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Abstract

Motivation: Cell-cycle associated promoter motif predic-
tion is very important to understand the cell-cycle control
and process. Modeling genome-wide gene expression as a
function of the promoter sequence motif features has drawn
great attention recently. The proposed techniques using this
approach are not specific to cell-cycle associated motif dis-
covery, hence find aperiodic motif weights across the time-
course and lower sensitivity. Motifs are scored based on
the successive model error reduction steps which may not
reveal all relevant motifs since they are alternatives for the
model. Another, drawback is, these methods output a list of
sequences which may either contain several instances of a
dominating motif box (a set of alternative sequence motifs)
such as MCB or only a few instances of an important box.
Results: To address the above problems, we propose a
multi-step constrained optimization based position weight
matrix (PWM) motif finding methodology called Con-
strainedMotif. It models the cell-cycle regulated gene ex-
pression as a linear function of the motif features while
the weights of them are constrained to be periodic across
the time-course. The score of a motif is the error reduc-
tion in the prediction by that motif alone. The multi-step
modeling starts with a set of sequences and output a ranked
list of cell-cycle associated PWM motifs. We evaluate this
methodology using S. Cerevesiae cell-cycle data published
by Spellman et al. The results show that ConstrainedMotif
is more sensitive and most of the instances of the boxes are
represented by the respective matching PWMs.
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1. Introduction

Predicting cell-cycle associated promoter motifs is very
importnant component of the cell-cycle regulated gene ex-
pression analysis. Several methods have been developed
and they fall into three broad categories: (1) sequence-only
approach in which the nonrandomly occurred motifs are
discovered using sequence background model; (2) enriched
motif prediction among groups of genes discovered using
microarray data; and, (3) modeling the gene expression as
a function of the motif statistics in the promoter regions of
the genes. The gene groups may be either cell-cycle reg-
ulated genes whose expression reaches maximum at a spe-
cific phase of the cell-cycle or the cell-cycle regulated genes
whose time-course expression profiles cluster together. The
motif statistics may be either simple counts i.e. number of
occurrances of the given motif or may be score based on
more complex background model.

Wolfsberg et al. [17] ordered the genes in the ascend-
ing order of their phase of expression. For each window
of phase of expression ([¢;, dr]), x2-test [5] was used to
discover whether the window was enriched in the genes
with the motif under investigation. This approach uses the
sequence representation of motifs. Spellman et al. [15],
Rustici et al. [13] and Peng et al. [10] identified the cell-
cycle associated motifs using the same window-on-phase
approach. The statistical significance of the motifs was
evaluated by Hyper-geometric distribution [7] and Tang &
Lewonton statistic [16] in Rustici et al. and Peng et al. re-
spectively. This window-on-phase approach is biased to-
wards motifs whose regulated genes mostly belong to same
phase space and it is not shared by other genes controlled
by different motifs.

The second approach, followed in several experiments,
is to cluster the genes based on their expression profiles and
motifs are found by searching over-represented sequences



in various clusters. This approach may not work well for
cell-cycle regulated genes because of the nature of the cell-
cycle expression data as discussed in Karuturi & Liu [8].

The most recent approach is to model gene expression
as a function of the motifs in their promoter sequences.
Bussmaker et al. [1] developed REDUCE which models
gene expression as a linear function of the motif features. It
uses sequence motif features and measures their relevance
to a gene as number of times it occurred in its promoter
region. To achieve computational feasibility, REDUCE in-
cludes motif-by-motif in the model. In this method, a sin-
gle motif is fitted at each step and the error residual (the
difference between the actual and predicted values) of the
model is calculated and another best motif is found that re-
duces the most of the residual is selected and so on. RE-
DUCE fits different models at different time-points. Sim-
ilar approaches were developed and used by several other
researchers later with changes to the initial motif set defini-
tion, feature measurement scheme, inclusion of motif-motif
interaction terms in the model. Keles et al. [6] used the cell-
cycle data published by Cho et al. [2] using both linear and
interaction terms in the model with sequence motifs as fea-
tures. The model was fit to the data using the feature (mo-
tif) selection procedure. Conlon et al. [3] proposed MOTIF
REGRESSOR which uses MDSCAN [9] to select the initial
set of sequence motifs present in the most induced or re-
pressed genes. It further narrows down the motif set based
on the single motif fit. This filtered set of sequence motifs
were used to fit linear model for the gene expression. Us-
ing entire data from all microarrays using Spellman et al’s
a-factor experiment they could discover 6 cell-cycle asso-
ciated motifs (amounts to 60% sensitivity) of which only 3
motifs’ (MCB,SCB and MCM1) weights show repeatabil-
ity over the time-course. Das et al. [4] proposed MARSMO-
TIF which models the interaction terms using linear splines.
It chooses initial candidate set of sequence motif pairs and
fits the linear-splines model to discover the putative motifs.
Using 49 experiment, it could discover 5 cell-cycle asso-
ciated motifs (i.e. 50% sensitivity).

