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We present a new study on the elastic scattering cross section of dark matter (DM) and neutrinos using

the latest cosmological data from Planck and large-scale structure experiments. We find that the strongest

constraints are set by the Lyman-α forest, giving σDM−ν . 10−33 (mDM/GeV) cm2 if the cross section is

constant and a present-day value of σDM−ν . 10−45 (mDM/GeV) cm2 if it scales as the temperature squared.

These are the most robust limits on DM–neutrino interactions to date, demonstrating that one can use the

distribution of matter in the Universe to probe dark (“invisible”) interactions. Additionally, we show that

scenarios involving thermal MeV DM and a constant elastic scattering cross section naturally predict (i) a cut-off

in the matter power spectrum at the Lyman-α scale, (ii) Neff ∼ 3.5±0.4, (iii) H0 ∼ 71±3 km s−1 Mpc−1 and

(iv) the possible generation of neutrino masses.

I. INTRODUCTION

Over the last few decades, it has become clear that

a large fraction of the Universe is in the form of an

invisible material known as dark matter (DM). Recent Cosmic

Microwave Background (CMB) results [1–4] strongly support

the existence of DM, but its nature remains a mystery. The

general assumption is that DM consists of cold, massive

particles (CDM). However, recent work has shown that

small couplings with Standard Model particles (in particular,

neutrinos [5–9], photons [10–13] and baryons [14–16]) cannot

yet be ruled out using cosmological data alone and are indeed

expected in several extensions of the Standard Model e.g.

Refs. [17–21] . It is also possible that DM interacts with other

putative particles in the dark sector (see e.g. Refs. [22–25])

but we will not consider this case here.

Interactions of DM beyond gravity lead to a suppression of

the primordial density fluctuations, erasing structures with a

size smaller than the “collisional damping scale” [5, 7]. This

produces noticeable signatures in the CMB and matter power

spectrum, and ultimately impacts on the large-scale structure

(LSS) of the Universe we observe today. The effect is

enhanced if DM scatters off relativistic particles e.g. neutrinos

and photons in the radiation-dominated era, allowing one

to set competitive limits on these interactions in the early

Universe.

Unlike direct [26–28] and indirect [29–31] detection

experiments, the results obtained from such analyses are

model-independent. Furthermore, any theory that predicts

interactions between DM and the visible sector must satisfy

these constraints. In this work, we focus on DM–neutrino

interactions (a similar study for DM–photon interactions can

be found in Ref. [12]). We use the latest CMB data from the

Planck satellite [32] and observations of large-scale structure

from the Lyman-α forest [33] to both update and improve the

previous results of Refs. [5–9].

The paper is organised as follows. In Sec. II, we recall

the modified Euler equations that we use to incorporate

DM–neutrino interactions and describe their implementation

in the Boltzmann code CLASS
1 [34, 35]. In Sec. III, we

present our bounds on the scattering cross section from the

CMB angular power spectrum (Sec. III A) and the LSS matter

power spectrum (Sec. III B). The significance of our results for

specific DM models is discussed in Sec. IV and conclusions

are provided in Sec. V.

II. DM–NEUTRINO INTERACTIONS

The modified Euler equations for DM–neutrino interactions

can be written as2 [8, 10]:

θ̇ν = k2ψ+ k2

(

1

4
δν −σν

)

− µ̇(θν −θDM) ,

θ̇DM = k2ψ−H θDM −S−1µ̇(θDM −θν) , (1)

where θν and θDM are the neutrino and DM velocity

divergences, k is the comoving wavenumber, ψ is the

gravitational potential, δν and σν are the neutrino density

fluctuation and anisotropic stress potential, and H = (ȧ/a)
is the conformal Hubble parameter.

The DM–neutrino interaction rate is given by µ̇ ≡
a σDM−ν c nDM, where σDM−ν is the elastic scattering cross

section, nDM = ρDM/mDM is the DM number density, ρDM

is the DM energy density and mDM is the DM mass. The

factor S ≡ (3/4)(ρDM/ρν) ensures energy conservation and

accounts for the momentum transfer in the elastic scattering

process. The new interaction rate is also added to the

hierarchy of Boltzmann equations for neutrino temperature

and polarisation (in analogy to Thomson scattering terms in

the photon Boltzmann hierarchy)3.

