries, of applying library-specific
composition rules to the synthesis problem.

A different perspective in synthesis from component libraries has also been
described by Alur et al. in [13]. There, a controller is built out of library
components in a control-flow fashion (using the terminology introduced in [2]
and discussed above). That approach, while being relevant in the broader topic
of synthesis from component libraries, is orthogonal to ours since we focus on
data-flow compositions.

Relevant is also the extensive work done in the area of Supervisory Con-
trol Synthesis (SCS) [14]. SCS is the problem of synthesizing a controller for
a discrete event system, i.e., an automaton, which exposes some controllable
and uncontrollable behaviors. The specification defines which behaviors are ad-
missible, and the goal of the controller is to restrict the controllable behaviors
of the discrete event system in a way that satisfies the specification. Existing
SCS algorithms, however, do not deal with libraries of components but, instead,
their goal is to synthesize a controller ex novo. Here, we provide a more generic
notion of components and focus our effort in synthesizing a controller through
the composition of existing components.

In [15], Ramesh et al. focus on the problem of synthesis of embedded designs
from component libraries. In that work, components are represented exclusively
by their interface and connections are made on the basis of static relations be-
tween component ports. Given a specification, a particularly rich type system
takes care of efficiently pruning the search space by solving a constraint satis-
faction problem. Although our type system is not as expressive, our approach
is more general as we consider components described by more complex specifi-
cations (not necessarily static) in addition to their interface.

Counterexample-Guided Inductive Synthesis, and the combination of Induction,
Deduction, and Structure. CEGIS is a well-known synthesis paradigm which
originates from techniques of debugging using counterexamples [16] and Counter-
example-Guided Abstraction Refinement (CEGAR) [17]. CEGIS is an inductive
synthesis approach where synthesis is the result of inferring details of the spec-
ification from I/O examples, driven by counterexamples usually provided by a
constraint solver. In CEGIS an iterative algorithm, according to a certain con-
cept class, generates candidate solutions which are processed by an oracle and
either declared valid, in which case the algorithm terminates, or used as coun-

4

terexamples to restrict the search space. CEGIS has been successfully used in
a number of research areas, including program synthesis and sketching [3, 5, 6],
and synthesis and completion of distributed protocols [18–20].

Recently, a novel methodology which formalizes the combination of Struc-
ture, Inductive and Deductive reasoning (SID) has been proposed in [21], repre-
senting a generalization of both CEGAR and CEGIS. The approach proposed
in this paper instantiates the CEGIS paradigm (not a trivial task, in general),
and thus it is an implementation of the SID methodology.

Platform-Based Design. Platform-Based Design (PBD) [22] is an iterative de-
sign methodology which has been successfully applied in a number of domains,
including electronic and automotive design. In PBD, design is carried out as
the mapping of a user-defined function to a platform instance. This platform
instance represents a network of interconnected components, chosen from a li-
brary. Together with their functionality, in PBD components expose also other
characteristics such as composition rules, performance indices, and cost. This
additional information is used to optimize the mapping process, according to
both functional and non-functional specifications.

In this paper, we borrow from PBD the idea that platform components can
define their own composition rules. Moreover, every component exposes some
non-functional characteristics (expressed by means of a cost function), which
need to be optimized during the mapping process.

3. Preliminaries on A/G Contracts

Contracts provide a formal framework to instantiate Platform-Based Design,
defining rules for correct-by-construction component integration and validation,
as well as concepts of refinement and abstraction [23–26].

Assume/Guarantee contracts represent a specific instance of the contract
theory, where the behavior of a component, i.e., its promise or guarantee, and
its expectations from the environment, i.e., its assumption, are expressed using
assertions. Here, A/G contracts are defined using synchronous assertions, which
are sets of behaviors. A behavior is a sequence of evaluations of variables from
a fixed alphabet ΣIO sharing the same domain.

Formally, an A/G contract is a pair ϕ = (A,G) where A and G are syn-
chronous assertions representing assumptions and guarantees, respectively. Any
environment behavior E ⊆ A is a valid behavior for ϕ, while any component
behavior M such that M ∩A ⊆ G is a behavior which satisfies ϕ, i.e., the com-
ponent is behaving correctly under the assumptions of the contract. If A = ∅,
the contract is said incompatible, i.e., there is no valid environment for it, and
if G = ∅, it is inconsistent, i.e., there is no valid implementation for it.

A contract is saturated if its guarantees are maximal, i.e., G ⊇ A, where A
is the complement of A1. In the rest of the paper, even if not explicitly stated,

1Note that the contracts ϕ1 = (A,G) and ϕ2 = (A,G∪A) are equivalent, as every behavior

5

we will always refer to saturated contracts.
We concretely express the sets A and G as a pair of LTL formulas, ψA and

ψG, each denoting the set of all traces (behaviors) that satisfy it. As for A, and
G, also ψA and ψG are defined over the same set of variables ΣIO.

Contract algebra includes a number of operations to manipulate contracts,
including parallel composition and refinement, which are required by the prob-
lem that we will illustrate in Def. 4.1. The parallel composition of two contracts
ϕ1 = (ψA1, ψG1) and ϕ2 = (ψA2, ψG2) can be directly defined in terms of LTL
formulas as

ϕ1 ⊗ ϕ2 = ((ψA1 ∧ ψA2) ∨ ¬(ψG1 ∧ ψG2), ψG1 ∧ ψG2). (1)

Contract composition is associative and commutative, and preserves the satu-
rated form; if ϕ1 and ϕ2 are saturated, then so is ϕ1 ⊗ ϕ2.

Refinement, instead, formalizes a notion of substitutability and it is defined
as a preorder on contracts. A contract ϕ1 = (ψA1, ψG1) refines contract ϕ2 =
(ψA2, ψG2), written ϕ1 � ϕ2, if ψA2 ⇒ ψA1 and ψG1 ⇒ ψG2 are both valid or,
equivalently, if ¬(ψA2 ⇒ ψA1) and ¬(ψA1 ⇒ ψG2) are both unsatisfiable. Two
contracts ϕ1 and ϕ2 are said equivalent if and only if ϕ1 � ϕ2 and ϕ2 � ϕ1.
Refinement can be efficiently verified, for LTL A/G contracts, using any tool
able to check satisfiability of LTL formulas, such as a model checker.

In Section 6, we discuss the implementation of our algorithm which uses com-
ponents specified as LTL A/G contracts. Nevertheless, our solution is general
and works with other compositional frameworks as well.

4. Constrained synthesis from component libraries (CSCL)

In our framework, a component G ∈ G, where G is the domain representing
the space of all possible components, is a tuple G = (IG, OG, ϕG, σG, RG). IG is
the set of input ports, OG is the set of output ports, and ϕG is the component
specification, expressed using a specific notation (e.g., an A/G contract, or an
LTL formula). Variables in ϕG correspond to ports in IG and OG. IG, OG,
and ϕG are all defined over a common set of symbols, or alphabet, ΣIO. The
function σG : IG ∪ OG → T maps ports of G to elements in T , where T is a
typeset. A typeset is a poset consisting of a set of symbols (types) ordered by
the subtype relation2. For a, b ∈ T , the notation a ≤ b means that b is a subtype
of a. Finally, RG is a set of logic constraints over ports of G.

A library is a tuple L = (Z, T,RZ , f). Here, Z = {G1, . . . , Gn} is a finite set
of components. Several components in Z can have the same specification ϕG,
but they are required to have at least unique names for ports (and variables). RZ

M that satisfies ϕ1 also satisfies ϕ2, and vice versa.
2Without loss of generality, here we can consider the poset T being organized as a tree.

This is enough to obtain a simple type system with single inheritance, where all the types
share the same root type (⊥). The choice of T , however, does not have an impact on the
general formulation of our framework.

6

is a set of logic constraints that encode connection rules over ports of components
in Z and types in T . Constraints in RG and RZ characterize a certain library,
and are used by the library designer to provide domain-specific insights that
can be used to speed up the synthesis process. The cost function f : ℘(G) → R,
where ℘(G) is the powerset of G, maps sets of components from the domain G

to real numbers, i.e., the cost of the component.
The use of a cost function associated to the library derives from Platform-

Based Design principles, that is, components not only need to satisfy a speci-
fication, but they can also expose non-functional characteristics which need to
be optimized during instantiation. These non-functional characteristics of com-
ponents are captured in our framework using f . Here, f is defined with the
library, as different problem domains have different notions of cost.

We consider the system specification S = (IS , OS , ϕS , σS , RS), that needs to
be synthesized, as a component itself. In this way (through constraints in RS)
a user of the synthesizer is also able to provide design hints that are specific
to the problem instance, such as input/output interface (in terms of ports and
their types) as well as additional constraints over those ports.

Later on, for a library L = (Z, T,RZ , f), we will use the following set to
address all the ports of all components in it:

PL =

|Z|
⋃

i=1

IG1 ∪OG1 (2)

Similarly, to indicate all the ports in L and the ports in the system specification
S, we use:

PL∪S = PL ∪ IS ∪OS (3)

The composition of two components G1 = (I1, O1, ϕ1, σ1, R1) and G2 =
(I2, O2, ϕ2, σ2, R2) is a new component G1 ⊗ G2 = ((I1 ∪ I2)\(O1 ∪ O2), O1 ∪
O2, ϕ1 ⊗ ϕ2, σ1 ∪ σ2, R1 ∪ R2), assuming that the operator ⊗ is defined for ϕ1

and ϕ2. This means that input ports that are connected to output ports are
considered outputs in the resulting composition. For instance, when input a is
connected to output b, the resulting composite component only contains output
b (input a “disappears” since it is going to be controlled by b). We also assume
that there is no conflict between σ1 and σ2, meaning that ports with the same
name need to have the same type according to both σ1 and σ2:

∀p ∈ I1 ∪O1 : p ∈ I2 ∪O2 ⇒ σ1(p) = σ2(p)

We say that a component G1 refines a component G2, written G1 � G2, if
and only if

I1 ⊆ I2, O2 ⊆ O1, and ϕ1 � ϕ2 (4)

where we assume that the formalism used to express component specifications
ϕ1 and ϕ2 includes the notion of refinement. For instance, if ϕ1 and ϕ2 are logic
formulas, ϕ1 � ϕ2 is equivalent to the implication ϕ1 ⇒ ϕ2. Intuitively, if G1

7

refines G2, then ϕ2 will always hold if ϕ1 holds, i.e., G1 can be safely used in
place of G2.