Since all these methods focussed on modeling genome-
wide gene expression, they tend to miss cell-cycle asso-
ciated motifs. Apart from this, they model gene expres-
sion at each time point independently which results in non-
repeatability of motif prediction across time-course. Re-
peatability of prediction across time-course is important be-
cause the CDC regulated gene expression is measured for,
approximately, two cell-cycles in most of the cell-cycle data
and we expect any CDC associated motifs to be active in all
cell-cycles at a particular phase. They also prioritize mo-
tifs by reducing the error in the model in successive steps
which may lead to elimination of some important motifs
since the genes that can be modeled by these motifs may be
modeled by some alternative motifs in the earlier error re-

duction steps. The same approach also lead to the discovery
of a few of the several possible binding motifs of the given
cell-cycle regualted transcription factor. Whereas the sin-
gle motif model, i.e. gene expression is modeled as a linear
function of only one motif, will result in highly redundant
representation of a given bindinig motif in the output list
of motifs. This may cause some important motifs may be
ranked low because of the redundancy of some dominant
motif like MCB box in S. Cerevesiae.

We addressed the above problems by proposing a PWM
motif detection methodology called ConstrainedMotif built
around constrained linear model for gene expression. In this
method, time-course gene expression is modeled as a linear
function of the time-course scores of motifs by one-motif-
fit-model. The model is constrained to produce periodic
motif weights as expected from cell-cycle regulated genes.
The methodology starts with a sequence based motif defi-
nition and finally produces ranked position weight matrices
(PWMs) as motifs. Given a set of sequence motifs, each
motif-weight time-course (is a series of weights assigned to
a motif at different time points in the time-course) is found
using the proposed parameter estimation procedure. It then
chooses, for a given significance threshold, all significant
motifs and generates overlapping clusters of them using
both sequence and motif-weight time-course information.
These clusters are used to generate the first set of PWMs
which are again ranked by fitting the same model. The re-
dundancy in motif representation among these PWMs may
be reduced by clustering them and generating the next set
of PWMs. This procedure goes on till we are comfortable
with redundancy. The constraint of periodicity is impor-
tant because any cell-cycle associated motif weight should
smoothly reach its peak weight at the associated phase of
cell-cycle. This peak should repeat for as many cycles as
present in the data exactly at that phase of the cycle. The
constraint is achieved by penalty based constrained opti-
mization by introducing a penalty parameter 4. The term
that penalizes for non-periodicity is the mean-squared error
between motif weight time-course and p cos(wt — ¢), where
w= 2T—" is the radial frequency of the cell-cycle and T is the
period of the cell-cycle. Both p and ¢ are peak height and
phase of the motif-weight time-course which are estimated
as a part of model estimation.

We evaluated this methodology using cell-cycle data
published by Spellman et al. to discover S. Cerevesiae
cell-cycle associated motifs. We used 46 transcription
factor binding motifs, of which 10 (MCB,SCB,SFF,ECB,
SWIS,CPF1,MCM1,RAP1,ACE2,STE12) are shown to be
cell-cycle associated, which we treat as true positives and
the rest as true negatives. The resultant PWMs are a few
and they represent most of these cell-cycle associated mo-
tifs as compared to the other methods known.