1 class-code.net
2 For simplicity, we use the Newtonian gauge, assuming a flat Universe

and taking derivatives with respect to conformal time. Our notation is

consistent with Ref. [36].
3 All necessary modifications are confined to the thermodynamics and

perturbation modules of CLASS (version 1.7).
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2

In most cases, the scattering cross section between DM and

neutrinos, σDM−ν, will have one of two distinct behaviours:

either constant (like Thomson scattering) or proportional to

the temperature squared (in analogy to neutrino–electron

scattering). This will depend on the particle physics model

that is being considered (see Ref. [37] for specific examples).

To quantify the effect of DM–neutrino interactions on the

evolution of primordial density fluctuations, we introduce the

dimensionless quantity

u ≡

[

σDM−ν

σTh

]

[ mDM

100 GeV

]−1

, (2)

where σTh is the Thomson cross section.

Since the magnitude of the u parameter determines

the collisional damping scale [10], the efficiency of

small-scale suppression is essentially governed by the ratio

of the interaction cross section to the DM mass. For

temperature-dependent cross sections, we can write u =
u0 a−2, where u0 is the present-day value and a is the

cosmological scale factor (normalised to unity today).

III. RESULTS

In this section, we present our constraints on the

DM–neutrino elastic scattering cross section from the CMB

angular power spectrum (Sec. III A) and LSS matter power

spectrum (Sec. III B) using the modified version of CLASS

described above.

A. Cosmic Microwave Background

The impact of DM–neutrino interactions on the CMB

angular power spectrum is illustrated in Fig. 1 for specific

values of the parameter u ≡ [σDM−ν/σTh] [mDM/100 GeV]−1
.

We consider a flat ΛCDM model (with the only addition

being the DM–neutrino coupling), where the cosmological

parameters are taken from the one-year data release of

Planck [32]. We show the impact of a constant cross

section in Fig. 1, however, the effects are similar for

temperature-dependent cross sections.

In the T T (top panel) and EE (middle panel) components

of the CMB spectrum, we see an increase in the magnitude of

the Doppler peaks and a slight shift to larger l with respect to

vanilla ΛCDM (u = 0), which can be understood as follows:

The shape of the CMB spectrum is affected by the

gravitational force felt by the coupled photon–baryon fluid

before decoupling. In principle, this force receives

contributions from the distribution of free-streaming neutrinos

and from that of slowly-clustering DM. In fact, when

decomposing the solution to the system of cosmological

perturbations into slow modes and fast modes [40, 41],

one sees that the photon–baryon and neutrino perturbations

are described by fast modes, while the DM perturbations

are described by slow modes. This implies that the

photon–baryon fluid only has significant gravitational

interactions with the free-streaming neutrinos.
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FIG. 1: The effect of DM–neutrino interactions on the T T (top),

EE (middle) and BB (bottom) components of the angular power

spectrum, where u ≡ [σDM−ν/σTh] [mDM/100 GeV]−1 (such that

u = 0 corresponds to no coupling). We take σDM−ν to be constant

and use the ‘Planck + WP’ best-fit parameters from Ref. [32].

The data points in the BB spectrum are recent measurements from

the SPTpol experiment [38], where the three datasets correspond

to (Ê150φ̂CIB) × B̂150, (Ê95φ̂CIB) × B̂150 and (Ê150φ̂CIB) × B̂150
χ

respectively in Ref. [39]. The new coupling enhances the peaks in

the T T and EE spectra, while significantly damping the B-modes.
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This interaction is especially important during radiation

domination and soon after Hubble crossing, when the

photon–baryon perturbation receives a gravitational boost.

This boost is attenuated by the fact that neutrinos free-stream,

develop anisotropic stress and cluster less efficiently then

e.g. a relativistic perfect fluid. Modes crossing the Hubble

radius during matter domination do not experience this effect

because the gravitational potential is then constant, while DM

perturbations grow in proportion to the scale factor.

