
866 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002

Constrained Systems With Unconstrained Positions
Jorge Campello de Souza, Member, IEEE, Brian H. Marcus, Fellow, IEEE, Richard New, and

Bruce A. Wilson, Member, IEEE

Abstract—We develop methods for analyzing and constructing
combined modulation/error-correctiong codes (ECC codes), in
particular codes that employ some form of reversed concatenation
and whose ECC decoding scheme requires easy access to soft
information (e.g., turbo codes, low-density parity-check (LDPC)
codes or parity codes). We expand on earlier work of Immink
and Wijngaarden and also of Fan, in which certain bit positions
are reserved for ECC parity, in the sense that the bit values in
these positions can be changed without violating the constraint.
Earlier work has focused more on block codes for specific mod-
ulation constraints. While our treatment is completely general,
we focus on finite-state codes for maximum transition run (MTR)
constraints. We 1) obtain some improved constructions for MTR
codes based on short block lengths, 2) specify an asymptotic
lower bound for MTR constraints, which is tight in very special
cases, for the maximal code rate achievable for an MTR code
with a given density of unconstrained positions, and 3) show how
to compute the capacity of the set of sequences that satisfy a
completely arbitrary constraint with a specified set of bit positions
unconstrained.

Index Terms—Finite-state encoders, modulation codes, max-
imum transition run (MTR) codes, reversed concatenation,
run-length limited (RLL) codes.

I. INTRODUCTION

I N recording systems and communication systems, data is
encoded via an error-correction code (ECC), which enables

correction of a certain number of channel errors. In many such
systems, data is also encoded into a constrained system of se-
quences via a modulation code, which helps to match the coded
sequences to the channel and thereby reduce the likelihood of
error.

Prominent examples of constrained systems are the max-
imum transition run (MTR()) systems [17] defined by the
requirement that the maximum run of consecutive’s is (see
Fig. 1 with) and the well-known run-length limited
(RLL()) systems. While we will restrict ourselves in this
paper mainly to binary systems, the results carry over easily to
constrained systems over any finite alphabet of symbols.

In principle, the data can be encoded with one encoder that
imparts both error-correction and modulation properties. But in
practice the combined properties are achieved by cascading an
error-correction encoder with a modulation encoder. Instan-
dard concatenation, shown in Fig. 2, data is first encoded by
an error-correction encoder and then encoded by a modulation

Manuscript received March 28, 2001.
The authors are with the IBM Research Division, Almaden Research Center

K65/802, San Jose, CA 95120 USA (e-mail: campello@almaden.ibm.com;
marcus@almaden.ibm.com; new@almaden.ibm.com; bawilson@almaden.
ibm.com).

Communicated by R. M. Roth, Associate Editor for Coding Theory.
Publisher Item Identifier S 0018-9448(02)01940-5.

Fig. 1. MTR(j = 4).

encoder. This is natural since otherwise the error-correction en-
coder might well destroy the modulation properties. However,
this scheme has the disadvantage that the modulation decoder,
which comes before the error-correction decoder, can propagate
channel errors before they can be corrected. For this reason, a
good deal of attention has recently focused onreversed concate-
nation, shown in Fig. 3, where the encoders are concatenated in
the reversed order. Special arrangements must be made in order
to ensure that the output of the error-correction encoder satis-
fies the modulation constraints. Typically, this is done by in-
sisting that this encoder be systematic and then re-encoding the
parity information using a second modulation encoder, whose
corresponding decoder is designed to limit error propagation;
the output of this second modulation encoder is then appended
to the modulation-encoded data stream (typically, a few merging
bits may need to be inserted in between the two streams in
order to ensure that the entire stream satisfies the constraint). In
order to distinguish between the two modulation encoders, we
call the first one thedata modulation encoderand the second
parity modulation encoder; of course, we also have the corre-
sponding decoders. In this scheme, after passing through the
channel the modulation-encoded data stream is split from the
modulation-encoded parity stream, and the latter is then de-
coded via the parity modulation decoder before being passed
on to an ECC decoder. In this way, many channel errors can be
corrected before passing through the data modulation decoder,
thereby mitigating the problem of error propagation. Moreover,
if the data modulation encoder has high rate, then the overall
scheme will still have high rate because the parity stream is rel-
atively small.

Now, suppose that for decoding the ECC scheme requires
soft information, say on the bit level. For instance, the ECC
could be a turbo code, low-density parity check (LDPC) code
[15], or a simple parity code [6]. In reversed concatenation,
after passing through the channel, the data modulation encoded
stream is passed directly to the ECC decoder, and so soft in-
formation for each bit in this stream becomes readily available.
However, this is not necessarily so for parity bits; the informa-
tion will need to be filtered through the parity modulation de-
coder. Procedures for generating soft information for parity bits
have been described in [3], [7], and [18]. However, these pro-
cedures can be complicated and introduce inaccuracies. On the
other hand, this becomes much simpler and more accurate if the

0018-9448/02$17.00 © 2002 IEEE

CAMPELLO DE SOUZAet al.: CONSTRAINED SYSTEMS WITH UNCONSTRAINED POSITIONS 867

Fig. 2. Standard concatenation.

Fig. 3. Reversed concatenation.

Fig. 4. Wijngaarden–Immink scheme.

parity modulation encoder is required to be systematic (this does
incur an additional rate penalty, but applied only to the relatively
small parity portion). For instance, for the MTR() constraint,
one can use the rate systematic parity modulation en-
coder which simply inserts aafter every bits—see Fan and
Cioffi [7], [8].

In a related approach [21] (see also [20] and [13, pp.
103–105]), Wijngaarden and Immink introduced a concatena-
tion scheme, shown in Fig. 4, in which a modulation encoder
produces constrained sequences such that certain bit positions
are unconstrained in the sense that whenever the bit values in
those positions are flipped (or not flipped) independently, the
constraint is not violated. ECC parity information, obtained
from a systematic ECC encoding of the data modulation en-
coded stream can, therefore, be inserted into the unconstrained
positions without violating the constraint.

