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 23 

Parties to the Paris Agreement agreed to holding global average temperature increases 24 

'well below 2 °C above pre-industrial levels' and 'pursuing efforts to limit the temperature 25 

increase to 1.5 °C above pre-industrial levels'. Monitoring the contributions of human-26 

induced climate forcings to warming to date is key to understanding progress towards 27 

these goals. Here we use climate model simulations from the Detection and Attribution 28 

Model Intercomparison Project (DAMIP), as well as regularised optimal fingerprinting 29 

(ROF), to estimate that anthropogenic forcings caused 0.9–1.3 °C of warming in global 30 

mean near-surface air temperature in 2010–2019 relative to 1850–1900, compared to an 31 

observed warming of 1.1 °C, with greenhouse gases and aerosols contributing changes of 32 

1.2 – 1.9 °C and -0.7 – -0.1 °C, respectively, and natural forcings contributing negligibly. 33 

These results demonstrate the substantial human influence on climate to date and the 34 

urgency of action needed to meet the Paris Agreement goals. 35 

 36 

For more than twenty years, detection and attribution techniques have been used to identify 37 

human influence in global temperature changes, and to quantify the contributions of individual 38 

forcings to observed changes1–3. The commitment of parties to the Paris Agreement4 to ‘holding 39 

the increase in the global average temperature to well below 2 °C above pre-industrial levels, and 40 



pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels’, and the 41 

Global Stocktake process which aims to monitor progress towards the Paris goals, give new 42 

relevance to efforts to quantify human climate influence to date. While the Paris Agreement is 43 

not explicit about the meaning of either ‘global average temperature’ or ‘pre-industrial levels’, 44 

much of the climate impacts literature on which assessment of dangerous anthropogenic 45 

interference in climate is based has used globally-complete global mean near-surface air 46 

temperature (GSAT) from climate models to assess future climate impacts. Therefore we 47 

primarily assess human influence on GSAT here. Recent literature demonstrates that in climate 48 

models this metric of global mean temperature warms more than blended sea surface 49 

temperatures over ocean and near-surface air temperature over land, masked with observational 50 

coverage (GMST)5–7. Previous attribution studies typically estimated attributable trends over the 51 

past 50–60 years in GMST8, but estimates of warming relative to pre-industrial levels are more 52 

relevant to monitoring progress towards Paris Agreement goals. While multiple possible periods 53 

over the Holocene could be chosen as pre-industrial base periods9, we follow the IPCC Special 54 

Report on 1.5 °C10 (SR1.5) and choose 1850–1900. 55 

 56 

Comparison of global mean temperature metrics 57 

Annual mean global mean temperature anomalies in the HadCRUT411 dataset, relative to 1850–58 

1900, based on an area-weighted global mean of monthly-mean anomalies are shown in Figure 59 

1a. These are compared with global mean blended sea surface temperature over ocean and near 60 

surface air temperature over land and ice masked with HadCRUT4 coverage5 (GMST, see 61 

Methods) in individual CMIP612 historical simulations merged with SSP2-4.513 simulations 62 

(historical-ssp245 simulations hereafter). The simulated warming in 2010–2019 is 17% (5–95% 63 

range of 10%–24%) stronger in globally-complete GSAT than in HadCRUT4-masked GMST 64 

(Figure 1a), similar to previous results based on CMIP514,15, demonstrating the importance of the 65 

choice of metric for assessing attributable warming. Comparing globally-complete versions of 66 

GSAT and GMST, the simulated warming in GSAT is only 6% stronger (5–95% range of 2%– 67 

8%). Hence the largest contribution to the enhanced warming in globally-complete GSAT versus 68 

HadCRUT4-masked GMST warming comes from the observational masking.  69 

 70 

Multiplying the observed 2010–2019 warming in HadCRUT4 GMST of 0.94 °C (5–95% range 71 

of 0.90–0.99 °C, see Supplementary Table 1), by the ratio of simulated warming in globally-72 

complete GSAT to HadCRUT4-masked GMST (1.17), we infer a best estimate of observed 73 

2010–2019 warming in GSAT of 1.10 °C (5–95% range of 1.01–1.20 °C). Similar calculations 74 

using GISTEMP16 and NOAAGlobalTemp17 yield estimates of observed GSAT warming in 75 

2010–2019 of 1.18 °C and 1.12 °C respectively (Supplementary Table 1). For the remainder of 76 

the study we primarily report results based on the non-infilled HadCRUT4 dataset, and to ensure 77 

a like-for-like comparison, we use masked and blended model output when comparing with 78 



