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The observational evidence regarding the present cosmological aspects tells us about the presence
of very little anisotropy in the universe on a large scale. Here, in this paper, we attempt to study
locally rotationally symmetric (LRS) homogeneous Bianchi-I spacetime with the isotropic matter dis-
tribution. This is done within the framework of f (R, Lm) gravity. Particularly, we consider a non-

linear f (R, Lm) model, f (R, Lm) =
1
2
R + L α

m . Furthermore, ω, the equation of state parameter,
which is vital stuff in determining the present phase of the universe is constrained. To constrain the
model parameters and the equation of state parameter, we use 57 Hubble data points and 1048 Pan-
theon supernovae type Ia data sample. And, for our statistical analysis, we use Markoc Chain Monte
Carlo (MCMC) simulation. Moreover, with the help of obtained values of parameters, we measure
the anisotropy parameter for our model.
Keywords: Equation of state parameter, f (R, Lm) gravity, observational constraints, anisotropy
parameter.

I. INTRODUCTION

Over the past few decades, many scientific explo-
rations have been taking place to decipher the mys-
tic behavior of the universe. Right from the early
time inflation to the late time acceleration, from the
black holes to the wormholes, from the dark energy to
the gravitational waves, their entire course has been
probing the very nature of the universe. Just to look
into the cosmological principle, the universe on a large
scale, was presumed to be both isotropic and homo-
geneous. But in 1992, Cosmic Background Explorer
(COBE) successfully made a significant assertion about
the existence of a small anisotropy in the large-scale
cosmic microwave background [1]. Moreover, in the
later years, this was further supported by the measure-
ments made by Balloon Observations of Millimetric Ex-
tragalactic Radiation and Geophysics (BOOMERanG)
[2], Cosmic Background Imager (CBI) [3], Wilkinson Mi-
crowave Anisotropy Probe (WMAP)[4], and the Plank
collaborations[5]. Furthermore, intriguing advance-
ments in the field of cosmology took place through the
observational results of the two teams led by Perlmutter
and Riess [6, 7]. These studies strive to endorse that the
universe is currently in the phase of accelerated expan-
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sion. To this point, there arose a question regarding the
isotropic nature of the expansion of the universe. Inter-
estingly, recent developments suggest that the universe
tends to expand at a different rate in different directions
[8]. Though FLRW cosmology is most successful, it is
built based on cosmological principles. However, the
observational evidence attempts to elucidate the pres-
ence of a slight difference in the strengths of microwaves
coming from different axes. For this reason, the space-
time that can appropriately describe anisotropic and
homogeneous geometry is Bianchi cosmology. Several
works on such Bianchi cosmology with different modi-
fied gravity frameworks can be found in the literature.
(See ref [9–20])

In the present scenario, to deal with the study of such
aspects, the modified theoretic approach sounds more
potent. Among these, the f (R) theory of gravity has
produced a reliable framework for evaluating the cur-
rent cosmic evolution [21]. Indeed, f (R) theories can
adequately explain the interpretations of late-time accel-
eration [20, 22], the exclusion of the dark matter entity
in the analysis of the dynamics of massive test parti-
cles [23], and the unification of inflation with dark en-
ergy [24]. Furthermore, numerous justifications indicate
that the higher-order theories, like f (R) gravity, are ca-
pable of explaining the flatness of galaxies’ rotational
curves [25]. With these motivations, several coupling
theories came into existence [26–28]. One such theory
is the f (R, Lm) theory of gravity [29]. Notably, this fa-
vors the occurrence of an extra force that is orthogonal to
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four-velocity. In addition, the so-called ‘extra’ force ac-
counts for the non-geodesic motions of the test particle.
Consequently, a violation of the equivalence principle
can be observed. Numerous contributions to this theory
can be seen in the literature [30–38]. Recently, Jaybhaye
et al have studied cosmology in f (R, Lm) gravity [39].