As a simple example, consider the length-block code [21]
for the MTR constraint

Note that all concatenations of these words satisfy the MTR(
) constraint; moreover, this still holds if the bit values in the

third and fifth positions are flipped independently. We view this
as a rate modulation code with two bit positions reserved
for ECC parity.

Another way to look at this code is as follows. If we delete the
third and fifth positions, then we obtain a length-block code

all of whose concatenations satisfy the MTR() constraint.
Inserting the two parity bits then weakens the constraint to
MTR(). So, the idea is that given a desired constraint,
we first construct a modulation code for a more restrictive con-
straint and then insert parity bits which result in sequences
that satisfy .

This Wijngaarden–Immink scheme is the subject of our
paper. In fact, the title of our paper is a slight modification of
a section title in their paper. Variants of this scheme have also
been considered by [7], [8], as well as [2].

The focus in [21] was on block codes, in particular simple,
combinatorial constructions of low complexity for very spe-
cial constraints (()-RLL constraints and some () con-
straints). In contrast, here we consider the more general class of
finite-state codes for completely general constraints (although
in the first few sections, we emphasize MTR constraints, which
are equivalent to ()-RLL constraints). Our intent is to com-
bine the various approaches for easily providing soft informa-
tion to an ECC decoder.

As mentioned in [21], this scheme can alternatively be used
purely for modulation code construction (without regard to error

868 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002

correction). For instance, the rate block modulation code
with error-correction capability above can be viewed as a rate

modulation code without error-correction capability. Such
a code has the advantages that encoding is completely trivial on
the unconstrained positions and channel errors on the uncon-
strained positions do not propagate at all.

Our paper is organized as follows. In Section II, we lay
out the basic concepts regarding constrained systems with
unconstrained positions. In Section III, we specialize to
MTR constraints and show that for codes based on “short”
block lengths, finite-state coding constructions can, in some
situations, improve upon the performance of block coding
constructions given in [21]. In Section IV, based on bit-stuffing
we specify an asymptotic lower bound on code rate for MTR
constraints with a given density of unconstrained positions.
This bound is tight for and , but is not tight for
general .

In Section V, we give a brief review of standard background
on the notion of follower sets for constrained systems. In Sec-
tion VI, given an arbitrary constrained systemand subset of
integers modulo some integer, we use follower sets to con-
struct a finite-state graph which presents the unique maximal
subsystem of such that any position is uncon-
strained. In principle, this enables us to compute the maximal
possible rate of a code that satisfies a given constraint and is un-
constrained in a specified set of positions. While the construc-
tion in this section is very general, it can be rather complicated.
In Section VII, some simplifications are considered. Finally, in
Section VIII, we show how to simplify the construction even
further in the case of finite memory systems.

II. BACKGROUND AND BASIC DEFINITIONS

A finite directed labeled graph (or simplygraph) is a finite
collection of states and transitions, with each transition having
an initial state, terminal state, and label; the notation
signifies a transition from stateto state with label . A col-
lection of transitions is said to beparallel if they all have the
same initial state and all have the same terminal state. A graph is
deterministicif for any given state and any given symbol, there
is at most one outgoing edge with the given symbol as label. A
graph hasfinite memory if whenever any two paths in
of length have the same label sequence, they end at the same
state.

A binary constrained system is a set of finite sequences,
calledwords, with alphabet defined as the set of label
sequences obtained by traversing paths of a graph. We say
that the constrained systemis presentedby . Constrained
systems that have a finite memory presentation are calledfinite
memory systemsor systems of finite type. Examples of such sys-
tems include the RLL and MTR constraints.

We will typically write a word as a sequence of symbols of
length

We use to denote the concatenation ofcopies of . Note
that the truncation of any word in must necessarily belong

to . It is well known that any constrained system can be pre-
sented by a deterministic graph [14], [17].

Let be a constrained system, a positive integer, and
(the notation “ ” is supposed to suggest

“Unconstrained,” and will sometimes be called theuncon-
strained set). We say that a word is a -flip of if

whenever

In other words, is obtained from by independently flipping
(or not flipping) the bit values in positions

The ()-unconstrained version of , denoted , is the
set of all sequences such that

1) for all

2) all -flips of belong to .

Note that in the unconstrained positions, the bit value is forced to
be “ ,” but this was arbitrary: we could have just as well chosen
“ ” or made a random, but fixed, assignment of bit values in
these positions. These positions are unconstrained in the sense
that we can independently change the bit values without vio-
lating the constraint. In fact, if we augment by throwing in
all possible such changes, we obtain the unique maximal subset
of which contains every -flip of every element of . The
ratio is called theparity insertion rate(or simply inser-
tion rate) because it represents the percentage of positions in
which ECC parity information can be inserted without violating
the constraint. Note that and un-
less itself is unconstrained.

One more piece of notation: denotes the set of se-
quences in of length exactly .

If , then the positions are unconstrained.
So, the truncation (say, by deleting the first symbol) of a word
in need not belong to , and so need not be a
constrained system. But this is the only way in which it fails to
be a constrained system. We could remedy this by throwing in
truncations of words in .

In Section VI, we will show that there is a graph with
the following properties:

• is deterministic;

• has period (i.e., the states are divided into
disjoint phases, , with transitions moving
cyclically from one phase to the next);

• the transitions beginning in all phases ofhave all out-
going edges labeled;

• is the set of words that can be generated starting in
phase .

The special case of for MTR constraints is described in
Section III.

Thecapacityof a constrained system is defined as

Cap (1)

where is the number of words of length in (the
is). The capacity can be computed as the of the

CAMPELLO DE SOUZAet al.: CONSTRAINED SYSTEMS WITH UNCONSTRAINED POSITIONS 869

largest eigenvalue, , of the adjacency matrix of
any deterministic presentation of [22]. For MTR ,
the adjacency matrix of the standard presentation of

is the matrix whose superdiagonal and
first column consist entirely of ones (with zeros elsewhere). For
instance, for , we have

This matrix is the adjacency matrix of the graph in Fig. 1.

