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Abstract The calibration of hydrological models without streamflow observations is problematic, and the

simultaneous, combined use of remotely sensed products for this purpose has not been exhaustively tested

thus far. Our hypothesis is that the combined use of products can (1) reduce the parameter search space

and (2) improve the representation of internal model dynamics and hydrological signatures. Five different

conceptual hydrological models were applied to 27 catchments across Europe. A parameter selection

process, similar to a likelihood weighting procedure, was applied for 1,023 possible combinations of 10

different data sources, ranging from using 1 to all 10 of these products. Distances between the two empirical

distributions of model performance metrics with and without using a specific product were determined to

assess the added value of a specific product. In a similar way, the performance of the models to reproduce

27 hydrological signatures was evaluated relative to the unconstrained model. Significant reductions

in the parameter space were obtained when combinations included Advanced Microwave Scanning

Radiometer - Earth Observing System and Advanced Scatterometer soil moisture, Gravity Recovery and

Climate Experiment total water storage anomalies, and, in snow-dominated catchments, the Moderate

Resolution Imaging Spectroradiometer snow cover products. The evaporation products of Land Surface

Analysis - Satellite Application Facility and MOD16 were less effective for deriving meaningful,

well-constrained posterior parameter distributions. The hydrological signature analysis indicated that

most models profited from constraining with an increasing number of data sources. Concluding,

constraining models with multiple data sources simultaneously was shown to be valuable for at least

four of the five hydrological models to determine model parameters in absence of streamflow.

1. Introduction

Computational techniques have been advancing and an abundance of new sources of information has

become available over the recent years, but selecting meaningful parameters for catchment-scale hydrologi-

cal models, in particular for predictions in ungauged catchments, remains problematic (Blöschl et al., 2013;

Hrachowitz et al., 2013; Sivapalan, 2003) and is further exacerbated by the worldwide ongoing reductions

of stream gauging networks (Fekete & Vörösmarty, 2002; Hannah et al., 2011; Sivapalan, 2003).

The dependency on streamflow data for model calibration can, to a certain extent, be reduced by directly

estimating individual model parameters (or at least defining nonuniform parameter prior distributions) from

exploiting their links with readily available observations of other quantities than streamflow, which are obser-

vable at the scale of the model application, such as topographic considerations (Smith et al., 2016) or the

long-term water balance (e.g., de Boer-Euser et al., 2016; Gao, Hrachowitz, Schymanski, et al., 2014; Nijzink

et al., 2016). Similarly, when no streamflow observations are available, traditional regionalization techniques

use climatic and physiographic data, to establish transfer functions that allow an indirect estimation of the

actual model parameters (Götzinger & Bárdossy, 2007; Hundecha et al., 2016; Hundecha & Bárdossy, 2004;

Merz & Blöschl, 2004; Samaniego et al., 2010; Wagener & Wheater, 2006). Alternatively, catchment
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signatures can be used to condition the parameter space, as an alternative to streamflow calibration (Almeida

et al., 2016; Bárdossy, 2007; Bulygina et al., 2009; Castiglioni et al., 2010, 2011; Yadav et al., 2007). In addition,

model constraints or limits of acceptability (Beven, 2006), based on qualitative information without clear tar-

get values, often referred to as soft data (Seibert & McDonnell, 2002; Winsemius et al., 2009) or expert knowl-

edge (Gharari et al., 2014; Kelleher et al., 2017; Pechlivanidis & Arheimer, 2015), meant to avoid physically

implausible representations of the system, were in the past shown to be valuable to limit the feasible model

parameter space (Freer et al., 2004; Hrachowitz et al., 2014). These constraints can be implemented either as a

priori defined inequality constraints on parameters or on processes (Ambroise et al., 1996). The latter allows

to contain the dynamics of individual model components to some degree (cf. Gharari et al., 2014; Wagener &

Montanari, 2011), such as limiting long-term evaporation to values expected from the Budyko curve (e.g.,

Gerrits et al., 2009).

The increasing availability of remotely sensed data may provide ample opportunities to further constrain

hydrological models and their parameters. While several recent reviews highlight their potential for applica-

tions in hydrology (e.g., AghaKouchak et al., 2015; Hrachowitz & Clark, 2017; Pechlivanidis & Arheimer, 2015;

Xu et al., 2014), it can also be argued that remotely sensed high-resolution streamflow data are rather far from

becoming a reality (Lettenmaier et al., 2015). Although successful attempts of using remotely sensed stream-

flow for model calibration have been reported (e.g., Sun et al., 2015; Tourian et al., 2017), the specific orbits of

the observation satellites lead to spatial and temporal limitations, and only larger rivers can be monitored

due to the large resolution. In contrast, products providing estimates of evaporation have in the past been

shown to have considerable value for model applications, as summarized by several studies that point at

the different advantages and disadvantages of these products (e.g., Verstraeten et al., 2008; Zhang et al.,

2016). Besides evaporation products, the central importance of soil moisture and snow storage for the

Earth’s water cycle made it a focus of research efforts in the remote sensing community, which developed

several satellite missions dedicated to soil moisture and snow cover mapping, such as the Soil Moisture

and Ocean Salinity (SMOS; Kerr et al., 2012), Soil Moisture Active and Passive (SMAP; Brown et al. 2013), or

NASA’s Earth Observing System (Greenstone & King, 1999) missions. Furthermore, the Gravity Recovery

and Climate Experiment (GRACE; Tapley et al., 2004) led to new, valuable information on total water storage

based on remotely sensed gravity anomalies. These are just a few examples, while more remotely sensed pro-

ducts are currently available and new satellite missions are planned (e.g., GRACE-FO and SWOT), which will

further increase the information available for hydrological modeling.

The challenge remains, though, how to select data that are suitable for use in hydrological model applications

and to assess how they can support the modeling process in a meaningful and effective way. So far, informa-

tion from remote sensing has been incorporated in applications of hydrological models in several ways. For

example, data assimilation techniques are commonly used to update the states of a model (e.g., Liu et al.,

2012; Liu & Gupta, 2007; Reichle, 2008). This can help to improve internal model dynamics and the resulting

hydrological predictions (Crow & Ryu, 2009; Tangdamrongsub et al., 2015). Yet, it can be argued that the

added value of data assimilation is actually an indicator of inadequate model parameters and/or model for-

mulations (Spaaks & Bouten, 2013). Alternatively and directly addressing this issue, remotely sensed data can

be directly used as calibration variables and thus to select feasible model parameters (e.g., Immerzeel &

Droogers, 2008; Lopez Lopez et al., 2017; Pechlivanidis & Arheimer, 2015; Sutanudjaja et al., 2014).

Although the above strategies are in principle a valid way forward, spatial and temporal mismatches between

hydrological models and remotely sensed data (Vereecken et al., 2008; Xu et al., 2014) place some limitations

on the value of these data. Acknowledging this, several new techniques are reported in the literature with the

focus on, for example, the spatial patterns of remotely sensed data (e.g., Demirel et al., 2018; Githui et al.,

2015; Stisen et al., 2008). It can be argued that especially the development of a pattern based objective func-

tion (e.g., Zink et al., 2018) is needed to optimally use the distributed information of the products. Correctly

relating the spatial patterns to the models also mitigates the fact that hydrological variables are not directly

observed by most remote sensors but rather inferred from models that link the observed variable with some

hydrologically relevant variable, thus introducing an additional source of uncertainty. As a result there is a

shift from using the absolute numbers obtained by remote sensing products to using those numbers more

relatively, with the spatial patterns as an example.

A large number of studies previously assessed the added value of different remote sensing products, either

for data assimilation or model calibration. These studies generally focused either on a single remote sensing
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product, for example, GRACE (e.g., Lo et al., 2010; Mulder et al., 2015; Rakovec, Kumar, Attinger, et al., 2016;

Werth et al., 2009), SCAT soil moisture (e.g., Parajka et al., 2009), and Advanced SCATterometer (ASCAT) soil

moisture (Brocca et al., 2010), or on one-single model state or flux with a combination of products such as

soil moisture (Wanders et al., 2014), which was all done with different levels of success. For example,

Rakovec, Kumar, Mai, et al. (2016) showed that the addition of GRACE improved internal states of the model,

but remotely sensed soil moisture deteriorated model performance. Nevertheless, the combined effects of

several products, which deal with multiple model states and fluxes simultaneously, have only recently gained

some attention, but this remains rather limited to two different model states or fluxes (Kunnath-Poovakka

et al., 2016; Lopez Lopez et al., 2017; Tian et al., 2017). Full bootstrap procedures wheremultiple combinations

of remote sensing products are tested have not been reported so far.

Thus, the objective of this paper is to explore the value of combining several types of remotely sensed data

products that reflect different water balance components, to effectively and consistently constrain the para-

meter space of five different lumped conceptual hydrological models, as a stepping stone toward using com-

bined remote sensing products also in more distributed modeling approaches. Even though the distributed

nature of the products is not used up to its full potential by using lumped models, in this way we test the

hypotheses that the combined use of different remote sensing products can (1) identify unfeasible parameter

sets and thus reduce the feasible parameter space in order to shift toward higher average model perfor-

mances and (2) improve the representation of model internal dynamics and hydrological signatures in com-

parison with a range of benchmarking streamflow performances.

2. Methodology

A detailed stepwise description of this experiment, with the model codes and links to the data, can be found

in an online experiment protocol (http://dl-ng005.xtr.deltares.nl/view/66/) as part of the Virtual Water Science

Laboratory of the SWITCH-ON project (Sharing Water-Related Information to Tackle Changes in the

Hydrosphere - for Operational Needs). This protocol is developed to facilitate full experiment reproducibility

and repeatability, according to the requirements suggested by Ceola et al. (2015).

