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1 Introduction

The current data on neutrino oscillations seem to point at one small and two large an-

gles in the neutrino mixing matrix [1–6]. The data are consistent with various mixing

patterns, where in particular the agreement with the tri-bimaximal [7, 8] mixing pattern

is striking [9].

The use of non-Abelian discrete flavour symmetries has been proposed in different

models (for a review see [9]) to generate both the mentioned lepton mixing patterns and

the quark ones. In general, in those models, one introduces so called flavons, scalar fields

charged in the flavour space, usually very heavy. Once the flavons develop specific vacuum

expectation values (vevs), this translates to structures in the masses and mixings of the

fermions. However, imposing the correct symmetry breaking patterns on the flavons is

highly non-trivial. This holds in particular if two or more flavons are used, breaking in

different directions in flavour space. So far, only a few techniques have been developed, all

of which need a supersymmetric context or the existence of extra dimensions [9].

Alternatively, one can look at models that require only one flavour symmetry break-

ing direction. In this case the scalar potential that implements the breaking can be non

supersymmetric and does not require extra dimensions. Of particular interest is the pos-

sibility that one set of fields simultaneously takes the role of the flavons and the Standard

Model (SM) Higgs fields, identifying the breaking scales of the electroweak and the flavour

symmetries.

In this paper, we will consider the discrete flavour symmetry A4 and we will assume that

there are three copies of the Standard Model Higgs field, that transform among each other

as a triplet of A4 [10–16]. The presence of this extended Higgs sector has an deep impact

on the high energy phenomenology: indeed new contributions to the oblique corrections

as well as new sources of CP and flavour violation usually appear in this context. We will

analyse the constraints coming from these observables for all the vacuum configurations

allowed by the scalar potential and will discuss on the viability of each of them.

The structure of the paper is as follows. In section 2, we will introduce the scalar

potential invariant under A4 and under the gauge group of the Standard Model. In section 3

we will introduce the various physical Higgs fields that are present in the model.

In the subsequent two sections we will present the different minima allowed by the

potential and discuss the corresponding Higgs spectrum. These minima may or may not

violate CP symmetry, depending on the question whether all vacuum expectation values

of the Higgses are real or not. In section 4 we will discuss the cases that do not violate the

CP symmetry, while in section 5 we discuss CP breaking minima.

Section 6 we will discuss bounds on the allowed parameters using respectively unitarity

constraints, decays of the Z and W± bosons and constraints by oblique corrections. We

note that all these bounds are rather model independent, meaning that they depend on

the flavour symmetry assignment of the relevant Higgs fields, but not on those of the

fermions in the theory. Further bounds can be derived from fermion decays and meson

oscillations, but these bounds are always model dependent. We will present some of these

in an accompanying paper [17].
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Finally, in section 7 we present the results of our analysis and in section 8 we conclude.

In the appendix A we report useful formulae for the analysis of the T, S and U parameters.

2 The A4 scalar potential

We consider the Standard Model gauge group SU(3)c × SU(2)L ×U(1)Y with the addition

of a global flavour symmetry A4 [18, 19]. We consider three copies Φa, a = 1, 2, 3, of

the conventional SM Higgs field (i.e. a singlet of SU(3)c, doublet of SU(2)L and with

hypercharge Y = 1/2) such that the three Higgses are in a triplet of the flavour group A4.

Once the flavour structure of the quarks and leptons is specified, each Φa will couple to

the three fermion families according to the group theory rules in a model dependent way.

We will study these couplings in more detail in [17].

Below, we will write down the most general scalar potential for the three Higgses that is

invariant under the flavour and gauge symmetries of the model. After the fields occupy one

of the minima of the potential, electroweak symmetry gets broken (while electromagnetism

is conserved) and we can develop the fields around their vacuum expectation values as

Φa =
1√
2

(

Re Φ1
a + i Im Φ1

a

Re Φ0
a + i Im Φ0

a

)

→ 1√
2

(

Re φ1
a + i Im φ1

a

vae
iωa + Re φ0

a + i Im φ0
a

)

. (2.1)

Here vae
iωa is the vacuum expectation value of the ath Higgs field. One or two of the va can

be zero, implying that the corresponding Higgs field does not develop a vev. Furthermore,

if all vevs are real (so if all ωa are zero) CP is conserved, while if one or more ωas are

nonzero, CP is broken. Note that in general, there is the freedom to put one of the phases

to zero by a global rotation.

We will use the A4 basis as developed by Ma and Rajasekaran (MR) [10]. The analysis

could also be done in a different A4 basis, for instance the one of Altarelli and Feruglio [20].

The results would then look different, but would obviously be equivalent. In the MR basis,

the most general potential V [Φa] can be written as [10, 21].

V [Φa] = µ2(Φ†
1Φ1 + Φ†

2Φ2 + Φ†
3Φ3) + λ1(Φ

†
1Φ1 + Φ†

2Φ2 + Φ†
3Φ3)

2 +

+λ3(Φ
†
1Φ1Φ

†
2Φ2 + Φ†

1Φ1Φ
†
3Φ3 + Φ†

2Φ2Φ
†
3Φ3) + (2.2)

+λ4(Φ
†
1Φ2Φ

†
2Φ1 + Φ†

1Φ3Φ
†
3Φ1 + Φ†

2Φ3Φ
†
3Φ2) +

+
λ5

2

[

eiǫ
[

(Φ†
1Φ2)

2+(Φ†
2Φ3)

2+(Φ†
3Φ1)

2
]

+ e−iǫ
[

(Φ†
2Φ1)

2+(Φ†
3Φ2)

2+(Φ†
1Φ3)

2
]

]

,

in agreement with the usual notation adopted in the two Higgs Doublet Models (2HDM).

The parameter µ2 is typically negative in order to have a stable minimum away from

the origin. All the other parameters, λi, are real parameters which must undergo to

the condition for a potential bounded from below: this forces λ1 and the combination

λ1 + λ3 + λ4 + λ5 cos ǫ to be positive.

It is interesting to notice that, contrary to other multi Higgs (MH) scenarios, here we

can not recover the SM limit, with one light scalar and all the others decoupled and very

heavy. The flavour symmetry constrains the potential parameters in such a way that the
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scalar masses are never independent from each other. This can be easily understood by

a parameter counting: the scalar potential in eq. (2.2) presents 6 independent parameters

and the number of the physical quantities is 8, i.e. the electroweak (EW) vev and the seven

masses for the massive scalar fields.

We will study the minima of the potential in eq. (2.2) under electromagnetism con-

serving vevs as specified in eq. (2.1) by studying the first derivative system

∂V [Φ]

∂ΦI

= 0 , (2.3)

where ΦI is of the fields Re Φ1
a, Re Φ0

a, Im Φ1
a or Im Φ0

a and by requiring that the Hessian

∂2V [Φ]

∂ΦI∂ΦJ

(2.4)

has non negative eigenvalues, or in other words that all the physical masses are positive

except those ones corresponding to the Goldstone bosons (GBs) that vanish.

In sections 4 and 5 we will verify that this potential presents a number of solutions.

Some of them are natural in the sense that they do not require ad hoc values of the potential

parameters; these are only constrained by requiring the boundness at infinity and the

positivity of all the physical scalar masses. The only potential parameter constrained is the

bare mass term µ2 which is related to the physical Electroweak (EW) vev, v2
w = v2

1+v2
2+v2

3.

Others require specific relations between the adimensional scalar potential parameters and

may have extra Goldstone bosons.