It is well known thatCap is the maximal rate of an en-
coder from unconstrained sequences into sequences of[19].
Of course, the encoded sequences are required to satisfy the
constraint, not only within each codeword but across codeword
boundaries; in particular, for a block code, the codewords must
be freely concatenable without violating the constraint.

For finite-memory systems, decoding can be accomplished
via a sliding-block decoder [1]. Even if the constraintis of fi-
nite type, the system need not be of finite type—roughly
because of the multiple phases. However, these systems
do belong to a larger class of constrained systems for which
sliding-block decodability is always achievable, but at the ex-
pense of considerable added complexity. Instead, our construc-
tions of finite-state codes for these systems will be sliding-block
decodable in a weaker sense: we will allow the decoding func-
tion to vary from phase to phase; that is, even if the same con-
strained sequence can be generated from more than one phase,
we will allow the decoding to depend on the phase, implicitly
assuming that the decoder has access to phase information (in
most applications, this is a reasonable assumption). We remark
that for finite-type , the systems are natural examples of
periodic finite type (PFT) systems of Moision and Siegel [23]

While is not literally a constrained system, we can
define its capacity just as in (1), and this coincides with

(because if we throw in truncations of words
in , then we get an honest constrained system without
changing the growth rate). Thus, capacity gives us the maximal
possible rate of an encoder which produces sequences that
satisfy the constraint and allow the positions
to be unconstrained.

When is large, will necessarily have many states.
However, an encoder for need not use all phases. For
instance, a rate encoder need use only one phase. In
general, a rate encoder need use only

(2)

phases of ; each of these encoder phases can be viewed as
a rate finite-state machine with initial states in one phase
and terminal states in another phase [4]. As mentioned above,
we allow the sliding-block decoding function to vary from phase
to phase.

Fig. 5. G for MTR(j = 4),N = 3 andU = f1g.

III. SHORT CODES FORMTR CONSTRAINTS

For the MTR() constraint, is the set of sequences that
can be generated from phasein the graph , described as
follows.

• States: states in each of phases

Here represents the number of preceding consecutive’s
and represents the phase.

• Transitions: Beginning in any phase , we have the
transitions

if

and beginning in any phase we have the transitions

if

For MTR(), , and , this is illustrated in
Fig. 5 (with the phase states repeated at both top and bottom).

In any phase , the transitions mimic those of the stan-
dard presentation of MTR() (as shown in Fig. 1 for), but
pass from phaseto phase . In any phase , the next
binary symbol is constrained to be a, but must allow for the
possibility that the can be flipped to a without violating the
constraint; thus, the transition outgoing from state must
end at the “more severely constrained” of the two possibilities:

or , namely, (provided,
of course, that ; otherwise, there is no transition).

Reference [21] gave many nice low-complexity constructions
of block codes for RLL() constraints and therefore (by bi-
nary complementation) for MTR() constraints. But given the
graph , one can consider applying finite-state construction
methods to yield finite-state codes [22]. It is then interesting to
compare the resulting finite-state codes with the earlier block
codes.

One way to do this is as follows. For a given codeword length
and a given number, set and ask what is the maximum

number possible for a rate block code and finite-state
code which satisfies the MTR() constraint and allows for
unconstrained positions in each block of length .

For block codes, an application of a result of [11] shows that
the maximum is the of the of certain sums of entries

870 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002

TABLE I
FOR MTR(j = 3), MAXIMUM NUMBER m OF INFORMATION BITS FORGIVEN

LENGTH q = N AND NUMBER u OF UNCONSTRAINEDPOSITIONS

of powers of the adjacency matrix: for MTR(), this turns
out to be the of the of the four quantities

where is the adjacency matrix of and the indices
of refer to states and in .

For finite-state codes, an application of [1] shows that the
maximum is .

Table I reveals that, for MTR() and some choices of
and , the number can be increased if

one allows a finite-state code rather than a block code (see the
bold-faced entries in the table). The column labeled “window”
shows the length, measured in number of-blocks, of the de-
coder window for the finite-state code (of course, the decoder
window for a block code is always). The column labeled “#
states” shows the number of encoder states for the finite-state
code (of course, a block code has only one state). The entries in
these columns are determined by finding an approximate eigen-
vector and corresponding state splitting [22].

One can then evaluate tradeoffs between the block codes and
finite-state codes. For instance, the rate block code with

can be compared against the rate finite-state
code with . Here, the finite-state code has twice the error
correction power of the block code, but the former has to cope
with some error propagation. For bursty channels, the finite-
state code would probably perform better.

One can also compare the rate block code against
the rate finite-state code, each with . Here, the
block code will have better error protection (one parity bit per
10 bits versus one parity bit per 11 bits) and will not have to
cope with error propagation, but the finite-state code will have
a higher rate. In a low-SNR regime, the block code may be su-
perior, while in a high-SNR regime the finite-state code may be
superior.

The entries in the table indicate that even the finite-state codes
are not terribly complex. But in general they will not match the

TABLE II
RATE 8=9 CODES FORMTR(j = 4)

very low complexity of the Wjingaarden–Immink constructions
[21].

For the codes in Table I, the codeword lengthcoincides with
the in the definition of , and so the parity insertion rate
is always . According to the discussion at the end of
Section II, this has the advantage that only one of thephases
need be used in the construction of an encoder. On the other
hand, in this case, we must have , for otherwise we
would have a rate encoder that satisfies the constraint. In
particular, if , we can never have a rate code
(indeed, this is consistent with the results in the table). On the
other hand, if we allow the possibility of it is possible to
construct codes with rate and .

For this purpose, we now consider the constraint
MTR (a “reasonably well-constrained” system for
recording applications), and we compare codes at rate(a
“reasonably high” rate for combined modulation and ECC in
a recording application), but allowing for the possibility of

.
Table II presents a list of four rate codes for MTR().