In the presence of an efficient DM–neutrino interaction

term, DM experiences damped oscillations like neutrinos

instead of slow gravitational clustering [8]. Thus, DM

perturbations also contribute to the fast modes. At the

same time, neutrinos are bound to DM particles and do not

free-stream; their anisotropic stress is reduced, making them

behave more like a relativistic perfect fluid [9]. Both effects

contribute to the patterns seen in Fig. 1:

1. When perturbations cross the Hubble radius during

radiation domination, the photon–baryon fluid feels

the gravitational force from neutrinos with reduced

anisotropic stress and stronger clustering; this increases

the gravitational boost effect. This mechanism can

potentially enhance all peaks but the first one, although

the scale at which this effect is important depends on

the time at which neutrinos decouple from DM.

2. As long as DM and neutrinos are tightly coupled,

the sound speed in this effective fluid is given by

c2
DM−ν = [3(1+3ρDM/4ρν)]

−1
, instead of c2

b−γ =

[3(1+3ρb/4ργ)]
−1

in the baryon–photon fluid. The

ratio ρDM/ρν is always larger than the ratio ρb/ργ so the

DM–neutrino fluid has a smaller sound speed. Through

gravitational interactions and a “DM–neutrino drag”

effect, the wavelength of the baryon–photon sound

waves is then slightly reduced and the acoustic peaks

in the temperature and polarisation spectra appear at

slightly larger l.

3. When perturbations cross the Hubble radius during

matter domination, if DM is still efficiently coupled to

neutrinos, it contributes to the fast mode solution. Thus,

DM is gravitationally coupled to the photon–baryon

fluid, leading to a gravitational boosting effect (unlike

in the standard model for which metric fluctuations

are frozen during matter domination). This effect

contributes to the enhancement of the first peak.

4. In the temperature spectrum, there is a well-known

asymmetry between the amplitude of the first odd

and even peaks, due to the fact that oscillations in

the effective temperature (δT/T + ψ) (where ψ is

one of the two metric perturbations in the Newtonian

gauge) are centred around the mean value 〈δT/T +
ψ〉 ∼ −(3ρb/4ργ)ψ. If DM is still efficiently coupled

to neutrinos at the time of photon decoupling, the

metric fluctuations are strongly suppressed, and the

oscillations are centred on zero. This has the opposite

effect to increasing the baryon density; it slightly

enhances even peaks and suppresses odd peaks.

5. Finally, if DM is still efficiently coupled to neutrinos at

the time of photon decoupling, the first peak is further

enhanced by a stronger early integrated Sachs-Wolfe

effect. This takes place after photon decoupling as a

consequence of the fact that metric fluctuations vary

with time as long as DM remains efficiently coupled

to neutrinos.

Note that among all these effects, the first two can occur

even for a small DM–neutrino cross section, since they only

assume that neutrinos are coupled to DM until some time near

the end of radiation domination. The last three effects are only

present for very large cross sections, such that DM is still

coupled to neutrinos at the beginning of matter domination.

All five effects can be observed in Fig. 1 for u = 10−3 or

larger (corresponding to σDM−ν & 10−29 (mDM/GeV) cm2).

However, we will see in Sec. III B that these values are not

compatible with Lyman-α data; for realistic cross sections,

the only effect on the CMB spectrum is a small enhancement

and shifting of the high-l peaks.

To efficiently sample the parameter space and account

for any degeneracies, we ran the Markov Chain Monte

Carlo code MONTE PYTHON
4 [42] combined with the

one-year data release from Planck, provided by the Planck

Legacy Archive5 [4]. In particular, we used the high-ℓ and

low-ℓ temperature data of Planck combined with the low-ℓ
WMAP polarisation data (corresponding to ‘Planck + WP’ in

Ref. [32]).

We varied the parameters of the minimal flat ΛCDM

cosmology6, namely: the baryon density (Ωbh2), the

dark matter density (ΩDMh2), the reduced Hubble

parameter (h), the primordial spectrum amplitude

(As), the scalar spectral index (ns) and the redshift of

reionisation (zreio), supplemented by the additional parameter

u ≡ [σDM−ν/σTh] [mDM/100 GeV]−1
. In a second run, we

also allowed the effective number of neutrino species, Neff,

to vary from the standard value of 3.046 [43]. Finally, we

marginalised over the nuisance parameters listed in Ref. [32].