3 The physical Higgs fields

The symmetry breaking of the Higgs fields of equation eq. (2.1) leads to a large number of

charged and neutral Higgs bosons as well as the known Goldstone bosons of the Standard

Model.

In the most general case, where CP is not conserved, the neutral real and imaginary

components of eq. (2.1) mix to five CP non-definite states and a GB:

hα = UαaRe φ0
a + Uα(a+3)Im φ0

a ,

π0 = U6aRe φ0
a + U6(a+3)Im φ0

a .
(3.1)

Here a = 1, 2, 3 and α = 1−5, while α = 6 represents the GB π0. In matrixform this reads













h1

...

h5

π0













= U























Re φ0
1

...

Re φ0
3

Im φ0
1

...

Im φ0
3























(3.2)

– 4 –



J
H
E
P
0
3
(
2
0
1
1
)
0
3
5

Clearly eq. (3.1) holds also in the CP conserved case: in that case the 6 by 6 scalar mass

matrix reduces to a block diagonal matrix with two 3 by 3 mass matrices leading to three

CP even states and 2 CP odd states and the GB π0.

The three charged scalars mix into two new charged massive states and a charged GB.







H+
1

H+
2

π+






= S







φ1
1

φ1
2

φ1
3






, (3.3)

where π+ is the Goldstone boson eaten by the gauge bosons W+. In general, the S is a

complex unitary matrix. In the special case where CP is conserved, its entries are real (and

it is thus an orthogonal matrix).

4 CP conserved solutions

In this section, we will study minima of the potential in eq. (2.2) in which only Reφ0
a

develops a vev, i.e. the CP symmetry is conserved. In this case we expect having 3 neutral

scalar CP-even states, 2 CP-odd states and 2 charged scalars as well as a real and a complex

GBs originating from respectively the CP-odd states and the charged states.

In the CP-conserved case all the ωa vanish and the first derivative system in eq. (2.3)

reduces to

v1[2(v2
1 + v2

2 + v2
3)λ1 + (v2

2 + v2
3)(λ3 + λ4 + λ5 cos ǫ) + 2µ2] = 0 ,

v2[2(v2
1 + v2

2 + v2
3)λ1 + (v2

1 + v2
3)(λ3 + λ4 + λ5 cos ǫ) + 2µ2] = 0 ,

v3[2(v2
1 + v2

2 + v2
3)λ1 + (v2

1 + v2
2)(λ3 + λ4 + λ5 cos ǫ) + 2µ2] = 0 ,

v1(v
2
2 − v2

3)λ5 sin ǫ = 0 ,

v2(v
2
1 − v2

3)λ5 sin ǫ = 0 ,

v3(v
2
2 − v2

1)λ5 sin ǫ = 0 ,

(4.1)

where the first three derivatives refer to the real components Φ0
a and the second ones to

the imaginary parts. In the most general case, when neither ǫ nor λ5 is zero, the last three

equations allow two different solutions

1) v1 = v2 = v3 = v = vw/
√

3;

2) v1 6= 0 and v2 = v3 = 0 (and permutations of the indices); in this case v1 = vw.

Both these solutions are solutions of the first three equations as well, provided that

{

µ2 = −(3λ1 + λ3 + λ4 + λ5 cos ǫ)v2
w/3 for the first case

µ2 = −λ1v
2
w for the second case.

(4.2)

In this cases λ5 can be chosen positive, as a sign can be absorbed in a redefinition of ǫ.

– 5 –
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Next, we consider the case where sin ǫ is 0. This implies ǫ = 0 or π. We may however

absorb the minus sign corresponding to the second case in a redefinition of λ5 that is now

allowed to span over both positive and negative values.

Assuming v1 6= 0, we may solve the first equation in eq. (4.1) with respect to µ2. Then

by substituting µ2 in the other two equations we get

v2(v
2
1 − v2

2)(λ3 + λ4 + λ5) = 0 ,

v3(v
2
1 − v2

3)(λ3 + λ4 + λ5) = 0 .
(4.3)

Next to the two solutions present in the general case, this system has two further possible

solutions

3) v3 = 0, v2 = v1 = vw/
√

2 and permutations. This requires

µ2 = − (4λ1 + λ3 + λ4 + λ5) v2
w/4 . (4.4)

4) (λ3 + λ4 + λ5) = 0. This condition implies that in the real neutral direction there is

a enlarged–O(3) accidental symmetry that is spontaneously broken by the vacuum

configuration, thus we xpect extra GBs. Indeed in this case v1, v2 and v3 are only

restricted to satisfy v2
1 + v2

2 + v2
3 = v2

w and the parameter µ2 is given by µ2 = −λ1v
2
w.

Finally, the case λ5 = 0 allows special cases of the solutions 1) to 4), but does not give

rise to new solutions. For this reason, we will discuss only the general cases and the case

ǫ = 0 in the remainder of this section and comment what happens for λ5 = 0.

4.1 ǫ 6= 0: the alignment (v, v, v)

In the basis chosen, the vacuum alignment (v, v, v) preserves the Z3 subgroup of A4.
1 It is

convenient to perform a basis transformation into the Z3 eigenstate basis, 1, 1′ ∼ ω, 1′′ ∼ ω2

according to

ϕ = (Φ1 + Φ2 + Φ3)/
√

3 ∼ 1

ϕ′ = (Φ1 + ωΦ2 + ω2Φ3)/
√

3 ∼ ω

ϕ′′ = (Φ1 + ω2Φ2 + ωΦ3)/
√

3 ∼ ω2 . (4.5)

When A4 is broken to Z3 in the Z3 eigenstate basis, ϕ ∼ 1 behaves like the standard Higgs

doublets: its neutral real component develops a vacuum expectation values
〈

ϕ0R
〉

= vw

and all its other components correspond to the GBs eaten by the corresponding gauge

bosons. The physical real scalar gets a mass given by

m2
h1

=
2

3
v2
w(3λ1 + λ3 + λ4 + λ5 cos ǫ). (4.6)

1In the special case where ǫ = 0, the symmetry of the vacuum is enlarged to S3 even if S3 is not a

subgroup of A4. The reason is that setting ǫ = 0 effectively enlarges the symmetry of the potential to S4

(once also SU(2)×U(1) gauge invariance is required), which does have S3 as a subgroup.

– 6 –
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The neutral components of the other two doublets ϕ′ and ϕ′′ mix into two complex neutral

states and their masses are given by

m′,′′ 2
n =

v2
w

6

(

−λ3 − λ4 − 4λ5 cos ǫ ±
√

(λ3 + λ4)2+ 4λ2
5(1 + 2 sin2 ǫ)− 4(λ3 + λ4)λ5 cos ǫ

)

.

(4.7)

The charged components of ϕ′, ϕ′′ do not mix, their masses being

m′,′′ 2
ch = −v2

w

6

(

3λ4 + 3λ5 cos ǫ ±
√

3λ5 sin ǫ
)

. (4.8)

4.2 ǫ 6= 0: the alignment (v, 0, 0)

In the chosen A4 basis, the vacuum alignments (v, 0, 0) preserves the Z2 subgroup of A4.

As we did with the vacuum alignment that conserved the Z3 subgroup, in this case it

is useful to rewrite the scalar potential by performing the following Z2 conserving basis

transformation
Φ1 → Φ1 ,

Φ2 → e−iǫ/2Φ2 ,

Φ3 → eiǫ/2Φ3 .