2. ConstrainedMotif Algorithm

This section describes the problem formulation and an
algorithm to obtain position weight matrix representation of
cell-cycle associated motifs. It also describes a methodol-
ogy to match a given motif to a set of PWMs. The first sub-
section describes problem formulation, the second subsec-
tion describes an algorithm to obtain cell-cycle associated
PWDMs and the third subsection presents a methodology to
test whether a given motif is cell-cycle associated using a
given set of ranked PWMs.

2.1. Cell-cycle Regulated Gene Expression Model
with Periodicity Constraint

Let T be the period of cell-cycle in a given experiment.
Consider N genes {g1,92,...,9n8} and M time points
{tl,tz, .. .,tM}. Let D = (dij)NxM bea N x M ma-
trix representing the microarray measurements, where d;;
represents the expression value of gene g; at time ¢;.

Consider K motifs {my, ms,...,mg}. Let S =
(smi)kxn be the K x N score matrix, where sy, is the
score of motif m,, on gene g;. Here, we define the score
8mi to be the number of occurrences of motif m,, in the
promoter region of gene g;.

D is transformed such that values in each column has
zero-mean and unit-variance under the assumption that the
each column follows a Normal distribution [7]. Similarly,
S is transformed so that each row has zero-mean and unit-
variance.

Our algorithm computes the weight w,,; for every motif
My, at all times ¢;. The weight w,,; measures the binding
strength of the motif m,, at time ¢;. The weights of the
motifs is represented by the matrix W = (wWm; )k xnsr of
size K x M.

Let Ay, and A, represent y**
spectively of a matrix A.

Our aim is to model D as a linear function of S with
parameters W as in Bussmaker et al., i.e.

row and zt* column re-

D=5STW +¢

where ¢ is the error between data and the model.
To find an appropriate W we minimize the average
squared error

1 N M
2

which is equal to the mean squared objective function O
over W

N
0 = 3w ) lI(Dne = (STW)al?
n=1
N M K
= W D D (dne = D whtsin)
n=11t=1 k=1

We expect the cell-cycle associated motifs should have
periodic weights over time, we constrain Wy, to be periodic
with period 7. We achieve this constraint by requiring that
the sum of the squared difference between actual weights
w; and the best fit P; cos(wt — 6;) is zero, where 6; is the
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phase of the peak weight,w = 7.
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The above constrained optimization problem has been
transformed to unconstrained optimization problem by us-
ing penalty based methods [12] by using a penalty param-
eter v. Now the unconstrained optimization problem for a
given « is
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Since the above optimization problem has too many vari-
ables to find exact solution and we aim to evaluate each mo-
tif based on its independent merit to fit the data, we reduce
O° to Of which finds the best fit of each motif (my) while
keeping its weight profile Wy, periodic across time-course.
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For a given M and N, - can absorb both N and M which
means we can eliminate A and N from Oj,. For computa-
tional convenience, the term Py cos(wt — 63) is rewritten

as Ay cos(wt) + By sin(wt) where P, = (/A% + BZ and



6x = tan™'(Bj+ Ay). The resulting optimization problem,
denoted by Fg, is
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To get optimal wy;, Ag, By, partial derivates of Fj with
respect to variables wg¢, Ak, By are equated to zero, i.e.
3Fk 3Fk 6Fk

=0;— and — =0
6’wkt ! 6Ak 6Bk

Performing certain algebraic manipulation along with
the orthogonality assumption

Zcos wt)sin(wt) =0

t=1

we get the following closed form solution for
wktaAkaBk’
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From the above equations, one can calculate both 4 and
By, independently and then calculate wg;. The error reduc-
tion obtained by including motif my, denoted by A Fy, is

M
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Let us define a random variable Z; which is zero mean
and unit variance normal variate as

AFy,

Ok

Zy =

where oy, is standard deviation of A Fj, which is a zero
mean normal variate based on the assumption that d;, sgn
are also zero mean normal variates. It is given by the fol-
lowing formula
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It is calculated from the equation of A F}, using the prin-
ciple that the variance of the weighted sum of two zero
mean normal variables Y; = N(0,02) and Y2 = N(0,02),
Y = aYi7 + bY5 is also a zero mean normal variate with the
resultant variance of a?a? + b?02

The estimation of Z gives z — score of the motif my
from which the statistical significance of it can be found
using z — test.
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The next subsection describes an algorithm which uses
the above formulation to derive the position weight matrix
representation of cell-cycle associated motifs.