HadCRUT4 observations, including in all regressions. However, we report attributable warming 79 

based on simulated globally-complete GSAT. 80 

 81 

Attribution of global mean temperature changes 82 

In order to quantify the contributions of individual forcings to observed trends we used the 83 

CMIP612 DAMIP18 simulations from the thirteen CMIP6 models for which the necessary 84 

simulations were available (Figure 1b, Extended Data Figure 1, Supplementary Table 2): 85 

ACCESS-ESM1-519, BCC-CSM2-MR20, CanESM521, CESM222, CNRM-CM6-123, FGOALS-86 

g324, GFDL-ESM425, GISS-E2-1-G26, HadGEM3-GC31-LL27, IPSL-CM6A-LR28, MIROC629, 87 

MRI-ESM2-030 and NorESM2-LM31. We primarily used output from four experiments: 88 

historical-ssp245 (driven with changes in all anthropogenic and natural forcings), hist-aer (driven 89 

with changes in anthropogenic aerosol emissions and burdens only), hist-nat (driven with 90 

changes in natural forcings only), and hist-GHG (driven with changes in well-mixed greenhouse 91 

gas concentrations only). The CMIP6 historical-ssp245 simulations show very little net 92 

anthropogenic warming prior to the 1960s (Figure 1b). This is in contrast to the CMIP5 historical 93 

simulations, which showed on average approximately 0.2 °C warming by the mid-20th century8. 94 

This could be due in part to a stronger aerosol forcing or response in these CMIP6 models. If 95 

these CMIP6 simulations are correct, this would imply that there was very little net 96 

anthropogenic contribution to the early 20th century warming, and that almost all anthropogenic 97 

warming has occurred since the 1960s. We use global mean temperature in our main attribution 98 

analysis, since previous work7,32 has shown that including more spatial detail may not result in 99 

more robust results, perhaps because model uncertainty in spatial patterns of response is larger. 100 

We use five-year means rather than decadal means32,33, in an attempt to better constrain the 101 

natural forcing response, which includes the short timescale response to volcanic eruptions. 102 

Internal variability was estimated from intra-ensemble anomalies (see Methods). 103 

 104 

Regression coefficients of observed temperature changes against individual models’ simulated 105 

response to natural and anthropogenic forcings are shown in Figure 2a (see Methods). The 106 

anthropogenic response is detected using twelve of thirteen models (the uncertainty ranges on the 107 

ANT regression coefficients are above zero). The only exception is ACCESS-ESM1-5, which 108 

exhibits apparently unrealistic GMST evolution in its historical simulations, with almost no 109 

warming prior to 198019 (Figure 1a). By contrast, the natural forcing response is only detected 110 

using CanESM5, CESM2, CNRM-CM6-1, FGOALS-g3 and IPSL-CM6A-LR, and its regression 111 

coefficient is significantly less than unity using eight of the thirteen models, meaning that the 112 

simulated NAT response in these models is significantly stronger than observed. The natural 113 

forcing response appears to be somewhat less detectable and consistent based on these CMIP6 114 

simulations than using CMIP5 simulations8,32–34. Based on this regression the combined 115 

anthropogenic response is of realistic magnitude in ACCESS-ESM1-5, BCC-CSM2-MR, 116 

CESM2, CNRM-CM6-1, FGOALS-g3, GISS-E2-1-G, HadGEM3-GC31-LL, IPSL-CM6A-LR 117 



and NorESM2-LM, significantly overestimated by CanESM521, which is also apparent from 118 

Figure 1a, and significantly underestimated by GFDL-ESM4, MIROC6 and MRI-ESM2-0. Note 119 

that it is to be expected that significant differences between the simulated climate response in 120 

models and observations can increasingly be identified as the observational record lengthens.  121 

 122 

The realism of the scaled simulated responses to each set of forcings can be assessed by 123 

comparing residual observed variability, after subtraction of these responses, with simulated 124 

internal variability. The results of a residual consistency test32,35 (Figure 2c) indicate that 125 

residuals are inconsistent with pooled simulated internal variability for ACCESS-ESM1-5, 126 

CanESM5, CESM2, GISS-E2-1-G, HadGEM3-GC31-LL and NorESM2-LM, for which the 127 

residual is  significantly larger than expected at the 5% level, and similar results were obtained 128 

for a three-way regression (Figure 2d). This could be related to the cool temperatures through the 129 

mid-20th century simulated in the historical simulations of these models, with little warming 130 

apparent before 1975 (Figure 1a).  131 

 132 

In order to quantify the separate contributions of greenhouse gases and aerosols to observed 133 

changes, we show the results of a three-way regression onto the simulated responses to aerosols 134 