(4.9)

Φ1 is even under Z2 and behaves like the standard Higgs doublet, while Φ2 and Φ3 are

odd. For what concerns the neutral states, the 6 × 6 mass matrix is diagonal in this basis

and with some degenerated entries: using a notation similar to the 2DHM, we have

m2
h1

≡ 2λ1v
2
w , m2

h2
= m2

h3
=

1

2
(λ3 + λ4 − λ5)v

2
w ,

m2
h4

= m2
h5

=
1

2
(λ3 + λ4 + λ5)v

2
w , m2

π0 = 0 ,
(4.10)

where the last state corresponds to the GB. The charged scalar mass matrix is also diagonal

with

m2
C1

= m2
C2

=
1

2
λ3v

2
w , m2

π+ = 0 , (4.11)

where the last state corresponds to the GB. The degeneracy in the mass matrices are

imposed by the residual Z2 symmetry. Contrary to the previous case the neutral scalar

mass eigenstates are real and not complex.

4.3 ǫ = 0: the alignment (v, v, 0)

This vacuum alignment does not preserve any subgroup of A4 and it holds that v = vw/
√

2.

From the minimum equations we have that

µ2 = −1

4
v2
w(4λ1 + λ3 + λ4 + λ5) . (4.12)

The scalar and pseudoscalar mass eigenvalues are given by

m2
h1

= −v2
w

2
(λ3 + λ4 + λ5) , m2

h2
=

v2
w

2
(4λ1 + λ3 + λ4 + λ5) ,

m2
h3

=
v2
w

4
(λ3 + λ4 + λ5) , m2

h4
= −λ5v

2
w ,

m2
h5

=
v2
w

4
(λ3 + λ4 − 3λ5) , m2

π0 = 0 .

(4.13)

– 7 –
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For the charged sector we have

m2
C1

=
v2
w

4
(λ3 − λ4 − λ5) , m2

C2
= −v2

w

2
(λ4 + λ5) m2

C3
= 0 . (4.14)

For λ5 6= 0 the alignment (v, v, 0) has the correct number of GBs, while for λ5 = 0

we have an extra massless pesudoscalar. However in both cases, λ5 6= 0 or λ5 = 0, the

conditions m2
h1

> 0 and m2
h3

> 0 can not be simultaneously satisfied. This alignment is

therefore a saddle point of the A4 scalar potential we are studying.

4.4 ǫ = 0: the alignment (v1, v2, v3)

This vacuum alignment, as the previous one, does not preserve any subgroup of A4. A

part from the condition ǫ = 0, we recall that in this case there is the further constraint

λ3 + λ4 + λ5 = 0 and λ5 may assume both positive and negative values since we have

reabsorbed in the λ5 sign the case ǫ = π.

Let us define v2
w = v2

1 + v2
2 + v2

3 = (1 + s2 + r2)v2
1 with s = v2/v1 and r = v3/v1

respectively. The mass matrix for the neutral scalar states presents two null eigenvalues–as

we expected since the condition λ3 + λ4 + λ5 = 0 enlarges the potential symmetry– and a

massive one

mh1
2 = 2λ1v

2
w . (4.15)

At the same time the mass matrix for the CP-odd states has one null eigenvalue–the GB

π0 and two degenerate eigenvalues of mass

m2
h2

= m2
h3

= (λ3 + λ4)v
2
w . (4.16)

Notice that for the special case λ5 = 0 we have the constraint λ3 = −λ4 that implies two

extra massless pseudoscalars. Finally for the charged scalars we have

m2
C1

= m2
C2

=
1

2
λ3v

2
w , m2

C3 = 0 (4.17)

The total amount of GBs is 5 (7) for the case λ5 6= 0 (λ5 = 0), so we have 2 (4) extra

unwanted GBs: this situation is really problematic. We note that the introduction of terms

in the potential that softly break A4 can ameliorate the situation with the Goldstone bosons.

We will analyse soft A4 breaking terms in more detail in [17].

5 CP non-conserved solutions

In this subsection, we consider vacua that exhibit spontaneous CP violation. This occurs

if the vev of at least one of the Higgses is inherently complex. A global rotation can always

absorb one of the three phases of the vevs.

We note that that the two natural vacua of the previous section (v, v, v) and (v, 0, 0)

do not have CP violating analogues as they have only one phase that can be reabsorbed

to make all vevs real.

– 8 –
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5.1 The alignment (v1eiω1, v2, 0)

In this case the third doublet is inert and therefore we are left only with two doublets that

develop a complex vev and after the redefinition, there is only one phase ω1. Taking the

generic solution (v1e
iω1 , v2, 0) the minimum equations are given by

v1

[

cos ω1[2µ2 + 2λ1(v
2
1 + v2

2) + (λ3 + λ4)v
2
2] + λ5v

2
2 cos(ǫ + ω1)]

]

= 0 ,

v2

[

(2µ2 + 2λ1(v
2
1 + v2

2) + (λ3 + λ4)v
2
1 + λ5v

2
1 cos(ǫ + 2ω1)

]

= 0 ,

v1

[

sinω1[2µ2 + 2λ1(v
2
1 + v2

2) + (λ3 + λ4)v
2
2] − λ5v

2
2 sin(ǫ + ω1)

]

= 0 ,

v2v
2
1 sin(ǫ + 2ω1) = 0 . (5.1)

The last equation can be solved by ǫ = −2ω1 or ǫ = −2ω1 + π. Like in section 4, we can

absorb the second case by a redefinition of λ5. The other three equations reduce to

v1 cos ω1

[

2µ2 + 2λ1(v
2
1 + v2

2) + (λ3 + λ4)v
2
2 + λ5v

2
2

]

= 0 ,

v2

[

2µ2 + 2λ1(v
2
1 + v2

2) + (λ3 + λ4)v
2
1 + λ5v

2
1

]

= 0 ,

v1 sinω1

[

2µ2 + 2λ1(v
2
1 + v2

2) + (λ3 + λ4)v
2
2 + λ5v

2
2

]

= 0 . (5.2)

that are simultaneously solved for v1 = v2 = vw/
√

2 and

µ2 = −v2
w

4
(4λ1 + λ3 + λ4 + λ5) . (5.3)

The neutral and charged 6 × 6 mass matrices are quite simple and it is possible having

analytical expression for the mass eigenvalues. For the neutral sector we have

m2
h1

=
1

2
v2
w(−λ3 − λ4 − λ5) , m2

h2
=

1

2
v2
w(4λ1 + λ3 + λ4 + λ5) ,

m2
h3

=
1

4
v2
w(λ3 + λ4 − λ5 + 2λ5 cos 3ω1) , m2

h4
= −λ5v

2
w ,

m2
h5

=
1

4
v2
w(λ3 + λ4 − λ5 − 2λ5 cos 3ω1) , m2

π0 = 0 ,

(5.4)

and for the charged one we have

m2
C1

=
v2
w

4
(λ3 − λ4 − λ5) , m2

C2
=

v2
w

2
(−λ4 − λ5) , m2

C3
= 0 . (5.5)

We see that the mass of the fourth neutral boson selects negative values for λ5, i.e. the

second solution ǫ = −2ω1 + π. It is interesting to see that in the CP conserved limits

ω1 → 0 (or π), it is not possible to have both m2
h1

and m2
h3

(respectively m2
h5

) positive,

but that in the general case, there are points in parameter space where indeed all masses

are positive. This is in particular clear in the region around cos 3ω1 = 0.