The bounds on the various cosmological parameters are

listed in Table I, and illustrated in Figs. 3 and 4 for constant

and temperature-dependent cross sections respectively (where

we omit the nuisance parameters for clarity).

4 montepython.net
5 pla.esac.esa.int/pla/aio/planckProducts.html
6 Our base model is the same as in the Planck analysis, except for one

detail: we use the approximation of massless neutrinos, while the Planck

collaboration always assumes one massive neutrino species with a mass

of 0.06 eV [32]. We chose the massless option simply to speed up

computations, however, it has very little impact. At the level of precision of

Planck, such a small neutrino mass only affects the CMB through a slight

shift in the angular diameter distance. This can be exactly compensated

by a decrease in the Hubble parameter of about ∆h ≃−0.1(mν/1eV) [32].

Therefore, had we adopted the same base model as in the Planck papers, we

would obtain a best-fit value of 100 h that is smaller by ∼ 0.6. However, the

other results (i.e. the uncertainty on h, the mean values and uncertainties

of the other parameters, and the maximum likelihood value) would be

unchanged.
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100 Ωbh2 ΩDMh2 100 h 10+9 As ns zreio Neff 10+2 u 10+13 u0

No interaction 2.205+0.028
−0.028 0.1199+0.0027

−0.0027 67.3+1.2
−1.2 2.196+0.051

−0.060 0.9603+0.0073
−0.0073 11.1+1.1

−1.1 (3.046) − −

2.238+0.041
−0.041 0.1256+0.0055

−0.0055 70.7+3.2
−3.2 2.251+0.069

−0.085 0.977+0.016
−0.016 11.6+1.3

−1.3 3.51+0.39
−0.39 − −

σDM−ν constant 2.225+0.029
−0.033 0.1211+0.0027

−0.0030 69.5+1.2
−1.2 2.020+0.063

−0.065 0.9330+0.0104
−0.0095 10.8+1.1

−1.1 (3.046) < 3.99 −

2.276+0.043
−0.048 0.1299+0.0059

−0.0061 75.0+3.4
−3.7 2.086+0.068

−0.089 0.956+0.017
−0.016 11.6+1.2

−1.3 3.75+0.40
−0.43 < 3.27 −

σDM−ν ∝ T 2 2.197+0.028
−0.028 0.1197+0.0027

−0.0027 67.8+1.2
−1.2 2.167+0.052

−0.059 0.9527+0.0086
−0.0085 10.8+1.1

−1.1 (3.046) − < 0.54

2.262+0.042
−0.046 0.1326+0.0065

−0.0072 75.3+3.6
−4.0 2.257+0.072

−0.084 0.981+0.017
−0.017 11.9+1.3

−1.4 4.07+0.46
−0.52 − < 2.56

TABLE I: Mean values and minimum credible intervals at 68% CL of the cosmological parameters set by the ‘Planck + WP’

dataset for (i) no DM–neutrino interaction, (ii) a constant cross section and (iii) a temperature-dependent cross section, where u ≡

[σDM−ν/σTh] [mDM/100 GeV]−1. In each of these models, we consider either a fixed Neff (first row) or varying Neff (second

row). The case without an interaction is shown for comparison, using data from Ref. [32] and the Planck Explanatory Supplement

(http://www.sciops.esa.int/wikiSI/planckpla/). For a fair comparison of h values between the interacting and non-interacting

scenarios, one should subtract 0.6 from the mean 100 h values of the last four lines, for the reason explained in Footnote 6.

Fixing Neff = 3.046, we find that the data prefers an elastic

scattering cross section of

σDM−ν ≤ 3×10−28 (mDM/GeV) cm2 , (3)

if it is constant and

σDM−ν,0 ≤ 4×10−40 (mDM/GeV) cm2 , (4)

for the present-day value if it is proportional to the

temperature squared (at 68% CL).

The bound on the constant cross section is rather weak

due to significant degeneracies with the other parameters (in

particular: h, As and ns). By performing additional runs, we

found that including constraints on σ8 from e.g. Planck SZ

clusters [44] and CFHTLens [45] does not help to break the

degeneracies. The reason is that for most allowed models,

deviations from ΛCDM occur at scales smaller than those

probed by these experiments.