(AER, inferred from hist-aer), natural forcings (NAT, inferred from hist-nat), and greenhouse 135 

gases (GHG, inferred from historical-ssp245 minus hist-aer minus hist-nat, and including the 136 

response to well-mixed greenhouse gases, ozone and land-use change) in Figure 2b. The GHG 137 

response is detected using eleven of thirteen models, and the AER and NAT responses are 138 

detected using six. Our results suggest that ACCESS-ESM1-5, CanESM5, CESM2 and 139 

HadGEM3-GC31-LL significantly overestimate the responses to both greenhouse gases and 140 

aerosols, and that FGOALS-g3 underestimates them. NorESM2-LM appears to overestimate the 141 

response to aerosols, while MIROC6 and MRI-ESM2-0 underestimate the response to 142 

greenhouse gases. Regression coefficients from the three-way regression are poorly constrained 143 

in the case of GFDL-ESM4, which may be because its hist-aer ensemble has only a single 144 

ensemble member (Supplementary Table 2). Attributable temperature changes in 2010–2019 145 

from the two-way regression (Figure 2e) are generally consistent between the models, albeit with 146 

differences in the width of the uncertainty ranges, while individual model attributable 147 

temperature changes based on the three-way regression are in some cases inconsistent between 148 

models, which may reflect the effects of model uncertainty, which is not accounted here. Results 149 

obtained based on a three-way regression of the observations onto the simulated response to 150 

aerosols and other anthropogenic forcings (inferred from historical-ssp245 minus hist-GHG 151 

minus hist-nat, and including the response to aerosols, ozone and land-use change), natural 152 

forcings (from hist-nat), and well-mixed greenhouse gases (from hist-GHG) are less well-153 

constrained and show larger differences between models (Extended Data Figure 2), which may 154 

be partly because in this case the weaker aerosol response is estimated from the noisy residual, 155 

rather than the stronger greenhouse-gas response34.  156 

 157 



In addition to results based on individual model response patterns, we also present results based 158 

on an average of responses across models, using all available ensemble members, but giving 159 

equal weight to each model7,33,34. Since the ROF method does not explicitly account for model 160 

uncertainty, and previous work has shown that using the multi-model mean could lead to 161 

overconfident results7, we first evaluate the multi-model mean approach in an imperfect model 162 

framework7,32,36. We withhold one of the thirteen models from the multi-model average, treat one 163 

of its historical-ssp245 simulations as pseudo-observations, and use the remaining twelve models 164 

in a multi-model analysis to calculate the best estimate and 5–95% confidence interval on its 165 

GHG, AER and NAT response in globally-complete GSAT (Figure 3, y-axis), which can be 166 

compared with the true ensemble-mean simulated value in that model (Figure 3, x-axis). The 167 

process is repeated for all 105 historical-ssp245 simulations. The percentages of reconstructed 168 

attributable changes consistent with the true simulated changes at the 10% level were 91%, 90% 169 

and 79% for GHG, AER, and NAT respectively. These percentages are close to the expected 170 

90% coverage ratio, particularly for GHG and AER. These results suggest that under the 171 

paradigm that these models are statistically indistinguishable from the truth37, the confidence 172 

intervals for aerosol and greenhouse gas attributable changes are robust.   173 

 174 

Using a multi-model average of all thirteen models, we find a detectable response to 175 

anthropogenic forcing in a two-way regression, and a detectable response to GHG and AER in a 176 

three-way regression, with regression coefficients consistent with one and more closely 177 

constrained than based on most, though not all, individual model analyses (Figures 2a and b). 178 

However, the NAT response was not detected. We find 0.9–1.3 °C (5–95% range) of warming in 179 

GSAT in 2010–2019 relative to 1850–1900 attributable to anthropogenic forcings, consistent 180 

with our estimate of observed warming of 1.10 °C, with GHG, AER and NAT forcings 181 

contributing changes of 1.2 – 1.9 °C, -0.7 – -0.1 °C and -0.01 – 0.06 °C respectively (Table 1). 182 

We find consistent residuals (Figures 2c and d), and anthropogenic-attributable warming ranges 183 

which differ by no more than 0.12 °C when using either GISTEMP or NOAAGlobalTemp in 184 

place of HadCRUT4 (Extended Data Figures 3 and 4, Table 1), or when using hemispheric 185 

means in place of global means (Extended Data Figure 5, Table 1). Considered together with the 186 

imperfect model test, these results give us confidence that our multi-model estimates of 187 

attributable changes in temperature are robust. As expected, multi-model estimates of GHG-188 

attributable warming and AER-attributable cooling are both somewhat smaller in magnitude 189 

when the effects of ozone are grouped with those of aerosols rather than GHGs (Extended Data 190 