2.1. Study Areas

A set of 27 European catchments was selected in order to cover a variety of landscapes, climates, and vegeta-

tion. The study sites included lowland catchments in the UK and Germany as well as more mountainous

catchments in Austria and France. The study catchments also exhibit considerable climatic differences with

aridity indices ranging from 0.5 to 1.1 (mean potential evaporation divided over the mean precipitation)

and mean areal precipitation from 627 to 1593 mm/year. The selection was based on these differences, as

well as on the length of the available time series (approximately 10 years) for the recent years in order to

be comparable to the remotely sensed products.

Estimates of daily potential evaporation were derived from ERA-Interim data (air temperature, dew point

temperature, wind speed, longwave radiation, and shortwave radiation) according to the Penman formula-

tion as prescribed by FAO (Allen et al., 1998), and the air temperature of the ERA-Interim data (Dee et al.,

2011) was also applied as forcing data for the snow modeling. Daily precipitation was derived from the

Multi-Source Weighted-Ensemble Precipitation data set (MSWEP; Beck et al. 2017). Time series of streamflow

covering recent years and with sufficient length (approximately 10 years of data) were for most catchments

obtained from the Global Runoff Data Centre. In addition, three catchments were selected from the

Hydrographic Service of Austria, and three from, respectively, the Hydrographic Service of the

Autonomous Province of Bolzano, Regional Agency for the Protection of the Environment - Piedmont

Region, and Regional Hydrologic Service - Tuscany Region. An overview of the catchments is provided in

Table 1 and Figure 1.

2.2. Models

Five different rainfall-runoff models were applied to account for different model structures, which are briefly

described here. These models were selected as these are widely used across Europe and differed concep-

tually. For more details about model structures, parameters, and prior parameter ranges the reader is referred

to the supporting information S1.
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Table 1

Overview of the Study Catchments, Their Characteristics, and the Modeled Time Series

River GRDC number Area (km
2
) Aridity (�) Prec. (mm/year) Q (mm/year) Warm start Warm end Cal start Cal end

1 Gadera - 394.0 0.52 1,095 670 10-1-1998 30-9-1999 10-1-1999 30-9-2009

2 Tanaro - 500.0 0.81 1,059 625 10-1-2002 30-9-2003 10-1-2003 30-9-2012

3 Arno - 751.0 0.81 1,069 398 10-1-2002 30-9-2003 10-1-2003 30-9-2013

4 Vils - 198.0 0.32 1,593 1338 10-1-1999 30-9-2000 10-1-2000 30-9-2010

5 Grossarler - 144.0 0.36 1,508 1202 10-1-1999 30-9-2000 10-1-2000 30-9-2010

6 Große Mühl - 253.0 0.55 1,156 739 10-1-1999 30-9-2000 10-1-2000 30-9-2010

7 Broye 6935390 396.0 0.50 1,219 610 10-1-1998 30-9-1999 10-1-1999 30-9-2009

8 Treene 6338800 481.0 0.71 917 435 10-1-1998 30-9-1999 10-1-1999 30-9-2004

9 Risle 6118165 146.8 1.00 751 304 10-1-2000 30-9-2001 10-1-2001 30-9-2011

10 Leyre 6119200 1586.9 0.98 913 283 10-1-2000 30-9-2001 10-1-2001 30-9-2011

11 Erdre 6123170 462.5 0.98 789 181 10-1-2000 30-9-2001 10-1-2001 30-9-2011

12 Layon 6123180 927.9 1.10 694 105 10-1-2005 30-9-2006 10-1-2006 30-9-2011

13 Glane 6123420 296.7 0.80 981 401 10-1-2000 30-9-2001 10-1-2001 30-9-2011

14 Dragne 6123700 116.6 0.75 996 435 10-1-2001 30-9-2002 10-1-2002 30-9-2011

15 Roubion 6139220 190.4 0.87 920 276 10-1-2000 30-9-2001 10-1-2001 30-9-2011

16 Azergues 6139360 333.1 0.84 887 317 10-1-2000 30-9-2001 10-1-2001 30-9-2011

17 Enning-Dalsaelve 6229100 633.8 0.57 978 646 10-1-2004 30-9-2005 10-1-2005 30-9-2014

18 Fyllean 6233150 263.4 0.62 937 749 10-1-2003 30-9-2004 10-1-2004 30-9-2014

19 Kinzig 6335125 955.0 0.49 1,344 744 10-1-2001 30-9-2002 10-1-2002 30-9-2012

20 Modau 6335165 90.6 0.99 705 234 10-1-2001 30-9-2002 10-1-2002 30-9-2012

21 Rodach 6335540 716.0 0.76 830 458 10-1-2001 30-9-2002 10-1-2002 30-9-2012

22 Pfinz 6335640 232.2 0.74 920 248 10-1-2002 30-9-2003 10-1-2003 30-9-2013

23 Hunte 6337050 1408.5 0.80 806 219 10-1-2001 30-9-2002 10-1-2002 30-9-2012

24 Wuemme 6337060 934.4 0.77 855 342 10-1-2001 30-9-2002 10-1-2002 30-9-2012

25 Deveron 6604850 954.6 0.49 1,030 636 10-1-2001 30-9-2002 10-1-2002 30-9-2012

26 Little Ouse 6606250 757.4 1.05 627 143 10-1-2003 30-9-2004 10-1-2004 30-9-2012

27 Stour 6606850 656.7 1.03 632 153 10-1-2001 30-9-2002 10-1-2002 30-9-2012

Note. GDRC = Global Runoff Data Centre. Dates are formatted as day/month/year.

Figure 1. The 27 study catchments and their location in Europe. See Table 1 for the catchment characteristics.
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2.2.1. FLEX

The FLEX model (Fenicia et al., 2008) is a lumpedmodel that consists of four storage components and a snow

module. The snow module, based on a degree-day approach, runs first and determines the effective precipi-

tation consisting of rainfall and snowmelt. After this, the water enters an interception reservoir, from which

intercepted water can evaporate and/or leave the reservoir after exceeding a certain threshold. The remain-

ing precipitation after interception is split into runoff and infiltration in the subsequent step. The infiltrated

water is stored in the soil moisture reservoir, from which transpiration takes place. A portion of the runoff

goes to a fast reservoir, another portion to the groundwater reservoir through preferential percolation. The

model uses eight parameters that are left free for calibration.

2.2.2. FLEXtopo

The FLEXtopo model (Savenije, 2010) uses hydrological response units based on different landscape ele-

ments to capture the core processes for different parts in the landscape. In this setup, the landscape units

were defined as plateau, hillslope, and wetland, similar to previous applications (de Boer-Euser et al., 2017;

Gao, Hrachowitz, Fenicia, et al., 2014; Gharari et al., 2014). For each model unit, a snow routine is followed

by an interception reservoir and unsaturated reservoir. For plateau landscapes, recharge to the groundwater

can happen through matrix percolation, as a function of soil moisture, and preferential percolation through

macropores or cracks and fissures. In contrast, the hillslope areas are only assumed to contribute to the

groundwater through preferential percolation and the wetlands even receive water from the groundwater

reservoir through capillary rise. In the original application (Gao, Hrachowitz, Fenicia, et al., 2014) FLEXtopo

uses proportionalities between parameters of different landscape classes (e.g., interception capacity of forest

bigger than grass), which limit the feasible parameter space. Here in this comparative analytical framework

additional conditions were not implemented for FLEXtopo, leaving a relatively wide parameter space. In total,

24 parameters are left free for calibration.

2.2.3. HYMOD

The HYMODmodel (Boyle, 2001; Wagener et al., 2001) runs first a snowmodule fromwhich rainfall and snow-

melt continue toward the unsaturated zone. Here evaporation is determined as a function of soil moisture

and runoff is generated, based on the spatial distribution of maximum storage capacities in the catchment

as defined by a reflected power function. This runoff is divided over a series of fast reservoirs and one slow

reservoir. The contributions of the fast flows and slow flows eventually determine the final streamflow. In

total, eight parameters are free for calibration.

2.2.4. HYPE

The HYPE model (Lindström et al., 2010) runs first a snow module, after which the model structure contains

three soil layers with assigned soil depths. Water can evaporate from the first two layers, and runoff is

generated when the maximum storage capacity of these layers is reached or when maximum infiltration

capacities are exceeded. Water can percolate downward through matrix flow or preferentially through fast

flow paths. The lowest soil layer reflects the groundwater contribution to the streamflow, and an additional

aquifer routine can be applied. Eventually, a routing function is applied to the total outflows to obtain the

final streamflow. A set of 22 model parameters was selected for optimization in the parameter selection pro-

cedures. The model setup applied here is based on the E-HYPE modeling setup (Donnelly et al., 2009), there-

fore catchments 6, 9, and 14 were not considered for this analysis as these are not part of the E-HYPE model.

2.2.5. TUW

The TUW model (Parajka et al., 2007) uses a similar model structure as originally applied in the HBV model

(Bergström, 1992). First, a snow routine is run based on a degree-day approach, after which water enters

the soil moisture reservoir and becomes available for evaporation. Here evaporation is determined as a func-

tion of soil moisture, and runoff is generated based on a function defining the spatial distribution of maximum

storage capacities as well. Next, the water moves to a fast reservoir, which has an additional overflow outlet to

represent a very fast component. Percolation from the fast reservoir toward the slow, groundwater reservoir

takes place subsequently. In a last step, the sums of slow and fast runoff components are routed through

the system with triangular lag functions. The TUW model has 15 parameters free for calibration.

2.3. Data Sources for Constraining Parameters

Nine different remote sensing products and an analytical framework, from four functionally similar groups,

were tested in this study for their information content to select meaningful model parameters and thus to

constrain the feasible parameter space. Each group provides information about a different component of
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the hydrological system: (1) soil moisture, (2) evaporation, (3) total water storage, and (4) snow accumulation.

A general overview of the used products and the main specifications on, for example, spatial and temporal

resolution can be found in Table 2.