2.2. Algorithm to Predict Cell-cycle Associated
PWM Motifs

Position Weight Matrix (PWM) of a motif of length
P is a 4 x P dimensional matrix of real numbers rang-
ing from zero to one. The rows represent one of the four
bases {4,C,G,T}, and the columns represent position
({1,2,3,...,P}) in the motif. An element p;; in a PWM
denotes the probability of having base &; in position j of the
corresponding motif.
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Figure 1. The Overall Methodology to gener-
ate less redundant PWMs

Our methodology is summarized in Figure 1. The algo-
rithm proceeds in several motif list reduction steps to ar-
rive at the final list of PWMs as follows: In the first step,
we collect all possible sequence motifs of 4-7 bases long.
Then, using the above formulation we get a set of signifi-
cant motifs my (wWhose z-test p-value < 0.01) ranked in the
descending order of the reduction, A Fj. This ranked list
of significant motifs are clustered into various overlapping
groups which in turn give rise to PWMs. These PWMs are
scored against the list of promoters used to fit the model,
and the significant PWMs are discovered. The significant
PWNMs are clustered and a new set of PWMs are generated.
This procedure goes on for a fixed number of iterations or
till the PWMs cannot be clustered anymore. The details of
each of these steps are described below.

Scoring and Ranking Motifs: The score s, of a se-
quence motif my on gene g, is number of times the mo-
tif has occurred in the promoter region of the gene. When
the motif my, is not a sequence motif but a PWM, the score
between PWM k, denoted by PW M kE and the gene g, is
defined as follows.

Let the bases A,C,G and T be numbered as 1,2,3 and 4
respectively. Let L, and Lg represent the length of P»S™
and PW M* respectively, where PrS™ is the promoter se-
quence of gene g,. We denote PrS? be the base present at
position ¢ of PrS™.

n Ly
1 k
Son = - § A TT PW M(p,sp.

i=1 \j=1

After having obtained the normalized matrix S, using the
above scoring functions, we proceed to find significant mo-
tifs for a given significance threshold for Z,. The significant
motifs are ordered in the descending order of their reduction
scores AF,. We will cluster the motifs in this ranked list as
described below.

Clustering Motifs: A given pair of motifs m, and m;
are said to be similar in the context of our algorithm if the

pearson correlation, denoted by pgs, of their weight profles
(Wy4e and Wh,) is above certain threshold T, and the se-
quence level similarity, denoted by S.S,; between them is
also more than a certain threshold 72%.

The similarity score between a pair of sequence motifs is
different from that of a pair of PWMs. For sequence motifs
m, and my, SS,p is defined as the highest number of con-
secutive positions at which both sequences match in their
content for any offset between them. 7 is the maximum
similarity that could be achieved by two arbitrary sequence
motifs of lengths of m, and m; with probability < 0.05.

For PWM motifs PWM?* and PWM?®, S$S,, =
max —SS%, where SSt, is the error between PW M® and

PW M? for an offset of i positions of left most position of
PW M? from that of PW M®. Only those values of i which
gaurantee at least 3 position overlap between PW M2 and
PW M? are considered. T?* = T, = —1.2

SSap = max

—554 =
3—|PWM?|<i<|PWM=|-3

— Y (PWM, — PWM, )
tu

where |PW M*?| and |PW M?®| are number of columns in
PW M*® and PW M? respectively.

Once all pairs whose S5, >= be and pgp >= Ty
are identified using the above similarity measures, we pro-
ceed to generating clusters of motifs. The clustering takes
the motifs in ranked order and proceeds from top rank to
the prespecified rank. At each rank position, the cluster-
ing algorithm takes the motif at that rank as a seed for the
new cluster. Cluster all significant motifs in the ranked list
whose similarities with the seed motif satisfy the thresh-
old constraints (T, and 7). The list of motifs, input for
clustering, upto a given rank are called seed motifs. A seed
motif may be part of the cluster of another seed motif. If the
seed motif is a sequence then the motifs (others will also be
sequences) that paired with it will not be removed from the
seed list. Whereas, if the seed motif is a PWM, then the
other PWMs in the list that paired with it are removed from
the seed PWM list. The clusters with fewer sequence mo-
tifs will be ignored since we expect that each single relevant
sequence motif is represented in several approximate forms
in our list of significant sequence motifs.