Figure 2, Table 1). Our estimated 5–95% range of anthropogenic-attributable warming in GMST 191 

in 2010–2019 of 0.8 – 1.1 °C (Table 1)  is consistent with the assessed likely range of 192 

anthropogenic warming of 0.8 – 1.2 °C in 2017 in SR1.514. This was based in part on a study 193 

which regressed HadCRUT4 GMST onto the simulated anthropogenic response from an 194 

impulse-response function model and obtained a 5–95% range of anthropogenic warming in 195 

2017 of 0.87–1.22 °C38. 196 

 197 



Discussion 198 

As well as informing us about the contributions of different forcings to observed climate change, 199 

information from detection and attribution analyses can also tell us about the degree of realism of 200 

climate models and whether they overpredict or underpredict the responses to particular forcings. 201 

Such information is useful for interpreting projections from these models. Much attention has 202 

recently focused on the high climate sensitivity of some CMIP6 models39, and while we find that 203 

some of the models considered here do overestimate the response to greenhouse gases, on 204 

average the greenhouse gas response of these models matches the observations closely (the best 205 

estimate of the multi-model greenhouse gas regression coefficient in Figure 2b is close to one). 206 

By contrast, while the multi-model mean aerosol response is not inconsistent with the 207 

observations, the best estimate is that these models overestimate the response to aerosols by 208 

about 30% (the best estimate of the multi-model aerosol regression coefficient in Figure 2b is 209 

0.76). Given that future climate change is expected to be dominated by greenhouse gas changes, 210 

overall these results increase confidence in the ensemble mean magnitude of projected warming 211 

derived from these models. At the same time, the significant differences in response between 212 

some models and observations identified here, are consistent with the finding that observational 213 

constraints may be used to narrow the uncertainty range of projected warming based on CMIP6 214 

models40,41. 215 

 216 

Estimates of greenhouse gas and aerosol-attributable warming relative to preindustrial have not 217 

been previously published, but it is notable that our estimated contributions from these forcings 218 

of 1.2 – 1.9 °C and -0.7 – -0.1 °C are substantially larger for example than their assessed likely 219 

contributions to 1951–2010 trends in GMST of 0.5 – 1.4 °C and -0.5 – 0.1 °C respectively in 220 

AR58. This is probably due to our consideration of a longer period starting in 1850 and ending in 221 

2019, our use of GSAT rather than GMST, and our grouping of ozone with well-mixed 222 

greenhouse gases, rather than with aerosols. Nonetheless, we suggest that our results give a fairer 223 

picture of the very substantial, albeit partly compensating, influences of human-induced changes 224 

in greenhouse gases and aerosols to date. While the Paris Agreement4 is not explicit on whether 225 

the ‘increase in the global average temperature’ it describes is in GMST or GSAT, nor what the 226 

appropriate definition of preindustrial is, nor whether it is referring to anthropogenic warming or 227 

total warming, our analysis suggests anthropogenic warming may already be close to the 1.5 °C 228 

threshold.  229 
 230 



 231 

 232 

Methods 233 

We downloaded monthly mean near-surface air temperature (tas), sea surface temperature (tos), 234 

and sea ice concentration (siconc) from all the CMIP6 models for which the necessary CMIP6 235 

historical12, ScenarioMIP13 SSP2-4.5 and DAMIP18 hist-nat and hist-aer simulations were 236 

available (Supplementary Table 2).  SSP2-4.5 forcings were used in the DAMIP simulations for 237 

the 2015–2020 period18, so we merged CMIP6 historical simulations with SSP2-4.5 simulations 238 

for the period 2015–2019 for consistency. We used ESMValTool42 to preprocess the model 239 

output, and used Cowtan5 code to calculate masked and blended temperature from the model 240 

output using HadCRUT411 observational masking, and using anomalies and variable sea ice 241 

concentration5. We calculated 5-year mean global means of these data using area-weighting, for 242 

the period January 1850 to December 2019 to give a vector with 34 elements, and then 243 

subtracted the long-term mean to give anomalies. Due to limited availability of the land-sea 244 

mask from some models, the land-sea mask from CNRM-CM6-1, regridded onto a 5°×5° grid, 245 

was used for all models. 246 

 247 

Observed GMST was calculated from HadCRUT411 monthly anomalies by area weighting, 248 

taking 5-year means, and subtracting the long-term mean to give anomalies. The median dataset 249 

was used for the main analysis results, and each of the 100 members of the ensemble dataset 250 

were treated in the same way and used to derive uncertainties in the multi-model attributable 251 

warming estimates (see also Extended Data Figure 6). The uncertainty range in inferred observed 252 