The first code is a block code with the shortest block length
that permits a nonzero parity insertion rate and code rate at

least . Here, and the parity insertion rate
is (the encoder operates at rate). It
turns out that if one wants to strictly increase the insertion rate,
but still keep the code rate at least , then for a block code,
the block length must increase to . For this code,
one can arrange for and so the insertion rate is

. However, the large block length means that
encoding is probably very complex. On the other hand, the same
code rate () and insertion rate () can be achieved via a
finite-state code (code #3) with block length only (here,

and). Moreover, the decoder window has length
two 9-bit blocks, and so is comparable (in number of bits) to

code #1 (and much shorter than that of code #2). Also, according
to (2) only five of the 15 phases need be used for an encoder,
and it turns out that such an encoder can be constructed with
roughly five states per phase. Finally, code #4 again has block
length , code rate , and further improved insertion
rate . But this code probably requires a larger
decoding window (three 9-bit blocks).

Actually, for MTR(), one can computeCap
. This suggests trying for a rate modulation code

with parity insertion rate —thereby improving the rate
() of code #3 above. Moreover, according to (2), the encoder
need use only

CAMPELLO DE SOUZAet al.: CONSTRAINED SYSTEMS WITH UNCONSTRAINED POSITIONS 871

of the 15 phases of ; however, estimates using an ap-
proximate eigenvector [22] show that such an encoder will have
an average of at least 37 states per phase, yielding a total of at
least 100 encoder states (and possibly many more).

Of course, everything we have done in this section for MTR
constraints applies equally well to -RLL constraints via
binary complementation.

IV. L ONG CODES FORMTR CONSTRAINTS

In Section III, we considered codes for MTR constraints
based on relatively short block lengths. For instance, for
MTR() and code rate , we found a code with parity
insertion rate approximately . The encoder had block
length and the decoder had a window of at most 27
bits. We can improve upon the insertion rate, at the expense
of increasing the block length, by the following construction,
essentially due to [7], [9].

For , we say that a string is a-bit-stuffing-MTR()
string if it is obtained as follows: begin with a stringthat satis-
fies the MTR() constraint and subdivideinto intervals of
size ; then, in between each of these intervals insert a
string of ones. The resulting string satisfies the MTR() con-
straint and has parity insertion rate . The set of all such
strings of a fixed length can be viewed as a block code, and
the asymptotic optimal code rate of such codes, as , is

(where denotes the largest eigenvalue of the
standard adjacency matrix for the MTR() constraint). Of
course, if we want to ensure that free concatenations of code-
words also satisfy the constraint, then we must add a “” bit at
the end of the entire string.

If the desired insertion rate is not a multiple of , we
can construct a code via a weighted average of two bit-stuffing
schemes: if , consider a weighted average of

-bit-stuffing-MTR() and -bit-stuffing-MTR(): subdi-
vide an interval of some large lengthinto two subintervals and
do -bit-stuffing in the first subinterval and -bit-stuffing
in the second subinterval; the subintervals should have lengths

and , where

(3)

Note that the asymptotic optimal code rate of such block codes
is

(4)

Again, in order to ensure that the resulting strings satisfy the
MTR() constraint, we need to insert a “” bit in between the
two subintervals.

For MTR(), the parity insertion rate lies in
between and . Thus, this insertion rate can
be realized via a weighted average of-bit-stuffing and -bit-
stuffing with weight (according to
(3) with). This yields an asymptotic code rate, as in (4),
of approximately

Thus, the code rate can be achieved with insertion rate
strictly larger than . Indeed, setting (4) equal to ,

solving for , and then solving for in (3), we get ;
so we can achieve code rate with insertion rate as high as

.
For MTR and parity insertion rate, let denote

the code rate obtained by the weighted average of-bit-stuffing
and -bit-stuffing, described above. According to (4), the
graph of is the piecewise-linear curve that connects the

points

•

•

•

•

•

• .

This is illustrated in Fig. 6 for . Each point where the
slope changes is indicated by an “.” The point plotted as “o”
is , indicating that a weighted average of two
bit-stuffing schemes can achieve code rate with insertion
rate approximately (as mentioned above).

One might imagine achieving still higher rates by using a
weighted average of more than two of the bit-stuffing schemes
mentioned above. However, Fig. 6 suggests that is con-
cave, and so this would not yield any improvement. Indeed, this
is the case.

Proposition 1: For all positive integers, the function
is concave on the domain (in fact, strictly concave on
the domain of points). Thus, for parity in-
sertion rate with , the weighted average of

-bit-stuffing-MTR() and -bit-stuffing-MTR() yields
a strictly higher code rate than any other weighted average of
bit stuffings.

Proof: Since concavity is not affected by an affine change
of the independent variable, the proposition is equivalent to the
following lemma, which we prove in the Appendix.

Lemma 2: The function

(5)

is strictly concave on the domain of positive integers.

At this point, it is natural to ask if weighted averages of these
bit-stuffing schemes are optimal, i.e., if is the asymptotic
optimal rate of codes that satisfy the constraint MTR
for a given insertion rate . This turns out to be true for very
special cases (see Theorem 3 later). However, it is false in gen-
eral. For example, for MTR , and

(and so), it turns out that
Cap , yet . We leave, as
an open problem, the question of whether or not there is a larger
class of simple bit-stuffing schemes that completely describe the
optimal coding schemes (for all).

We pause to put this in a more formal setting. Recall that
denotes the set of sequences in of length exactly .

872 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002

Fig. 6. g (x) for MTR(j = 4).

Given a constrained systemand , let denote
the limiting, as , optimal code rate with parity insertion
rate . Precisely

(6)

Of course, this makes sense only for rational. Note that since

Cap

it follows that dominates the rate of any finite-state code
into the constraint with . Moreover, it also
dominates the rate achievable by any scheme based on reversed
concatenation (Fig. 3) with the parity modulation encoder re-
quired to be systematic (such as that studied by Fan [7], [9])
or the Wijngaarden–Immink scheme [21] based on insertion of
parity bits discussed in the Introduction.