In the present work, we center on the study of the-
oretical exploration and observational validation of the
LRS Bianchi type I spacetime and effectuate this in terms
of f (R, Lm) formalism. Moreover, in assessing the ex-
panding universe the equation of state parameter plays
a prominent role. This predicts the fluid type in space-
time. In our work, we emphasize constraining this cos-
mological parameter ω and obtaining the best fit values
as per the observational measurements. This is accom-
plished with a statistical approach for incorporated sets
of data samples. We use two types of data samples such
as Hubble measurements and Pantheon SNe Ia sample
. Further, with the anisotropy parameter, we measure
anisotropy in spacetime.

This manuscript is organized as follows: in section II,
the basic formulation of f (R, Lm) gravity is presented.
The analysis of LRS Bianchi I within the framework of
the f (R, Lm) gravity is made in section III. Section IV
is brought with the examination of observational con-
straints and discussion of results. Finally, the last section
V, gives some concluding remarks.

II. THE BASIC FIELD EQUATIONS IN f (R, Lm)

GRAVITY

With the matter lagrangian density Lm and the Ricci
scalarR, the action integral for f (R, Lm) theory reads,

S =
∫

f (R, Lm)
√
−g d4x, (1)

where f represents an arbitrary function ofR and Lm.

The field equation for the f (R, Lm) gravity [29], ob-
tained by varying the action integral (1) with respect to
the metric tensor gµν is given by,

fR(R, Lm)Rµν + (gµν∇µ∇µ −∇µ∇ν)fR(R, Lm)

−1
2
[
f (R, Lm)− fLm(R, Lm)Lm

]
gµν =

1
2

fLm(R, Lm)Tµν.

(2)

Here, fR(R, Lm) ≡ ∂f (R,Lm)
∂R , fLm(R, Lm) ≡ ∂f (R,Lm)

∂Lm
,

and Tµν is the Energy-Momentum Tensor (EMT) that

can be expressed as,

Tµν = − 2√−g
δ(
√−gLm)

δgµν = gµνLm − 2
∂Lm

∂gµν . (3)

Now, from the explicit form of the field equation (2),
the covariant divergence of EMT Tµν can be obtained as,

∇µTµν = 2
{
∇µln

[
fLm(R, Lm)

]} ∂Lm

∂gµν . (4)

Furthermore, on contracting the field equation (2) we
get,

3∇µ∇µfR(R, Lm) + fR(R, Lm)R− 2
[
f (R, Lm)

−fLm(R, Lm)Lm
]
=

1
2

fLm(R, Lm)T .
(5)

By considering the above equation, the relation be-
tween the trace of EMT T = T µ

µ , Lm and R can be es-
tablished.

III. LRS BIANCHI-I COSMOLOGY IN f (R, Lm)

GRAVITY

For anisotropic and spacially homogeneous LRS
Bianchi-I spacetime, the metric is described by,

ds2 = −dt2 +A2(t) dx2 + B2(t) dy2 + B2(t) dz2, (6)

where, A and B are metric potentials that are the func-
tions of (cosmic) time t alone. If A(t) = B(t) = a(t),
then one can analyze the scenarios in flat FLRW space-
time. Now, the Ricci scalar for LRS Bianchi-I spacetime
can be expressed as,

R = 2

[
Ä
A +

2B̈
B +

2ȦḂ
AB +

Ḃ2

B2

]
(7)

With the directional Hubble parameters Hx, Hy and
Hz, the Ricci scalar for the corresponding metric is given
by,

R = 2(Ḣx + 2Ḣy) + 2(H2
x + 3H2

y) + 4Hx Hy. (8)

Here, Hx = Ȧ
A and Hy = Ḃ

B = Hz indicate the direc-
tional Hubble parameters along the corresponding co-
ordinate axes. For Hx = Hy = H, i.e., for FLRW cosmol-
ogy, the equation R = 2(Ḣx + 2Ḣy) + 2(H2

x + 3H2
y) +

4Hx Hy reduces to R = 6(2H2 + Ḣ). In the present work,
we are supposing the matter distribution to be described
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by the energy-momentum tensor of a perfect fluid,