The first group contains soil moisture estimates from four different remote sensing products. One of the soil

moisture products used in this study is derived from the ASCAT on board the Metop satellite, which uses C

band (5.255 GHz) to estimate surface soil moisture. Scatterometer data processed with the algorithm pro-

vided by Wagner et al. (1999) was used in this experiment, representing the Soil Water Index or the relative

soil moisture in the root zone. The second soil moisture product comes from the Land Parameter Retrieval

Model (Owe et al., 2008) with data from the Advanced Microwave Scanning Radiometer - Earth Observing

System (AMSR-E, with C band and X band) as input and represents the top 2–3 cm of soil moisture. The last

soil moisture product explored in this study is obtained from the SMOS (Kerr et al., 2012) mission, also repre-

senting the soil moisture in the upper centimeters of the soil (L band, 1–2 GHz). In addition, the Normalized

Difference Infrared Index (NDII) was calculated based on MODerate Resolution Imaging Spectroradiometer

(MODIS) images, as recent results suggest a link to root zone soil moisture storage (Sriwongsitanon et al.,

2016). Even though most of the products represent only soil moisture in the top soil, the products were

directly compared to the soil moisture states of the models, without adjustments or exclusions of specific

days (e.g., excluding snow days). Therefore, it was assumed that at least a linear relationship exists between

modeled soil moisture state and the observations of the soil moisture products, even though these do not

represent exactly the same soil moisture state as the model. Thus, the squared correlation coefficient was

used as a performance metric for all soil moisture products.

The second group contains evaporation estimates from two remote sensing products and the Budyko frame-

work. Specifically, the daily product of Land Surface Analysis - Satellite Application Facility (LSA-SAF), as

European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), was selected as well

as the MOD16 product from the MODIS (Mu et al., 2011). The MOD16 8-day evaporation product is based

on a Penman-Monteith approach, and the final product consists of soil evaporation, transpiration, and inter-

ception evaporation from the canopy. The LSA-SAF evaporation product uses a similar Penman-Monteith

approach, but the products differ in, among other things, formulations of aerodynamic and stomatal resis-

tances, the (absence of) explicit accounting for interception evaporation, the temporal resolution of the satel-

lite, and the differences in other technical satellite specifications. Besides these remotely sensed daily and

eight-daily products, the analytical Budyko framework (Budyko, 1974) was applied to obtain an additional

long-term estimate of evaporation as model constraint. Also for this group of products, the squared correla-

tion coefficient was used as a performance metric, only for the Budyko framework the relative error was used

as this only comprises a single value instead of a time series. For the MOD16 8-day evaporation product the

comparison was made for the modeled eight-day evaporation as well.

The third group provides estimates of changes in total water storage from one remote sensing product. To do

that, data on gravity anomalies from the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,

2004) were linked to water storage fluctuations. Similar to (Rakovec, Kumar, Attinger, et al., 2016), the

Table 2

Details of the Remote Sensing Products

Product Version Spatial resolution Temporal resolution Reference Model state/flux Performance metric

AMSR-E -LPRM V2 25 × 25 km daily Owe et al. (2008) Soil moisture Squared correlation coefficient

ASCAT -SWI V3 0.1°
o

daily Wagner et al. (1999) Soil moisture Squared correlation coefficient

SMOS V620 ~ 15 km 2–3 days Kerr et al. (2012) Soil moisture Squared correlation coefficient

NDII V6 500 m daily Sriwongsitanon et al. (2016) Soil moisture Squared correlation coefficient

Budyko Budyko (1974) Relative error

LSA-SAF 3 km daily Ghilain et al. (2011) Evaporation Squared correlation coefficient

MOD16 V5 500 m 8-day Mu et al. (2011) Evaporation Squared correlation coefficient

GRACE 1
o

30 days Tapley et al. (2004) Total water storage Squared correlation coefficient

MOD10 V5 500 m daily Hall et al. (2006a) Snow state Squared correlation coefficient

MYD10 V5 500 m daily Hall et al. (2006b) Snow state Squared correlation coefficient

Note. AMSR-E = Advanced Microwave Scanning Radiometer - Earth Observing System; LPRM = Land Parameter Retrieval Model; ASCAT = Advanced
SCATterometer; SWI = Soil Water Index; NDII = Normalized Difference Infrared Index; LSA-SAF = Land Surface Analysis - Satellite Application Facility;
GRACE = Gravity Recovery and Climate Experiment; SMOS = Soil Moisture and Ocean Salinity.
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GRACE data from the three processing centers of Center for Space Research, University of Texas, USA,

Geoforschungs Zentrum Potsdam, Germany, and Jet Propulsion Laboratory, USA, weremerged into one com-

bined product for the analysis. These products were originally corrected for atmospheric pressure and mass

changes (Landerer & Swenson, 2012) and thus represent only total water storage anomalies. The GRACE

water storage anomalies relative to the baseline of 2004–2009 were also corrected to represent the anoma-

lies over the time series under consideration, which differed per study catchment. Even though the resolution

of GRACE is relatively coarse compared to the catchments under consideration, we still hypothesize that this

signal may be of help in relatively homogeneous areas and/or by the seasonality of the signal. The squared

correlation coefficient between modeled total water storage anomalies and GRACE storage anomalies was

used as performance metric again.

The fourth group contains information on snow accumulation and depletion pattern from two remote sen-

sing products. The MODIS Terra Snow Cover (Hall et al., 2006a) and MODIS Aqua Snow Cover (Hall et al.,

2006b) products both provide fractional snow cover on a daily basis and 500-m resolution. This snow cover

is determined by the Normalized Difference Snow Index and relies on the fact that while clouds have large

reflectance in both visible and infrared bands, snow has a larger reflectance only in the visible domain. The

average was taken over all noncloud covered cells over a catchment, but this was only done when the cloud

coverage did not exceed 60% of the catchment, similar to Parajka & Blöschl (2008), in order to determine reli-

able snow coverage values. These catchment-averaged snow coverage values were compared with modeled

snow water equivalents (FLEX, FLEXtopo, and TUW), assuming a linear relation between coverage and snow

water equivalent. Only for HYPE, comparing modeled and observed snow coverage was directly possible due

to the more extensive snow module. The squared correlation coefficient was again computed as

performance metric.

In general, all products were processed in order to be compatible with the model scales, which was in most

cases the catchment scale, as the models were applied in a lumped manner. Thus, the average of the cells

covering the catchment was determined and used in the analysis. Only for FLEXtopo, the products were aver-

aged over a subarea of the catchment, the landscape units, whereas the other models all used catchment-

averaged values. For example, the LSA-SAF evaporation was averaged over the catchment area defined as

plateau landscape, in order to compare with the modeled evaporation from the plateau model structure.

2.4. Identifiability Analysis

An identifiability analysis was carried out in order to assess which products can be related to which para-

meters in a meaningful way. Hence, the results of this analysis will be used to avoid that parameters are con-

strained with products they are insensitive to. It is assured in this way that all results of constraining models

with remotely sensed products can be related to the remotely sensed products itself.

In a first step, random parameter sets were generated for each of the five models by using Latin

Hypercube sampling to achieve a somewhat homogenous exploration of the respective parameter spaces.

The parameters were sampled from uniform prior distributions with parameter ranges set as wide as

possible without becoming physically implausible. FLEX and HYMOD were sampled 80,000 times, whereas

FLEXtopo, HYPE, and TUW were sampled 100,000 times due to the larger number of free calibration para-

meters. In other words, all free calibration parameters were generated simultaneously by Latin Hypercube

sampling. These parameter sets were then used together with the daily input data to generate either

80,000 or 100,000 model realizations per model for each catchment, covering a time period of

approximately 10 years (see Table 1).

Subsequently, it was evaluated how well the modeled state and/or flux variables of each model realization

were able to reproduce the different data from the group of remote sensing products that correspond to that

specific model state or flux. For example, modeled evaporation for each of the 80,000(100,000) model reali-

zations for each catchment was evaluated against the different evaporation estimates provided by the data

from group 2 (see section 2.3). The squared correlation coefficient was used as a performance metric for

model evaluation against each remote sensing product, emphasizing the models’ ability to reproduce the

temporal dynamics of a given variable but ignoring the magnitude of the variable itself. For evaluation

against long-term evaporation from the Budyko curve the relative error was used. See also Table 2 for which

performance metric was used per product.
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Based on these samples, an identifiability analysis was employed similar to Regional Sensitivity Analysis

(Hornberger & Spear, 1980; Wagener & Kollat, 2007), which has in the past been widely used as a measure

of sensitivity (Demaria et al., 2007; McIntyre et al., 2003; Sieber & Uhlenbrook, 2005). In this type of analysis,

the maximum distance between the prior cumulative parameter distribution and the posterior cumulative

distribution serves as an informal indication of sensitivity. Here the posterior parameter distributions were

determined based on a weighting procedure (e.g., Freer et al., 1996):

L2 θð Þ ¼ L θð Þn�L0 θð Þ=C (1)

where L0 is the prior probability density function (�), L2 is the posterior probability density function (�), n is a

weighting factor (set to 10; [�]), C is a normalizing constant (�), the parameter set θ consists of all model

parameters, and L(θ) is an informal likelihood weight that is here the squared correlation coefficient for the

remotely sensed products and the relative error for the Budyko framework.

2.5. Parameter Selection—Constraining Models Using Remote Sensing Data

The identifiability analysis was combined with simple reasoning (e.g., snow performance metrics should

relate to snow parameters) to relate parameters to relevant performance metrics. Thus, the final weighting

was carried out on the basis of one or a combination of m selected performance metrics to model

states/fluxes, which the identifiability analysis suggests to be relevant for the parameter under consideration,

and is hence able to identify the parameter without using observed discharge data. In this way, only sensitive

parameters are constrained, assuring that the final results can be directly attributed in a meaningful way to

the products used for the constraints. The same parameter sets obtained by Latin-Hypercube sampling for

the identifiability analysis were used here. Table 3 gives an overview of the parameters and the remotely

sensed data sources that these parameters were eventually linked to. For example, the new parameter ranges

linked to snow processes were calculated using weights derived from the model’s ability to reproduce the

satellite snow cover data (the snow products, see section 2.3). In the case that multiple products were used

for the evaluation of a model component and the construction of the posterior distributions of the associated

parameters, a combined performance metric was formulated, based on the difference between 1 and the

Euclidean distance (e.g., Fovet et al., 2015) between a vector of the model performances with respect to

the individual products and a vector corresponding to perfect performance with respect to all objective func-

tions (a vector of ones), thus treating the performance metrics equally important (equation (2)). Hereafter,

rescaling was applied (equation (3)) to maintain values between 0 and 1.