Finally, as for the CP conserved case, for λ5 = 0 we have two problems: an extra GB

and we cannot have all positive massive eigenstates.
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5.2 The alignment (v1eiω1, v2eiω2, v3)

In this case all the doublets develop a vev vi 6= 0, so we may have two physical CP violating

phases. We have the freedom to take ω3 = 0. In this case the first derivatives system is

given by

v1

{

cos ω1[2µ2 + 2λ1(v
2
1 + v2

2 + v2
3) + (λ3 + λ4)(v

2
2 + v2

3)]+

+λ5[v
2
3 cos(ǫ − ω1) + v2

2 cos(ǫ + ω1 − 2ω2)]
}

= 0 ,

v2

{

cos ω2(2µ2 + 2λ1(v
2
1 + v2

2 + v2
3) + (λ3 + λ4)(v

2
1 + v2

3)+

+λ5[v
2
3 cos(ǫ + ω2) + v2

1 cos(ǫ − ω2 + 2ω1)]
}

= 0 ,

v3

{

2µ2 + 2λ1(v
2
1 + v2

2 + v2
3) + (λ3 + λ4)(v

2
1 + v2

2)+

+λ5[v
2
1 cos(ǫ − 2ω1) + v2

2 cos(ǫ + 2ω2)]
}

= 0 , (5.6)

v1

{

sin ω1[2µ2 + 2λ1(v
2
1 + v2

2 + v2
3) + (λ3 + λ4)(v

2
2 + v2

3)]+

+λ5[v
2
3 sin(ǫ − ω1) − v2

2 sin(ǫ + ω1 − 2ω2)]
}

= 0 ,

v2

{

sinω2(2µ2 + 2λ1(v
2
1 + v2

2 + v2
3) + (λ3 + λ4)(v

2
1 + v2

3))+

+λ5[−v2
3 sin(ǫ + ω2) + v2

1 sin(ǫ − ω2 + 2ω1)]
}

= 0 ,

v3

[

λ5(−v2
1 sin(ǫ − 2ω1) + v2

2 sin(ǫ + 2ω2))
]

= 0 .

The last equation is solved for ω2 = −ω1 and v2 = v1 = v. Defining v3 = rv and

v2
1 + v2

2 + v2
3 = v2

w the previous system reduces to the three equations

µ2+
v2
w

2(2+r2)

[

(4+2r2)λ1+(1+r2)(λ3+λ4)+
λ5

cos ω1
(r2 cos(ǫ−ω1)+ cos(ǫ+3ω1))

]

= 0 ,

µ2+
v2
w

2(2+r2)

[

(4+2r2)λ1+(1+r2)(λ3+λ4)+
λ5

sinω1
(r2 sin(ǫ−ω1)+ sin(ǫ+3ω1))

]

= 0 , (5.7)

µ2 +
v2
w

(2 + r2)

[

(2 + r2)λ1 + λ3 + λ4 + λ5 cos(ǫ − 2ω1)
]

= 0 .

We can solve the third equation in eq. (5.7) in terms of µ2 and then the second equation

in terms of λ5, giving

µ2 = − v2
w

2+r2 [(2 + r2)λ1 + λ3 + λ4 + λ5 cos(ǫ − 2ω1)] ,

λ5 =
(r2 − 1)(λ3 + λ4) sinω1

(r2 − 1) sin(ǫ − ω1) − 2 cos ǫ sin(3ω1)
.

(5.8)

Then the first equation in eq. (5.7) has two possible solutions, for λ4 and ǫ respectively

i) λ4 = −λ3 , (5.9)

ii) tan ǫ =
r2 sin 2ω1 + sin 4ω1

r2 cos 2ω1 − cos 4ω1
. (5.10)

To test the validity of the solution so far sketched it is necessary to check to be in a true

minimum of the potential and not to have extra GBs a part from three corresponding to

the GBs eaten by the gauge bosons. However the relations given in eq. (5.8) and eq. (5.10)
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do not allow to get analytical solutions for the scalar masses in case ii). For this reason

we will consider only three special limits in this case: r ∼ 0, r ∼ 1 and r very large. We

think that these limit situations could be the most interesting ones in the model building

realizations. Indeed models present in literature [11, 12] fall in the third case, r very large.

5.2.1 Case i)

In this case the constraints λ4 = −λ3 puts λ5 to zero and enlarge substantially the sym-

metries of the potential: we have an accidental O(3) in the neutral real direction and

two accidental U(1)s due to λ5 = 0. For this reason the neutral spectrum has 5 massless

particles, the GB π0 and 4 other GBs, and only one massive state

m2
h1

= 2λ1v
2
w . (5.11)

The charged scalars are

m2
C1

= m2
C2

=
1

2
λ3v

2
w , m2

C3 = 0 (5.12)

The massive states are degenerate as in the CP conserving minima studied in section (4.3)

for the case λ5 = 0.

5.2.2 Case ii)

As it is not possible to find analytical solutions, here we will study three special limits of

case ii.

• r ∼ 0

In this case we will neglect terms of order r2. From eq. (5.10) we have that for r ∼ 0

ǫ ∼ −4ω1 + Nπ , (5.13)

thus from eq. (5.8) we have

µ2 = −λ1v
2
w − (λ3 + λ4)

1 − cos 6ω1

2 − 4 cos 6ω1
,

λ5 =
λ3 + λ4

1 − 2 cos 6ω1
. (5.14)

Under these approximations the 6 x 6 neutral scalar mass matrix gives one null mass

state, m2
π0 = 0, corresponding to the GB and the following five eigenvalues at leading

order, given by

m2
h1

∼ f [λi]O(r2)v2
w

m2
h2

∼ −(λ3 + λ4)/(1 − 2 cos 6ω1)v
2
w

m2
h3

∼ [−2λ1 + (4λ1 + λ3 + λ4)(1 − cos 6ω1)/(1 − 2 cos 6ω1)] v
2
w (5.15)

m2
h4

∼ −
[

(λ3 + λ4) cos 6ω1v
2
w/(1 − 2 cos 6ω1)

]

v2
w ,

m2
h5

∼ −
[

2(λ3 + λ4) sin2 3ω1/(1 − 2 cos 6ω1)
]

v2
w ,
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where f [λi] stays for a linear combination of the adimensional λ parameters of the

potential. The previous neutral spectrum present a lightest state that may be too

light to be phenomenologically acceptable. Assuming that the λ’s potential parame-

ters run in the ‘natural’ range 0.1 ÷ 10 or, somewhat optimistically, 10−2 ÷ 102. For

what concerns r we are in the limit of r2 ∼ 0, so as reference value we may take

r2 ∼ 10−3 ÷ 10−2. By combining these two ranges we find upper bounds

m2
h1

≤ 200 GeV for λi ∼ 100, r2 ∼ 10−2 ,

m2
h1

≤ 25 GeV for λi ∼ 10, r2 ∼ 10−3 . (5.16)

Since f [λi] ∼ 100 may be obtained only for very peculiar combinations of the poten-

tial parameters, the previous estimates indicate that for relative tiny value of r the

spectrum may present very light neutral states.

On the contrary, in the charged sector we have the two GBs eaten by the correspond-

ing gauge bosons, m2
C3

= 0, and two complex massive states with masses

m2
C1

∼ −[λ4 + (λ3 + λ4 cos 6ω1)/(1 − 2 cos 6ω1)]v
2
w/2

m2
C2

∼ −[2λ4 + (λ3 + 2λ4 cos 6ω1)/(1 − 2 cos 6ω1)]v
2
w/2 .