To describe the logic constraints in RZ , RG, and RS , and to model interac-
tions between components (e.g., when the output of a component is the input
of another one) we need to introduce the concept of connection between ports.
Formally, we indicate connections between ports using the function:

ρ : ΣIO × ΣIO → {0, 1} (5)

Given components G1 and G2 with ports p and q, respectively, we have
ρ(p, q) = 1 3 if and only if, in the resulting composition (G1⊗G2) or refinement
operation (G1 � G2), the variables corresponding to p and q in ϕG1 and ϕG2

will be expressed (i.e. renamed) using a new, unused common symbol:

ρp,q ⇔ ∃ fresh x ∈ ΣIO : [p ; x]ϕG1
∧ [q ; x]ϕG2

(6)

where the notation [p ; x]ϕG1
indicates the renaming of variable p with x within

the formula ϕG1. A variable x ∈ ΣIO is fresh if and only if x /∈ PL∪S .
Now let us also consider a component G3 containing a port t. If a port

is connected multiple times to different ports, then all of their corresponding
variables will be renamed using the same new symbol:

ρp,q ∧ ρp,t ⇔ ∃ fresh x ∈ ΣIO : [p ; x]ϕG1
∧ [q ; x]ϕG2

∧ [t ; x]ϕG3
(7)

Note that using ρ to define connections between components can, potentially,
yield inconsistent renaming of variables and thus inconsistent compositions of
components. Consider, for instance, three ports p, q, t and a function ρ such
that ρp,q, ρp,t, and ¬ρq,t. Clearly, no such renaming could be applied because
the first two connections imply ρq,t. In Section 4.2, we describe how to properly
constrain ρ to avoid such situations.

Often we will refer to the composition of components (and their specifica-
tions) using the notation G1 ⊗ρ G2, where with ⊗ρ we indicate the renaming
of variables in ϕG1 and ϕG2 according to ρ, followed by the composition oper-
ation defined above. Similarly, G1 �ρ G2 will indicate a renaming of variables
followed by the refinement operation. Two components G1 and G2 are equiva-
lent if and only if there exists a renaming function ρ such that G1 �ρ G2 and
G2 �ρ G1.

Example 1 (Component Connection). Let

G1 = (I1, O1, ϕ1, σ1, R1) = ({a1, b1}, {c1}, c1 = a1 + b1, {a1, b1, c1} → {⊥}, ∅)

G2 = (I2, O2, ϕ2, σ2, R2) = ({a2}, {b2}, b2 = 2 · a2, {a2, b2} → {⊥}, ∅)

be two components and ρ a renaming function specifying a single connection
ρb1,b2 (thus ¬ρa1,b2 ,¬ρc1,b2 ,¬ρa1,a2 , etc.). Let us also assume that component

3To indicate ρ(p, q) = 1, we will often use the shorthand ρp,q , and ¬ρp,q for ρ(p, q) = 0.

8

specifications can be composed by taking their conjunction. Then, the compo-
sition G1 ⊗ρ G2 yields a component

G1 ⊗ρ G2 = ({a1, a2}, {c1, b3}, b3 = 2 · a2 ∧ c1 = a1 + b3, {a1, a2, b3, c1} → {⊥}, ∅)

Where b3 is a fresh symbol replacing b1 and b2.

Example 2 (Running example: synthesize the modulo operation). We intro-
duce here a simple example to help the reader familiarize with the concepts
introduced so far. Our objective is to synthesize the modulo operation starting
from a library of simpler arithmetic operations. For simplicity, we assume only
strictly positive integer inputs.

Let us define our library to be Lop = (Zop, {⊥}, ∅, f(G) = 0), where we have
only one type (⊥) for all the ports and no additional constraints over ports
and types. Zop = {add, sub,mult, div} is a set containing addition, subtraction,
multiplication and integer division, and f(G) = 0 is a constant function.

Every component has two inputs and one output, and its specification is
the associated arithmetic operation. We assume no additional constraints over
ports also at component level. Thus we have:

add = ({aa, ba}, {ca}, ca = aa + ba, {aa, ba, ca} → {⊥}, ∅)

sub = ({as, bs}, {cs}, cs = as − bs, {as, bs, cs} → {⊥}, ∅)

mult = ({am, bm}, {cm}, cm = am · bm, {am, bm, cm} → {⊥}, ∅)

div = ({ad, bd}, {cd}, cd = ⌊ad/bd⌋, {ad, bd, cd} → {⊥}, ∅)

To successfully find a solution, we need to make sure the operations of com-
position and refinement are defined for elements in Lop. Here, the composition
of two component specifications is the classical function composition, while the
refinement relation can simply be the equivalence between functions.

The specification is the component Smod = ({x, y}, {z}, z = mod(x, y),
{x, y, z} → {⊥}, ∅). We know that the modulo operation can be computed
as mod(x, y) = x−⌊x/y⌋ · y. A composition of elements in Zop that implements
Smod is shown in Figure 1: sub(x,mult(div(x, y), y)), with connections ρbs,cm ,
ρam,cd , ρx,as

, ρx,ad
, ρy,bd , ρy,bm , ρz,cs .

Figure 1: Modulo operation composition from elements in Lop.

In the following sections we will define a set of rules to automatically obtain
candidate solutions which are topologically sound (e.g., adding the connection

9

ρz,cm should be illegal because the output z is already connected, or controlled,
by the port cs), and semantically correct (e.g., having ρz,cm instead of ρz,cs
would yield a composition which does not implement the modulo operation,
although topologically sound).

4.1. A combinatorial analysis of the CSCL problem

The problem of composing a finite number of elements from a library is
hard. In this section, we quantify its combinatorial complexity by analyzing
two simpler cases first and then putting the results together for the general
case. As in the previous section, we consider a library L = (Z, T,RZ , RT , f),
with finite Z = {G1, . . . , Gn}, and a specification S = (IS , OS , ϕS , σS , RS).
Since we are interested in the worst-case scenario, in this case we assume RZ =
RT = RS = RG1 = · · · = RGn

= ∅, and T = {⊥} (a typeset containing only the
root type).

First, we examine the case in which we already have a set of m connected
components H = {G′

1, . . . , G
′
m} and we want to find a single component Gz ∈ Z

such that ϕz ⊗ ϕ′
1 ⊗ · · · ⊗ ϕ′

m � ϕS . Assuming n is the number of components
in Z, we have n possibilities to try. Extending this example to include c ≤ n
unknown components is straightforward. In this case, there are n!

c!(n−c)! possible

solutions, assuming that the order of components does not matter.
On the other hand, we have a scenario in which we still have m components

H = {G′
1, . . . , G

′
m}, but connections among them are missing. We want to

connect the components to each other, according to a certain function ρ, such
that ϕ′

1 ⊗ρ · · · ⊗ρ ϕ
′
m � ϕS . The complexity of this problem depends on the

total number of ports. Assuming p is the number of ports of a component, then

there are 2
mp(mp−1)

2 possible solutions.4

Combining together the previous two examples yields the worst case for the
CSCL scenario, in which we want to find both components and their connections
to satisfy S. Assuming every component in our library Z has at most p ports,
and a finite N as the maximum number of components in a possible solution,

one can see how in this case there are ΣN
c=1

n!
c!(n−c)!2

cp(cp−1)
2 possible solutions.

4.2. Synthesis Constraints

The analysis in Section 4.1 shows that the CSCL problem grows quickly with
the number of components and ports in the library. The role of the library-
specific constraints is to mitigate such complexity. We require RZ to contain at
least the constraints defined in the following paragraphs5:

4Recall that the maximum number of edges in a graph of n nodes is
n(n−1)

2
. Then, 2

n(n−1)
2

is the number of all the subsets of those connections.
5Here we borrow the notation typical of first-order logic formulas, although all the formulas

refer to a finite number of elements.

10

• Connections must be consistent, according to the following properties
which encode the semantics of ρ. Equation 8 tells us that if for three
ports p, q, w we have ρp,q and ρq,w, then it must be also ρp,w:

∀p, q, w ∈ PL∪S : ρp,q ∧ ρq,w ⇒ ρp,w (8)

Equation 9 represents the fact that if p is connected to q, then q is also
connected to p:

∀p, q ∈ PL∪S : ρp,q ⇒ ρq,p (9)

Equation 10 simply states that a port is always connected to itself:

∀p ∈ PL∪S : ρp,p (10)

• Two output ports of two different components in the library cannot be
connected to each other:

∀G,G′ ∈ Z : ∀p, q ∈ OG ∪OG′ : (p 6= q) ⇒ ¬ρp,q (11)

• Components representing a candidate solution are collected in the set
H ⊆ Z, with maximum size N . Inputs of a component in H must be
connected either to inputs of S or outputs of other components in H:

∀G ∈ H : ∀p ∈ IG : (∃s ∈ IS : ρp,s) ∨ (∃G′ ∈ H : ∃q ∈ OG′ : ρp,q) (12)

Example 3. Equation 11 prevents the connection between multiple out-
puts of components in H. With respect to Ex. 2, this means enforcing
¬ρca,cs , ¬ρca,cm , ¬ρca,cd , ¬ρcs,cm , ¬ρcs,cd , and ¬ρcm,cd . Equation 12,
instead, makes sure that no inputs of the components in H are left uncon-
nected. For instance, the composition in Figure 2 violates Equation 12,
because as is not connected to any other port.

X

Figure 2: Illegal composition of elements in Lop (as disconnected).

• No distinct ports of S can be connected to each other. In this case, such
constraint is not too restrictive. If needed, in fact, one can relax this
constraint by explicitly adding a component in the library implementing
the identity function:

∀s, r ∈ IS ∪OS : s 6= r ⇒ ¬ρs,r (13)

11

• Inputs of the specification S cannot be connected to component outputs,
because otherwise in the resulting composition those inputs will be treated
as outputs (as seen in Section 4):

∀s ∈ IS : ∀G ∈ Z : ∀p ∈ OG : ¬ρs,p (14)

• Every input of the specification S has to be connected at least to an input
of a component in H (Equation 15), while every output of S has to be
connected at least to an output of a component in H (Equation 16):

∀s ∈ IS : ∃G ∈ H : ∃p ∈ IG : ρs,p (15)

∀s ∈ OS : ∃G ∈ H : ∃p ∈ OG : ρs,p (16)

Example 4. Equation 15 and Equation 16 ensure that there is a full
mapping of specification ports into components ports. For instance, the
composition in Figure 3 violates Equation 16 because there is an output
of the specification, z, which is not connected to any component outputs.