For MTR constraints, it is not possible to achieve insertion
rates above : for if and is sufficiently large, then
a subdivision of any string in into consecutive nonover-
lapping intervals of length will contain at least one interval
consisting of ones, and so would violate the MTR() con-
straint. Thus, for MTR and , we have

. Clearly, for , we have and
both and are concave. However, as we said above,
equality does not hold in general, although it does hold in very
special cases.

Theorem 3: For and and

We give a complete proof of this for as follows (the
proof for is considerably easier). Recall that denotes
the standard adjacency matrix for the MTR() constraint; in par-
ticular

(7)

Let denote the matrix obtained from by re-
placing all entries of the first column by zeros; in particular

(8)

Given a length , a parity insertion rate and a spec-
ification of unconstrained positions with

, define the matrix

where if and if (9)

Each entry of represents the number of sequences in
that begin with a restricted set of prefixes and suffixes; specifi-
cally, is the number of sequences in that begin with
at most ones and end with exactly ones. It then
follows that the sum of the entries in the first row of is ex-
actly the total number of sequences of lengththat satisfy the
MTR() constraint with the positions unconstrained

CAMPELLO DE SOUZAet al.: CONSTRAINED SYSTEMS WITH UNCONSTRAINED POSITIONS 873

(here, denotes the column vector consisting entirely of ones).
The crux of our proof of Theorem 3 is the following lemma,
which is proved in the Appendix.

Lemma 4: There is a fixed constant satisfying the fol-
lowing. Given a length , a parity insertion rate and
a specification of unconstrained positions
with , let be the matrix defined in (9). Then there
is a matrix of the form

(10)

such that

1) ,

2) the number of occurrences of in (10) is within of
, and

3) the number of occurrences of in (10) is within of
.

Proof of Theorem 3 for : It follows from Lemma 4
(part 1) and Perron–Frobenius Theory [14, Ch. 4] that, up to a
fixed multiplicative constant, is dominated by

where , , and are the largest eigenvalues of , ,
and , respectively. We claim that

(recall that denotes the largest eigenvalue of the adjacency
matrix). This follows by straightforward computation (in
fact, more generally, for arbitraryand , one can use
the recurrence relation to show
that is a block triangular matrix with
diagonal blocks and , and so indeed).
So, up to a fixed multiplicative constant, is dominated by

Let

Then is dominated by a weighted average of the num-
bers

with weights

These same weights applied to the numbers
yield

(11)

According to Lemma 4 (parts 2 and 3), the numerator (respec-
tively, denominator) of the right-hand side of (11) differs from

(respectively,) by at most (respectively,). Thus,
as , the right-hand side of (11) tends to. Since
is continuous and concave (Proposition 1), is dominated
by (and hence equal to) .

V. FOLLOWER SETS OFCONSTRAINED SYSTEMS

In this section, we briefly summarize some background on
follower sets for constrained systems. For a more thorough treat-
ment, the reader may consult [14] or [22].

Given a set of finite sequences and a finite sequence, the
follower setof is defined as follows:

finite sequences

We allow to be the empty word, in which case the follower
set is all of . Note that if does not occur in , then is
empty. Any constrained system has only finitely many follower
sets [14], [22].

Since a constrained system typically has infinitely many
words, many follower sets must coincide with one another. For
example, for the constrained system MTR() the follower set of
a word depends only on its suffix of length; in fact, this system
has only follower sets: .
The follower sets can be used to manufacture a special presen-
tation , called thefollower set graph,of a constrained system

. Namely, the states of are follower sets and the transitions
are

(12)

provided that occurs in . Note in particular that the follower
set graph is deterministic. Note also that whenever a wordis
the label of a path in the follower set graph ending at state ,
we must have .

Some follower sets are helpful for proofs but not so much for
code construction. Clearly, the follower set of the empty word
is an example—more generally, so is any follower set that has
no incoming edges or no outgoing edges.

An irreducible graph is a graph such that for any given
ordered pair of states there is a path in the graph from

to . Any graph can be decomposed into irreducible sub-
graphs (calledirreducible components) together with transient
connections from one component to another. Anirreducible
constrained systemis a constrained system such that for any
given ordered pair of words and in , there is a word
such that is also in . It turns out that any irreducible con-
strained system can be presented by an irreducible component
of its follower set graph; this component is sometimes called
the irreducible follower set graph[14].

Most constrained systems of interest are irreducible. For in-
stance, the irreducible follower set graphs of some MTR and
RLL constraints are given in Fig. 7 and 8. These agree with
the standard presentations that are usually given for these con-
straints (in particular, Figs. 1 and 7 agree).

Sometimes the irreducible follower set graph agrees with the
follower set graph itself (for instance, for MTR constraints),
and sometimes the irreducible follower set graph is obtained by
merely deleting the follower set of the empty word (for instance,
for RLL constraints). But quite often more follower sets need to
be deleted.

As another example, Fig. 9 shows the irreducible follower
set graph for the constrained system, defined by requiring that
runlengths of zeros be congruent to eitheror modulo .

874 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002

Fig. 7. Irreducible follower set graph for MTR(j = 4).

Fig. 8. Irreducible follower set graph for(1; 4)-RLL.

Fig. 9. Irreducible follower set graph for systemS with zero runlengths= 0
or 1 mod 3.

VI. PRESENTATION OFGENERAL CONSTRAINED SYSTEMS

WITH UNCONSTRAINEDPOSITIONS

In this section, we show that is the set of all sequences
that can be generated from a particular phase of a graph
with period . This graph is defined as follows.

• States:All pairs of the form where

and is an intersection (possibly empty) of one or more
follower sets of

• Transitions: For , we have the transitions

provided that belongs to . For ,
we have the transitions

provided that both and belong to .

For a particular , the states of the form constitute theth
phaseof .

Note that for each state , is an actual intersection
of follower sets; so, if two distinct collections of follower sets
have the same intersection, then they define the same state in
each phase of .

For given and , the following result gives a graphical
description of and, in principle, allows us to compute the
maximum possible code rate for a modulation code which en-
codes into and allows for the positions to be
unconstrained.

Theorem 5:

1) The transitions of are well-defined.
2) is the set of all sequences that can be generated from

phase in .