GSAT warming was obtained by randomly sampling a HadCRUT4 ensemble member, and the 253 

ratio of GSAT to GMST warming from an individual historical-ssp245 simulation, taking the 254 

product, and repeating 10000 times, with equal weight given to each CMIP6 model. The 255 

NOAAGlobalTemp17 (v5) dataset starts in 1880, but our analysis required data from 1850, so we 256 

concatenated HadCRUT4 anomalies relative to the NOAAGlobalTemp 1971–2000 base period 257 

over the 1850–1879 period with NOAAGlobalTemp, and then calculated global mean 5-yr mean 258 

anomalies as for HadCRUT4. The GISTEMP16 (v4) data are available on a 2°×2° grid, so we 259 

first interpolated onto the HadCRUT4 5°×5° grid. We then concatenated with HadCRUT4 260 

anomalies relative to the GISTEMP base period of 1951–1980 over the period 1850–1879, since 261 

GISTEMP starts in 1880. We then calculated global-mean 5-yr anomalies as for the other 262 

datasets. Five-year mean hemispheric means (Extended Data Figure 5) were calculated in the 263 

same way from gridded anomalies in masked and blended model output and observations. 264 

 265 

An optimal detection analysis was performed using the Regularised Optimal Fingerprinting 266 

algorithm32,35, implemented in Python43. This technique is a variant of linear regression, in which 267 



the time-series of observed GMST changes Y is regressed onto the simulated responses to sets of 268 

forcings Xi, i.e.  269 = + , 
where ϵ denotes internal variability. A total least squares algorithm was used to account for noise 270 

in the regressors Xi, i.e. the fact that simulated responses to forcings are affected by internal 271 

variability (due to small ensemble sizes)35. Key detection and attribution diagnoses were derived 272 

from the inferred scaling factors βi. The response to forcing i is detected if βi is significantly non-273 

zero. Attribution further requires βi being consistent with unity (i.e., consistency between the 274 

observed and simulated responses). Optimal estimation within this statistical model requires an 275 

estimate of the covariance matrix of ϵ, Σ, which is estimated from a sample of internal variability 276 

realisations simulated by the available climate models. Realisations of internal variability were 277 

calculated from all available ensembles of size greater than one (Supplementary Table 2), by 278 

subtracting the ensemble mean, and then inflating anomalies by −1 where N is the ensemble 279 

size, to account for the subtraction of the ensemble mean. Note that some of the models included 280 

here, particularly BCC-CSM2-MR, CNRM-CM6-1 and IPSL-CM6A-LR, have very high 281 

internal variability44, which will tend to inflate uncertainties compared to similar studies 282 

performed using CMIP58. For an ensemble of size N, N-1 anomaly segments were calculated, 283 

since the Nth sample calculated in this way is a linear combination of the other N-1 segments. 284 

This gave rise to 478 realisations of internal variability, which were used in all attribution 285 

analyses shown in this study. After pooling realisations across simulation type and model, half of 286 

these realisations (239 realisations, which is much more than the size of our detection vector), 287 

sampled alternately, were used to estimate the covariance matrix of internal variability for 288 

optimization, and the remaining half were used for the residual consistency test. All analyses 289 

were performed using a multi-model mean estimate of internal variability.  The main analyses 290 

presented used historical-ssp245 and hist-nat simulations for the two-way regressions, and 291 

historical-ssp245, hist-nat, and hist-aer simulations18 for the three way regressions. Regression 292 

coefficients corresponding to natural forcings, greenhouse gases and aerosols were then 293 

calculated from these regression coefficients2, and are shown in Figures 2a and b.  294 

 295 

Estimates of attributable warming in GSAT in 2010–2019 were calculated by multiplying these 296 

regression coefficients by the corresponding ensemble mean globally-complete GSAT response 297 

in 2010–2019 to each of the forcings concerned, with the anthropogenic response inferred by 298 

subtracting hist-nat from historical-ssp245 and the GHG response inferred by subtracting hist-aer 299 

and hist-nat from historical-ssp245. Since uncertainty in the attributable warming arises both 300 

from uncertainties in the regression coefficients and uncertainties in the ensemble mean 301 

simulated response to each forcing due to internal variability, we added uncertainty components 302 

from the regression coefficient and ensemble mean simulated warming in quadrature, treating 303 

positive and negative departures from the best estimate separately, to allow for skewness in the 304 

distribution of the regression coefficients. This approach is valid under the assumption that the 305 



uncertainties in the regression coefficients and the uncertainty in the simulated warming in 306 