X

Figure 3: Illegal composition of elements in Lop (z disconnected).

• Only ports with compatible types can be connected to each other, accord-
ing to the subtype relation defined in Section 4 and considering contravari-
ant inputs and outputs. This means that, given two ports p and q con-
nected to each other, if p is an output and q is an input, then σ(p) ≤ σ(q),
and vice versa (similarly, in principle, to what is described by de Alfaro
and Henzinger in [27]):

∀G,G′ ∈ Z : ∀p ∈ IG, q ∈ OG′ : σG(p) 6≤ σG′(p) ⇒ ¬ρp,q (17)

4.2.1. Problem Definition

The following definitions introduce the problem of Constrained Synthesis
from Component Libraries (CSCL). Our goal is to describe the problem in a
way that is as general as possible. We achieve this by:

12

1. only requiring components to be defined using a formalism that provides
the operations of composition and refinement. Contracts, logic formulas,
and finite state machines to name a few, all satisfy this condition.

2. requiring the library of components to satisfy at least the constraints pre-
sented in Equations 8 to 17, allowing the designer, however, to add as
many constraints as necessary, according to the problem domain.

Definition 4.1 (CSCL problem). Let S = (IS , OS , ϕS , σS , RS) be a system
specification, and L = (Z, T,RZ , f) a library of components where RZ contains
at least the constraints described in Equations 8 to 17. Let also the operations
of composition (⊗) and refinement (�) be defined for components in L. The
problem of Constrained Synthesis from Component Libraries consists of finding
a finite set of components H = {G1, . . . , GN | Gi = (Ii, Oi, ϕi, σi, RGi) ∈ Z}
and a connection function ρ such that the cost function f is minimized according
to:

minimize
{G1, . . . , GN}

f({G1, . . . , GN}) (18a)

subject to all synthesis constraints in RZ , RS , RGi , (18b)

ϕ1 ⊗ρ · · · ⊗ρ ϕN � ϕS (18c)

In case the function f is a constant, then the CSCL problem can be simplified
as follows.

Definition 4.2 (Simplified CSCL problem). Let S = (IS , OS , ϕS , σS , RS) be
a system specification, and L = (Z, T,RZ , f) a library of components where
RZ contains at least the constraints described in Equations 8 to 17, and f is
a constant. Let also the operations of composition (⊗) and refinement (�) be
defined for components in L. The simplified CSCL problem consists of finding
a finite set of components H = {G1, . . . , GN | Gi = (Ii, Oi, ϕi, σi, RGi) ∈ Z}
and a connection function ρ such that:

all synthesis constraints in RZ , RS , RGi hold (19a)

ϕ1 ⊗ρ · · · ⊗ρ ϕN � ϕS (19b)

5. Solving a concrete instance of the CSCL problem

The CSCL problem in Def. 4.1 (and 4.2) is very general, and the most effec-
tive approach to solve it depends on the structure of the library. For instance, a
continuous cost function f will require optimization techniques which are very
different from a cost function which is purely discrete, or which depends on the
formalism used to describe component specifications.

In this section we discuss a solution based on the following assumptions:

• f can be solved using discrete optimization techniques;

13

• f does not depend on the formalism used to describe the specification of
components. This means that, for a component G, f(G) can be evaluated
without considering ϕG.

This choice allows us to effectively decouple the topological aspects of a candi-
date solution of the CSCL problem in Def. 4.1, i.e., Equation 18a and 18b, from
its semantic evaluation, i.e., Equation 18c.

Under these assumptions, we propose a solution based on the CEGIS paradigm,
in which synthesis is carried out by an iterative algorithm. In each iteration two
major steps are performed:

STEP 1 A discrete optimization problem is solved to retrieve a candidate solu-
tion, that is, a set of components, and their connections, which minimizes
the objective function and satisfies all the synthesis constraints. With
respect to Def. 4.1, this first step takes care of Equation 18a and 18b,
and provides the function ρ used to solve Equation 18c. This step, in
general, can be solved by a constraint solver. With respect to Example 2,
for instance, this step corresponds to the generation of possible solution
candidates such as sub(x,mult(div(x, y), y)), or add(x,mult(div(x, y), y)).

STEP 2 Equation 18c is checked by interrogating a tool, which we call veri-
fier, able to understand component specifications. The verifier determines
whether the candidate composition, after proper interconnection of com-
ponents, refines the global specification ϕS . In Example 2, the verifier is
the tool able to determine, indeed, that sub(x,mult(div(x, y), y)) imple-
ments the modulo operation.

The choice of the verifier used in the second step depends on the formalism
used to specify components. For instance, a model checker could be chosen
as verifier in case components are specified as state machines and the global
specification is an LTL formula or, in case of ordinary differential equations, a
numerical solver. In this paper, both the system specification and the compo-
nents are described using LTL A/G contracts.

We call counterexample a candidate composition (i.e., a set of components
and their connections) which has been proven wrong by the verifier. A coun-
terexample is used to inductively learn new constraints for the solver. In general,
the performance of a CEGIS-based algorithm depends on how well a counterex-
ample can prune the search space, leveraging as much as possible the information
that can be inferred from the components specifications and execution traces,
if the verifier provides them. In this work, however, we make no assumption
on the verifier which is used to check the validity of candidates. Our solution
leverages component equivalence, introduced in Section 4. We can do so by
using the refinement operation that we assume in Definitions 4.1 and 4.2, thus
preserving the generality of the approach.

We can identify equivalent components using the function

E : G → 2G×Σ
ΣIO
IO (20)

14

which takes a component as input and returns a set of pairs, consisting of a
component and a function mapping ports to ports. Given a component G in a
library L, E(G) returns a set containing all the pairs (G′,M) such that there
exists a renaming function that makes G′ equivalent to G. M , then, maps the
ports of G to the ports of G′ according to such renaming function. Formally,

E(G) =

(G′,M)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

G′ ∈Z and
∃ρ′ :

G �ρ′ G′ and G′ �ρ′ G and
∀p ∈ I ∪O :
∀p′ ∈ I ′ ∪O′ :

ρ′p,p′ ⇔M(p) = p′

(21)

In general, E is fixed for a given library and can easily be precomputed and
accessed during synthesis, without significant performance overhead.

5.1. The CSCL algorithm

As mentioned earlier in this section, the assumption that makes the applica-
tion of our algorithm possible is that the cost function f does not depend on the
formalism used to describe the specifications of components, and that f can be
minimized using discrete optimization techniques. In this way, there is a clear
separation between the satisfaction of the synthesis constraints, including the
minimization of the cost function, and the evaluation of the refinement relation
between the system specification and the composition of components.

A number of constraint solvers are able, indeed, to minimize objective func-
tions while satisfying logic constraints, such as Z3 [28]. The simpler formulation
of the CSCL problems in Def. 4.2, on the other hand, doesn’t require the func-
tion f to be minimized and can be solved by the CSCL algorithm using a
constraint solver without optimization capabilities.

In the CSCL algorithm, illustrated in Table 1, the task of pruning the search
space is carried out in a twofold manner. First, the constraint solver only needs
to search over a number of potential candidates which is drastically limited by
the synthesis constraints. Such constraints include those encoded in the library
through the constraints in RZ , RG1

, . . . , RGN
, and RS .

Second, each time a counterexample is observed in step 3.1, it is used to
match all the elements of the library equivalent to those in the counterexample,
according to the component equivalent sets described in Equation 21, and the
algorithm in Table 2. This allows us to rule out a number of possible candidate
instances exponential in the number of components contained in the rejected
candidate. For instance, if the counterexample is a composition of 4 compo-
nents, and for each one there are 2 other components in Z with the same spec-
ification, then adding constraints from that single counterexample will discard
34 erroneous candidate instances.

The output of the CSCL algorithm is a finite set of components, H, and
their connections, expressed as a function, ρ. To ensure termination, the CSCL

algorithm requires a bound on the number of components used in a candidate

15

Algorithm 1: CSCL

Input: A specification S = (IS , OS , ϕS , σS , RS), a library of components L =
(Z, T,RZ , f), the maximum number of components in the solution N .
Output: A set of components H = {G1, . . . , Gn}, H ⊆ Z and n ≤ N , and a connec-
tion function ρ, such that ϕ1 ⊗ρ · · · ⊗ρ ϕn � ϕS and f in minimized, or NULL if no
solution is found.

1. Initialize constraint solver and verifier, instantiating the synthesis constraints
for problem instance and setting N as the maximum number of components in
a candidate solution.

2. (STEP 1) while get candidate solution (H ′ = {G1, . . . , Gn}, ρ
′), with n ≤ N ,

from constraint solver such that f is minimized and all the synthesis constraint
hold:

1. Build composition G1 ⊗ρ′ · · · ⊗ρ′ Gn.

2. (STEP 2) if the verifier checks that ϕ1 ⊗ρ′ · · · ⊗ρ′ ϕn � ϕS holds:

return H = H ′ and ρ = ρ′.

3. else

1. infer incorrect renamings from candidate (H ′, ρ′):
R = RejectCandidate(H ′, ρ′).

2. for all ρtemp ∈ R:

1. add constraint ρ 6= ρtemp to constraint solver.

3. return NULL.

Table 1: CSCL algorithm. (STEP 1) and (STEP 2) are labels. The algorithm interfaces with
a constraint solver (preferably with optimization capabilities) to execute (STEP 1), and with
a verifier, e.g., a model checker, to execute (STEP 2).

solution. The choice of such bound depends on the details of the problem
being solved. In the CSCL algorithm, we let the user decide what is the most
appropriate bound through the input parameter N .

The complexity of the CSCL algorithm depends on the structure of the
library and the solution maximum size. According to our analysis in Section
4.1, for a fixed library, the worst case time complexity will be exponential in the
maximum number of components in a solution, N , multiplied by the complexity
of the call to the verifier. In practice, though, the techniques discussed above
are able to limit the search space in a considerable manner, yielding acceptable
synthesis times in many cases.