Proof:
Part 1: To show that the transitions are well-defined we must

verify that whenever and

(13)

we have

(14)

To see this, observe that ifbelongs to the left-hand side of (14),
then belongs to the left-hand side of (13) and sobelongs
to the right-hand side of (13) and sobelongs to the right-hand
side of (14).

Part 2: Suppose that is the label of a se-
quence of transitions in beginning in phase. Then,

because is the label of a sequence of transitions in the fol-
lower set graph of . Now, since the transition at phases
are all labeled , it follows that for each .
According to the definition of , it remains only to show
that any -flip of belongs to . For this, consider the graph
formed from by adding a parallel transition labeledto
each transition beginning in each phase in. By construction,
every sequence presented by this augmented graph is the label
of a sequence of transitions in the follower set graph of. It
follows that any -flip of belongs to , as desired.

For the converse, we show that any
can be presented by a sequence of transitions in beginning
in phase . In fact, we claim that is the label of such a path
ending at state , - . We prove this
by induction on the length of . For the base case ,
this follows from the fact that the empty word is allowed as a
follower set.

So, assume this is true for , and write .
Since , for any -flip of , we have . If

, then the set of such -flips is the set of all
words of the form where is a -flip of .
Thus, we have the transition

-

-
in . If , then and the set of

-flips of is the set of all words of the form
where is a -flip of and is either or . Thus, we have
the transition

-

-
Thus, can be generated by a sequence of tran-
sitions in beginning in phase.

Sometimes there are ordering relationships between follower
sets that make for far fewer intersections of follower sets than
might be expected. For instance, consider the case of alinearly
orderedconstrained system, i.e., a constrained system such that
for any pair of follower sets, one is contained in the other. Then
the intersection of any collection of follower sets is a follower
set itself. Prominent examples of such systems are RLL()
and MTR() constraints. For MTR(), a comparison of the
irreducible follower set graph in Fig. 7 with the graph in
Fig. 5 shows that indeed in each phase there is one state for each
follower set.

CAMPELLO DE SOUZAet al.: CONSTRAINED SYSTEMS WITH UNCONSTRAINED POSITIONS 875

Finally, recall that denotes the set of all sequences of
paths of length in , and so is the set of all label se-
quences of paths in that begin at . It follows that
the size of this set can, in principle, be computed from
the adjacency matrix of . Note that
is the maximal rate at which we can encode into sequences of
length such that

1) all codewords obey the constraint(although concatena-
tions of codewords need not obey the constraint);

2) for any codeword the bit value in any position is
1 but can be freely switched to 0 without violating the
constraint .

VII. SIMPLIFICATIONS

The graph may be enormous relative to, even for
small . However, the number of states can be reduced in the
following steps.

Step 1: Not all intersections of follower sets are needed at all
phases. Rather, we need only a collection of intersections that is
closed under the following operations:

• for

• for

and

(of course, we need only those above that define valid tran-
sitions in).

So, starting only with follower sets (but not intersections of
follower sets) in phase 0, we can accumulate, cyclically from
phase to phase, only those states obtained from applying these
operations, until no new states occur; of course, we may have to
traverse each phase several times until the process stops. This
generally results in far fewer states.

Step 2: Even after Step 1, we still may be left withinessential
states, i.e., states which are either not the terminal state or initial
state of arbitrarily long words (in particular, we can delete states
of the form where is either empty or the follower set
of the empty word). For example, in the graph of Fig. 5, the
inessential states are the second and fifth states in phase 0, the
third and fifth states in phase 1, and the first and fourth states in
phase 2.

As another example, consider the systemshown in Fig. 9,
with and . In phase 0, all outgoing edges

Fig. 10. Presentation ofS for system S with zero runlengths
= 0; 1mod 3.

must be labeled “.” But since “ ” cannot follow “ ,” for any
, the state has no outgoing edges and is

therefore inessential. But this forces other states in phase 0 to
be inessential. For example, we can easily check that the only
path outgoing from the state is as shown
in the expression at the bottom of the page. Since the terminal
state of this path is inessential, each state in this path, in partic-
ular , must be inessential. In fact, it turns out
that all that remains after deleting inessential states is shown in
Fig. 10.

Step 3: Third, even if is irreducible, it still can happen that
the graph resulting from Steps 1 and 2 is reducible. However,
there is always at least one irreducible component of maximal
capacity. For coding purposes, we can delete all but one such
component.

VIII. F INITE-MEMORY SYSTEMS

Recall that a presentation of a constrained system has
finite memory if whenever any two paths in of length
have the same label sequence, they end at the same state; and
constrained systems that have a finite memory presentation are
called finite-memory systems. For such a system, the follower
set graph always has finite memory; in fact, the follower set of
any word of length equals the follower set of its suffix
of length . Prominent examples of finite-memory systems
are RLL, MTR systems, and their NRZ precoded versions. The
system in Fig. 9 and the well-known charge-constrained systems
do not have finite memory. The following result shows how the
graph can be simplified for finite-memory systems.

Theorem 6: Let be an irreducible constrained system of
finite memory and an and satisfying the

Gap Condition:the gaps (modulo) between elements
of are all of size at least .

Then the Procedure given in Step 1 of Section VII results in
states of the form where is either asingleton, i.e., a
single follower set or adoubleton, i.e., an intersection of exactly
two follower sets. Moreover, the only phasesfor which a state

can be a doubleton are those where ,
where and .

Proof: Without loss of generality, we can assume that
. First observe that, applying the procedure in Step 1, we begin

876 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002

Fig. 11. Presentation ofS for S = (1; 4)-RLL.

with singletons in phase 0, and because of the Gap Condition,
we accumulate only (at worst) doubletons in phases .
In particular, any state accumulated in phasewill be of the
form for some word of length . But
by definition of finite memory, ,
and so in phase , these are really singletons. They will remain
singletons in phases until the next phase

is encountered; from then on, we will see only
(at worst) doubletons for at most more phases, again
because of the Gap Condition. But in the next phase, the finite
memory condition will force singletons, etc.