2010–2019 are Gaussian, uncorrelated and small compared to their respective means, though as 307 

noted we do make a first order correction for non-Gaussian regression coefficient distributions 308 

by treating positive and negative departures separately.  309 

 310 

Since the ratio of warming in GSAT to HadCRUT4-masked GMST varies between models 311 

(Extended Data Figure 7), in the multi-model analysis we added an uncertainty contribution 312 

based on the spread in this ratio across models in place of the contribution from internal 313 

variability in the ensemble mean response to each forcing in an individual model. Further in the 314 

multi-model analyses based on HadCRUT4, we added an additional uncertainty component to 315 

account for observational uncertainty, based on the spread in regression coefficients across the 316 

100-member HadCRUT4 ensemble (Extended Data Figure 6). These contributions were added in 317 

quadrature to the uncertainties arising from the uncertainty in the regression coefficients, in the 318 

same way as described for individual models in the previous paragraph. Attributable warming 319 

ranges calculated in this way were very similar to those calculated based only on the uncertainty 320 

in the regression coefficient in the multi-model analysis and for models with large ensembles, 321 

and exhibited somewhat larger ranges for most models with smaller ensemble sizes (Extended 322 

Data Figure 8), and substantially larger ranges for BCC-CSM2-MR due to its small ensemble 323 

sizes (Supplementary Table 2) and large internal variability44. For the multi-model analyses, 324 

response patterns for each forcing were calculated by averaging individual response patterns over 325 

the thirteen models used (Supplementary Table 2). Individual response patterns were averaged 326 

with equal weight given to each model, and the corresponding effective ensemble size was 327 

calculated and used in the analysis. Attributable changes in GMST (Table 1) were calculated in 328 

the same way as for globally-complete GSAT, but used HadCRUT4-masked GMST from the 329 

models in place of globally-complete GSAT. 330 

 331 

The imperfect model test was carried out by withholding one model at a time from the multi-332 

model analysis, and using each of its historical-ssp245 simulations in turn as pseudo-333 

observations. Masked and blended temperatures (using the HadCRUT4 observational mask) 334 

from this simulation were then treated as observations, and a multi-model analysis using the 335 

remaining twelve models was used to infer that model’s ensemble mean 2010–2019 warming in 336 

response to natural forcings, greenhouse gases and aerosols, and associated 5–95% confidence 337 

ranges, using the same approach as that used to derive the multi-model results presented in 338 

Figure 2. Uncertainties in the attributable warming calculation were calculated as in the main 339 

analysis, and uncertainties in the ensemble mean response to each forcing (shown on the x-axis 340 

of Figure 3), were additionally accounted for when assessing consistency.  341 

 342 
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CESM2: 10.22033/ESGF/CMIP6.2185, 10.22033/ESGF/CMIP6.2187, 364 

10.22033/ESGF/CMIP6.2201; CNRM-CM6-1: 10.22033/ESGF/CMIP6.1375, 365 

10.22033/ESGF/CMIP6.1376, 10.22033/ESGF/CMIP6.1384; FGOALS-g3: 366 

10.22033/ESGF/CMIP6.1783, 10.22033/ESGF/CMIP6.2048, 10.22033/ESGF/CMIP6.2056; 367 

GFDL-ESM4: 10.22033/ESGF/CMIP6.1407, 10.22033/ESGF/CMIP6.1408, 368 

10.22033/ESGF/CMIP6.1414; GISS-E2-1-G: 10.22033/ESGF/CMIP6.1400, 369 

10.22033/ESGF/CMIP6.2062, 10.22033/ESGF/CMIP6.2074; HadGEM3-GC31-LL: 370 

10.22033/ESGF/CMIP6.419, 10.22033/ESGF/CMIP6.471, 10.22033/ESGF/CMIP6.10845; 371 

IPSL-CM6A-LR: 10.22033/ESGF/CMIP6.1534, 10.22033/ESGF/CMIP6.13801, 372 

10.22033/ESGF/CMIP6.1532; MIROC6: 10.22033/ESGF/CMIP6.881, 373 

10.22033/ESGF/CMIP6.894, 10.22033/ESGF/CMIP6.898; MRI-ESM2-0: 374 

10.22033/ESGF/CMIP6.621, 10.22033/ESGF/CMIP6.634, 10.22033/ESGF/CMIP6.638; 375 

NorESM2-LM: 10.22033/ESGF/CMIP6.502, 10.22033/ESGF/CMIP6.580, 376 

10.22033/ESGF/CMIP6.604. HadCRUT4 data (version 4.6.0.0 downloaded March 24th 2020) 377 