5.2. An efficient encoding for the synthesis constraints

The encoding of the synthesis constraints presented in Section 4.2 is not
particularly efficient. For instance, one can see how Equation 8 represents a
formula which grows cubically in the number of ports of all components in the
library. Such encoding would cause the internal representation of the synthesis
constraints in the constraint solver to grow unnecessarily large, resulting in

16

Algorithm 2: RejectCandidate

Input: A set of contracts H = {G1, . . . , Gn}, and a renaming function ρ.
Output: R, a set containing renaming functions

1. R = set()

2. for all G1, G2 ∈ H:

1. Initialize ρtemp = ρ

2. for all (G′

1,M1) ∈ E(G1):

1. for all (G′

2,M2) ∈ E(G2):

1. for all p1 ∈ I1 ∪O1:

1. for all p2 ∈ I2 ∪O2:

1. Update ρtemp(M1(p1),M2(p2)) = ρ(p1, p2).

3. Add ρtemp to R.

3. return R

Table 2: RejectCandidate algorithm. The returned set R collects all the possible renaming
functions that would yield a candidate equivalent to (H, ρ).

poor performance. In this section, we present an encoding that exploits a more
efficient representation of component connections.

Given library L = (Z, T,RZ , f) and system specification S = (IS , OS , ϕS ,
σS , RS), we assign an index to all the output ports in the library and also to
all the input ports of the specification S, and indicate with I the set containing
such indices. Conversely, we associate an integer variable to every input port
in the library, as well as to every output port of S. We call these variables
connection variables and group them in the set V. Connection variables, as
the name suggests, are used to specify connections between ports, and they are
assigned by the constraint solver in the first step of the CSCL algorithm. We
use the function I : PL∪S → I ∪ {−1} to retrieve the index of a given port,
or −1 if the index is not defined for the port. Similarly, we use the function
V : PL∪S → V ∪ {∅} to retrieve the connection variable of a given port, or ∅ if
the connection variable is not defined for that port (e.g., input ports of S). We
then map connection variables to indices using the function M : V → I∪ {−1}.
Such encoding allows us to eliminate the expensive explicit representation of
function ρ. For instance, the new encoding will represent the assertion ρp,q for
an input port p and output port q with the assignment M(V(p)) = I(q), also
indicated, for convenience, as M(p) = I(q). If p is not connected to any port,
then M(p) = −1. We only allow inputs from the library to be connected to
outputs in the library or inputs of the specification S:

∀G ∈ Z : ∀p ∈ IG :

(M(p) = −1) ∨ [∃G′ ∈ Z : ∃q ∈ OG′ : M(p) = I(q)] ∨ [∃s ∈ IS : M(p) = I(s)]
(22)

We also impose that outputs of the specification S can only be mapped to

17

outputs from the library:

∀s ∈ OS : (M(s) = −1) ∨ (∃G ∈ Z : ∃p ∈ OG : M(s) = I(p)) (23)

The following theorem states that using the encoding presented in this sec-
tion, with Equations 23 and 22, yields a solution space which is at least as large
as the one obtained representing ρ using Equations 8 to 17. Our goal is to show
that if a solution exists within the constraint in Equations 8 to 17, then it will
exist also using the encoding introduced here.

Theorem 5.1. Let C1 be the set of connections among components in Z ∪{S}
that can be defined by the function ρ according to Equations 8 to 17. Let also
C2 be the set of connections that can be defined by the connection variables in
V and indices in I, constrained by Equations 22 and 23. Then C2 ⊆ C1.

Proof. We start considering only connections between ports in PL. Given an
input port p and an output port q, a connection ρp,q in C1 (and by Equation 9
also ρq,p) can be trivially be represented in C2 by the assignment M(p) = I(q).
If both p and q are outputs, then by Equation 11 their connection cannot be
in C1. If both p and q are inputs and ρp,q is in C1, then by Equation 12 p
and q have to be connected to another output in the library or to an input of
S. In either case, assume w be such port, where ρp,w and ρq,w are also in C1.
Then M(p) = I(w) and M(q) = I(w) represent the equivalent connections in
C2, including indirectly ρp,q (because they have a reference to the same index).
Consider now also ports of the specification S. Since, in C1, we do not allow
any two ports of S being connected to each other (Equation 13), we have only
the case in which there is a connection ρs,p between ports s ∈ IS ∪ OS and
p ∈ PL. If s is an input, then p has to be an input too (because of Equation 14),
and we can represent ρs,p as M(p) = I(s) in C2. If s is an output, then p
can be either a component input or output. If p is an output, then ρs,p can
be represented as M(s) = I(p). If p is an input, then by Equation 16 there
must be another component output q such that ρs,q. By Equation 8, then it
must be also ρp,q. Therefore we can map these three connections in C2 with
M(s) = I(q) and M(p) = I(q) (where ρs,q is implicit because s and p refer to
the same index). This shows that all the connections in C1 have an equivalent
in C2, hence C1 ⊆ C2.

Thanks to Theorem 5.1, we are ensured that the encoding presented here
(under Equations 22 and 23) preserves the solution space defined by Equations 8
to 17. All the results in Section 7 are obtained after reformulating the synthesis
constraints in Equations 8 to 17 using the encoding described in this section.

6. Implementing the CSCL algorithm

In this and the following sections, we describe the implementation of a paral-
lel variant of the CSCL algorithm and evaluate its capabilities and performance.

18

We used the SMT solver Z3 [28] to find candidates satisfying the synthesis con-
straints and minimize the cost function f , and we chose to represent our library
as a set of LTL A/G contracts. This choice is also motivated by the fact that
composition and refinement operations are well defined in the contract alge-
bra. Moreover, additional concepts such as compatibility and consistency can
be leveraged to derive, before the actual synthesis process, library constraints
on components composability (in the form of incompatible sets of ports stored
through constraints in RZ). Lastly, but not less important, several tools are
available to deal with LTL specifications. In our experiments, the verifier cho-
sen to compute refinement checks is NuXMV [29].

An efficient implementation of the CSCL algorithm has been developed us-
ing the encoding described in Section 5.2. Additionally, we decided to modify
the CSCL algorithm to exploit multiprocessor architectures and further speed
up synthesis. The CSCL algorithm, in Table 1, first computes a candidate so-
lution and then it asks the verifier to validate or discard that candidate. The
verifier execution is, in general, a time-consuming operation, i.e., verifying the
validity of an LTL formula is a PSPACE-complete problem [30, 31]. We can
observe, however, that it is possible (and convenient) to interrogate several veri-
fier instances at the same time, providing them with different candidates. Here,
we modify CSCL algorithm following this intuition, i.e., rejecting a candidate
as soon as it is given to the verifier, and providing the ability to retrieve an
old candidate in case one of the many verifier instances gives a positive answer.
Table 3 illustrates the parallel version of the CSCL algorithm in Table 1. The
Parallel CSCL algorithm is equivalent to the CSCL algorithm, as the two
algorithms perform the same operations, with the difference that the Parallel
CSCL generates candidates continuously, stopping only when a certain verifier
instance indicates a successful candidate. The implementation of Parallel

CSCL resulted in a tool we call pyco6.
To evaluate a candidate solution in H, pyco considers three possible cost

functions, defined as follows:

• Minimize the number of components in H:

f(H) = |H|

• Minimize the number of ports used in the solution:

f(H) =
∑

h∈H
|Ih|+ |Oh|

• Minimize a user-defined cost, based on the cost c of each component in
the library:

f(H) =
∑

h∈H
ch

6 pyco, together with all the experiments discussed in this paper, is available at https:

//github.com/ianno/pyco/releases/tag/SCP2018

19

https://github.com/ianno/pyco/releases/tag/SCP2018
https://github.com/ianno/pyco/releases/tag/SCP2018

Algorithm 3: Parallel CSCL

Input: A specification S = (IS , OS , ϕS , σS , RS), a library of components L =
(Z, T,RZ , f), the maximum number of components in the solution N .

Output: A set of components H = {G1, . . . , Gn}, H ⊆ Z and n ≤ N , and a connec-
tion function ρ, such that ϕ1 ⊗ρ · · · ⊗ρ ϕn � ϕS and f in minimized, or NULL if no
solution is found.

1. Initialize constraint solver and verifier, instantiating synthesis constraints for
problem instance and setting N as the maximum number of components in a
candidate solution.

2. while get candidate solution (H ′ = {G1, . . . , Gn}, ρ
′) from constraint solver

such that f is minimized and all the synthesis constraint hold:

1. Build composition G1 ⊗ρ′ · · · ⊗ρ′ Gn.

2. Spawn a new verifier instance (process) to verify ϕ1 ⊗ρ′ · · · ⊗ρ′ ϕn � ϕS .

3. if any verifier instance has signaled success:

retrieve instance and return H = H ′ and ρ = ρ′.

4. else

1. infer incorrect renamings from candidate (H ′, ρ′):
R = RejectCandidate(H ′, ρ′).

2. for all ρtemp ∈ R:

1. add constraint ρ 6= ρtemp to constraint solver.

3. Wait for all the remaining running verifier instances to terminate.

4. if any verifier instance has signaled success:

retrieve instance and return H = H ′ and ρ = ρ′.

5. return NULL.

Table 3: Parallel CSCL algorithm.

7. Case studies

This section contains two examples which illustrate the capability of the tool
we developed, and, in general, of the CSCL algorithm. The goal of the first
example is to design the control logic of a Brushless DC electric Motor (BLDC)
Driver. The specification describes the waveform of the current used to control
the electromagnets of the motor, and the task of the synthesizer is to figure out
what components are necessary and how to connect them to ensure its proper
operation. The second example, more challenging, requires the synthesizer to
provide the control logic for the controller of an aircraft Electrical Power System
(EPS), where the specification describes some strict safety requirements that
need to be always satisfied.

In our experiments, given a certain specification, we observed that synthesis
time behaves like a heavy-tailed random distribution, making it hard to provide

20

an accurate estimation of its mean value. We justify this behavior by observing
that SMT solvers, such as Z3, have intrinsically non-deterministic performance.
Thus, the search space is explored in a slightly different manner each time an
experiment is executed. To characterize the mean, we decided to run each
experiment 100 times, as we observed that this number is a good compromise
between total computation time and quality of the sample space, and then
bootstrapped our data to compute the 95% confidence interval of the mean
synthesis time.

We ran all the experiments on a 3.3 GHz Intel Xeon machine, with 32GB of
RAM, limiting the maximum number of parallel processes to 8. In some cases,
however, we ran some experiments using the single process CSCL algorithm in
Table 1.