Tµν = (ρ + p)UµUν + p gµν, (9)

where ρ is the energy density and p is the pressure. The
four-velocity, Uµ satisfies the condition UµUµ = −1 and
UµUµ;ν = 0. Thus, the field equation (2) takes the form,

−ḟR(Hx + 2Hy) + (Ḣx(t) + 2Ḣy + H2
x + 2H2

y) fR

−1
2
(

f − fLmLm
)
= −

ρfLm

2
,

(10)

−f̈R − 2Hy ḟR + (Ḣx + H2
x + 2Hx Hy)fR

−1
2
(

f − fLmLm
)
=

pfLm

2
,

(11)

−f̈R − 2Hx ḟR + (Ḣy + 2Hx Hy)fR

−1
2
(

f − fLmLm
)
=

pfLm

2
.

(12)

The dot (·) here represents the derivative with respect
to the time t and f ≡ f (R, Lm).

Further, one can express the spatial volume V of the
spacetime as,

V = a3 = AB2. (13)

Thus the mean value of the Hubble parameter is given
by,

H =
ȧ
a
=

1
3
(Hx + 2Hy). (14)

In further study, we are going to investigate the physical
cosmological model and their application in the context
of f (R, Lm) gravity using the above set of equations.

A. Physical Model:

In the present study, we shall focus on the cosmo-
logical aspects of f (R, Lm) theory, with the relation be-
tweenR and Lm being

f (R, Lm) =
1
2
R+L α

m , (15)

where, α 6= 0 is a model parameter and one can retain
GR for α = 1.

Now, to find an exact solution to the field equations
(10)-(12), we have to consider the constraining relation.
To this point, we shall presume the anisotropic relation
that can be written in terms of shear (σ) and expansion

scalar (θ) as,

θ2 ∝ σ2,

so that, for constant σ
θ , the Hubble expansion can

achieve isotropy [42, 43]. This condition gives rise to

A(t) = B(t)n, (16)

for some real non-zero n, and for n = 1, we can retrieve
flat FLRW cosmology. With this, one can get the relation
between directional Hubble parameters as,

Hx = nHy. (17)

Therefore, averaged Hubble parameter can takes the
form,

H =
n + 2

3
Hy. (18)

Additionally, we shall relate the the pressure p and en-
ergy density ρ by,

p = ωρ. (19)

Now, we have two choices for the Lagrangian to pro-
ceed further such as Lm = −ρ or Lm = p [40]. But, in
our study we consider Lm = −ρ because it is the most
adequate choice presented in [40]. In literature, these
are many studies which have been explored the choices
for Lm and their applications [to see more details please
check the references therein [40, 41].

Applying the above conditions, the field equations
(10)-(12) become,

9(2n + 1)
(n + 2)2 H2 = −(−ρ)α, (20)

6Ḣ
(n + 2)

+
27H2

(n + 2)2 = −(−ρ)α
[
α(1 + ω) + 1

]
,

(21)

3Ḣ
(

n + 1
n + 2

)
+ 9H2 n2 + 3

(n + 2)2 = −(−ρ)α
[
α(1 + ω) + 1

]
.

(22)

With the help of aforementioned equations we can ob-
tain an expression for the Hubble parameter H in terms
of redshift z as,

H(z) = γ1 (z + 1)γ1/γ2 , (23)

where, γ1 = 2(n + 2) and γ2 = −3[α(ω + 1)(2n + 1) +
2(n − 1)]. Here, we used the scale factor a(t) and red-
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shift relation, which is given by

a(t) =
1

1 + z
. (24)

We now aim to constrain the model parameters (α, n)
and cosmological parameter (ω) using various observa-
tional measurements. Doing this helps us to present a
physically realistic cosmological model, which can obey
the astrophysical observations.

IV. OBSERVATIONAL CONSTRAINTS AND
VALIDATION OF THE RESULTS

So far, we looked into the formulation of LRS Bianchi
I cosmology in f (R, Lm) gravity. It is to be noted that

the substantial validation of the values for the parame-
ters is significant in analyzing the cosmological aspects.
In this regard, the present section puts forth the obser-
vational interpretations of the current scenario. The sta-
tistical technique we adopted assists us to constrain the
parameters such as, ω, α and n. In particular, we have
opted for the Markov Chain Monte Carlo (MCMC) with
standard Bayesian technique. Further, with the pseudo-
chi-squared function χ2, the probability function

L ∝ e−
χ2
2 , (25)

provides the best fit values for the parameters.