In the standard case of no DM–neutrino interaction, the

Planck collaboration found that allowing Neff to vary as a free

parameter does not significantly improve the goodness-of-fit

for ‘Planck + WP’ data. However, it has the remarkable

property of enlarging the bounds on h, in such a way as

to relax the tension with direct measurements of the local

Hubble expansion (without conflicting with Baryon Acoustic

Oscillation data) [32].

This is a result of a well-known parameter degeneracy,

involving at least Neff, h and Ωmh2. This degeneracy comes

from the fact that by simultaneously enhancing the radiation,

matter and cosmological constant densities in the Universe,

one does not change the characteristic redshifts and distances

affecting the CMB spectrum up to l ∼ 800. Nevertheless, this

direction of degeneracy can be constrained because additional

degrees of freedom in Neff lead to a stronger Silk damping

effect, which is clearly visible for l & 800. Thus, the varying

Neff model is not preferred by Planck alone, but has the

potential to reconcile different cosmological probes that are

otherwise in moderate (∼ 2.5σ) tension.

If we now introduce DM–neutrino interactions, the model

with varying Neff turns out to be even more interesting.

As in the standard case, it does not significantly improve

the goodness-of-fit to ‘Planck + WP’ data (the effective χ2

decreases by about two for a constant cross section and 0.5

for a temperature-dependent cross section). However, it opens

up an even wider degeneracy in parameter space because the

enhancement of the temperature spectrum shown in Fig. 1 can,

to some extent, counteract the additional Silk damping caused

by a large Neff or h.

Therefore, as can be seen in Table I, with the addition

of DM–neutrino interactions, the ‘Planck + WP’ data can

accommodate very large values of Neff (compatible with

one thermalised species of extra relics) and h (in excellent

agreement with direct measurements at the 1σ level [46, 47]).

Allowing Neff to vary, we obtain slightly different bounds

on the scattering cross section:

σDM−ν ≤ 2×10−28 (mDM/GeV) cm2 , (5)

if it is constant and

σDM−ν,0 ≤ 2×10−39 (mDM/GeV) cm2 , (6)

if it is proportional to the temperature squared (at 68% CL).

Finally, we can use the BB spectrum (bottom panel of

Fig. 1) to constrain the DM–neutrino cross section. The

B-modes are significantly suppressed due to the effects of

collisional damping (see Refs. [5, 7]). Using the first-season

data from the SPTpol experiment [39] (shown by the data

points), we can already set conservative limits on the cross

section of

σDM−ν . 10−27 (mDM/GeV) cm2 , (7)
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if it is constant and

σDM−ν,0 . 10−35 (mDM/GeV) cm2 , (8)

if it is proportional to the temperature squared.

Forthcoming polarisation data from e.g. Planck [4],

ACTpol [48], POLARBEAR [49] and SPIDER [50] will

improve these results and could provide us with a powerful

tool to study DM interactions in the future.

B. Large-Scale Structure

The effects of introducing DM–neutrino interactions on the

matter power spectrum, P(k), are shown in Fig. 2 (where

for simplicity, we assume that the cross section is constant).

We obtain a series of damped oscillations, which suppress

power on small scales (see Ref. [10]). For the cross sections

of interest, significant damping effects are restricted to the

non-linear regime (for which k & 0.2 h Mpc−1).

In general, the reduction of small-scale power for a DM

candidate is described by a transfer function, T (k), defined by

P(k) = T 2(k) PCDM(k) , (9)

where PCDM(k) is the equivalent matter power spectrum for

CDM.

For a non-interacting warm DM (WDM) particle, the

transfer function can be approximated by the fitting

formula [51]:

T (k) = [1+(αk)2ν]−5/ν , (10)

where

α =
0.049

h Mpc−1

(mWDM

keV

)−1.11
(

ΩDM

0.25

)0.11(
h

0.7

)1.22

, (11)

ν≃ 1.12 and mWDM is the mass of the warm thermal relic [52].

From Fig. 2, one can see that cosmological models

including DM–neutrino interactions can provide an initial

reduction of small-scale power in a similar manner to the

exponential cut-off of WDM. The presence of damped

oscillations is unimportant for setting limits since we are only

interested in the cut-off of the spectrum and the power is

already significantly reduced by the first oscillation. However,

we note that this difference could allow one to distinguish the

two models in high-resolution N-body simulations [53].