Eobj;combined ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Eobj;1
� �2

…þ 1� Eobj;m
� �2

q

(2)

L θð Þ ¼ Eobj;combined;scaled ¼
Eobj;combined � min Eobj;combined

� �

max Eobj;combined

� �

� min Eobj;combined

� � (3)

where Eobj, combined is the combined objective function (or performance metric) usingm remote sensing pro-

ducts for evaluation, Eobj,m is the objective function value for productm, Eobj,combined,scaled is the scaled objec-

tive, and L(θ) is an informal likelihood weight for parameter set θ. The posterior probability density function

L2(θ) was then determined as above (section 2.4) from equation (1).

This procedure was repeated for all possible combinations of remote sensing products from the four groups

(Table 2), starting with a single product and ending with the combined use of all 10 products simultaneously.

This resulted in a total of 1,023 different possible combinations of remote sensing products for the evaluation

of the associated model components.

After weighting, the 25th and 75th quartiles of the posterior parameter distributions were retained as feasible

parameter bounds. This remains a mere subjective choice, but in this way the higher values of the posterior

likelihood are always retained and the new parameter ranges are always determined on a sufficient number

of samples. The alternative of cutting off the distributions at a certain performance level, as for example done

in the GLUE methodology (Beven & Freer, 2001), is equally subjective, with the additional risk of not having

any feasible solutions to determine posteriors. The authors fully acknowledge that in absence of a clear pos-

terior distribution the new bounds may incorrectly consider some solutions unfeasible (i.e., false negatives),
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Table 3

Model Parameters and the Data Sources That Are Related to it for Determining Posterior Parameter Bounds

Source FLEX FLEXtopo HYPE HYMOD TUW

Soil Moisture AMSR-E Mmelt Mmelt Wcfc Ts Csf

Tthresh Tthresh lp Cfmax Ddf

Imax Imax_p mactrinf CFR Tr

Sumax Imax_h Ttpd CWH Ts

Beta Imax_w Ttpi Sm Meltt

Kf Sumax_p Ttmp Beta FC

Ks Sumax_h Cmlt Alfa BETA

D Sumax_w Rrcs2 Rs lprat

macrate Rf K2

cperc

ASCAT Mmelt Mmelt Wcfc Ts Csf

Tthresh Tthresh lp Cfmax Ddf

Imax Imax_p mactrinf CFR Tr

Sumax Imax_h Ttpd CWH Ts

Beta Imax_w Ttpi Sm Meltt

Kf Sumax_p Ttmp Beta FC

Ks Sumax_h Cmlt Alfa BETA

D Sumax_w Rrcs2 Rs lprat

macrate Rf K2

cperc

NDII Mmelt Mmelt Wcfc Ts Csf

Tthresh Tthresh lp Cfmax Ddf

Imax Imax_p mactrinf CFR Tr

Sumax Imax_h Ttpd CWH Ts

Beta Imax_w Ttpi Sm Meltt

Kf Sumax_p Ttmp Beta FC

Ks Sumax_h Cmlt Alfa BETA

D Sumax_w Rrcs2 Rs lprat

macrate Rf K2

cperc

SMOS Mmelt Mmelt Wcfc Ts Csf

Tthresh Tthresh lp Cfmax Ddf

Imax Imax_p mactrinf CFR Tr

Sumax Imax_h Ttpd CWH Ts

Beta Imax_w Ttpi Sm Meltt

Kf Sumax_p Ttmp Beta FC

Ks Sumax_h Cmlt Alfa BETA

D Sumax_w Rrcs2 Rs lprat

macrate Rf K2

cperc

Evaporation Budyko Imax Imax_p Lp Sm FC

Sumax Imax_h Wcfc Beta BETA

Beta Imax_w mactrinf lprat

Sumax_p

Sumax_h

Sumax_w

LSA-SAF Imax Imax_p Lp Sm FC

Sumax Imax_h Wcfc BETA

Beta Imax_w mactrinf lprat

Sumax_p

Sumax_h

Sumax_w

MOD16 Imax Imax_p Lp Sm FC

Sumax Imax_h Wcfc BETA

Beta Imax_w mactrinf lprat

Sumax_p

Sumax_h

Sumax_w

Total water storage GRACE Mmelt Imax_p Lp Ts Csf

Tthresh Imax_h Wcfc Cfmax Ddf
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but therefore, the weighting factor nwas set relatively high (n = 10). In this way, and in combination with the

use of the 25th and 75th quartiles as bounds, considerable discriminative power can be obtained, zooming in

on the solutions that are considered correct. All the possible combinations of products should therefore lead

to a set of model results that are obtained without the use of observed discharged data. The method is thus

used as if there is no discharge data available, and discharge data are not used to reject any model.

2.6. Parameter Selection—Benchmarking Streamflow Performances

All five models for all 27 study catchments were assessed for their performance range on observed stream-

flow data to provide a reference benchmark. Thus, all model realizations were evaluated against streamflow

with a multiobjective strategy based on the Nash-Sutcliffe efficiency (ENS) of flow and the Nash-Sutcliffe effi-

ciency of the logarithm of the flow (ENSlog). The 80,000 (100,000) samples obtained by Latin Hypercube sam-

pling were used here as well. Model runs were now maintained as feasible when both ENS and ENSlog were

higher than 0. This was preferred over calibration with, for example, automated optimization schemes, such

as Shuffled Complex Evolution algorithm (Duan et al., 1992) or Dynamically Dimensioned Search algorithm

(Tolson & Shoemaker, 2007), as sets of multiple feasible rather than one optimal parameter combination were

sought. In this way, the benchmarking strategy on streamflow and constraining on remotely sensed data

both generate empirical distributions of performances, which makes a fair comparison possible. Also here,

the two objective functions were combined into a vector and the difference between 1 and the Euclidean

distance to perfect performance for this vector is used (equation (4)):

Eobj;combined;streamflow ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ENSð Þ2 þ 1� ENSlog
� �2

q

(4)

where Eobj,combined, streamflow is the combined objective for streamflow.

2.7. The Added Value of Remote Sensing Data to Reproduce Streamflow

The added value of the individual remote sensing products was assessed by computing the Kolmogorov-

Smirnoff test statistic for improvement when a specific data source is included (see section 2.3) to constrain

the feasible parameter space of a given model, compared to not including this specific data source. High

values of improvement correspond thus to high, positive values of the KS statistic. In addition, improvement

was considered here relative to Eobj, combined as defined in equation (5).

Table 3 (continued)

Source FLEX FLEXtopo HYPE HYMOD TUW

Imax Imax_w Mactrinf Alfa Tr

Sumax Sumax_p Ttpd Rs Ts

Beta Sumax_h Ttpi Rf Meltt

Kf Sumax_w Ttmp FC

Ks Ks Cmlt BETA

D lprat

Cperc

K2

Snow MOD10 Mmelt Mmelt Ttpd Ts Csf

Tthresh Tthresh Ttpi Cfmax Ddf

Ttmp CFR Tr

Cmlt CWH Ts

Meltt

MYD10 Mmelt Mmelt Ttpd Ts Csf

Tthresh Tthresh Ttpi Cfmax Ddf

Ttmp CFR Tr

Cmlt CWH Ts

Meltt

Note. See supporting information section S1 for a description of the models and the model parameters. AMSR-
E = Advanced Microwave Scanning Radiometer - Earth Observing System;ASCAT = Advanced SCATterometer;
NDII = Normalized Difference Infrared Index; LSA-SAF = Land Surface Analysis - Satellite Application Facility;
GRACE = Gravity Recovery and Climate Experiment; SMOS = Soil Moisture and Ocean Salinity.
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To do so, all 1,023 possible combinations of the 1 to 10 potential data sources from the four groups specified

in section 2.3 were separated in combinations with and without a specific product, leading to 512 combina-

tions with and 511 combinations without this product. Each combination has its own set of feasible solutions

(as derived by the posterior parameter distributions) with the associated performance measures (such as ENS

or ENSlog). The overall improvement with respect to a performance measure of including one product is then

estimated bymerging the distribution of performancemeasures for each combinationwith a specific product

with the distributions of performance measures of all other combinations with this product into a combined

empirical distribution of performances when using this product (Figure 2a). For example, if combinations A, B,

and C each included the remote sensing product GRACE, with 100, 200, 250 feasible solutions, respectively,

the final set contained 550 feasible solutions (100 + 200 + 250). Following the same approach for all combi-

nations without this product, a second combined empirical distribution of performances is established.

The Kolmogorov-Smirnoff two-sample statistic (D+) between the two empirical distributions can now be cal-

culated and tested for significance. Thus, similar to the above, but in a more formal way, for each combination

of satellite products cj we have now selected a set of feasible parameters:

Gcj (5)

We define the union of all sets of feasible parameters selected, when using a given satellite product p to

constrain:

Gp ¼ ∪
1023
j¼1;p∈cj

Gcj (6)

and the union of all sets of parameters selected when not using a given satellite product to constrain the

parameter set:

Bp ¼ ∪
1023
j¼1;p∉cj

Gcj (7)

We then apply Eobj,combined to both sets of parameters, this results in two sets of scores Swith and Swithout. For

both sets we determine the frequency distribution. Next we test the following null and alternative

hypothesis:

H0 Swith comes from the same distribution as Swithout.