(5.17)

• r ∼ 1

In this limit we may write r ∼ 1 + δ and make an expansion in terms of δ neglecting

terms of order δ2. Thus we have

ǫ ∼ π/2 − ω1 − δ cot 3ω1 + Nπ , (5.18)

and then

µ2 = −(3λ1 + λ3 + λ4)/3v2
w − δ/9(λ3 + λ4)v

2
w ,

λ5 = δ(λ3 + λ4) csc 3ω1 . (5.19)

Under these approximations the 6 x 6 neutral scalar mass matrix gives the usual null

mass state, m2
π0 , corresponding to the GB and the following five eigenvalues

m2
h1

∼ m2
h2

∼ f [λi]O(δ2)v2
w ,

m2
h3

∼ m2
h4

∼ −(λ3 + λ4)/3v2
w ,

m2
h5

∼ 2(3λ1 + λ3 + λ4)/3v2
w ,

(5.20)

where again f [λi] stays for a linear combination of the λ’s potential parameters. A

analysis similar to the one for the case with r ∼ 0 shows that the neutral spectrum

may present very light states.

In the charged sector we have the GBs eaten by the gauge bosons and two degenerate

massive state

m2
C1

∼ m2
C2

∼ −λ4/2v2
w . (5.21)
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• r ≫ 1

In this case we may perform an expansion in term of 1/r and neglect terms of order

1/r2. From eq. (5.10) we have that

ǫ ∼ 2ω1 + Nπ , (5.22)

and then eq. (5.8) reduces to

µ2 ∼ −λ1v
2
w ,

λ5 ∼ −(λ3 + λ4) ,

(5.23)

Under these approximations we find a massless neutral scalar state, m2
π0 = 0, and

the other 5 neutral masses are given at leading order by

m2
h1

∼ m2
h2

∼ f [λi]O(1/r2)v2
w ,

m2
h3

∼ 2λ1v
2
w ,

m2
h4

∼ m2
h5

∼ (λ3 + λ4)v
2
w ,

(5.24)

where once more f [λi] stays for a linear combination of the λ’s potential parameters.

The charged scalar mass matrix is diagonal up to terms of order O(1/r2) with two

massive degenerate states

m2
C1

= m2
C2

= λ3v
2
w/2 , (5.25)

and the correct number of GBs.

If we consider now eq. (5.24) we see that as for r ∼ 0 and r ∼ 1 the expressions for

m2
h1,2

say that we may have two very light neutral scalars. Taking as reference values for

r the range 50 ÷ 200 we find

m2
h1,2

∼
√

f [λi] 5GeV(1 GeV) , (5.26)

giving

m2
1,2 ≤ 502 GeV2 for r ∼ 50 ,

m2
1,2 ≤ 102 GeV2 for r ∼ 200 , (5.27)

where 50(10) GeV may be obtained only for very peculiar combination of the potential

parameters. In other words we expect that also in the majority of the cases for r in the

range 50 − 200 we will have m2
1,2 very light.

In conclusion, taking into account the SM context and the potential given in eq. (2.2),

the solution (eiω1 , e−iω1 , r)vw/
√

2 + r2 with r small, close to 1 or large give rise to very light

states. Of course this does not mean that these states will be light for any value of r but it is

a quite strong hint that it is possible that this could be what indeed happens. As mentioned

before, the addition of soft A4 breaking terms to the potential may help in the cases of

Goldstone bosons or very light bosons. We will discuss these terms in more detail in [17].
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6 Bounds from the Higgs phenomenology

In this section we analyse the phenomenology corresponding to the different vacua discussed

above: unitarity, Z and W± decays and oblique parameters. In this way we manage to con-

strain the parameter space and, in some cases, to rule out the studied vacuum configuration.

6.1 Unitarity

In this section we account for the tree level unitarity constraints coming from the additional

scalars present in the theory. We examine the partial wave unitarity for the neutral two-

particle amplitudes for s ≫ M2
W , M2

Z . We can use the equivalence theorem, so that we

can compute the amplitudes using only the scalar potential described in eq. (2.2). In the

regime of large energies, the only relevant contributions are the quartic couplings in the

scalar potential [22–25] and then we can write the J = 0 partial wave amplitude a0 in

terms of the tree level amplitude T as

a0(s) ≡
1

32π

∫ 1

−1
dcos θ T (s) =

1

16π
F [λi] , (6.1)

where F represents a function of the λi couplings. Using for simplicity the notation

Φa =







w+
a

vae
iωa + h0

a + iza√
2






, (6.2)

we can write the 30 neutral two-particle channels as follows:

w+
a w−

b ,
zazb√

2
,

h0
ah

0
b√

2
, h0

azb . (6.3)

Once written down the full scattering matrix a0, we find a block diagonal structure. The

first 12 × 12 block concerns the channels

w+
1 w−

1 , w+
2 w−

2 , w+
3 w−

3 ,
z1z1√

2
,

z2z2√
2

,
z3z3√

2
,

h0
1h

0
1√

2
, ;

h0
2, h

0
2√

2
,

h0
3, h

0
3√

2
, h0

1z1 , h0
2z2 , h0

3z3 ,

while the other three 6 × 6 blocks are related to the channels

w+
a w−

b , w+
b w−

a , h0
azb , h0

bza , zazb , h0
ah

0
b ,

once we specify the labels (a, b) as (1, 2), (1, 3) and (2, 3). Notice that up this point

the analysis is completely general and is valid for all the vacua presented. We specify the

vacuum configuration, expressing the quartic couplings λi in terms of the masses of the

scalars. Afterwards, putting the constraint that the largest eigenvalues of the scattering

matrix a0 is in modulus less than 1, we find upper bounds on the scalar masses which we

use in our numerical analysis.
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6.2 Z and W ± decays

From an experimental point of view gauge bosons decays into scalar particles are detected

by looking at fermionic channels, such as for example Z → hA → 4f in the 2HDM, or

Z decays into partial or total missing energy in a generic new physics scenario. From

this point of view gauge bosons decays bound the Higgs sector in an extremely model

dependent way. However since in the SM the Z and the W± decays into 2 fermions, 4

fermions or all have been precisely been calculated and measured, we may focus on the

decays Z, W± → all. Doing this we overestimate the allowed regions in the parameter

space, but we have a first and model independent cut arising by the gauge bosons decay.

Once we will pass to a model dependent analysis the region may only be restricted, not

enlarged. Furthermore, defining the contribution from new physics as ∆Γ, since

∆Γ2f
Z,W± ∼ ∆Γ4f

Z,W± ∼ ∆Γall
Z,W± ≪ ΓZ,W± , (6.4)

we expect the error we commit being quite small.

From LEP data we have

Γexp
Z,W± = ΓSM

Z,W± + ∆ΓZ,W± (6.5)

with ∆ΓZ ∼ 0.0023 GeV and ∆ΓW± ∼ 0.042 GeV [26]. Therefore we may calculate the

width

Z → hihj ,

W+ → H+
i hj .

(6.6)

for the different multi Higgs (MH) vacuum configuration studied and select the points that

satisfy

ΓMH
Z,W± ≤ ∆ΓZ,W± . (6.7)

Here we have indicated the generic Z → hihj referring to our notation introduced in

section 2. Clearly when CP is conserved the hi have defined CP and only couplings to

CP odd states are allowed. Of course this is not true for the configuration when CP is

spontaneously broken.

In the vacuum analysis we did we have seen that in few situations we have extra

massless or very light particles. For those cases the gauge bosons decays put strong bounds.