7.1. The Brushless DC electric Motor Design (BLDC)

Typical DC electric motors have permanent magnets which are fixed (sta-
tor), containing a spinning armature (rotor). The armature contains an elec-
tromagnet that, when powered, attracts some magnets in the stator and repels
others, causing a partial rotation of the rotor. To keep the rotation going, it
is necessary to periodically invert the polarity of the electromagnet. This task
is executed by some metal brushes on the rotor that, making contact with the
electrodes on the stator, flip the polarity of the electromagnet as they rotate.
This design is simple but presents a number of limitations, such as the physical
wear of brushes and low performance.

Brushless DC electric motors, as the name suggests, overcome those limita-
tions by not having rotating brushes. In these motors, often the electromagnets
are located on the stator while magnets are on the rotor, and the change in
polarity is handled by a computer through high-power transistors [32]. BLDC
motors are more precise, efficient, and have better performance than regular
DC motors. They are more complex, however, as they require more electronic
components to work properly. Although BLDC motors can be one, two, or
three-phase, most of them are usually the latter type.

One of the simplest motor drivers for three-phase BLDC motors is the so-
called half bridge configuration. Half bridges have this name because they only
support the positive polarization of the electromagnets (instead of both negative
and positive), generating only half of the maximum torque. Figure 4 shows the
typical half bridge driver configuration, while Figure 5 illustrates the current
waveforms required for the proper operation of the motor.

The motor driver needs to properly open and close the half-bridge switches
(i.e., transistors), reading the current position of the rotor provided by a Hall
effect sensor placed in its proximity. Once the rotor reaches a commutation
point, the sensor sends an impulse to the driver, which takes care of actuating
the switches.

The goal of this example is to synthesize an architecture of components
which is able to drive a simple BDCL motor. In doing so, we want to show how
our tool is able to infer a number of necessary components, correctly satisfying

21

+

-
Vcc +

-ea

L

R

+

-eb

L

R

+

-ec

L

R

Figure 4: Common BLDC half bridge motor driver topology. Variables ea, eb, and ec represent
the Electromotive Force (EMF) for the three phases of the motor [32].

P
h
a
s
e
 A

P
h
a
s
e
 B

P
h
a
s
e
 C

T
o
rq

u
e

Current

EMF

C A B C
θ

Figure 5: Waveforms for the half bridge driver. Input current from the driver induces torque
through one of the three phases of the motor at a time [32]. To ensure the proper forward
rotation of the rotor, inputs from the driver need to be sent in a specific order.

the specification both semantically (i.e., the A/G contract of the composition
refines the A/G contract of the specification), and topologically (i.e., all the
port types match). In this example, all the variables used in A/G contracts are
Boolean. Table 4 illustrates the specification used for this case study.

The specification describes the interface of the motor driver, including one
input and three outputs, at a logic level, without taking into account other phys-
ical constraints. The input, i, communicates to the driver whether the motor
has reached a commutation point. The three outputs are signals which drive
the current of the three phases of the motor. Given the input, the specification
only requires that, when a commutation point is detected, only one driver signal
is sent to the motor. The task of the synthesizer is to choose components from
the library of 18 components, described in Table 5, and properly connect them
to satisfy the specification.

Most of the components in the library only expose their interface, without
specifying any logic. For instance, the component Power-12V is a power gener-
ator which only provides ports for ground and voltage. The MCU component,
on the other hand, already has the control logic required to satisfy the specifica-

22

Input Ports i (IOPin3V)

Output Ports o1, o2, o3 (IOPin12V)

Assumptions ¬i ∧�3i ∧�3¬i

Guarantees

o1 ∧ ¬o2 ∧ ¬o3 ∧
�[(o1 ∧ ¬i ∧ #i)⇒ (#¬o1 ∧ #o2 ∧ #¬o3)]∧
�[(o2 ∧ ¬i ∧ #i)⇒ (#¬o1 ∧ #¬o2 ∧ #o3)]∧
�[(o3 ∧ ¬i ∧ #i)⇒ (#o1 ∧ #¬o2 ∧ #¬o3)]

RS Distinct(o1, o2, o3)

Table 4: Specification for the BLDC synthesis problem. The interface has one input, which
is a 3V pin from the Hall effect sensor (its type is IOPin3), and three outputs as 12V pins to
drive the electromagnets of the motor. The specification assumes that the input is initially
negative and, once started, it will keep commuting. The guarantee is that only one output
line will be active at each commutation point in a round-robin fashion. The specification also
requires distinct outputs, meaning that they cannot be controlled by the same port.

Component Input Ports Output Ports Assumptions Guarantees

Power-5V - -
gnd
vout

(GND)
(Voltage5V)

true true

DCDC-3V
gnd
vin

(GND)
(Voltage12V)

vout (Voltage3V) true true

DCDC-5V
gnd
vin

(GND)
(Voltage12V)

vout (Voltage5V) true true

Power-12V - -
gnd
vout

(GND)
(Voltage12V)

true true

MCU
gnd
vin
i

(GND)
(Voltage3V)
(IOPin3V)

o1
o2
o3

(IOPin3V)
(IOPin3V)
(IOPin3V)

true

o1 ∧ ¬o2 ∧ ¬o3 ∧
�[(o1 ∧ ¬i ∧ #i) ⇒ (#¬o1 ∧ #o2 ∧ #¬o3)]∧
�[(o1 ∧ ¬i ∧ #¬i)⇒ (#o1 ∧ #¬o2 ∧ #¬o3)]∧
�[(o2 ∧ ¬i ∧ #i) ⇒ (#¬o1 ∧ #¬o2 ∧ #o3)]∧
�[(o2 ∧ ¬i ∧ #¬i)⇒ (#¬o1 ∧ #o2 ∧ #¬o3)]∧
�[(o3 ∧ ¬i ∧ #i) ⇒ (#o1 ∧ #¬o2 ∧ #¬o3)]∧
�[(o3 ∧ ¬i ∧ #¬i)⇒ (#¬o1 ∧ #¬o2 ∧ #o3)]

Half-Bridge
gnd
vin
i

(GND)
(Voltage3V)
(IOPin3V)

o (IOPin12V) true �(i = o)

RT ∅ RZ ∅

Table 5: Structure of the BLDC library, which contains three separate instances of each
component. Some components are architectural, meaning that they provide a typed interface
but their A/G contract is always satisfied, and some are logic, providing both a typed interface
and a non-trivial A/G contract (such as the MCU).

tion. Their port types, however, mismatch. The outputs of MCU, indeed, have
type IOPin3V, while the specification requires outputs with type IOPin12V.
Thus, Equation17 prevents their direct connection. It is responsibility of the
synthesizer to figure out the right connections to propagate the control logic to
ports of the right type.

We asked the synthesizer to find a solution using a constant cost function,
minimizing the number of components in the solution, and minimizing the total
number of ports. Additionally, we also ran a series of experiments using the
single process CSCL algorithm in Table 1, with a constant cost function. For
each case, we ran 100 experiments summarized in Figure 6.

Interestingly, the overall fastest set of experiments was the one in which
we minimized the number of components. Conversely, minimizing the number
of ports led to the slowest synthesis times. Although the performance of con-
straints solvers is, in general, non-deterministic, we can explain these results by

23

134.43	(115.44,	156.99)

66.24	(56.24,	78.81)

29.98	(26.47,	34.35)

12.03	(11.44,	12.69)

0

20

40

60

80

100

120

140

160

180

single	process constant ports comps

S
e
co
n
d
s

Figure 6: Summary of the results for the BLDC experiments. We synthesized a controller
using the single process CSCL algorithm first, with a constant cost function. Then, we used
the parallel CSCL algorithm with a constant cost function, minimizing the number of
components, and minimizing the number of ports. For each category, we ran 100 experiments.
Each point represents the mean synthesis time, while the bars represent its 95% confidence
interval, also indicated within parentheses.

observing that the MCU component, although necessary to satisfy the specifi-
cation, is the one with most ports. To minimize the number of ports used, the
synthesizer tries avoiding it, without success, leading to a longer synthesis time.
All the experiments resulted in correct designs, where the typical configuration
was the set of components {Power-12V, DCDC-3V, MCU, Half-Bridge, Half-
Bridge1, Half-Bridge2}, correctly connected. Figure 7 illustrates the typical
solution for this case study. In the figure, the arrows between ports represent
the function ρ, defining port connections. An arrow between two ports, say a
and b, means ρ(a, b) = 1.

Composition Assumptions: true & true & true & true & true & true | ! (! true | G o1_0_0_63 = o1_9_0_23 &

Spec
Inputs

i1
i1

vin

gnd

small_MCU

o3

o2

o1

i1_0_0_84

i1

vin

gnd

half_bridge0 o1

Spec
Outputs

o3

o2

o1o1_9_0_23

vin

gnd
dcdc3 vout

vout_28

o1_0_0_63 i1

vin

gnd

half_bridge0 o1

o2_0_0_63

i1

vin

gnd

half_bridge0 o1
i1_12_0_22

o1_9_0_21
 Power12

vout

gnd

vin_47

gnd_66

vin_47

gnd_66

gnd_66
vin_47

gnd_66

vin_47

gnd_66

o1_9_0_22

Figure 7: Graphical representation of a synthesized design. Names on arrows represent port
renamings induced by the function ρ, returned by the synthesis process.

24

7.2. The Aircraft Electrical Power System (EPS)

Figure 8 shows the simplified structure of an aircraft EPS in the form of a
single-line diagram7 [9–11]. Generators (as those on the top left and right sides
of the diagram) deliver power to the loads (e.g., avionics, lighting, heating, and
motors) via AC and DC buses. In the event of generator failures, Auxiliary
Power Units (APUs) will provide the required power. Some buses supply loads
which are critical, therefore they cannot be unpowered for more than a prede-
fined amount of time. Other, non-essential, buses supply loads that may be shed
in the case of a fault. The power flow from sources to loads is determined by
contactors, which are electromechanical switches that can be opened or closed.
Transformer Rectifier Units (TRUs) convert and route AC power to DC buses.

G
L

G
R

A
L

A
R

C
1

C
2

C
3

C
4

C
6C

5

C
7

C
8

C
9

C
10

B
1

B
2

B
4

B
5B

6

TRU
1 TRU

2

AC

Load

AC

Load

DC

Load

DC

Load

B
3

Figure 8: Single line diagram of the EPS.