H1 Swith is stochastically larger than Swithout.

2.8. The Added Value of Remote Sensing Data to Reproduce Hydrological Signatures

To assess the potential of using different remote sensing products to improve the representation of hydro-

logical signatures compared to those obtained in an unconstrained situation, the feasible solutions of the

parameter selection procedure as described in section 2.4 were evaluated for a set of 27 hydrological signa-

tures (Table 4), as previously defined by, among others, Shamir et al. (2005), Yilmaz et al. (2008), Euser et al.

(2013), Pechlivanidis and Arheimer (2015), and Kuentz et al. (2017). The Kolmogorov-Smirnoff two-sample

D+ statistic in the representation of hydrological signatures when including a specific remote sensing product

was determined in comparison with a reference situation, which in this case corresponds to the distribution

of signatures obtained from the unconstrained models (Figure 2b). We apply the performance metrics for a

specific signature in the constrained case to get a set of values Sconstrained and in the unconstrained case to

get a set of values Sunconstrained. For both sets we determine the frequency distribution. Next, we test the

following null and alternative hypothesis:

H0 Sconstrained and Sunconstrained follow the same frequency distribution.

H1 Sconstrained and Sunconstrained have different frequency distributions and Sconstrained scores are stochastically

larger than Sunconstrained scores.

The ability of the models to reproduce the signatures was determined by the Nash-Sutcliffe efficiency (ENS)

between observed and modeled signatures in case of (time) series, only for single-valued signatures the
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Figure 2. Schematized representation of (a) the procedure to calculate the Kolmogorov-Smirnoff test statistic D
+
for each product by adding up all feasible solutions

in Step 1 with a certain product, as shown for examples A (100 feasible solutions), B (200), and C (250), which leads to a marginal distribution in Step 2 of 550

solutions (100 + 200 + 250) and without a certain product, as shown for the cases D, E, F (120 + 150 + 200 = 470 solutions), which can be compared in Step 3 to

calculate the test statistic D
+
between the empirical distribution curves. In Figure 2b the signature analysis is displayed, with in Step 1 the frequency distributions for

the performance metrics for a specific signature in the constrained case (red) and unconstrained case (blue), Step 2 the KS statistics derived from these

distributions for each signature and each catchment, and Step 3 the resulting cumulative occurrences for these statistics.
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relative error was used (ERE). The Kolmorov-Smirnoff statistic D+ with respect to the performance metrics of

the signatures (the Nash-Sutcliffe efficiency and relative error) can be calculated for each signature and

each catchment.

The Kolmogorov-Smirnoff statistic D+ is calculated for all 729 cases (27 catchments with 27 signatures

each) for each combination of data sources (i.e., a certain set of constraints), with the improvement

relative to the unconstrained reference model. The relative occurrences of certain, significant, KS statis-

tics can be inspected by means of cumulative frequency plots. See also Figure 2b for a stepwise clar-

ification of this approach. As the different combinations of products lead to a varying degree of

signature reproduction, different cumulative frequency curves will emerge. Therefore, improvements

can be identified by shifts in the cumulative frequency plots toward higher, positive values of the KS

statistic D+.

3. Results and Discussion

3.1. Linking Parameters and Data Sources

In a first step, all parameters had to be related to relevant data sources. This was done based on the sensitivity

for each parameter to a certain product (Figure 3), in terms of the maximum vertical distance, averaged over

the catchments, between the prior cumulative distribution and the posterior cumulative distribution

(Kolmogorov-Smirnoff statistic; i.e., the higher the distance, the more sensitive a parameter is to the informa-

tion provided by a given product). For FLEX (Figure 3a), it can be noted that the two snow parameters (Mmelt

and Tthresh) react to the two snow products, as expected. More interestingly, also the soil moisture products

and GRACE influence the snow parameters, which can be explained by the role of snowmelt filling up the

unsaturated storage and thus generating runoff. A similar argumentation holds for the parameter of maxi-

mum interception capacity Imax, which is, in addition to solely the evaporation products, also affected by

the soil moisture products. The soil moisture parameters Sumax and Beta exhibit a high sensitivity to the

Table 4

Hydrological Signatures Applied in the Signature Analysis

Signature Description Reference

SQMA Mean annual runoff

SAC One day autocorrelation coefficient Montanari and Toth (2007)

SAC,summer One day autocorrelation the summer period Euser et al. (2013)

SAC,winter One day autocorrelation the winter period Euser et al. (2013)

SRLD Rising limb density Shamir et al. (2005)

SDLD Declining limb density Shamir et al. (2005)

SQ5 Flow exceeded in 5% of the time Jothityangkoon et al. (2001)

SQ50 Flow exceeded in 50% of the time Jothityangkoon et al. (2001)

SQ95 Flow exceeded in 95% of the time Jothityangkoon et al. (2001)

SQ5,summer Flow exceeded in 5% of the summer time Yilmaz et al. (2008)

SQ50,summer Flow exceeded in 50% of the summer time Yilmaz et al. (2008)

SQ95,summer Flow exceeded in 95% of the summer time Yilmaz et al. (2008)

SQ5,winter Flow exceeded in 5% of the winter time Yilmaz et al. (2008)

SQ50,winter Flow exceeded in 50% of the winter time Yilmaz et al. (2008)

SQ95,winter Flow exceeded in 95% of the winter time Yilmaz et al. (2008)

SPeaks Peak distribution Euser et al. (2013)

SPeaks,summer Peak distribution summer period Euser et al. (2013)

SPeaks,winter Peak distribution winter period Euser et al. (2013)

SQpeak,10 Flow exceeded in 10% of the peaks

SQpeak,50 Flow exceeded in 50% of the peaks

SQsummer,peak,10 Flow exceeded in 10% of the summer peaks

SQsummer,peak,50 Flow exceeded in 10% of the summer peaks

SQwinter,peak,10 Flow exceeded in 10% of the winter peaks

SQwinter,peak,50 Flow exceeded in 50% of the winter peaks

SSFDC Slope flow duration curve Yadav et al. (2007)

SLFR Low flow ratio (Q90/Q50)

SFDC Flow duration curve Westerberg et al. (2011)
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Figure 3. Sensitivity in average vertical distance between the empirical distribution curves of posterior and prior (uniform)

parameter distributions for (a) FLEX, (b) FLEXtopo, (c) HYMOD, (d) HYPE, and (e) TUW. Different colors indicate different

products, with for FLEXtopo a distinction per landscape class with plateau, wetland (dashed), and hillslope (dotted).
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group of soil moisture products and also to the evaporation products and GRACE. The parameters Kf, Ks, and

D are to some extent linked to GRACE and also to the soil moisture products. Thus, each parameter of FLEX

can be related to certain products and can hence be constrained.

The sensitivity plot for FLEXtopo (Figure 3b) shows similar behavior, as similar model parameters are used as

in FLEX, but now only applied in different landscape classes. Even though no complete overlap could be

found, corresponding parameters in FLEXtopo were constrained with the same products as for FLEX to main-

tain consistency. However, as the number of parameters is higher, while the number of sampled random

parameter sets is just slightly higher, the analysis of this model is based on a lower sampling density. Thus,

to avoid the situation that no solutions remain due to too many parameter constraints, parameters that

did not show a consistent sensitivity for a specific group of products were mainly left unconstrained, such

as Pmax, Cmax, Kf, Beta, and D for the three landscape classes (Figure 3b).

The relations between products and parameters for HYMOD (Figure 3c) show a rather consistent pattern

compared to FLEX and FLEXtopo. Also in this case, the snow parameters (Ts, CFMAX, CFR, CWH) are not only

sensitive to the snow products but also the soil moisture products. For Ts and CFMAX also GRACE has an influ-

ence, which happened as well for the snow parameters of FLEX. CFR and CWH do not show this, indicating

that this refreezing factor (CFR) and water holding capacity of snow (CWH) have, apparently, a minor influ-

ence in the storage anomalies. The maximum soil moisture Sm can be constrained with the soil moisture pro-

ducts, GRACE, and the evaporation products. For the second soil moisture parameter beta, the soil moisture

products matter, but especially a high sensitivity to the Budyko framework can be observed. The last para-

meters of Rs, Rf, and alfa (relating to the reservoir coefficients and runoff generation) can be linked to the soil

moisture products as well as GRACE.

It can be noted for HYPE (Figure 3d) that the general sensitivity is lower compared to the other models.

Nevertheless, the snow parameters (ttpd, ttpi, ttmp, and cmlt) can be constrained in a similar fashion as for

FLEX and HYMOD, thus with the snow products, soil moisture products, and GRACE. In addition, rrcs2 and

macrate, both related to groundwater dynamics, show considerable sensitivity to GRACE and the soil moist-

ure products. The parameters controlling soil moisture and, thus transpiration lp, wcfc, andmactrinf, relate to

GRACE, the soil moisture products, and the evaporation products. The other parameters are left uncon-

strained as the sensitivities here are generally low or do not show a clear sensitivity to one of the groups

of products.

The snow parameters csf, ddf, tr, ts, andmeltt of the TUW model (Figure 3e) can also be constrained with the

snow products, GRACE, and the soil moisture products. The soil moisture parameters of lprat, FC, and BETA

show a high sensitivity to the soil moisture products, and also again GRACE and the evaporation products.

The groundwater parameters k2 and cperc relate to GRACE and the soil moisture products, and the remainder

of the parameters is left unconstrained as no clear preference for certain groups of products can be identified.

3.2. Benchmarking Streamflow Performances Versus Constrained Performances

In a next step, the range of performances of the fivemodels when constrained with all different combinations

of data sources (section 2.4) is compared to the performance range of the benchmark solutions, that is, the

set of solutions with ENS and ENSlog > 0 (section 2.5). The models provide on average similar model perfor-

mances, but different patterns emerge for the different catchments and models when constrained with

the different data sources as summarized in Figure 4. Here the empirical cumulative distribution curves for

Nash-Sutcliffe efficiencies of all parameter sets for all catchments retained as feasible are shown for the

benchmarking situation, as well as for constraining the models with all 10 products and the

unconstrained situation.