1.3 1.2

26.0

26.5

27.0

27.5

n

4

6

8

= 1.245+0.034
0.031

4 6 8

= 5.57+0.61
0.85

26 27
n

n = 26.73 ± 0.36

Hz dataset

FIG. 1. Contour plot with 1− σ and 2− σ errors for the parameters ω, α and n along with the constraint values for Hubble dataset.
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Presently, to achieve this, we center on two datasets
namely, H(z) and Pantheon data. To proceed further, we
consider the priors on parameters, which are (−2.0 <
ω < 1.0) to keep in mind all the possible cases of equa-
tion of state parameter, (−10 < α < +10) as it is a
free model parameter, and (0 < n < 100) to measure
the anisotropy and also to keep in mind that our model
should fit the observational dataset as well.

A. H(z) dataset

The prominence of the analysis of the Hubble param-
eter lies in the exploration of the expanding universe.
Moreover, this can be expressed in terms of the red-
shift parameter z, which is quite useful in many circum-
stances. At some particular redshifts, we can infer the

value of the Hubble parameter. To this end, the deter-
mination of its value from line-of-sight BAO data is one
of the most successful techniques. Furthermore, another
widely used approach to find H(z) is the differential age
method. In the redshift range 0.07 ≤ z ≤ 2.41, the 31
H(z) points obtained from differential age method [44–
50] and 26 points from other methods including BAO
(see ref [51–62]), provide 57 points of the H(z) dataset.
Now, as mentioned earlier, we consider the pseudo chi-
square function χ2 to evaluate the unknown parameters.
For H(z) dataset, it is given by,

χ2
Hz(ω, α, n) =

57

∑
k=1

[
Hth(zk, ω, α, n)− Hob(zk)

]2
σ2

H(zk)

. (26)

Here, Hth indicates the theoretically obtained value of
the Hubble parameter and Hob represents its observed
value and σ is the standard deviation.

0.0 0.5 1.0 1.5 2.0 2.5
z

50

100

150

200

250

H(
z)

From curve fitting: Hubble
CDM

From data

FIG. 2. The profile of Hubble parameter versus redshift z. The line in red shows the curve for the model and the dotted line in
black represent the ΛCDM model with Ωm0, ΩΛ0 having the values 0.3 and 0.7 respectively. The dots with error bars in blue
depicts 57 H(z) sample points.

B. Pantheon dataset

The SNe Ia holds a central role in explaining the ex-
panding universe. Significantly, the spectroscopically
collected SNe Ia data such as, SuperNova Legacy Survey
(SNLS), Sloan Digital Sky Survey (SDSS),Hubble Space
Telescope (HST) survey, Panoramic Survey Telescope
and Rapid Response System(Pan-STARRS1) provide a

solid evidence in this regard. The recent data sample of
the SNe Ia, the Pantheon dataset comprises 1048 magni-
tudes for the distance modulus estimated over the range
of 0.01 ≤ z ≤ 2.3 for the redshift z [63]. In order to find
the best fits for the model in hand, we perform the ana-
logical assessment between the theoretical and observa-
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tional values of the distance moduli µ(zk). Theoretically,

µth(zk) = µ0 + 5 log10(DL(zk)), (27)

with the nuisance parameter

µ0 = 25 + 5 log10

(
1

H0Mpc

)
, (28)

and the luminosity distance

DL(z) = (1 + z)
z∫

0

c
H(ξ)

dξ. (29)

Here, we take H0 = 69 km/s/Mpc [? ]. Now, χ2 func-
tion for Pantheon data sample, with covariance metric
CSNe is given by,

χ2
SNe(µ0, ω, α, n) =

1048

∑
k,l=1

µ̄k

(
C−1

SNe

)
kl

µ̄l , (30)

where, µ̄k = µth(zk, ω, α, n)− µob(zk).