These clusters are then used to generate one PWM for
each cluster. The process of generating PWM from a cluster
of motifs is described below.

Generating PWMs:  After having generated clusters of
motifs, we need to find one PWM for each cluster. The
first step in generating a PWM from a cluster of motifs is
to align the motifs in the cluster with respect to the seed
motif. Then we collect the count statistics of A,C,G and



T at each position in the alignment. Finally, for each posi-
tion, the probabilities of occurrences of any of the bases is
estimated to be the proportion of occurrences of that base.
The collection of count statistics are simple for a cluster of
sequence motifs is straight forward. But, for a cluster of
PWM motifs, the count statistics are performed by main-
taining the count statistics of A,C,G and T for each PWM
from the earlier PWM generation steps and normalize the
counts accordingly.

2.3. Criteria to Match Box Motifs to PWMs

A box motif Sq is given as a set of sequence motifs rep-
resenting a putative binding site. Sq is said to have matched
to a PWM, if at least 30% of the sequences in Sq are repre-
sented by that PWM. A sequence motif S¢; € Sq is said to
be represented by the PW M7 if

Sim(Sq;, PW M7)

1 . N
IECIEL Y Sim(sq, PWMY)
59€5Q(|54:)

log,

where SQ(!) is the set of all sequences of length I.
|SQ(1)| is the number of sequences in SQ(I). |Sg¢;] is the
number of bases in Sg;. Sim(Sg;, PW M7) is the simi-
larity between sequence Sg; and the position weight matrix
PW M. This is defined as the highest probability of gener-
ating Sq; from PW M. This is achieved by appropriately
aligning S¢; with PW M7 and multiplying the probability
of generating the respective bases in Sg; at the position.

The next section presents the results of evaluation of the
above algorithm on the cell-cycle regulated gene expression
data published by Spellman et al. for S. Cerevesiae.

3. Evaluation of ConstrainedMotif

We evaluated the above methodology by predicting cell-
cycle associated motifs for S. Cerevesiae. We used time-
course microarray gene expression data of 798 putative cell-
cycle regulated genes published by Spellman et al. The data
contains three sets of experiments conducted by different
methods of cell synchronization: (1) a-factorization («49);
(2) CDC15 block and release; and, (3) CDC28 block and re-
lease. Table 1 summarizes the data statistics. The promoter
sequences for upto 800 bases upstream from the start codon
of the genes were collected from SCPD database [14] for
all these genes.

The above procedure has been applied to all three
datasets and three lists of PWMs were obtained. To get
these lists, the motif clustering and PWM generation pro-
cedure was carried out for two times. The PWMs out-
put by the algorithm at the end of the second round were

| Statistics [ «49 | CDCI5 | CDC28 |

T (in minutes) 60 120 90

M 18 24 17

Number of cycles covered 2 23 1.8
samples Interval (mins) 7 10 10

Table 1. The summary of the time-course
data used for various synchronization exper-
iments.

ranked and output as the final list. The PWMs were ranked
in the descending order of the error reduction (A Fy) they
achieved on the respective dataset. To test the goodness
of the results, we collected a list of 46 motifs related to
S. Cerevesiae cell-cycle. Of these, 10 motifs are known
to be cell-cycle associated. They are: MCB, SCB, SFF,
ACE2, CPF1, RAPI1, SWIS5, ECB, STE12, MCM1. We use
these motifs, except MCM1 since it is long and our method
mainly finds motifs of length 4-8 bases, as true positives.
The remaining 36 motifs were considered as true negatives.

Sensitivity is defined as the fraction of true positives se-
lected and specificity is defined as the fraction of the se-
lected motifs are the true positives.