It can be noted that for FLEX (Figure 4a) many of the poorly performing solutions with very low Nash-Sutcliffe

efficiencies of the unconstrained case are identified and discarded when constraining the model on 10

remote sensing products. In fact, the distribution of Nash-Sutcliffe efficiencies of the respective solutions

retained as feasible remains similar for both, the benchmark and constraining on remotely sensed products,

and that the higher values are maintained when constrained on the 10 products. Compared to the uncon-

strained situation, the remote sensed products provide enough information to shift the curve toward the

benchmarking situation. In contrast, for FLEXtopo (Figure 4b) and HYMOD (Figure 4c), the curve after

constraining with the products reaches lower maximum values compared to the benchmarking situation
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(i.e., top of the curve remains left of the curve obtained by the benchmarking situation). Hence, several

solutions that lead to high Nash-Sutcliffe values are discarded when constrained on the remotely sensed

products, which indicates that the constraints are too restrictive and consider several solutions incorrectly

as unfeasible. On the other hand, it may also point toward parameterizations that lead to high objective

function values that are not hydrologically consistent or even deceptive (e.g., Andréassian et al., 2012;

Kirchner, 2006). Nevertheless, more importantly, it can be noted in Figure 4c that the constraints help in

filtering out the worst solutions for HYMOD, as can be seen when comparing the unconstrained curve with

the curve obtained by the constrained situation. However, many poor solutions are maintained, with even

Nash-Sutcliffe values less than zero. These solutions would definitely be discarded in a more traditional

calibration, as this means that the model performs worse than the long-term mean of the observations. In

absence of knowledge about these long-term statistics, being an exercise in predicting ungauged basins,

Figure 4. Empirical cumulative distribution curves of Nash-Sutcliffe efficiencies for (a) FLEX, (b) FLEXtopo, (c) HYMOD,

(d) HYPE, and (e) TUW for all catchments in the benchmarking situation (black), constraining on remotely sensed data (red)

and the unconstrained situation (blue).
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the solutions are however maintained here as a (unfortunate) result. The

constraints are therefore not restrictive enough to zoom in on the high

performances, but the constraints at least help in substantially narrowing

the parameter search space by removing the very worst solutions. For

HYPE and TUW, it can be seen in Figure 4 that the higher values are still

maintained, but that, at the same time, relatively many solutions are main-

tained as feasible when constrained on the 10 products. This is also

reflected by the close resemblance between the unconstrained and con-

strained curves. It can therefore be argued here that the constraints do

not have enough discriminative power to closely zoom in on the high

objective function values, but at least the solution space is reduced and

does still contain the high Nash-Sutcliffe efficiencies. This lack of constrain-

ing power can also be related to the relatively large number of parameters

for these two models of 22 (HYPE) and 15 (TUW).

The models show, however, a strong variable pattern in model objective

functions over the full range of combinations used for constraining, as

shown for selected catchments and models in Figure 5 and the support-

ing information section S2. Here the performance ranges of the bench-

marking solutions for streamflow are shown for the 25th and 75th

quartile (blue) and 5th and 95th quartile (i.e., a wide boxplot). Similarly,

boxplots for each combination of constraints are shown in red, ranging

from unconstrained (left) to using all 10 products for the constraints

(right). In general, the model performances increase with an increasing

number of data sources used for constraining, as expected, but in some

occasions no feasible solutions remain (i.e., zero solutions are left after

constraining). It can however still be noted in Figure 5 that constrained models still not reach the highest

performances in the benchmarking situation.

In general, some model applications constrained exclusively by remote sensing data exhibit a similar

range of model performances as the model performance ranges for the benchmark, but often the con-

strained models are still outperformed by the benchmarking situation. In several cases an equivalent level

of model performance was achieved after adding four data sources in the parameter selection procedure.

As an example, in Figure 6 the maximum distance between empirical cumulative distribution curves of

the benchmark and constrained TUW model (the Kolmogorov-Smirnoff statistic) is displayed for all com-

binations of products and catchments, starting on top with a single product used for constraining (n = 1)

toward using all 10 products (n = 10) at the bottom of the figure, for each catchment (x axes). In this

figure it can be noted that groups of blue boxes and red boxes exist, pointing at groups with either a

positive or negative test statistic D+ between the benchmark and constrained empirical distributions.

Similarly, in Figure 5, zigzag patterns of improvements and deteriorations can be noticed after constrain-

ing with a larger set of products for some catchments (moving toward the right on the x axes). This is an

indication that families of combinations that either include or exclude certain (combinations of) products

can lead to major improvements or strong decreases in performances. It can be clearly observed that the

values vary and are grouped (Figure 6), pointing at specific combinations of products that constrain in

such a way that the new performance distribution comes close to the benchmark distribution or even

improves. However, it can also be noted in Figure 6 that many cases exist where no improvements

are observed.

The TUWmodel (supporting information Figures S24–S26 and Figure 6a) shows also a clear pattern of strong

and weak combinations of remote sensing products, but the variability between the (families of) combina-

tions is generally not very high. The relative importance of each parameter, and thereby each data source

connected to it, is lower as TUW has a relatively elevated number of parameters (i.e., 15). Thus, leaving a single

parameter of all the TUW parameters unconstrained has less consequences compared to constraining a

single parameter from the eight parameters of FLEX. Nevertheless, the same products (GRACE, AMSR-E,

and ASCAT) strongly improve the parameterizations of TUW, similar to FLEX, also for the same catchments

(such as catchments 8, 20, and 24).

Figure 5. Comparison of Nash-Sutcliffe performances for the benchmark

situation (25th and 75th quartile correspond to the blue band; dashed gray

lines represent the 5th and 95th quantiles) and the constrained model

applications (red boxplot for each combination of constraints) for (a) FLEX

and the Broye catchment, and (b) TUW and the Wuemme catchment. The

wider red box plots on the left (n = 0) and right (n = 10) represent the

unconstrained and fully constrained situation respectively. The maximum

Nash-Sutcliffe performance in the benchmark situation is indicated with the

black, dashed line.
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For FLEX (supporting information Figures S9–S11 and Figure 6b), only in 4 of the 27 catchments (catchments

1, 11, 12, and 18) the constraints lead to performance distributions that are substantially lower than the

benchmark results, while the other catchments always approach the benchmark model results more closely

or even show higher performances (catchments 5, 13, 14, and 24). This variability between strong and weak

parameterizations can also be clearly seen in Figure 6b, which is now bluer, indicating more strong parame-

terizations and improvements. In comparison with the other models, FLEX shows a stronger reduction of the

parameter search space, when constrained with the remotely sensed products (Figures 4 and 6b). This is

probably caused by the relatively low number of parameters, in combination with a rather simple and gen-

erally applicable model structure. Inspection of the combinations reveals that GRACE data are an important

contributor to model improvements particularly for a large number of catchment basins, except for the

Gadera (catchment 1), but especially for catchments 7, 14, 17, 19, and 27. Similarly, for the Treene, Modau,

and Wuemme (catchments 8, 20, and 24) the AMSR-E product is the common factor in the more successful

combinations. The Treene catchment and, to a lesser extent, also the Wuemme are peaty lowland catch-

ments, with very moist soils and shallow groundwater tables, which match well with the information derived

from AMSR-E. This seems, however, in contrast to statements from the AMSR-E developers that pixels with a

large proportion of open water introduce errors (Owe et al., 2008) or other researchers that suggest that peat-

land creates errors in soil moisture products (Bartalis et al., 2007). On the other hand, Owe et al. (2008) men-

tion steep mountainous areas as source for error, which these catchments are certainly not. The snow

products are included in the more successful combinations for Vils, Grossarler, and Große Mühl (catchments

4–6), which are also the more snow-dominated catchments. The evaporation products of MOD16 and LSA-

Figure 6. Distance between the benchmark and constrained empirical cumulative distributions of the Euclidean distance

between Nash-Sutcliffe of the flows and log of the flows (i.e., Kolmogorov-Smirnoff statistic), for each possible

combination from n = 1 to n = 9 included products, for (a) the TUW model and (b) the FLEX model. Blue values indicate a

constrained distribution with higher performances than in the benchmark situation; red indicates a benchmark

distribution with higher performances.
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SAF do not show a clear pattern when included or excluded in the parameter selection procedure, pointing at

a relatively minor role in determining the performances with regard to streamflow, reflecting results of Oudin

et al. (2004). In addition, the number of parameters concerning evaporation is generally lower, also reducing

the importance of these products for constraining.

The results of the FLEXtopo model (supporting information Figure S12–S15) show in general similar patterns

as for FLEX. However, it can be noted that more combinations of constraints also lead to no remaining fea-

sible solutions at all. The problem here is mostly linked to the larger number of free parameters (24) and

the resulting undersampled parameter space compared to FLEX. In addition, a similar reasoning can bemade

for HYMOD (supplementary material Figures S16–S19), but here this is merely caused by the relatively wide

prior parameter ranges used for HYMOD, leading to only a relatively small number of solutions with high per-

formances that the constraints cannot easily filter out. These ranges were initially set wide on purpose to

assess the power of the constraints, but it largely remains a challenge to obtain similar performances as for

the benchmark model, when set too wide. Thus, similar performances as for the benchmark situation are

eventually only achieved for the Tanaro, Fyllean, and Deveron (catchments 2, 18, and 25). The variability

between the different combinations of constraints is also large in the case of HYMOD, pointing to an extre-

mely high added value of a certain (family of) constraints, which are combinations with the

Budyko framework.