The function of the controller, called Bus Power Control Unit (BPCU),
is to react to changes in system conditions or failures and reroute power by
actuating the contactors, ensuring that essential buses are adequately powered.
Generators, APUs, and TRUs are components subject to failures.

Our goal is to synthesize the logic of the BCPU from a set of subsystem
controllers, described by a library of A/G contracts. In our model, controller
inputs are expressed as Boolean variables, corresponding to the state of the var-
ious physical elements (i.e., presence or absence of faults). Controller outputs
are also described using Boolean variables and represent the status of the con-
tactors in the system (open or closed). At this level of abstraction, contactors
are assumed to have a negligible reaction time.

Table 6 illustrates the set of specifications that the BPCU needs to satisfy.
The first two rows on the left describe what are the input and output ports of
the EPS plant and their types, indicated in parenthesis next to the port names

7Single line diagrams are usually used to simplify the description of three-phase power
systems.

25

Input Ports
GL, GR

AL, AR

RL, RR

(ActiveGenerator)
(BackupGenerator)

(Rectifier)

Output Ports

C1, C4

C2, C3

C5, C6

C7, C8

C9, C10

(ACGenContactor)
(ACGenContactor)
(ACBackContactor)
(DCBackContactor)
(DCLoadContactor)

Assumptions
(common to all)

¬GL ∧�(GL ⇒ #GL)∧
¬GR ∧�(GR ⇒ #GR)∧
¬AL ∧�(AL ⇒ #AL)∧
¬AR ∧�(AR ⇒ #AR)∧
¬RL ∧�(RL ⇒ #RL)∧
¬RR ∧�(RR ⇒ #RR)

S1 C1 ∧�(GL ⇒ #¬C1)

S2 C4 ∧�(GR ⇒ #¬C4)

S3 �(AL ⇒ #¬C2)

S4 �(AR ⇒ #¬C3)

S5 �¬(C2 ∧ C3)

S6 �[(¬GL ∧ ¬GR) ⇒ 3¬(C5 ∧ C6)]

S7

�[(¬GL ∧ ¬AL ∧ ¬AR ∧ ¬GR) ⇒

3(¬C2 ∧ ¬C3 ∧ ¬C5 ∧ ¬C6)]

S8 �[¬(RL ∧RR) ⇒ C9]

S9 �[¬(RL ∧RR) ⇒ C10]

RS Distinct output ports

Table 6: Set of system specifications S1 . . . S9 to satisfy. Input ports reflect the status of
EPS elements (such as generators), while output ports represent contactors. Assumptions are
common to all the specifications and capture the expectation that when a component fails, it
will not be operational again. Guarantees include the promise that faulty generators will be
isolated, no short-circuit will happen, and loads will always be powered. The specifications
also require distinct outputs, meaning that each of them has to be controlled by a separate
port.

(Figure 9 shows the type tree associated with ports in the specification and
library components). In total, each specification is defined over 6 input and 10
output ports.

Input ports GL, GR, AL, AR, RL, RR represent the environment event of fail-
ure of the left and right generator, APU, and TRU, respectively. Output ports

Figure 9: Tree representing the typeset used in the EPS case study.

C1, . . . , C10 represent the state of the contactors. The second column of Table 6
describes a set of 9 specifications, all sharing the same assumptions. In this ex-
ample, we assume from the environment that all the components do not start to
operate in a faulty state (see, for instance, ¬GL in the first line of the assump-
tions in Table 6, referring to the left generator), and if a component breaks,
then it will stay broken (specified, for the left generator, by �(GL ⇒ #GL)).
Specifications S1 to S4 require that if a generator or APU breaks, then it will
be disconnected from the rest of the EPS in the next execution step. Note that

26

S1 and S2 require also the two generators to be initially connected to the rest
of the plant. S5 requires the absence of a short circuit between the two APUs,
while S6 requires the absence of a short circuit between generators in case they
are both healthy (after an initial setup period). Furthermore, S7 specifies that
bus B3 needs to be isolated if no faults in generators or APUs occur. Finally,
S8 and S9 require that DC loads need to be connected to the plant if at least
one TRU is working correctly. In this example, the synthesis constraints include
also the restriction that the variables associated to the specifications cannot be
connected to each other, i.e., the failure of two EPS components needs to be
associated to distinct events. These hints are encoded as a relation in RS .

Table 7 shows the components and the user-defined constraints (in this ex-
ample only type compatibility) in the library. Every component is described
by its I/O ports (annotated with their types), and its specification as an A/G
pair. All the components make some assumptions over the state of a certain
type of EPS elements and provide a guarantee over the state of some contactors.
Consider, for instance, component B1. It just assumes that a certain generator
is not initially broken (note that the type of the input variable allows it to be
connected to either a generator or an APU), and guarantees that the contactor
will be always open. Clearly, B1 is not a good candidate to satisfy either S1 or
S2, since they require the contactor to be closed at least initially. Similarly, all
the other components in the library encode a particular behavior that can be
used to control parts of the EPS.

We ran two series of experiments, one using a library containing 20 compo-
nents, and one with 40 components. In both cases, the goal was to synthesize
the BPCU according to the specifications in Table 6. For each series, we asked
the synthesizer to find a solution first using the single process CSLC algorithm
in Table 1 with a constant cost function, and then using the parallel version
in Table 3 with a constant cost function minimizing the number of components
used, and minimizing the number of ports in the solution. With both libraries,
trying to minimize the number of components in the solution led to very long
synthesis times, beyond the timeout that we set at 200 seconds.

This is, indeed, one of the main risks in trying to synthesize a composition
minimizing a cost function; depending on the distribution of the solutions in
the search space, the synthesizer might spend a lot of time exploring a set of
candidates with low cost, but far from any useful solution.

Figure 10 shows the observed results, in terms of execution time, for the re-
maining cases. Interestingly, in the case of minimization of the number of ports,
the synthesizer was able to find a solution generally faster than in the case of
a constant cost function. In each graph, the dot represents the average syn-
thesis time for one of the specification subsets {S1}, {S1, S2}, . . . , {S1, . . . , S9}.
For each of these subsets, we ran 100 experiments reporting their mean values,
together with their 95% confidence intervals, in Table 8. As expected, one can
immediately see how the parallel approach to synthesis is indeed more efficient
than the single process one, with up to 50% performance improvement.

For reference, a typical solution satisfying all 9 specifications with the mini-
mal number of connected ports included 5 components, {I1, D1, L1, G1, D2}, for

27

Comp. Input Ports Output Ports Assumptions Guarantees

A1 f (Generator) c (ACGenContactor)
¬f∧
�(f ⇒ #f)

�(f ⇒ 3¬c)

B1 f (Generator) c (ACGenContactor) ¬f �(¬c)

C1 f (ActiveGenerator) c (ACGenContactor)
¬f∧
�(f ⇒ #f)

�(f ⇒ ¬c)∧
�(¬f ⇒ c)

D1 f (ActiveGenerator) c (ACGenContactor)
¬f∧
�(f ⇒ #f)

c∧
�(f ⇒ #¬c)∧
�(¬f ⇒ c)

E1

f1
f2

(Generator)
(Generator)

c (ACBackContactor)
¬f1 ∧ ¬f2∧
�(f1 ⇒ #f1)∧
�(f2 ⇒ #f2)

�((f1 ∨ f2) ⇒ c)∧
�((¬f1 ∧ ¬f2) ⇒ ¬c)

F1

f1
f2

(BackupGenerator)
(BackupGenerator)

c1
c2

(ACGenContactor)
(ACGenContactor)

¬f1 ∧ ¬f2∧
�(f1 ⇒ #f1)∧
�(f2 ⇒ #f2)

�[(¬f1 ∧ ¬f2) ⇒
(¬c1 ∧ ¬c2)]∧
�[(f1 ∧ ¬f2) ⇒
(¬c1 ∧ ¬c2)]∧
�[(¬f1 ∧ f2) ⇒
(c1 ∧ c2)]∧
�[(f1 ∧ f2) ⇒
(¬c1 ∧ c2)]

G1

f1
f4
f2
f3

(ActiveGenerator)
(ActiveGenerator)
(BackupGenerator)
(BackupGenerator)

c1
c4
c2
c3

(ACBackContactor)
(ACBackContactor)
(ACGenContactor)
(ACGenContactor)

¬f1 ∧ ¬f2 ∧ ¬f3 ∧ ¬f4∧
�(f1 ⇒ #f1)∧
�(f2 ⇒ #f2)∧
�(f3 ⇒ #f3)∧
�(f4 ⇒ #f4)

�(f2 ⇒ ¬c2)∧
�(f3 ⇒ ¬c3)∧
�(¬(c2 ∧ c3))∧
�[(¬f1 ∧ ¬f4) ⇒
(¬c1 ∧ ¬c2 ∧ ¬c3 ∧ ¬c4)]∧
�[(¬f1 ∧ ¬f3 ∧ f4) ⇒
(¬c1 ∧ ¬c2 ∧ c3 ∧ c4)]∧
�[(f1 ∧ ¬f2 ∧ ¬f4) ⇒
(c1 ∧ c2 ∧ ¬c3 ∧ ¬c4)]∧
�[(¬f1 ∧ ¬f2 ∧ f3 ∧ f4) ⇒
(¬c1 ∧ c2 ∧ ¬c3 ∧ c4)]∧
�[(f1 ∧ f2 ∧ ¬f3 ∧ ¬f4) ⇒
(c1 ∧ ¬c2 ∧ c3 ∧ ¬c4)]∧
�[(f2 ∧ f3 ∧ (f1 ∨ f4)) ⇒
(c1 ∧ ¬c2 ∧ c3 ∧ c4)]

H1 f (Rectifier) c (ACLoadContactor) ¬f
�(¬f ⇒ c)∧
�(f ⇒ ¬c)

I1
f1
f2

(Rectifier)
(Rectifier)

c1
c2

(DCBackContactor)
(DCBackContactor)

¬f1 ∧ ¬f2

�[(¬f1 ∧ ¬f2) ⇒
(¬c1 ∧ ¬c2)]∧
�[(f1 ∨ f2) ⇒
(c1 ∧ c2)]

L1

f1
f2

(Rectifier)
(Rectifier)

c (DCLoadContactor) ¬f1 ∧ ¬f2 �c

RT {(Generator, ACGenContactor)} RZ ∅

Table 7: Structure of the EPS library. In our experiments, the library contained first 2 and
then 4 instances of these components, for a total of 20 and 40 elements.