As an example, consider, the -RLL system, with
and . Beginning with the irreducible follower set

graph in Fig. 8, we apply the constructions of Theorems 5 and
6. We claim that after eliminating inessential states, we are left
with the graph, shown in Fig. 11, which presents . To see
this, first observe that for any word, the state will
have an outgoing edge in only if both and belong to

. This eliminates the states and . For
state , there is an outgoing transition, labeledto
state , but neither nor can be generated
from this state. So, the only surviving states in phaseare

and
By starting from these states, and applying the Procedure in
Step 1, one can check that all that remains of is that shown
in Fig. 11.

Now, note that in this graph there are exactly three paths of
length from phase 0 to itself, one from each ofto , to

, and to . It follows thatCap where
is the largest eigenvalue of the matrix

It is well-known that and .
So,Cap .

Further simplifications are possible if we are willing to com-
bine some phases together. This will be useful for simplifying
the capacity computation and for constructing rate codes
in the case where is a multiple of . We need the following
formal constructions to do this.

1) Let be a graph and a positive integer. Thehigher
power graph is the graph with the same state set as

, and an edge labeled by a sequence of lengthfor each
path in of length (with the label inherited from the
path).

2) For a graph and an integer , let denote the
graph with states in and the following transitions:
whenever there are two paths from stateto state ,
one with label and the other with label

, endow with a transition from to
and label .

3) For graphs , each with the same set
of states, let denote the graph

(“trellis construction”) defined by the following.

• States:The union of disjoint copies,
, of .

• Transitions: For each mimic
each transition in , with a transition from to

(where the subscripts are read modulo).

Now, let be an irreducible constrained system with memory
presented by its irreducible follower set graph. Assume

the Gap Condition and that . Write the unconstrained set
and write . From Theorem 6,

we see that is the set of sequences generated by

CAMPELLO DE SOUZAet al.: CONSTRAINED SYSTEMS WITH UNCONSTRAINED POSITIONS 877

beginning in . The adjacency matrix of the higher power
graph restricted to phase 0 is

where is the adjacency matrix of , and is the adjacency
matrix of . Thus, the capacity of can then be computed
as where is the largest eigenvalue of. Note
that in the special case , this reduces to

As an example, consider again for -RLL.
Here

The graph has memory and one can check that the graph
has only three edges: , ,

and , and so

We compute

the essential part of which is simply the submatrix deter-
mined by the second and third rows and columns

consistent with the computation earlier in this section.

APPENDIX

PROOFS OFLEMMAS 2 AND 4

Proof of Lemma 2:It is well known [13, p. 61] that is the
unique solution to the equation

Let be a real variable. We claim that for each value of ,
the equation

(15)

has a unique solution . This is a consequence
of the following facts regarding the left-hand side of (15):

• it is at ,

• it is at ,

• it has negative derivative (as a function of) at
(namely, the derivative is),

• it has derivative at only one point (namely, at
).

In particular, note that

(16)

We claim that and so is monotonically in-
creasing with . To see this, first rewrite (15) as ,
take natural logs and differentiatewith respect to to obtain

equivalently

which is positive by (16).
For , let

Note that and so is increasing with . It suffices
to show that on the domain . We find it easier
instead to show that merely for all and then
use an auxiliary argument to complete the proof of concavity of
the function (5) on the domain of positive integers.

For this, first note that . It follows that
satisfies the equation

which we can rewrite as

(17)

In what follows, we will write as simply
. Differentiating (17) with respect to, we obtain

Solving for , we obtain

Now, substituting for via (17), we obtain

Multiplying numerator and denominator by, we obtain

(18)

Differentiating this equation with respect to, we see that

where is positive

and .
We will show that for all . Now, using (18), we

substitute for only in the second factor of the first term of
and obtain

878 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002

But this expression simplifies to

Thus, if and only if

(19)

Now, we can rewrite (18) as

So, the inequality (19) is equivalent to

Recalling that , it follows from (18) that ,
and so the preceding inequality is equivalent to

(20)

For , one computes that

Now, since is increasing with , we have for all
; thus, (20) holds for . Thus, the function (5) is

concave on the domain of integers . Now, one can verify,
via explicit computation, that this function is concave on the
domain of integers . Since the domain of positive
integers is the union of these two domains, which intersect in
two consecutive integers (namely,), it follows that the
function (5) is concave on the entire domain of positive integers,
as desired (use the characterization of a concave function as a
function with decreasing slopes).

Proof of Lemma 4:Let and be as in (7) and (8). We will
make use of the following matrix relations:

R1: ;

R2: ;

R3: for all ;

R4: for all
;

R5: for all

The first three of these relations can be verified by straightfor-
ward computation. The fourth and fifth, which we verify below,
are a bit more subtle.

We will use these relations to gradually transforminto the
desired form .

It follows from R1 that we may assume in (9) that we never
see three consecutive’s.

Stage 1: From R2, we see that we can delete each appearance
of without decreasing any entry of (we can assume in
(9) that ends with an). But in the course of doing so, we
change the length and insertion rate. We will rectify this in
a moment; but for now, simply let denote the total number
of occurrences of that we have deleted in this stage.

Stage 2: At this point, we may assume that contains only
isolated copies of . It follows from R3 that we can replace any
occurrence of with and not change
any entry of (again, this changes the lengthand insertion
rate). Let denote the total number of occurrences of

that we have deleted in Stage 2. Then, tack on to the right end
of the matrix

This will not decrease . Note that if were divisible by ,
then this would completely rectify the length and insertion rate.
Otherwise, it changes, in (9), the number of occurrences of
and the number of occurrences ofby bounded amounts.

Stage 3: Now is a product of several intermingled powers
of , , and isolated copies of , followed by a single
power of and a single power of . Using R4, we can
combine each isolated copy of with an to form another
copy of . Then, using R5, we can combine all powers of
together and all powers of together, yielding a matrix of
the form

Then we can delete some initial copies ofto make divisible
by at the expense of changing the number of occurrences of

by a bounded amount. This completes the proof of Lemma 4,
except for the verification of inequalities R4 and R5.