Similarly, HYPE (supporting information Figures S20–S23) has somemore difficulties in order to obtain similar

performances as for the benchmark situation. Even though the benchmarking performance ranges are rea-

sonable, the absolute number of feasible solutions is relatively low. Therefore, the constraints from the pro-

ducts need considerably more restrictive power to filter all solutions and to converge to the same

performance level as the benchmark situation. This relates also to the relatively large number of free para-

meters and thus a larger a priori search space. In other words, too many poor solutions are maintained when

the model is constrained on the remote sensing data sources.

3.3. The Added Value of Specific Remote Sensing Data to Reproduce Streamflow

Figure 7 compares the overall added value of each individual remote sensing product to generate mean-

ingful posterior distributions and thus to provide efficient and effective parameter constraints. This was

done as described in section 2.6 by assessing the Kolmogorov-Smirnoff test statistic D+ between the

representation of streamflow when including a specific remote sensing data source for constraining a

model compared to not including it. Figure 8 therefore reports the p-values obtained by this test.

Additionally, Figures S6–S8 also show the performances in different ways. In Figure S6 and S7 the perfor-

mances are ordered according to different catchment characteristics, and Figure S7 shows here the

deseasonalized performances. In Figure S8 the performances of the remotely sensed products are plotted

against the performances for streamflow.

For example, in Figure 7a it can be noted that strong improvements are obtained for most data sources for

FLEX. Besides, most of the results are significant, as shown by the low p-values in Figure 8a. Only a few cases

exist where one of the data sources provides a negative KS statistic, which suggests that constraining on any

single remote sensing data source has already considerable constraining power in a wide range of cases. This

is for example true for GRACE, in particular when applied with FLEX, where high KS statistics can be observed

(see also section 3.2). This is similarly illustrated for the hydrograph of the Glane (catchment 13) in Figure 9,

where especially in combinations with nine products GRACE has the potential to move the lower bound of

the uncertainty interval of the modeled hydrograph toward the observations, in particular for the low flows.

Further, it can be noted that during the summer period the final set of constraints provides a much narrower

uncertainty bound than the benchmark results (Figure 9c). This may seem counterintuitive at first, but con-

straining on nine products is much more restrictive compared to two objective functions in the benchmark-

ing strategy. In addition, in the benchmarking situation relatively many solutions are kept as feasible, as all

solutions with ENS and ENSlog higher than zero are maintained. Hence, the envelopes here represent generally

also the number of solutions that are kept as feasible. Nevertheless, several previous studies similarly sug-

gested that GRACE has a high potential to improve hydrological simulations (Mulder et al., 2015; Rakovec,

Kumar, Attinger, et al., 2016), but this was thought to be true mostly for larger catchments than those under

consideration here. In particular, the Broye and Dalsaelve (catchments 7 and 17) show a strong improvement

when constraining FLEX with GRACE. For the Broye this is likely to be linked to the adjacent Lake Geneva,
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Figure 7. Kolmogorov-Smirnoff statistic (D
+
) for including a specific product in the set of products used for constraining compared to not including this product, with

regard to the Euclidean distance between Nash-Sutcliffe of flows and logarithm of the flows, shown for (a) FLEX, (b) FLEXtopo, (c) HYMOD, (d) HYPE, and

(e) TUW. High values of D
+
plot in increasingly dark shades of blue, while shades of red indicate negative D

+
. The curves represent the empirical cumulative dis-

tribution curves of all KS statistics for all catchments.
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Figure 8. P-values for including a specific product in the set of products used for constraining compared to not including this product, with regard to 1 minus the

Euclidean distance between Nash-Sutcliffe of flows and logarithm of the flows, shown for (a) FLEX, (b) FLEXtopo, (c) HYMOD, (d) HYPE, and (e) TUW. High p-values plot

in increasingly dark shades of blue, toward red, values higher than 0.05 plot as red too. AMSR-E = Advanced Microwave Scanning Radiometer - Earth

Observing System; ASCAT = Advanced SCATterometer; NDII = Normalized Difference Infrared Index; LSA-SAF = Land Surface Analysis - Satellite Application Facility;

GRACE = Gravity Recovery and Climate Experiment; SMOS = Soil Moisture and Ocean Salinity.
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which may influence the groundwater tables in the surrounding catch-

ments, leading to similar water storage anomalies of all catchments within

the GRACE cells. The larger catchments, such as the Leyre (10; 1587 km2) or

Hunte (23; 1409 km2) still show relatively high values for the KS statistic D+,

which is related to a signal of water storage anomalies much closer to the

GRACE signal. Yet, the KS statistics D+ are high for most other catchments

as well, which also includes catchments with areas of less than 100 km2

(e.g., catchment 20). In addition to GRACE, the soil moisture products of

AMSR-E and ASCAT show the strongest signal of improvement, whereas

SMOS has a slightly lower added value. This is in agreement with the find-

ings of Wanders et al. (2014), who also applied AMSR-E, ASCAT, and SMOS

in a hydrological model and found that soil moisture improved the stron-

gest for AMSR-E and ASCAT. Nevertheless, they also found that AMSR-E

and ASCAT work best in areas with a pronounced relief, whereas the high-

est KS values are, in our study, obtained for both catchments with low- and

high-elevation differences. The relatively white colors for Budyko, MOD16

and LSA-SAF in Figure 7, corresponding to a relatively low difference

between the two empirical distributions, indicate that these data sources

do not add a lot of constraining power and also do not have adverse

effects when included. These data sources are, apparently, not very impor-

tant with respect to the streamflow objectives considered here. In addi-

tion, it can also be noted in Figure 8 that the results for LSA-SAF are

often not significant, showing that including the product does not change

the posterior distribution of performances. However, in warmer and more

arid climates outside Europe, these products may have significantly more

value. The snow products show, as expected, strong improvements for

Vils, Grossarler, and Große Mühl (catchments 4–6), which are more snow-

dominated catchments.

FLEXtopo (Figure 7b) shows a similar pattern as for FLEX, as it can also be

observed that LSA-SAF evaporation has no significant influence

(Figure 8b). This is in line with Figure S6 in the supporting information,

where it can be noted that FLEXtopo has difficulties to achieve high corre-

lations between the LSA-SAF evaporation and modeled evaporation,

therefore also leading to rather poor posterior parameter ranges. It is also

interesting to note that, in Figure 8b, the snow products only produce sig-

nificant results in the more snow-dominated catchments, whereas for

FLEX, even though with low values of the KS statistics, the results are

still significant.

Unlike the results for FLEX and FLEXtopo, the Budyko framework has a big,

significant influence on the results for HYMOD (Figures 7c and 8c). Here

the high values for the KS statistics D+ show the importance of the

Budyko framework for HYMOD, whereas FLEX and FLEXtopo (and also

HYPE and TUW) show an almost white column for Budyko. This indicates

that the model has difficulties in reproducing the long-term flux

partitioning into streamflow and evaporative fluxes, which can also be

seen from Figure S6 in the supporting information. Nevertheless, the

Budyko framework was only connected to two parameters (Sm and Beta) of HYMOD, and therefore, leaving

these parameters unconstrained leads to many poor solutions. Based on these results, it can be argued that

these parameters must be constrained in all cases. However, the Budyko framework helped here, similar as in

the studies of Li et al. (2014) and Gentine et al. (2012), to identify feasible sets of parameters. Another clear

distinction with the other models can be found in the KS values obtained for the two snow products

(MOD10 andMYD10). For all other models at least moderate values are observed, in particular for catchments

4–7, but for HYMOD the differences between the two empirical distributions remain very low or are not even

Figure 9. Feasible flow ranges for FLEX for a selected time period of catch-

ment 13 obtained with combinations of nine remote sensing products (a)

with GRACE and (b) without GRACE (c) the benchmarking situation. Colored

envelopes in Figures 9a and 9b represent the number of products used in

deriving the posterior parameter distributions and flow ranges, observed

discharge is shown in blue and, in Figure 9c, discharge in the benchmark

situation in red. GRACE = Gravity Recovery and Climate Experiment.
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significant (catchment 5 and 6, Figure 8c). This can also be noted from the hydrographs in Figure 10, where

for FLEX some snow peaks are improved when constraining the snow parameters, for HYMOD the small snow

peaks in January and February disappear, and the large snow peak starting in March remains too high.

Similar to FLEX and FLEXtopo, HYPE (Figure 7d) benefits from including ASCAT or AMSR-E, even though the

absolute level of improvements remains quite low. NDII shows even lower values for all catchments. It is also

interesting to note that the snow products have a similar low range in KS statistics for the Vils and Grossarler

catchment (catchments 4 and 5) as for HYMOD, whereas FLEX, FLEXtopo, and TUW have more distinct differ-

ence between the benchmark and constrained model for applying the snow products in these catchments.

These two catchments have the highest number of possible snow days (29.8% and 28.7%), and one would

expect high-added value for the snow products here for all models, also based on previous work (Parajka

& Blöschl, 2008). Figure S6 also shows that there are no distinct differences between the modeled and

observed snow signals between the models and, thus, the low KS values, with regard to streamflow, very

likely point toward other model structural deficiencies in HYMOD and HYPE. In other words, the snowmelt

may still be better represented when the snow parameters are constrained with the snow products, but

how snowmelt water is then routed through the rest of the system may not be adequately represented.

For TUW, the observed patterns in Figure 7e are again similar to the patterns for FLEX and FLEXtopo, but with

less distinct differences between the different data sources. ASCAT also shows a high-added value for most

catchments, and AMSR-E to a lesser degree. The evaporation products of LSA-SAF and MOD16 have again

rather low values for the full range of catchments and do not add significant information (Figure 8e). At

the same time, Budyko helps a lot, pointing also here at difficulties of the model to reproduce long-

term behavior.

3.4. Added Value of Remote Sensing Data for Hydrological Signatures

Figure 11 summarizes all empirical cumulative distribution curves obtained from the combined significant KS

statistics D+ of all tested hydrological signatures for all combinations of products, relative to the uncon-

strained models. It can be observed that all models experience, on average, a shift toward higher values of

the test statistic D+ (i.e., to the right), when more products are included, also pointing toward improved

model internal dynamics.