For what concerns the Z decays we have











































kZ ≤ ∆ΓZ
16π

mZ

4c2
W

g2
if both particles hi and hj are massless ,

kZ

(

1 −
m2

hi

m2
Z

)3

≤ ∆ΓZ
16π

mZ

4c2
W

g2
if hj is masslees and 0 < m2

hi
< m2

Z ,

kZ

(

1 −
m2

hi
+ m2

hj

m2
Z

)3

≤ ∆ΓZ
16π

mZ

4c2
W

g2
if hi, hj 6= 0 and 0 < m2

hi
+ m2

hj
< m2

Z .

(6.8)
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where g is the SU(2) gauge coupling, cW the cosine of the Weinberg angle θW and the

parameter kZ is given by

kZ =
(

−UT
abU

T
(a+3)c + UT

(a+3)bU
T
ac

)2
, (6.9)

with U defined in eq. (3.2).

Similarly for the W± decays we have

kW

(

1 −
m2

Ci

m2
W

)3

≤ ∆ΓW
16π

mW

4c

g2
if hj is massless and m2

Ci
< m2

W
(6.10)

where, in analogy to the Z decay, the parameter kW is given by

kW =
∣

∣

∣S
†
abU

T
ac

∣

∣

∣

2
+
∣

∣

∣S
†

(a+3)bU
T
(a+3)c

∣

∣

∣

2
, (6.11)

with S defined in eq. (3.3).

6.3 Large mass Higgs decay

Electroweak data analysis considering the data from LEP2 [27] and Tevatron [28] put an

upper bound on the mass of the SM Higgs of 194 GeV at 99% CL [26]. In a MH scenario

this bound may be roughly translated in the upper bound for the lightest scalar mass, mh1
.

For large values of the SM Higgs mass, mh ≥ 2mW , the main channel decay is h → W+W−

and the upper bound is completely model independent. Let us indicate as ΓSM
WW (194) the

branching ratio of the SM Higgs into two W± at a mass of 194 GeV.

In a MH model the lightest Higgs boson couples to the gauge bosons with a coupling

that is
gh1ZZ = β gSM

hZZ ,

gh1WW = β gSM
hWW ,

(6.12)

with β ≤ 1. In our case for example β is given by

fa(cos ωa UT
a1 + sin ωj UT

(a+3)1) , (6.13)

with fa = va/vw and ωa the corresponding CP phase. Taking into account that h1 is less

produced then the SM Higgs and that its ΓMH
WW (mh1

) is reduced with respect to the SM

one,

ΓMH
WW (mh1

) ∼ |β|4ΓSM
WW (mh1

) ≤ ΓSM
WW (194) , (6.14)

we can roughly constrain the upper bound for masses mh1
≥ 194 GeV.

6.4 Constraints by oblique corrections

The consistence of a MH model has to be checked also by means of the oblique corrections.

These corrections can be classified [29–33] by means of three parameters, namely TSU ,
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that maybe written in terms of the physical gauge boson vacuum polarizations as [34]

T =
4π

e2c2
W m2

Z

[

AWW (0) − c2
W AZZ(0)

]

,

S = 16π
s2
W c2

W

e2

[

AZZ(m2
Z) − AZZ(0)

m2
Z

− A′
γγ(0) − (c2

W − s2
W )

cW sW
A′

γZ(0)

]

,

U =−16π
s2
W

e2

[

AWW (m2
W ) − AWW (0)

m2
W

− c2
W

AZZ(m2
Z) − AZZ(0)

m2
Z

− s2
W A′

γγ(0)

−2sW cW A′
γZ(0)

]

, (6.15)

where sW , cW are sine and cosine of θW and e is the electric charge. EW precision mea-

surements severely constrain the possible values of the three parameters T , S and U . In

the SM assuming m2
h > m2

Z we have

TSM
h ∼ − 3

16πc2
W

log
m2

h

m2
Z

,

SSM
h ∼ 1

12π
log

m2
h

m2
Z

,

USM
h ∼ 0 .

(6.16)

For a Higgs boson mass of mh = 117 GeV (and in brackets the difference assuming instead

mh = 300GeV), the data allow [26]

Sexp = 0.10 ± 0.10(−0.08)

T exp = 0.03 ± 0.11(+0.09)

U exp = 0.06 ± 0.10(+0.01) .

(6.17)

The constraints in eq. (6.17) must be rescaled not only for the different values of the Higgs

boson mass but also for a different scalar or fermion field content: for example, if we assume

to have a MH scenario this gives a contribution TMH to the T-parameter and we need

TNSS − T SM
h = T exp . (6.18)

A detailed analysis on the TSU in a MH model has been presented in [35, 36] where all

the details are carefully explained. However the resulting formulae are valid only for scalar

masses larger or comparable to mZ . Since this is not the case for a generic MH model and

particularly for the configurations studied so far, where we have a redundant number of

massless or extremely light particles, we improved their results, getting full formulae valid

for any value of the scalar masses (see the appendix A for details).

7 Results

We have performed a numerical analysis for all vacuum configurations considered, neglect-

ing the alignment (v, v, 0) since in this case there are tachyonic states. Our aim was to

find a region in the parameter space where all the Higgs constraints were satisfied for

each configuration considered. We have analysed the points generated through subsequent

constraints, from the weaker one to the stronger according to
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• points Y: true minima — all the squared masses positive — (yellow points in the

figures);

• points B: unitarity bound (blue points);

• points G: Z and W± decays (green points);

• points R: TSU parameters (red points).

The ratios B/Y , G/B, R/G may be used to indicate which is the stronger constraint for

each allowed minima. For almost each case we have compared the masses of the two lightest

neutral states –except for the alignment studied in section 5.2.1 where we have only one

massive neutral state– and the mass of the lightest neutral scalar versus the mass of the

lightest charged one. Then we have plotted the TS oblique parameters for all the green

points to check that T is the most constrained one –for this reason we have not inserted

the plots concerning U .

On the contrary for the CP breaking alignment (veiω1 , ve−iω1 , rv) we have personalized

the plots for reasons that will be clear in the following.

Notice that in all the following discussion, we refer as m1 (m2) to the (next-to-the-)

lightest neutral state and as mch1
as the lightest charged mass state.

7.1 CP conserved solutions

7.1.1 The alignment (v, v, v)

In section 4.1 we have redefined the initial 3 doublets in term of the Z3 surviving symmetry

representation: 1, 1′, 1′′. One combination corresponds to a Z3 singlet doublet, that

behaves like the SM Higgs: it develops a non-vanishing vev, gives rise to a CP even state

which we call h1 and to the three GBs eaten by the gauge bosons. The others two doublets,

ϕ′ and ϕ′′, are inert. From these informations we may already figure out what we expect

by the numerical scan:

1) when mh1
is the smallest mass, h1 is the lightest state and corresponds to the SM-

like Higgs. As a result, the usual SM mass upper bound applies. On the contrary as

long as we do not consider its coupling with the fermions we do not have a model

independent lower mass bound. This is due to a combined effect of the CP and Z3

symmetries: h1 is CP even and singlet under Z3, but couplings like Zh1ϕ
′0, Zh1ϕ

′′0,

W−h1ϕ
′1 or W−h1ϕ

′′1 are forbidden because of Z3 and then gauge boson decays

cannot constrain the lower mass of h1.

2) When ϕ′0 (ϕ′′0) is the lightest state, we do not have an upper bound on this state

because the couplings ϕ′0W+W− (ϕ′′0W+W−) is absent. On the contrary we may

have a lower bound because couplings like Zϕ′0ϕ′′0 and W−ϕ′0ϕ′′1 are allowed.