Using an analysis of the Lyman-α flux from the HIRES [54]

and MIKE spectrographs [55], Ref. [33] obtained a bound

on the free-streaming scale of a warm thermal relic,

corresponding to a particle mass of mWDM ≃ 3.3 keV (or

equivalently, α ≃ 0.012). This constraint is represented by

the solid grey curve in Fig. 2.

By comparing models of DM–neutrino interactions with

WDM, we can effectively rule out cross sections in

which the collisional damping scale is larger than the

maximally-allowed WDM free-streaming scale. Taking into
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FIG. 2: The impact of DM–neutrino interactions on the matter power

spectrum, where u ≡ [σDM−ν/σTh] [mDM/100 GeV]−1 (such that

u = 0 corresponds to no coupling). We take σDM−ν to be constant

and use the ‘Planck + WP’ best-fit parameters from Ref. [32]. The

solid grey curve represents the most recent constraint on warm DM

models from the Lyman-α forest [33]. The new coupling produces

(power-law) damped oscillations, reducing the number of small-scale

structures with respect to vanilla ΛCDM [10].

account the freedom from the other cosmological parameters,

we obtain the conservative upper bounds:

σDM−ν . 10−33 (mDM/GeV) cm2 , (12)

if the cross section is constant and

σDM−ν,0 . 10−45 (mDM/GeV) cm2 , (13)

if it scales as the temperature squared.

These limits are significantly stronger than those obtained

from the CMB analysis in Sec. III A and will improve

further with forthcoming data from LSS surveys such as

SDSS-III [56] and Euclid [57]. However, CMB constraints

are important to compare to as they do not depend on the

non-linear evolution of the matter fluctuations.

We can now fix the cross section to be the maximum value

allowed by these constraints and redo our CMB analysis.

Applying Eq. (12) for a constant cross section, we obtain the

bounds on the cosmological parameters shown in Table II and

illustrated in Fig. 5. These results are similar to the case of no

interaction with Neff free to vary, corresponding to the second

line in Table I (especially after correcting the central value

of 100 h by 0.6, as explained in Footnote 6). The reason is

that the cross section imposed by the Lyman-α data is small

enough to not significantly modify the CMB spectrum.

Finally, we note that if more than one species were

responsible for the observed DM relic density (which is

the case that we consider here), larger values of the elastic

scattering cross section would be allowed.
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100 Ωbh2 ΩDMh2 100 h 10+9 As ns zreio Neff

Lyman-α limit 2.246+0.039
−0.042 0.1253+0.0053

−0.0056 71.5+3.0
−3.3 2.254+0.069

−0.082 0.979+0.016
−0.016 11.7+1.2

−1.3 3.52+0.36
−0.40

TABLE II: Best-fit values and minimum credible intervals at 68% CL of the cosmological parameters set by the ‘Planck + WP’ dataset for

a constant DM–neutrino elastic scattering cross section, where we impose the maximum allowed value obtained in Sec. III B, i.e. σDM−ν ≃
10−33 (mDM/GeV) cm2.

IV. DISCUSSION

The results from Section III enable us to constrain DM

interactions that cannot be directly probed at the LHC and

provide us with direct access to physics beyond the Standard

Model in the Early Universe. They are particularly useful

for the models proposed in Refs. [6, 17, 18] where the DM

particle is light (∼ MeV) and interactions with neutrinos can

occur through the exchange of a scalar mediator (if DM is

fermionic) or a Dirac/Majorana mediator (hereafter referred

to as N, if DM is a scalar).

Our limits could also be applied to the case of

fermionic/scalar DM coupled to a light U(1) gauge boson

mediator (referred to as U or Z′) [17, 18] with the caveat that

the coupling of such a mediator to neutrinos is constrained by

neutrino elastic scattering experiments [58, 59].

A. Constant Cross Section

In general, one expects the DM–neutrino elastic scattering

cross section to be temperature-dependent. However, a

constant (i.e. temperature-independent) cross section is

predicted either when (i) there is a strong degeneracy between

the DM particle and the mediator or (ii) the mediator is

extremely light (which, in the case considered here, would

imply that DM decays into the mediator plus a neutrino,

unless the couplings are very suppressed).