are available here (https://www.metoffice.gov.uk/hadobs/hadcrut4/), GISTEMP data (version 4 378 



with 1200-km smoothing, downloaded April  13th 2020) are available here 379 

(https://data.giss.nasa.gov/gistemp/), and NOAAGlobalTemp data (version 5.0.0 downloaded 380 

April 13th 2020) are available here (https://www.ncdc.noaa.gov/noaa-merged-land-ocean-global-381 

surface-temperature-analysis-noaaglobaltemp-v5).  382 

Code availability 383 

The analysis code used in this study is based on ESMValTool and is available here 384 

(https://github.com/ESMValGroup/ESMValTool/tree/gillett20). 385 

 386 

Additional information 387 

Correspondence and requests for materials should be addressed to N.P.G. 388 
 389 
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 500 

 Two-way regression Three-way regression 

 ANT NAT GHG  AER NAT 

Main analysis 0.92 – 1.30 -0.02 – 0.05 1.16 – 1.95 -0.73 – -0.14 -0.01 – 0.06 

hist-GHG   1.06 – 1.94 -0.71 – -0.03 -0.01 – 0.07 

Hemispheric 0.94 – 1.29 -0.02 – 0.04 1.36 – 2.04 -0.84 – -0.29 -0.02 – 0.05 

GISTEMP 1.04 – 1.42 -0.05 – 0.02 1.34 – 2.12 -0.78 – -0.19 -0.04 – 0.03 

NOAA 1.02 – 1.39  -0.03 – 0.05 1.37 – 2.15 -0.85 – -0.25  -0.05 – 0.05 

GMST 0.80 – 1.10 -0.02 – 0.04 1.04 – 1.69 -0.65 – -0.14 -0.01 – 0.04 

 501 

Table 1 Multi-model estimates of attributable temperature change between 1850–1900 and 502 

2010–2019 in °C. The table shows 5–95% confidence ranges in attributable warming from the 503 

main multi-model analysis (first row), from an equivalent analysis in which the GHG signal is 504 

derived from hist-GHG, and the AER signal is derived from historical-ssp245 minus hist-GHG 505 

minus hist-NAT (in this case ozone and land-use change are grouped with AER instead of GHG) 506 

(second row), from an analysis identical to the main analysis except using 5-yr mean Northern 507 

and Southern Hemispheric mean temperature instead of GMST (third row), from analyses 508 

identical to the main analysis, except using GISTEMP (fourth row), and NOAAGlobalTemp 509 

(fifth row) in place of HadCRUT4, and from an analysis identical to the main analysis, except for 510 

HadCRUT4-masked GMST instead of globally-complete GSAT (sixth row).  511 

  512 



Figure 1: Comparison of 1850–2019 global mean temperature evolution in observations 513 

and CMIP6 simulations. Coloured lines in the top panel show HadCRUT4-masked blended 514 

GMST5 anomalies relative to the 1850–1900 base period in one historical-ssp245 simulation 515 

from each model. The thick brown line shows the multi-model mean, using all ensemble 516 

members, but with equal weights given to each model. The thick red line shows the 517 

corresponding multi-model mean of globally-complete GSAT. The thick black line shows 518 

HadCRUT411. The lower panel compares HadCRUT4 GMST with simulated GMST from 519 

CMIP6 historical-ssp245 simulations with anthropogenic and natural forcings, natural forcing 520 

simulations, well-mixed greenhouse gas only simulations, and aerosol only simulations. The 521 

multi-model mean and 5–95% ensemble range are shown, both calculated with equal weight 522 

given to each model. 523 

 524 

Figure 2: Results of a regression analysis applied to CMIP6 models. The left column shows 525 

the results of a two-way regression of observed 5-year mean GMST onto the simulated response 526 

to anthropogenic (ANT) and natural (NAT) forcings from each model individually, and the right 527 

column shows the results of a corresponding three-way regression of observations onto the 528 

simulated response to aerosols (AER), natural forcings (NAT) and well-mixed greenhouse gases, 529 

ozone and land-use change (GHG). The top row shows regression coefficients and their 5–95% 530 

confidence ranges. Regression coefficients inconsistent with zero indicate a detectable response 531 

to the corresponding forcing, and regression coefficients consistent with one indicate a consistent 532 

magnitude of response in model and observations. The middle row shows the p-value resulting 533 

from a residual consistency test35. The bottom row shows the 2010–2019 change in global mean 534 

near-surface air temperature relative to 1850–1900 attributable to each forcing (5–95% 535 

confidence ranges). The horizontal black line indicates an estimate of the observed change in 536 