Combining the two situations sketched in points 1) and 2), we expect neither lower nor

upper bounds for the lightest Higgs mass: according to which of the two cases is most

favored, we may expect a denser vertical region around m1 ∼ mZ/
√

2 when the Z decay
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Figure 1. CP conserving alignment (v, v, v): the upper panels show the lightest neutral mass m1

versus the second lightest neutral mass m2 and the lightest charged one mch1
respectively. The gray

arc delimits the region below which the Z ( W ) decay channel opens. On the left plot the arc is

only of 45◦ because m2 ≥ m1. For points below the arc the Z ( W ) decay may happens. The points

allowed stretch in the region close to the border because of the conditions of eq. (6.8). The dashed

vertical lines indicates the approximated cuts that occur at m1 ∼ mZ/
√

2 and m1 ∼ 194 GeV

according to case 2) and case 1) respectively as explained in the text. The down panels show the

contributions to T and S for the G points. The gray dashed lines indicate the experimental values

at 3, 2, 1σ level –long,normal,short dashing respectively. The T parameter turns out to be the most

constraining one.

channel closes according to eq. (6.8) –case 2) more favored– or a denser vertical line around

m1 ∼ 194 GeV, if the large Higgs mass decay constrain applies –case 1) more favored.

Indeed by looking at figure 1 we see that we may find R (allowed) points for very tiny m1

masses and up to ∼ 500 GeV when the unitarity bound starts to show its effect. However

by looking at the crowded points in figure 1 it seems that case 2) is slightly preferred with

respect to case 1). Finally for the G points –those that satisfy the minimum, unitarity and

decays conditions– we have compared the contributions to the oblique parameters T and

S to see which of the two is more constraining. It turns out to be T , while we have not

reported U because its behavior is very similar to S.
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7.1.2 The alignment (v, 0, 0)

For what concerns the second natural A4 minimum, the Z2 preserving one, things slightly

change with respect to the Z3 surviving case. By section 4.2 we know that as for the Z3

case we have a SM-like doublet, Z2 even, that develops the vev, gives rise to a CP even

neutral state, h1, and to the GBs eaten by the gauge bosons. However contrary to the Z3

case, in the Z2 minima we have 4 Z2 odd states, 2 CP even labelled h2,3 and 2 CP odd

labelled h4,5. Moreover the 2 CP even (odd) are degenerate. As done in section 7.1.1 we

may sketch what we expect from the numerical analysis:

1) when h1, the Z2 even SM-like Higgs, is the lightest we expect the SM Higgs upper

bound but no lower bound because the interactions Zh1h4,5 are forbidden by the Z2

symmetry;

2) when the two lightest are the Z2 odd degenerate states h2,3 –CP even– or h4,5 –CP

odd– we expect no upper bound. Moreover since they are degenerate we do not

expect lower bound too. On the contrary we expect that Z and W decays constrain

the third lightest neutral Higgs mass and that of the charged ones.

By looking at figure 2 we see that indeed we have a large amount of points for which

m1 = m2 for values from 0 up to 700 GeV, thus reflecting case 2). Then the points

corresponding to case 1) have a sharp cut at m1 = 194GeV, that rejects many blue points,

i.e. those satisfying the unitarity constrain but not the decays one. We have reported also

m1 versus m3 to check that indeed, when m1 → 0, m3 is bounded by mZ as we expected.

Our intuitions are also confirmed by the plot m1 −mch1
. As for the Z3 preserving case the

most constraining oblique parameter is T .

7.1.3 The alignment (v1, v2, v3) with ǫ = 0, λ3 + λ4 + λ5 = 0

In this case we do not have any surviving symmetry which forbid some couplings. However

from section 4.3 we know that the conditions ǫ = 0, λ3 + λ4 + λ5 = 0 give rise to two extra

massless CP even particles. Therefore we expect that

1) when the lightest massive state is CP odd, then its mass is bounded by the Z decay

through eq. (6.8);

2) when the lightest massive state is CP even, then its mass could reach smaller values

since the Z decay bound would constrain the combination of its mass with the lightest

CP odd state mass.

Moreover in both cases we expect the mass of the lightest charged scalar bounded by W

decay, according to eq. (6.10), due to its coupling with W and the massless particles.

By figure 3 we see that it seems that case 2) happens very rarely because the cut at

m1 ∼ mZ is in evidence. As for the Z3 and Z2 preserving minima the T parameter is the

most constraining one.
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Figure 2. CP conserving alignment (v, 0, 0): the upper panels show m1 versus m2 (on the left) and

third lightest m3 (on the right). For the latter we reported only the R points. The central panel

shows m1 versus mch1
. The gray arc delimits the region below which the Z (W ) decay channel

opens while the second dashed vertical one the SM-Higgs mass upper bound at 194GeV. The first

dashed vertical line at m1 = mZ/
√

2 is reported to help a comparison with the Z3 preserving

case. On the first two plots the arc is only of 45 degrees because m2,3 ≥ m1. The down panels

show the contributions to T and S for the G points. The T parameter turns out to be the most

constraining one.
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Figure 3. CP conserving alignment (v1, v2, v3): the upper panels show m1 versus m2 and mch1

respectively. The dashed lines at m1 = mZ (vertical) and mch1 = mW (horizontal) delimit the

region below which the Z and W decay channels open respectively. The allowed points concentrate

close to the borders according to eqs. (6.8)–(6.10). The down panels show the contributions to T

and S for the G points. The T parameter turns out to be the most constraining one.

7.2 CP non-conserved solutions

7.2.1 The alignment (veiω1, v, 0)

As for the vacuum alignment (v1, v2, v3) commented in section 7.1.3 the alignment

(veiω1 , v, 0) does not preserve any A4 subgroup. Moreover since even CP is broken any

symmetry cannot help us in sketching the behavior we expect. In general any state, hav-

ing a CP even and a CP odd component, may couple to Z and to another neutral state.

However we expect limit situations in which for example CP is almost conserved and the 2

lightest states have almost the same CP parity. Thus for those cases we do not expect any

lower bound on m1 and m2. On the contrary the coupling between the W with the lightest

neutral and the lightest charged scalars does not go to zero when CP is almost restored.

Then we expect that the quantity m2
1 + m2

ch1
is bounded by the W decay (figure 4). For

what concerns the upper bound on the lighetst neutral mass state we do not expect any

clear cut because we may not identify a SM-like Higgs.
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Figure 4. CP no conserving alignment (veiω1 , v, 0): as in the previous figure the upper panels show

m1 versus m2 and mch1
respectively. In the plot on the right, the effect of the W decay constraint

on m2

1
+ m2

ch1
is clear by looking at the B points. The down panels show the contributions to T

and S for the G points. The T parameter turns out to be the most constraining one.

7.2.2 The alignment (veiω1, ve−iω1, rv) case i)

In section 5.2.1 we have seen that the alignment (veiω1 , ve−iω1 , rv) with the constrains

λ5 = 0, λ4 = −λ3, gives rise to 4 extra GBs and only to one neutral state. The simplicity

of the analytical expressions for the three no vanishing masses ensures that the boundness

constrain λ1 > 0 in addition to λ3 > 0 give positive masses. Thus in this case the Y points

are superfluous. As in the previous cases, we expect the B points to be similar to the Y

ones, because we choose our parameters centered in 1 in order not to have problems with

unitarity. In conclusion, for this case only the G and R points are interesting. Moreover

we expect that the most stringent bound is given by the decay constrains and not by

TSU : massless particles give a small contribution to the oblique parameters and due to

the limited number of new particles (2 charged degenerate scalars) TSU should not deviate

too much by the SM values. Indeed in figure 5 it is shown that the oblique parameters at 3

σ level do not constrain at all the G points. For this reason we reported only the R points

in the upper panel of figure 5. By looking at the plot m1 − mch1
in figure 5 we see that

with respect to the minima so far analyzed we have much less points and that as expected

there are cuts in correspondence of mZ and mW .
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Figure 5. CP no conserving alignment (veiω1 , ve−iω1 , rv) case i): the upper panel show m1 versus

mch1
. Only the R points are reported. The down panels show the contributions to T and S for the

G points. For this specific case the TSU oblique parameter constrain is irrelevant compared to the

decay one.