To illustrate point (i), we consider the particular case of a

real scalar DM particle coupled to a Majorana mediator, N

(an analogue of the sneutrino–neutralino–neutrino coupling in

Supersymmetry) in a low effective theory [17, 18]. We then

impose a strong mass degeneracy between the DM particle

and N, i.e. |mN − mDM| . O(eV). In such a scenario, the

elastic scattering cross section is expected to be

σDM−ν ≃
g4

4 π m2
DM

≃ 3×10−33
( g

0.1

)4 (mDM

GeV

)−2

cm2 , (14)

where g is the DM–neutrino coupling.

Applying our Lyman-α constraint from Sec. III B implies

the following relation between the coupling and the DM mass:

g . 0.1
(mDM

GeV

)3/4

. (15)

An additional feature of this model is the self-annihilation

of DM into neutrinos (νν), with a cross section given by

〈σv〉 ≃
g4

16π

1

m2
DM

× c , (16)

in the primordial Universe [18]. Thus, the annihilation and

elastic scattering cross sections are related by

〈σv〉 ≃
σDM−ν

4
× c , (17)

which gives 〈σv〉 ≃ 2 × 10−23 (mDM/GeV) cm3 s−1 if we

apply our Lyman-α bound. Conversely, if we impose that

the DM annihilation cross section into neutrinos is within

the range that is needed to explain the observed DM relic

abundance7, we obtain the prediction that

σDM−ν ≃ 4×10−36

(

〈σv〉

3×10−26 cm3 s−1

)

cm2 , (18)

which is similar to our Lyman-α bound for MeV DM.

Therefore, we deduce that a viable model of MeV DM with

a coupling to neutrinos must predict a cut-off in the matter

power spectrum at the Lyman-α scale. Note that, in principle,

we should also allow for co-annihilations [64, 65] since we

assume a strong mass degeneracy between the DM particle

and the mediator. A self-annihilation cross section that is ∼
4 times smaller than the value quoted above would thus give

rise to the observed DM abundance.

Interestingly, such a scenario also predicts an increase in

Neff with respect to the Standard Model value [66]. Typically,

one expects Neff ∈ [3.1,3.8] by combining the most recent

CMB and Big Bang Nucleosynthesis data [67–70]. This is

entirely compatible with the value of Neff = 3.5±0.4 obtained

in Sec. III B when we impose our Lyman-α limit. As a result,

we predict a rather higher value of H0 = 71±3 km s−1 Mpc−1

(see Table II), in good agreement with direct measurements of

the local Hubble parameter.

Finally, it is worth noting that in this toy model, one expects

the (radiative) generation of small neutrino masses. Assuming

O(1) MeV . mN . 10 MeV, one obtains neutrino masses in

the range 0.01 eV . mν . 1 eV provided that the coupling, g,

7 The assumption of dominant annihilations into neutrinos at MeV energies

makes sense since significant annihilations into charged particles would

require new, relatively light (charged) species. Such particles have not been

observed, neither directly at the LHC nor in Particle Physics experiments

(such as the electron/muon g−2 [60–63]).
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satisfies [18]:

g ≃ 10−3

√

mN

10 MeV

(

〈σv〉

3×10−26 cm3 s−1

)1/4

×

√

1+(mDM/mN)
2 . (19)

In the case of a strong mass degeneracy between the DM

particle and the mediator, Eq. (19) gives

g ≃ 10−3

√

mN

10 MeV

(

〈σv〉

3×10−26 cm3 s−1

)1/4

, (20)

which is compatible with Eq. (15) for MeV DM.

In summary, for this specific realisation, we expect a

cut-off in the matter power spectrum at the Lyman-α scale,

a departure of Neff from the Standard Model value, H0 ∼
71±3 km s−1 Mpc−1 and the generation of neutrino masses.

Our model assumes a strong mass degeneracy between the

DM particle and the mediator, but this could be suggestive of

an exact symmetry in the invisible sector (such as unbroken

Supersymmetry, without any counterpart in the visible sector).

The other requirement is particles in the MeV mass range.

Such properties may be challenging to realise in a theoretical

framework, yet the model building remains to be done.