GSAT based on HadCRUT4.  537 

 538 

Figure 3: Imperfect model test of multi-model attributable warming calculation. The x-axis 539 

shows the simulated ensemble mean 2010–2019 temperature change relative to 1850–1900 in 540 

response to aerosols only (hist-aer simulations) (blue), natural forcings only (hist-nat 541 

simulations) (green) and greenhouse gases, ozone and land-use change (historical-ssp245 minus 542 

hist-nat and hist-aer) (grey) in each of the thirteen models used. Each historical simulation from 543 

the corresponding model was in turn treated as pseudo-observations, and the remaining twelve 544 

models were together used to provide estimates of response patterns to aerosols, natural, and 545 

greenhouse gas forcing in an optimal regression. The estimated attributable warming is shown on 546 

the y-axis. Crosses show best estimates, and vertical bars show 90% confidence ranges. For 547 

models with more than one historical-ssp245 simulation, confidence bars are offset along the x-548 

axis, to make them visible.  549 

 550 

 551 



Extended Data Figure 1: Global mean surface temperature (GMST) anomalies in all 552 

DAMIP historical simulations. The multi-model mean and 5–95% ensemble ranges, based on 553 

all available simulations with equal weight given to each model, are shown. HadCRUT4 GMST 554 

is shown in black on the top graph. 555 

 556 

Extended Data Figure 2: Results of a regression in which observed changes are 557 

decomposed into the response to natural forcings, well-mixed greenhouse gases, and other 558 

anthropogenic forcings. As Figure 2, except that the right panels show the results of a three-559 

way regression of observations onto the simulated response to natural forcings (NAT), well-560 

mixed greenhouse gases only (GHG), and other anthropogenic forcings (OTH), consisting of 561 

aerosols, ozone and land-use change. In this figure ozone and land-use change are grouped with 562 

aerosols, instead of with well-mixed greenhouse gases, as in Figure 2.  563 

 564 

Extended Data Figure 3: Regression results based on GISTEMP. As Figure 2, except using 565 

GISTEMP in place of HadCRUT4. 566 

 567 

Extended Data Figure 4: Regression results based on NOAAGlobalTemp. As Figure 2, 568 

except using NOAAGlobalTemp in place of HadCRUT4. 569 

 570 

Extended Data Figure 5: Regression results based on hemispheric means. As Figure 2, 571 

except using 5-yr mean hemispheric means in place of 5-yr mean GMST in the regressions. 572 

 573 

Extended Data Figure 6: Regression coefficients derived using each of the 100 ensemble 574 

members of HadCRUT411. Results are shown for two-way (a) and three-way (b) multi-model 575 

regression analyses, as shown in Figure 2a and b, except using each of the 100 members of the 576 

HadCRUT4 ensemble dataset in turn. 577 

 578 

Extended Data Figure 7: The ratio of 2010–2019 warming relative to 1850–1900 in GSAT 579 

to HadCRUT4-masked GMST and globally-complete GMST. The ratio of changes in GSAT 580 

to HadCRUT4-masked GMST is shown in (a), and the ratio of changes in GSAT to globally-581 

complete GMST is shown in (b) for each individual historical-ssp245 simulation of each model.  582 

 583 

Extended Data Figure 8: Comparison of uncertainty calculation approaches. As Figures 2e 584 

and f, except that in each case uncertainties in attributable temperature change are calculated in 585 

two ways. Bars show confidence intervals calculated, as in the main analysis, accounting for 586 

uncertainty in the ensemble mean simulated 2010–2019 GSAT changes in the case of the 587 

individual model analyses, and accounting for uncertainties in the ratio of GSAT to GMST and 588 

observational uncertainty, in the case of the multi-model analysis. Horizontal ticks show 589 

confidence ranges neglecting these sources of uncertainty. The latter calculation corresponds to 590 



multiplying the 5–95% confidence range on the regression coefficient by the corresponding 591 

ensemble mean simulated 2010–2019 GSAT change. 592 
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