In conclusion, the solutions for the alignment (veiω1 , ve−iω1 , rv) with λ5 = 0, λ4 = −λ3

are not easy to find, but the Higgs phenomenology does not completely rule out this vacuum

configuration. We could introduce a weight to estimate how much a solution is stable or

fine-tuned but this goes over the purposes of this work. We expect that this situation with

4 extra massless particles could be very problematic when considering the model dependent

constraints [17].

7.2.3 (veiω1, ve−iω1, rv) case ii)

In the analytical discussion done in section 5.2.2 we have seen that at least in the special

limit r ∼ 0 (r ∼ 1 and r >> 1) we expect the presence of one (two) very light particles.

From all the numerical scans we performed we found out that solutions for the vacuum

alignment (veiω1 , ve−iω1 , rv) with the constraints of case ii) are very difficult to be found.

Moreover from figure 6 we see that for any value of r the two lightest states are always very

light, thus confirming our rough analytical approximations. Indeed both m1 and m2 are

lighter then we expected –especially m2 for r ∼ 0– thus indicating that some cancellations

have to occur to give all the masses greater then 0. This supports the difficulty to find

solutions, difficulty that cannot to be ascribed to any constrain we imposed, because even
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Figure 6. CP no conserving alignment (veiω1 , ve−iω1 , rv), case ii): the panels show m1 (on the

left) and m2 (on the right) versus r. The number of points is small, but the interesting information

is the order of magnitude of the masses.

in presence of 4 additional GBs as in section 7.2.2 we found out a significant larger number

of solutions.

The presence of a single R point in figure 6 is not statistically relevant, but more

interesting is the order of magnitude of m1,2: even in case ii) we expect that the align-

ment (veiω1 , ve−iω1 , rv) may present serious problems once we add model dependent con-

straints [17].

8 Conclusions

Flavour models based on non-Abelian discrete symmetries under which the SM scalar

doublet (and its replicants) transforms non trivially are quite appealing for many reasons.

First of all there are no new physics scales, since the flavour and the EW symmetries are

simultaneously broken. Furthermore this kind of models are typically more minimal with

respect to the ones in which the flavour scale is higher than the EW one: in particular the

vacuum configuration is simpler and the number of parameters is lower. We then expect an

high predictive power and clear phenomenological signatures in processes involving both

fermions and scalars.

Due to the restricted number of parameters and the abundance of sensitive observables

in these models, there are many constraints to analyze: the most stringent ones arise by

FCNC and LFV processes [17] but even Higgs phenomenology put several constraints

on this class of models. The impact of the symmetry breaking in cosmology has been

studied in [37].

In this paper we focussed on the A4 discrete group, but this analysis can be safely

generalized for any non-Abelian discrete symmetry. We consider three copies of the SM

Higgs fields, that transform as a triplet of A4. This setting has already been chosen in

several papers [10–13] due to the simple vacuum alignment mechanism.
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We have considered all the possible vacuum configurations allowed by the A4 × SM

scalar potential. These configurations can either conserve or violate CP. For all of them

we have considered only model independent constraints, related to the Higgs-gauge boson

Lagrangian, and postponing the model dependent analysis to an accompanying paper [17].

The first model independent constraint comes from the partial wave unitarity for the neutral

two-particle amplitudes, which puts upper bounds on the scalar masses. Then we have

explained how the light scalar mass region can be constrained considering the gauge boson

decays. Moreover we have seen how to put an upper bound on the lightest neutral state

mass considering the Higgs decay channel h → W+W−. Finally the most stringent bounds

arise by the oblique parameters TSU .

We have shown that the Higgs-gauge boson model independent analysis can be used

to study the parameter space of the difference vacuum configurations. Among the possible

solutions which minimize the scalar potential, only one is ruled out due to the presence of

tachyonic states. Furthermore, some other configurations may be obtained only by tun-

ing the potential parameters, giving rise to scalar spectrums characterized by very light

or even massless particles. Finally, for the remaining ones, we find that they may share

common features and this increases the difficulty in discriminating among them. Nev-

ertheless, the model independent approach restricts in a non trivial way the parameter

space. In conclusion, we underline that more constraining results can be found consider-

ing specific realizations which adopt the different vacuum configurations: we present this

analysis in [17].

Note added. While completing this paper we received ref. [38], where the scalar potential

with three copies of the SM Higgs doublet transforming as a triplet of A4 is also studied. We

stress the differences between this work an ours. Firstly, in [38], it is assumed that no new

CP phases appear in the Higgs vevs, while we take this important possibility into account.

Secondly, ref. [38] discusses three interesting, but rather arbitrary vacua, where our analysis

exhausts all possible vacua configurations. Lastly, a complete phenomenological study is

missing in [38].
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A Analytical formulae for TSU parameters

In this appendix we provide a sort of translator from the papers [30, 33] to our notations

and furnish the formulae we have used when different from their.

Reminding their notation we are in the case in which nd = 3 and nn, nc = 0 so we do

not have the matrices T and R. Then we have

U → S

ReVki → Uki ,

ImVki → Uk+3i ,

ωk → fke
iωk . (A.1)

Moreover they put the GBs as first mass eigenstates while we put them as the last ones

and contrary to them we use the standard definition for the photon.

We have rewritten they expression for

A(I, J, Q)−A(I, J, 0)

Q
=







dA(I, J) for I 6= 0 and/or J 6= 0 ,
QF (Q)

Q
∼ 1

48π2
log Q for I =J =0 since A(0, 0, 0)=0 .

(A.2)

For the first row of eq. (A.2) we have used

A(I, J, Q) ≃ A(I, J, 0) + Q
∂A(I, J, Q)

∂Q

∣

∣

∣

∣

∣

Q=0

= A(I, J, 0) + Q dA(I, J) (A.3)

with

dA(I, J)=







































1

288(I−J)3π2

[

I3+9JI2+6(I−3J) log(I)I2−9J2I−J3+6(3I−J)J2 log(J)
]

for I, J 6= 0, I 6= J ,
1

288π2
(1 + 6Log[I]) for J = 0 ,

1

48π2
(1 + log[I]) for I = J .

(A.4)

The function Ā(I, J, Q) enters only in the loops in which a gauge boson and a scalar run,

so we have always J = Q when computing the quantity

Ā(I, J, Q) − Ā(I, J, 0)

Q
= d̄A(I, J) . (A.5)

As a result, for this function, it does not make sense considering the case I = J = 0 being

J = Q = m2
V the gauge boson mass. We found

d̄A(I, Q) =























1

8(I − Q)3π2

[

Q
(

−I2 + 2Q log(I)I − 2Q log(Q)I + Q2
)]

for I 6= Q, I 6= 0 ,

∼ 0 for I = 0 ,

∼ 0 for I = Q .

(A.6)
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