For FLEX and FLEXtopo (Figures 11a and 11b) the results suggest that a strong reduction in the search space

can, on average, be achieved by including more remote sensing products compared to the unconstrained

situation. This can be seen by the large shifts toward higher values between the envelopes of one product

(gray) and more products (dark red colors). The final set of constraints, with all products included (red in

Figure 11), is for FLEX close to containing the largest KS distances from the unconstrained situation but appar-

ently not the set of constraints with the largest KS statistics D+. Similarly, FLEXtopo also has large values for

the test statistic for the final set of constraints, but this curve (red line) is, also here, not the curve with the

biggest difference with the unconstrained case. This indicates that at least one of the products is not adding

more value and actually reduces the models ability to reproduce the set of hydrological signatures.

Inspection of the individual curves for FLEX shows that the curve, for nine products included, with the largest

KS statistics D+ is the curve without NDII. In Figure 7, this can also be observed in some cases, but the negative

influence becomes much more apparent when evaluating a set of signatures. The curve with the lowest

values for the KS statistic D+ for nine products is however the curve without GRACE, pointing also at the

importance of GRACE for reproducing the signatures. The additional gains by including GRACE are also in

agreement with the findings of Rakovec, Kumar, Attinger, et al. (2016), who found that evaporation estimates

largely improved.

For HYMOD (Figure 11c), the solutions obtained from the highest number of remote sensing products used to

constrain (n = 9) are not the curves with the highest values for the KS statistics relative to the unconstrained

solutions. The curve most toward high KS statistics D+ when one data source is included (gray) is in this case

Budyko, also in agreement with the previous findings for the objective function values. Most of the other

curves for the individual products plot around a values of 0, indicating that it does not significantly influence

the model results if this data source is included or not. After including Budyko in the combinations, these

curves start to shift to the right, eventually leading to curves that end up with strong improvements due

to including the Budyko framework in the set of constraints.
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The curves for HYPE (Figure 11d) are different compared to the curves of FLEX and FLEXtopo, as the

envelopes of the curves resulting from the use of nine products are much narrower. Thus, the same num-

ber of products is much more restrictive for HYPE, leading to reduced uncertainty intervals. Even though

the final set of constraints is not the curve with the highest values for the KS statistics, the curves are

rather close to each other. Thus, excluding a certain product for the set used for constraining does not

make a big difference, pointing at the combined strength of the other remaining nine products.

Also for TUW, the curves of nine products are relatively close to each other. In addition, the highest values for

the KS statistics, relative to the unconstrained situation, are obtained when only a single product is used.

Hence, when combinations are made, some constraints are relaxed and corrected by including other data

sources, shifting the curves toward higher KS statistics D+, other constraints become less effective, and shift-

ing the curves toward lower KS statistics. In the end, the envelopes of the higher number of products are con-

tained within the envelopes of the single products (gray), indicating that still all data sources helped to

improve the representation of catchment signatures compared to the unconstrained situation. This points

at the combined strength of the products, correcting too restrictive constraints and improving the signature

representation together.

Figure 10. Feasible flow ranges for a selected time period of the Vils catchment (catchment 4) obtained with combinations

of remote sensing products of (a) with MOD10 and FLEX, (b) with MOD10 and HYMOD, (c) without MOD10 and FLEX,

(d)withoutMOD10 and HYMOD, (e) FLEX in the benchmark situation, and (f) HYMOD in the benchmark situation. Observed

discharge is shown in blue, and the colored envelopes in Figures 10a–10d represent the feasible ranges with nine

products used in deriving the posterior parameter distributions and, in Figures 10e and 10f, the benchmark situation.
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Figure 11. Envelopes of all empirical cumulative distribution curves for all significant KS statistics D
+
for all catchment signatures (each catchment, each signature)

for the different combinations of constraints (i.e., remote sensing products) compared to the unconstrained model: (a) FLEX, (b) FLEXtopo, (c) HYMOD, (d) HYPE,

and (e) TUW. The different colors represent the different number of remote sensing products used to constraining the models.
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3.5. Limitations and Outlook

The presented research focused on applying many combinations of additional data sources to derive new

parameter ranges and to constrain the feasible parameter space for five different models, where other

studies used multiple additional data sources to either evaluate one specific model for at most three pro-

ducts (e.g., Rakovec, Kumar, Mai, et al., 2016), or constrain models for one specific set of products (e.g.,

Kunnath-Poovakka et al., 2016; Lopez Lopez et al., 2017). However, a limitation of this study, due to com-

putational constraints and the elevated volume of produced data (~3 Terabyte), is that the remotely

sensed products as well as models were all applied in a lumped, catchment-averaged manner. In this

way the remote sensing products are, naturally, not used up to their full potential, being distributed data

sources. In addition, even though consistent for both models and products, it can be argued that the spa-

tial average for an entire area and the way it was defined (e.g., arithmetic mean and harmonic mean) may

be unrepresentative (e.g., Kumar, Samaniego, et al., 2013; Kumar, Livneh, et al., 2013). Hence, a follow up

on this study would ideally put more emphasis on the effect of alternative spatial aggregation methods,

specifically for the states/fluxes under consideration, as well as more distributed modeling approaches to

more completely exploit the information content of the products. This was already shown to be promis-

ing by several authors (Demirel et al., 2018; Zink et al., 2018), and using such approaches with combina-

tions of multiple products, correctly linked to (spatially distributed) model states and fluxes, seems

therefore an important research line to pursue.

The results in this study strongly depend, just as in any other study, on the quality of the used data. The rela-

tive errors in the remote sensing products can be considerable, just as the errors in the used time series of

river discharge. These errors can also differ per specific place, depending on the original data supplier or

the climatological situation. Ideally, analyses as presented here would focus on many catchments with

high-quality data, which was attempted here with the selection of 27 catchments.

The choice of models remains an additional, subjective choice, influencing the presented results. Especially as

several models have a large parameter space, a large number of samples is needed to obtain robust results.

The 100,000 samples used in this study were merely imposed by the technical possibilities, but this number

would ideally even be higher. This study is however about reducing the parameter search space, also in order

to minimize sampling efforts, and the results still show that with a relatively low number of samples, improve-

ments (e.g., reductions in the parameter search space) can still be achieved.

The measure of fit between modeled and remotely sensed states/fluxes in this research was generally the

squared correlation coefficient. This was done on purpose as it is a relatively weak measure, which ignores

biases and only assumes a linear relation. Nevertheless, it can be argued that most of the added value of

the products comes forward from an improved seasonality of the models. However, the seasonal signals from

the different products will still contain a different information component. For example, the seasonal signal of

snow is totally different from the seasonal signal of soil moisture depletion or groundwater storage. In other

words, the seasonal signals of the different individual products and thus the associated variables are consid-

erably distinct in timing (i.e., phase shift), and only if superimposed onto each other produce the overall

hydrological response. Removing seasonality from themodeled and observed data can be considered as well

(see also Figure S7 in the supporting information), but the relative influence of data and model errors will be

increased at the same time, leading to a very restrictive measure of fit. In Figure S7 it can be clearly seen, for

example, that removing seasonality leads to rather low performances for the soil moisture products. This is

generally a known issue, as these products represent the soil moisture in the top centimeters, whereas the

models generally contain a complete bucket of soil moisture. Therefore, most of the information that the

remotely sensed products added when constraining the models is probably the seasonal signal, as this

was not removed, but, as stated before, this signal remains specific for each product. Therefore, it can be

argued that the seasonal signals of the models and products are, or should be, similar. In future studies, a

more proper linkage between the model state and remotely sensed variable is needed, instead of the linear

correlation used here. As also the quality of the remote sensing products is increasing, the added value will

also go beyond adding seasonality. Naturally, distributed model approaches may help in this aspect as well,

considering the distributed nature of the products. Concluding, the choice of the used objective functions,

either deseasonalized or not, remains a subjective choice, with a large influence on the results

presented here.
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4. Conclusions

Twenty-seven catchments across Europe were constrained with combinations of nine remotely sensed pro-

ducts and an analytical framework (Budyko). New posterior parameter distributions for five different concep-

tual hydrological models were derived based on a likelihood weighting procedure, which was specific for

each parameter depending on the relevant data sources for that parameter. In this way, all 1,023 possible

combinations of these 10 data sources could be used to derive new parameter ranges.

It was found that strong improvements were obtained when combinations included in particular AMSR-E and

ASCAT soil moisture data. Surprisingly, considering the relatively small size of the study catchments, also

GRACE added considerable value to meaningfully constrain the tested models. In addition, in snow-

dominated catchments the MODIS snow products were shown to be helpful for some of these models.

The evaporation products of LSA-SAF and MOD16 were to a lesser extent important for deriving adequate

and meaningful posterior parameter distributions.

A set of 27 hydrological signatures was evaluated for each study catchment, and the improvement for repro-

ducing these signatures using only remote sensing data for constraining amodel compared to unconstrained

models was analyzed by the KS statistic D+ between the constrained and unconstrained models. This showed

that all models benefitted from using a combination of remote sensing data for reproducing

catchment signatures.

This study illustrates that using combinations of multiple data sources is in most cases valuable to derive rea-

sonably narrow andmeaningful posterior parameter distributions. It was shown that the highest gains are, on

average, obtained when the soil moisture products AMSR-E and ASCAT as well as the total water storage

anomaly of GRACE are included. Using multiple products simultaneously also corrects errors of a single pro-

duct, and including four to five different products is often sufficient to reduce the parameter search space

and gets closer to solutions obtained by a range of benchmarking solutions. In addition, hydrological signa-

tures were better represented when multiple data sources were used, indicating improved model internal

dynamics. In conclusion, adding multiple data sources in parameter selection procedures in an indirect, para-

meter specific way is a promising way forward in predicting ungauged catchments.
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