1.26 1.20 1.14

30

31

32

n

4

6

8

= 1.175+0.030
0.020

4 6 8

= 6.40 ± 0.93

30 31 32
n

n = 31.09 ± 0.54

Pantheon dataset

FIG. 3. Contour plot with 1− σ and 2− σ errors for the parameters ω, α and n along with the constraint values for pantheon
dataset.
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0.0 0.5 1.0 1.5 2.0 2.5
z

32

34

36

38

40

42

44

46
(z

)

From curve fitting: Pantheon values
CDM

From data

FIG. 4. The profile of distance modulus versus redshift z. The line in red shows the curve for the model and the dotted line in
black represent the ΛCDM model with Ωm0, ΩΛ0 with the values 0.3 and 0.7, respectively. The dots with error bars in blue depicts
1048 pantheon sample points.

C. H(z)+Pantheon dataset

In the previous sections, we dealt with two kinds
datasets, H(z) and SNe Ia. In this section, we shall con-
sider the combination of these two sets of sample points.
By the same token, to examine the best fits for our model
with H(z)+Pantheon dataset, we consider χ2 function as
given below.

χ2
comb = χ2

Hz + χ2
SNe. (31)

D. Anisotropy Parameter

It is known that, the universe is expanding at a dif-
ferent pace in different directions. This certainly leads
to the anisotropy in the geometric structure of space-
time. A physical quantity that measures the amount of
anisotropy that arises due to the expanding universe is

the anisotropic parameter. Mathematically, this can be
expressed as,

∆ =
1
3

3

∑
i=1

(
Hi − H

H

)2
. (32)

For the present problem, this takes the form:

∆ =
2

9H2

(
Hx − Hy

)2
. (33)

From (17) and (18) we have,

∆ = 2
(

n− 1
n + 2

)2
. (34)

In the previous section, from the distinct observational
datasets, we have obtained the value for n. Now, the cor-
responding value of the anisotropy measure ∆ is given
in the table I.
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1.4 1.3 1.2

28.0

28.5

29.0

29.5

n

3

4

5

6

7

= 1.281+0.052
0.037

3 4 5 6 7

= 4.76+0.68
0.84

28.0 28.5 29.0 29.5
n

n = 28.65 ± 0.29

Hz+Pantheon datasets

FIG. 5. Contour plot with 1− σ and 2− σ errors for the parameters ω, α and n along with the constraint values for H(z)+Pantheon
dataset.

E. Results

Heretofore, we have checked over different data sam-
ples and have obtained the constraint values for the
unknown parameters ω, α, and n. Further, we ob-
tained the two-dimensional likelihood contours with

1 − σ and 2 − σ errors that are equipped with 68%
and 95% confidence levels for Hubble, Pantheon, and
Hubble+Pantheon data samples. These are depicted in
FIG.1, 3 and 5, respectively. First, we considered the
H(z) dataset with 57 data points. Here, for the model
parameter α, we have obtained the value 5.57+0.61

−0.85 and
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TABLE I. Marginalized constrained data of the parameters ω, α and n and corresponding anisotropy measure ∆ for different data
samples with 68% confidence level.

Dataset ω α n ∆
H(z) −1.245+0.034

−0.031 5.57+0.61
−0.85 26.73± 0.36 1.604± 0.005

Pantheon −1.175+0.030
−0.020 6.4± 0.93 31.09± 0.54 1.626+0.003

−0.004
Pantheon+H(z) −1.281+0.052

−0.037 4.76+0.68
−0.84 28.65± 0.29 1.654+0.005

−0.006

for the parameter n, which gives the relation between
the directional Hubble parameters, the constrain value
turns out to be 26.73 ± 0.36. Next, for the SNe Ia
Pantheon data sets with 1048 sample points, it yields,
α = 6.4± 0.93 and n = 31.09± 0.54. Finally, for com-
bined data sets in the last section, they attain the values,
α = 4.76+0.68