Verification of R4: Consider the sequence of integers gener-
ated by the recurrence

with initial conditions: ; this is the well-known
sequence of Fibonacci numbers. Now, by a simple induction,
one can show that

From this, one computes

and

Comparing these two matrices, we see that it suffices to show

and

For the latter, observe that

For the former, observe that

Verification of R5: For each and ,
let denote the set of sequences that satisfy MTR(),
begin with exactly ones and end with exactlyones, and are
of the form

(21)

Let be the set of sequences that satisfy MTR(), begin
with exactly ones and end with exactlyones, and are of the
form

CAMPELLO DE SOUZAet al.: CONSTRAINED SYSTEMS WITH UNCONSTRAINED POSITIONS 879

We will show the following.

a) For all combinations of , except , , there
is a one-to-one (but not necessarily onto) mapping: :

.

b) There is a partition of

and one-to-one (but not necessarily onto) mappings:
and :

Since the entry of the left-hand side of R5 is
and the same entry of the right-hand side of R5 is
, inequality R5 will then follow.

The mappings are all constructed by shifting some ones and
reversing the order of most of each sequence of the form (21).
Specifically, for a), the mappings are

:

:

:

:

:

For b), let denote the subset of defined by
and (with the notation in (21)), and let .
Define by

and by

We must show that , equivalently,
that the images of and are disjoint. This follows from the
following.

1) By definition of , for any sequence in the image of,
there are ones in both positions and (counting
from the left with the first position viewed as position).

2) For any sequence in the image of , there cannot be
ones in both positions and (with the same
counting convention as in 1)) because otherwise the cor-
responding domain sequence in would have

and thus violate the MTR() constraint.

REFERENCES

[1] R. L. Adler, D. Coppersmith, and M. Hassner, “Algorithms for sliding
block codes—An application of symbolic dynamics to information
theory,” IEEE Trans. Inform. Theory, vol. IT-29, pp. 5–22, Jan. 1983.

[2] K. Anim-Appiah and S. McLaughlin, “Constrained-input turbo codes
for (0; k) RLL channels,” inProc. CISS Conf., Baltimore, MD, 1999.

[3] , “Toward soft output ASPP decoding for nonsystematic nonlinear
block codes,” unpublished paper, 2000.

[4] J. Ashley and B. Marcus, “Time-varying encoders for constrained sys-
tems: An approach to limiting error propagation,”IEEE Trans. Inform.
Theory, vol. 46, pp. 1038–1043, May 2000.

[5] W. G. Bliss, “Circuitry for performing error correction calculations on
baseband encoded data to eliminate error propagation,”IBM Tech. Discl.
Bull., vol. 23, pp. 4633–4634, 1981.

[6] T. Conway, “A new target response with parity coding for high density
magnetic recording,”IEEE Trans. Magn., vol. 34, pp. 2382–2386, 1998.

[7] J. Fan, “Constrained coding and soft iterative decoding for storage,”
Ph.D. dissertation, Stanford Univ., Stanford, CA, 1999.

[8] J. Fan and R. Calderbank, “A modified concatenated coding scheme,
with applications to magnetic data storage,”IEEE Trans. Inform.
Theory, vol. 44, pp. 1565–1574, July 1998.

[9] J. Fan and J. Cioffi, “Constrained coding techniques for soft iterative
decoders,” inProc. IEEE GLOBECOM, 1999.

[10] J. Fan, B. Marcus, and R. Roth, “Lossles sliding-block compression of
constrained systems,”IEEE Trans. Inform. Theory, vol. 46, pp. 624–633,
Mar. 2000.

[11] C. Frieman and A. Wyner, “Optimum block codes for noiseless input
restricted channels,”Inform. Contr., vol. 7, pp. 398–415, 1964.

[12] K. A. S. Immink, “A practical method for approaching the channel ca-
pacity of constrained channels,”IEEE Trans. Inform. Theory, vol. 43,
pp. 1389–1399, Sept. 1997.

[13] , Codes for Mass Data Storage Systems. Eindhoven, The Nether-
lands: Shannon Foundation Publishers, 1999.

[14] D. Lind and B. Marcus,An Introduction to Symbolic Dynamics and
Coding. New York: Cambridge Univ. Press, 1995.

[15] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,”IEEE Trans. Inform. Theory, vol. 45, pp. 399–431, Mar. 1999.

[16] M. Mansuripur, “Enumerative modulation coding with arbitrary con-
straints and post-modulation error correction coding and data storage
systems,”Proc. SPIE, vol. 1499, pp. 72–86, 1991.

[17] J. Moon and B. Brickner, “Maximum transition run codes for data
storage,”IEEE Trans. Magn., vol. 32, pp. 3992–3994, Sept. 1996.

[18] L. Reggiani and G. Tartara, “On reverse concatenation and soft decoding
algorithms for PRML magnetic recording channels,”IEEE J. Select.
Areas Commun., vol. 19, pp. 612–618, Apr. 2001.

[19] C. E. Shannon, “The mathematical theory of communication,”Bell Syst.
Tech. J., vol. 27, pp. 379–423, 1948.

[20] A. Wijngaarden and K. Immink, “Efficient error control schemes for
modulation and synchronization codes,” inProc. Int. Symp. Information
Theory, Cambridge, MA, Aug. 1998, p. 74.

[21] , “Maximum run-length limited codes with error control proper-
ties,” IEEE J. Select. Areas Commun., vol. 19, pp. 602–611, Apr. 2001.

[22] B. H. Marcus, R. M. Roth, and P. H. Siegel, “Constrained systems and
coding for recording channels,” inHandbook of Coding Theory, V. S.
Pless and W. C. Huffman, Eds. Amsterdam, The Netherlands: Elsevier,
1998.

[23] B. Moision and P. H. Siegel, “Periodic-finite-type shift spaces,” inProc.
IEEE Int. Symp. Information Theory, Washington, DC, June 24–29,
2001, p. 65.