Expressions for the DM–neutrino elastic scattering cross

section with a Dirac or Majorana DM candidate can be found

in Ref. [17]. When there is a strong mass degeneracy, the

cross section is expected to be constant and proportional to

σDM−ν ∝
g4

m2
DM

, (21)

as for the scalar case. The annihilation cross section is also

given by a similar expression, so again, for specific values

of g (analogous to Eq. (15)), we expect a cut-off in the

matter power spectrum at a relevant cosmological scale and

simultaneously, the correct DM relic abundance.

In all the above scenarios, DM could potentially be

produced by neutrinos in supernovae. However, here we do

not consider a coupling to nucleons (DM is only coupled

to neutrinos) and the cross section does not increase with

temperature (it remains constant). Therefore, we do not

expect a large impact on supernovae cooling, but this would

need to be checked in a dedicated study.

B. T 2-Dependent Cross Section

If one relaxes the hypothesis of a strong mass degeneracy

between the DM particle and the mediator, the DM–neutrino

elastic scattering cross section becomes dominated by a term

proportional to T 2 (independently of whether we consider

a scalar or fermionic DM candidate). If we assume that

neutrinos are Majorana particles, we obtain:

σDM−ν ∝
g4

π

T 2

m4
N

+ O(T 3) , (22)

which leads to

σDM−ν ≃ 10−46 A
( g

0.1

)4
(

T

T0

)2
( mN

MeV

)−4

cm2 , (23)

where A is a numerical factor that depends on the exact nature

of the DM particle and T0 ≃ 2.3 10−4 eV is the temperature of

the Universe today.

Therefore, one expects a damping in the matter power

spectrum at the Lyman-α scale if the DM mass is in the MeV

range and g ∼ 0.1× (mN/MeV). For such a configuration,

there could be, in addition, a resonance feature in the diffuse

supernovae neutrino background [71].

If neutrinos have only right-handed couplings and we do

not impose a very strong degeneracy between mN and mDM,

the cross section remains T 2-dependent. Its value would be

of the same order as the Lyman-α bound provided that the

DM mass is again in the MeV range and the mass splitting

between the mediator and the DM particle is relatively small

(about 10%).

A T 2-dependent cross section is easier to achieve than a

constant cross section described in Sec. IV A since it does

not require the mediator and the DM particle to be mass

degenerated. However, the observed DM abundance would

be difficult to explain in the thermal case as the annihilation

cross section would be too large for g & 0.1 (although

solutions exist e.g. asymmetric DM [72]). One would

also lose the relation with the neutrino masses. A similar

conclusion is obtained for a DM candidate coupled to a new

(weakly-coupled) gauge boson (see Ref. [17]).

V. CONCLUSION

In this paper, we have studied the effects of introducing

an interaction between dark matter and neutrinos on

the evolution of primordial matter fluctuations. Using

cosmological data from Planck and the Lyman-α forest,

we have obtained the following constraints: σDM−ν .
10−33 (mDM/GeV) cm2 if the cross section is constant

and σDM−ν,0 . 10−45 (mDM/GeV) cm2 if it scales as

the temperature squared. Such results are importantly

model-independent and can be applied to any theory beyond

the Standard Model that predicts a coupling between dark

matter and neutrinos.

In particular, we have seen that models involving thermal

MeV DM and a constant scattering cross section can

accommodate larger values of Neff and H0 with respect to

ΛCDM, produce a cut-off in the matter power spectrum at the

Lyman-α scale and at the same time, generate small neutrino

masses.
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FIG. 3: Triangle plot showing the one and two-dimensional posterior distributions of the cosmological parameters set by Planck for a constant

cross section, with u and Neff as free parameters. The contours correspond to 68% and 95% CL.
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FIG. 4: Triangle plot showing the one and two-dimensional posterior distributions of the cosmological parameters set by Planck for a

temperature-dependent cross section, with u and Neff as free parameters. The contours correspond to 68% and 95% CL.
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FIG. 5: Triangle plot showing the one and two-dimensional posterior distributions of the cosmological parameters set by Planck for a constant

cross section, where we impose the maximum allowed value obtained in Sec. III B, i.e. σDM−ν ≃ 10−33 (mDM/GeV) cm2. The contours

correspond to 68% and 95% CL.