−0.84 and n = 28.65± 0.29. Along with these, to
compare our model with the ΛCDM model, we checked
Hubble parameter, H(z) profile and distance modulus,
µ(z) profile with the constraint values of unknown pa-
rameters ω, α, and n for H(z) and pantheon samples
and illustrated subsequently in figures 2 and 4. It is
observed that, for both cases, our f (R, Lm) model fits
nicely with the observational results. Moreover, it is also
seen that our model is quite close to the ΛCDM model’s
profile. Moreover, it is well-known that the equation of
state parameter ω also plays a crucial role in describing
the different energy dominated evolution process of the
universe. The present scenario of the universe can pre-
dict by either quintessence phase

(
−1 < ω < − 1

3

)
or

phantom phase (ω < −1). Now, for the present model,
we found ω = −1.245+0.034

−0.031, ω = −1.175+0.030
−0.020 and

ω = −1.281+0.052
−0.037, for H(z), Pantheon, and H(z)+ Pan-

theon samples, respectively. Our results on ω align with
the outputs of some observational studies [please see
[63–65]]. It worthy to mention here that, our f (R, Lm)
model admits phantom behavior for each data analysis.
The contraint values so obtained are summarized in ta-
ble I.

V. CONCLUDING REMARKS

The never-ending curiosity of the scientific commu-
nity about the current cosmological aspects fosters to
look into the universe beyond the standard gravity
models. In this direction, f (R, Lm) formalism works
pretty well. In the present article, we investigated the
accelerated expansion of the universe in the realm of
f (R, Lm) gravity. In particular, we adopted a non-linear

f (R, Lm) model f (R, Lm) =
1
2
R + L α

m . Further, in
this, we focused on Bianchi I cosmology which is locally

rotationally symmetric. Also, we considered expansion
and shear scalar to vary proportionally which can lead
to the isotropization of hubble expansion.

Then, to find the constraint values for the parame-
ters we used the statistical MCMC approach with the
Bayesian technique. Further, we analyzed the result
for two different observational samples such as Hubble
data and Pantheon data( which includes SDSS, SNLS,
Pan-STARRS1, low-redshift survey, and HST surveys).
Furthermore, the equation of state parameter, which is
significant in explaining the behavior of the universe,
has been constrained. The constraint value so-obtained
for ω

(
−1.245+0.034

−0.031,−1.175+0.030
−0.020,−1.281+0.052

−0.037

)
, sug-

gests the phantom behavior of the universe. In addition,
with these values for the parameters, we compared our
model with the ΛCDM model.

Together with this, we can correlate the obtained out-
comes with the existing results to assess the present as-
pects of the universe. Besides, in dealing with a mod-
ified theoretic approach, to discuss these scenarios, we
use cosmographic treatments and observational con-
straints. The usage of the former technique has led to
numerous interesting investigations within the frame-
work of several modified theories. For instance, ap-
praising the cosmographic parameters such as the de-
celeration parameter, and equation of state parameter
with their present data helps us to examine the cosmic
evolution [66–68]. Also, the latter approach of observa-
tional studies has been extensively done over the past
few years [69–73]. Moreover, to focus on the equation
of state parameter ω, we can see numerous works with
a fixed value of ω, say 1/3, 0, -1/3 so on, depending
on the fluid dominated in the spacetime. Interestingly,
in our work, such supposition for the ω value has not
been admitted. Instead, more advantageously, its value
has been constrained against observational results. As
per the obtained outcome for ω, we can infer the cosmic
acceleration.

Finally, for our model, we examined the nature of
anisotropy with the aid of the anisotropy parame-
ter. The anisotropy measure for H(z), pantheon, and
H(z)+pantheon is found as 1.604 ± 0.005, 1.626+0.003

−0.004
and 1.654+0.005

−0.006 respectively. This model, under all
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the assumptions made, predict an anisotropy that is in
agreement with the dataset used.

In all, these results could motivate us to further ex-
plore the studies in f (R, Lm) theory as this obeys the
observational data. Moreover, it would be interesting to
investigate the inflationary scenario of the universe in
the back ground of this theory of gravity. In future, we
aim to study this scenario.
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