Each of the 46 motifs is represented by a set of se-
quences. We used the method described in Section 2.3 to
evaluate the goodness that a PWM matches a set of se-
quences with the threshold 7, = 3.16. The rank of the
motif after analyzing a dataset is the rank of the best ranked
PWM representing it. We assigned overall rank to a motif
as the highest of the ranks obtained from all three datasets.
This approach gaurantees that the given motif is represented
in the set of top PWMs, equal to the overall rank of the mo-
tif, the motif is represented with the given 7;.. Then all 46
motifs were ranked according to their overall rank. Fig-
ure 2 shows sensitivity-specificity plots for various values
of ~. It shows that the specificity for a given sensitivity is
relatively and significantly better when v = 5 than when
~ = 0. Note that, ¥ = 0 is equivalent to the weight profiles
one would get if REDUCE were used at all time points. The
choice of ¥ = 7 performs better than the other two choices
at low sensitivity level. The setting of ¥ = 5 outperforms
remaining two choices at moderately higher sensitivity and
outperforms 4y = 0 at all sensitivity levels except at very
high sensitivity level. Apart from doing better than the case
for v = 0, the sensitivity (78%) achieved here is better than
that of Conlon et al. (60% sensitivity) and Das et al. (50%
sensitivity) at similar precision levels as summarized in ta-
ble 2.

Similar conclusions can be drawn from Figure 3, which
shows the variation of sensitivity along with the list of the
46 motifs ranked according to the overall rank. Figure 4
shows the variation of sensitivity as the rank of the best
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Figure 2. Sensitivity vs. specificity plots for
various values of v (written as Gamma in the
plot) using maximum rank approach for motif
ranking.

ConstrinedMotif | ConstrinedMotif | Conlon | Das
(Gamma (v) =7) | (Gamma () = 0) et al. et al.
| 78% | 22% | 60% | 50% |

Table 2. The sensitivity of various methods at
an approximate specificity of 58%.

matching PWMs with the given T, = 9. It clearly shows
that v > 0 filters out a lot of redundant or incorrect PWMs
by about 10 times as compared to the case of ¥ = 0. The
relative performance of settings of ¥ = 5and v = 7 is as
discussed earlier. The relative performance of the setting
~ = 5 is clearly superior to the setting of v = 0 upto 80%
sensitivity.

4. Conclusions and Future Directions

We presented a methodology called ConstrainedMotif
to predict cell-cycle associated motifs. The application of
the proposed methodology to the cell-cycle microarray data
published by Spellman et al. yielded good sensitivity and
specificity when 4 = 5 as compared to the prediction with
~ = 0. This relative performance is consistent with the way
the motifs were ranked using the three datasets. This shows
that our formulation is effective. The proposed methodol-
ogy alleviates the problem of redundant representation of
a motif in the predicted list of motifs, by adopting PWM
definition of motifs. The methodology gaurantees that the
most of the sequences of a motif are represented by the
corresponding matching PWM. The methodology also re-
moves the problem of nonrepeated motif weights along the
time-course of the experiment. The results showed that our

Sensitivity vs All Motif Rank

Gamma =0 ——
Gamma=5 —------
0.9 |-Gamma=7 -

0.8 [

0.7

06

Sensitivity

04
03

02f 7

0.1

Figure 3. Sensitivity in the ranked list of 46
motifs based on maximum-rank approach for
various values of v (written as Gamma in the
plot).

method has sensitivity, at 58% specificity, upto 78% which
is much better than the ones reported for cell-cycle associ-
ated motif prediction as shown in table 2

We can identify a numerous future directions starting
from the formulation, the algorithm and the results pre-
sented in this paper. One direction is to improve the mo-
tif scoring scheme and the idenitification of cluster and the
alignemnt of sequence motifs (and PWMs). This may im-
prove the performance of the algorithm further. Finding
motif-motif interaction and very long PWMs using short-
to-medium length PWMs using this approach may be eas-
ily carried out. By looking for pairs of PWMs which has
similar phase of peak weight, i.e. 8,, resulting in better sig-
nificance value and aligning them appropriately may be in-
formative of both motif-motif interaction and long PWMs.
Another direction could be is to use promoter-position de-
pendent motif features for gene expression modeling and
motif prediction. Finally, the above methodology may be
extended to a general time-course data and its application
to predict the experiment specific motifs and their time of
activity.
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