Single Process 20 Constant Cost 20 Minimize Ports 20 Single Process 40 Constant Cost 40 Minimize Ports 40
{S1} 67.43 (58.49, 76.95) 34.69 (30.85, 38.44) 10.69 (10.42, 10.98) 55.92 (46.44, 67.97) 28.13 (24.25, 34.40) 31.17 (30.07, 32.42)
{S1, S2} 113.12 (99.99, 127.91) 62.71 (54.84, 73.55) 15.48 (14.88, 16.16) 81.18 (67.07, 98.20) 48.29 (41.30, 57.93) 40.90 (38.94, 43.45)
{S1, . . . , S3} 112.86 (99.69, 128.07) 61.93 (54.26, 72.62) 17.21 (16.59, 17.87) 84.67 (69.63, 104.13) 58.18 (49.58, 68.20) 47.87 (45.38, 50.70)
{S1, . . . , S4} 92.21 (81.43, 104.75) 49.10 (43.31, 57.24) 17.94 (17.25, 18.84) 81.94 (68.54, 97.43) 49.78 (43.45, 57.83) 50.90 (49.12, 52.75)
{S1, . . . , S5} 89.31 (75.28, 110.72) 41.31 (36.40, 48.44) 16.55 (16.08, 17.10) 76.27 (63.28, 91.91) 43.58 (37.62, 51.67) 53.20 (51.35, 55.76)
{S1, . . . , S6} 116.42 (103.59, 129.76) 60.96 (54.48, 69.29) 18.91 (18.41, 19.44) 101.86 (82.91, 124.56) 50.64 (43.50, 60.69) 63.30 (61.23, 65.68)
{S1, . . . , S7} 124.48 (110.38, 139.84) 66.87 (59.03, 78.11) 20.86 (20.19, 21.69) 90.70 (73.34, 112.62) 69.78 (59.88, 81.82) 66.28 (64.24, 68.75)
{S1, . . . , S8} 115.44 (103.73, 129.81) 64.71 (57.64, 74.75) 22.72 (21.98, 23.70) 96.10 (77.74, 119.08) 56.19 (48.33, 66.11) 71.20 (69.16, 73.59)
{S1, . . . , S9} 100.54 (87.27, 118.88) 42.83 (38.78, 47.58) 22.26 (21.78, 22.79) 80.91 (67.39, 97.48) 64.09 (55.57, 74.49) 75.61 (73.78, 77.51)

Table 8: Summary of the EPS experiments. For each specification subset (one for each row),
we report the mean value and its 95% confidence interval. All values are expressed in seconds.
Experiments named ”Constant Cost” and ”Minimize Ports” are run using parallel processes.

28

0

20

40

60

80

100

120

140

160

S1 S1:2 S1:3 S1:4 S1:5 S1:6 S1:7 S1:8 S1:9

S
e
co
n
d
s

Specifications

(a) Single process, constant cost, 20 ele-
ments.

0

20

40

60

80

100

120

140

S1 S1:2 S1:3 S1:4 S1:5 S1:6 S1:7 S1:8 S1:9

S
e
co
n
d
s

Specifications

(b) Single process, constant cost, 40 ele-
ments.

0

10

20

30

40

50

60

70

80

90

S1 S1:2 S1:3 S1:4 S1:5 S1:6 S1:7 S1:8 S1:9

S
e
co
n
d
s

Specifications

(c) Parallel execution, constant cost, 20 ele-
ments.

0

10

20

30

40

50

60

70

80

90

S1 S1:2 S1:3 S1:4 S1:5 S1:6 S1:7 S1:8 S1:9

S
e
co
n
d
s

Specifications

(d) Parallel execution, constant cost, 40 ele-
ments.

0

5

10

15

20

25

S1 S1:2 S1:3 S1:4 S1:5 S1:6 S1:7 S1:8 S1:9

S
e
co
n
d
s

Specifications

(e) Parallel execution, minimize ports, 20 el-
ements.

0

10

20

30

40

50

60

70

80

90

S1 S1:2 S1:3 S1:4 S1:5 S1:6 S1:7 S1:8 S1:9

S
e
co
n
d
s

Specifications

(f) Parallel execution, minimize ports, 40 el-
ements.

Figure 10: BPCU synthesis times in the various experiments. In each graph, each point has
been computed running 100 experiments. The central point represents the mean, while bars
represent the 95% confidence interval for the mean. The horizontal axis refers to the subset
of specifications considered in each experiment.

a total of 19 ports connected accordingly. Figure 11 represents the connections
among the components according to the renaming function ρ.

In a separate experiment, using the library with 40 elements, pyco was able
to explore the whole search space invoking the verifier 108176 times. This cor-
responded to more than 400M rejected candidates, which did not require an
explicit check thanks to the inductive learning process described in Section 5.
The verifier found a solution satisfying the specifications 386 times, correspond-
ing to roughly 1.5M equivalent ones in the search space.

Figure 12 shows, instead, the effect of designer hints and library-specific
constraints on synthesis time. Here synthesis is performed on smaller and sim-

29

Synthesis time: 4.65 seconds

Spec
Inputs

fail1

fail3

fail2

fail4

fail_r2

fail_r1

fail1

fail2
DCLoad c

fail1_21_0_0

fail2_20_0_0

fail1

fail3

fail2

fail4

AC4Back

c3

c2

c1

c4

fail1_15_0_0

fail3_3_0_0

fail2_15_0_0

fail4_3_0_0

fail StdGen c

fail4_3_0_0 fail1

fail2
DC2Tie

c2

c1

fail1_21_0_0

fail2_20_0_0

fail StdGen cfail1_15_0_0

Spec
Outputs

c9

c8

c3

c2

c1

c10

c7

c6

c5

c4

c_11_0_0

c_11_0_0

c3_0_0_0

c2_4_0_0

c1_4_0_0

c4_0_0_0

c_2_0_2

c2_12_0_0

c1_10_0_0

c_2_0_0
G1

L1

I1

D1

D2

Figure 11: Graphical representation of a synthesized design satisfying all 9 specifications with
minimal number of connected ports. Names on arrows represent port renamings induced by
the function ρ, returned by the synthesis process.

plified instances of the EPS problem, including 2, 4, 6, 10 and 16 ports, and
using a library with 20 elements. The graph (in logarithmic scale), shows how
these constraints are critical in decreasing the overall problem complexity. In
case of the instance with 16 ports, the CSCL algorithm variant without types
and additional constraints was not able to synthesize a solution within our 1000
seconds timeout.

2.43
3.595

5.55 5.75
7.26

2.385

56.765

573.065
724.17

1

10

100

1000

2 4 6 10 16

Se
co
n
d
s

Number	of	ports

with	types	and	hints without	types	and	hints

Figure 12: Impact of types and user provided hints on synthesis time for simplified instances of
the EPS example. Each bar of the histogram represents the median value from 10 experiments.
The graph is in logarithmic scale. In the case without types and 16 ports, most of the times
the synthesizer has not been able to find a solution within the time limit of 1000 seconds.

30

8. Discussion

The work described in this paper focuses on a very specific aspect of CPS
design, which is the problem of synthesizing a controller by composing compo-
nents defined at a certain level of abstraction. The design of CPS, however, is a
very complex task and we believe it can be fully automated only using a com-
bination of techniques, allowing the designer to manage the process at different
levels of abstraction, from system requirements to physical details.

Ideally, each component in a design library would expose a number of inter-
faces, consistent with each other, enabling the iterative mapping process which
is typical of Platform-Based Design. For instance, the theory of design contracts
[23] introduces the notion of viewpoints, which can be used to describe different
component aspects (e.g., functional, timing, etc.) and perfectly fit our idea of
design. Always in [23], Benveniste et al. describe an abstraction framework for
contracts based on the notion of Galois connection. Contract abstractions are
compositional with respect to parallel composition and conjunction. They also
allow to disprove refinement, and check consistency and compatibility of con-
crete contracts. Thus, this framework represents a fundamental step in defining
a flexible, yet formal, approach to design where it is possible to seamlessly reason
between contracts and components at different abstraction levels.

In the context of the work presented in this paper, one can imagine each
component defined through an LTL A/G contract providing a corresponding
implementation, i.e., a state machine, which exposes more concrete properties.
This is not unreasonable, as each component implementation could be easily
verified for correctness using a model checker, or even automatically synthesized
using the techniques discussed in Section 2. We are releasing the software that
implements the algorithms discussed in this article as we believe it can be used
as a platform for future work.

9. Conclusion

In this paper, we studied the problem of constrained synthesis from compo-
nent libraries. After defining the general theoretical framework, and assessing
the complexity of the domain, we have proposed a problem formulation in terms
of generic components subject to a cost function and a number of synthesis con-
straints. These constraints include types on component ports, suggestions from
the designer, and composition rules which can also be precomputed and stored
in the library.

We presented two variants of an algorithm based on CEGIS, a sequential
and a parallel one, and evaluated its implementation with LTL A/G contracts
on industrial-relevant case studies. Analyzing the case studies, we believe that
the potential of our approach has emerged clearly, although some criticalities,
such as the heavy impact that the choice of cost function can have on synthesis
times, are still challenging.

Future extensions of this work include the study of algorithms to decompose
complex specifications into smaller instances (to increase performance by deal-

31

ing with smaller synthesis problems), the application of the synthesis technique
described here to component libraries defined over multi-aspect specifications
(e.g., behavioral, security-related, real-time), and the analysis of erroneous de-
signs and infeasible specifications in order to provide feedback to the designer
on how to fix her library and obtain the intended result.

Acknowledgments

The authors wish to acknowledge Christos Stergiou, Sanjit Seshia, Richard
Lin, Rohit Ramesh, and the anonymous reviewers for the useful comments. This
work has been partially supported by the NSF (CCF-1139138, CNS-1329759
and CNS-1801546), by the Camozzi Group via the iCyPhy consortium, by Ter-
raSwarm, one of six centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA, and by the Academy of Finland.

[1] A. Pnueli, R. Rosner, Distributed reactive systems are hard to synthesize,
in: Foundations of Computer Science, 1990. Proceedings., 31st Annual
Symposium on, 1990, pp. 746–757 vol.2. doi:10.1109/FSCS.1990.89597.

[2] Y. Lustig, M. Y. Vardi, Synthesis from component libraries, in: Pro-
ceedings of the 12th International Conference on Foundations of Software
Science and Computational Structures: Held As Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2009,
FOSSACS ’09, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 395–409.
doi:10.1007/978-3-642-00596-1_28.

[3] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, V. Saraswat, Combinato-
rial sketching for finite programs, SIGOPS Oper. Syst. Rev. 40 (5) (2006)
404–415. doi:10.1145/1168917.1168907.

[4] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, R. M. Murray, Tulip: A
software toolbox for receding horizon temporal logic planning, in: Proceed-
ings of the 14th International Conference on Hybrid Systems: Computation
and Control, HSCC ’11, ACM, New York, NY, USA, 2011, pp. 313–314.
doi:10.1145/1967701.1967747.

[5] S. Jha, S. Gulwani, S. A. Seshia, A. Tiwari, Oracle-guided component-based
program synthesis, in: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (ICSE), 2010, pp. 215–224.

[6] S. Gulwani, S. Jha, A. Tiwari, R. Venkatesan, Synthesis of loop-free pro-
grams, in: Proceedings of the 32Nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’11, ACM, New
York, NY, USA, 2011, pp. 62–73. doi:10.1145/1993498.1993506.

[7] S. Jha, S. A. Seshia, A theory of formal synthesis via inductive learning,
CoRR abs/1505.03953.

32

http://dx.doi.org/10.1109/FSCS.1990.89597
http://dx.doi.org/10.1007/978-3-642-00596-1_28
http://dx.doi.org/10.1145/1168917.1168907
http://dx.doi.org/10.1145/1967701.1967747
http://dx.doi.org/10.1145/1993498.1993506

[8] Semiconductor IP Market by Form Factor (ICs IP, SOCs IP), Design Ar-
chitecture (IP cores (Hard IP, Soft IP), Standard IP, Custom IP, Processor
Design), Processor Type (Microprocessor, DSP), Verification IP - Global
forecast to 2022, marketsandmarkets.com (2016).

[9] I. Moir, A. Seabridge, Aircraft Systems: Mechanical, Electrical and Avion-
ics Subsystems Integration. Third Edition, John Wiley and Sons, Ltd,
Chichester, England, 2008.

[10] A. Iannopollo, P. Nuzzo, S. Tripakis, A. Sangiovanni-Vincentelli, Library-
based scalable refinement checking for contract-based design, in: Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2014,
2014, pp. 1–6. doi:10.7873/DATE.2014.167.

[11] P. Nuzzo, J. Finn, A. Iannopollo, A. Sangiovanni-Vincentelli, Contract-
based design of control protocols for safety-critical cyber-physical systems,
in: Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014, 2014, pp. 1–4. doi:10.7873/DATE.2014.072.

[12] A. Iannopollo, S. Tripakis, A. Sangiovanni-Vincentelli, Constrained syn-
thesis from component libraries, in: O. Kouchnarenko, R. Khosravi (Eds.),
Formal Aspects of Component Software: 13th International Conference,
FACS 2016, Besanccon, France, October 19-21, 2016, Revised Selected Pa-
pers, Springer International Publishing, 2017, pp. 92–110. doi:10.1007/

978-3-319-57666-4_7.

[13] R. Alur, S. Moarref, U. Topcu, Compositional synthesis with parametric
reactive controllers, in: Proceedings of the 19th International Conference
on Hybrid Systems: Computation and Control, HSCC ’16, ACM, New
York, NY, USA, 2016, pp. 215–224. doi:10.1145/2883817.2883842.

[14] P. J. Ramadge, W. M. Wonham, Supervisory control of a class of dis-
crete event processes, SIAM Journal on Control and Optimization 25 (1)
(1987) 206–230. arXiv:https://doi.org/10.1137/0325013, doi:10.

1137/0325013.
URL https://doi.org/10.1137/0325013

[15] R. Ramesh, R. Lin, A. Iannopollo, A. Sangiovanni-Vincentelli, B. Hart-
mann, P. Dutta, Turning coders into makers: The promise of embedded
design generation, in: Proceedings of the 1st Annual ACM Symposium on
Computational Fabrication, SCF ’17, ACM, New York, NY, USA, 2017,
pp. 4:1–4:10. doi:10.1145/3083157.3083159.

[16] E. Y. Shapiro, Algorithmic Program DeBugging, MIT Press, Cambridge,
MA, USA, 1983.

[17] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided
abstraction refinement, in: E. Emerson, A. Sistla (Eds.), Computer Aided
Verification, Vol. 1855 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2000, pp. 154–169. doi:10.1007/10722167_15.

33

http://dx.doi.org/10.7873/DATE.2014.167
http://dx.doi.org/10.7873/DATE.2014.072
http://dx.doi.org/10.1007/978-3-319-57666-4_7
http://dx.doi.org/10.1007/978-3-319-57666-4_7
http://dx.doi.org/10.1145/2883817.2883842
https://doi.org/10.1137/0325013
https://doi.org/10.1137/0325013
http://arxiv.org/abs/https://doi.org/10.1137/0325013
http://dx.doi.org/10.1137/0325013
http://dx.doi.org/10.1137/0325013
https://doi.org/10.1137/0325013
http://dx.doi.org/10.1145/3083157.3083159
http://dx.doi.org/10.1007/10722167_15

[18] R. Alur, S. Tripakis, Automatic synthesis of distributed protocols, SIGACT
News 48 (1) (2017) 55–90. doi:10.1145/3061640.3061652.
URL http://doi.acm.org/10.1145/3061640.3061652

[19] R. Alur, M. Raghothaman, C. Stergiou, S. Tripakis, A. Udupa, Automatic
completion of distributed protocols with symmetry, in: CAV (2), Vol. 9207
of Lecture Notes in Computer Science, Springer, 2015, pp. 395–412.

[20] R. Alur, M. M. K. Martin, M. Raghothaman, C. Stergiou, S. Tripakis,
A. Udupa, Synthesizing finite-state protocols from scenarios and require-
ments, in: Haifa Verification Conference, Vol. 8855 of Lecture Notes in
Computer Science, Springer, 2014, pp. 75–91.

[21] S. A. Seshia, Combining induction, deduction, and structure for verification
and synthesis, Proceedings of the IEEE 103 (11) (2015) 2036–2051. doi:

10.1109/JPROC.2015.2471838.

[22] A. Sangiovanni-Vincentelli, Quo Vadis, SLD? Reasoning About the Trends
and Challenges of System Level Design, Proceedings of the IEEE 95 (3)
(2007) 467–506.

[23] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. A. Henzinger,
K. G. Larsen, Contracts for system design, Foundations and Trends in
Electronic Design Automation 12 (2-3) (2018) 124–400. doi:10.1561/

1000000053.
URL http://dx.doi.org/10.1561/1000000053

[24] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
C. Sofronis, Multiple viewpoint contract-based specification and design,
in: F. S. Boer, M. M. Bonsangue, S. Graf, W.-P. Roever (Eds.), Formal
Methods for Components and Objects, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 200–225. doi:10.1007/978-3-540-92188-2_9.

[25] A. Sangiovanni-Vincentelli, W. Damm, R. Passerone, Taming Dr. Franken-
stein: Contract-Based Design for Cyber-Physical Systems, European Jour-
nal of Control 18 (3) (2012) 217–238.

[26] P. Nuzzo, A. Iannopollo, S. Tripakis, A. Sangiovanni-Vincentelli, Are in-
terface theories equivalent to contract theories?, in: Formal Methods and
Models for Codesign (MEMOCODE), 2014 Twelfth ACM/IEEE Interna-
tional Conference on, 2014, pp. 104–113. doi:10.1109/MEMCOD.2014.

6961848.

[27] L. de Alfaro, T. A. Henzinger, Interface automata, in: Proceedings of
the 8th European Software Engineering Conference Held Jointly with 9th
ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, ESEC/FSE-9, ACM, New York, NY, USA, 2001, pp. 109–120.
doi:10.1145/503209.503226.

34

http://doi.acm.org/10.1145/3061640.3061652
http://dx.doi.org/10.1145/3061640.3061652
http://doi.acm.org/10.1145/3061640.3061652
http://dx.doi.org/10.1109/JPROC.2015.2471838
http://dx.doi.org/10.1109/JPROC.2015.2471838
http://dx.doi.org/10.1561/1000000053
http://dx.doi.org/10.1561/1000000053
http://dx.doi.org/10.1561/1000000053
http://dx.doi.org/10.1561/1000000053
http://dx.doi.org/10.1007/978-3-540-92188-2_9
http://dx.doi.org/10.1109/MEMCOD.2014.6961848
http://dx.doi.org/10.1109/MEMCOD.2014.6961848
http://dx.doi.org/10.1145/503209.503226

[28] L. De Moura, N. Bjørner, Z3: An efficient smt solver, in: Proceedings
of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 337–
340.

[29] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, S. Tonetta, The nuxmv symbolic model checker, in:
Proceedings of the 16th International Conference on Computer Aided Ver-
ification - Volume 8559, Springer-Verlag New York, Inc., New York, NY,
USA, 2014, pp. 334–342. doi:10.1007/978-3-319-08867-9_22.

[30] A. Pnueli, The temporal logic of programs, in: Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, SFCS ’77, IEEE
Computer Society, Washington, DC, USA, 1977, pp. 46–57. doi:10.1109/
SFCS.1977.32.

[31] A. P. Sistla, E. M. Clarke, The complexity of propositional linear temporal
logics, J. ACM 32 (3) (1985) 733–749. doi:10.1145/3828.3837.

[32] D. Hanselman, Brushless permanent magnet motor design, The Writers’
Collective, Cranston, R.I, USA, 2003.

35

http://dx.doi.org/10.1007/978-3-319-08867-9_22
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1145/3828.3837

	Introduction
	Previous work
	Preliminaries on A/G Contracts
	Constrained synthesis from component libraries (CSCL)
	A combinatorial analysis of the CSCL problem
	Synthesis Constraints
	Problem Definition

	Solving a concrete instance of the CSCL problem
	The CSCL algorithm
	An efficient encoding for the synthesis constraints

	Implementing the CSCL algorithm
	Case studies
	The Brushless DC electric Motor Design (BLDC)
	The Aircraft Electrical Power System (EPS)

	Discussion
	Conclusion

