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Abstract. The observed dark matter (DM) relic abundance can be created from a thermal
bath after the interaction rate which keeps the DM particles in thermal equilibrium falls
below the expansion rate of the Universe. DM can also be excited directly from the inflaton
or moduli decay, along with the excitations of the Standard Model degrees of freedom. The
goal of this paper is to discuss the evolution of the DM abundance from the very onset of
its creation from the inflaton decay. Based on the initial conditions such as the inflaton
mass and its decay branching ratio to the DM species, the reheating temperature, and the
mass and interaction rate of the DM with the thermal bath, the DM particles can either
thermalize or remain non-thermal throughout their evolution history. In the thermal case,
the final abundance can be set by the standard freeze-out mechanism for large annihilation
rates, irrespective of the initial conditions. For smaller annihilation rates, it can be set by
the freeze-in mechanism which also does not depend on the initial abundance, provided it is
small to begin with. For even smaller interaction rates, the DM becomes non-thermal, and
the relic abundance will be essentially set by the initial conditions. Also depending on its
mass and interaction cross section, the DM could remain relativistic, thus acting like a dark
radiation, or could behave as a warm or cold relic. We put model-independent constraints on
the DM mass and annihilation rate from over-abundance, and compare with complementary
constraints derived from indirect search experiments, Big Bang Nucleosynthesis, Cosmic Mi-
crowave Background, Planck measurements, and theoretical constraints from the unitarity of
the scattering matrix. For the non-thermal DM scenario, we also show the allowed param-
eter space in terms of the inflaton and DM masses for a given reheating temperature, and
compute the comoving free-streaming length to identify the hot, warm and cold DM regimes
in this parameter space.
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1 Introduction

There is overwhelming astrophysical and cosmological evidence for the existence of Dark
Matter (DM) in our Universe (for a review, see e.g., Ref. [1]). Assuming the standard ΛCDM
(cosmological constant+Cold Dark Matter) picture of the Universe, the recent measurements
from the Planck mission yield the current matter density in the Universe to be 4.9% in the
form of baryonic matter and 26.6% as non-baryonic, non-luminous DM, while the remaining
68.5% is in the form of Dark Energy [2]. Despite all the compelling evidence from its gravita-
tional interaction, the origin and nature of DM are still unknown, and resolving these issues
is one of the main goals of modern cosmology as well as particle physics.

On the other hand, cosmological observations such as Planck are strongly pointing to-
wards an epoch of primordial inflation [3], which is considered to be one of the best paradigms
to create the seed perturbations for the DM particles to form the observed large-scale struc-
tures [4]. Inflation not only stretches the primordial perturbations on large scales but also
dilutes all matter, and therefore, it is important that the inflaton must excite the Standard
Model (SM) degrees of freedom (dof) after the end of inflation for the success of Big Bang
Nucleosynthesis [5]. For a review on inflation, see e.g., Ref. [6].
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Irrespective of the origin of the inflaton field, whose potential leads to inflation, the
inflaton could decay into the SM dof, and also directly to the DM particles. The process
of creating the entropy happens after the end of inflation during reheating or preheating
(for reviews, see Refs. [6, 7]). If the inflaton is a SM gauge-singlet field φ, it can decay
into the DM quanta χ with some unknown branching ratio. As a concrete example, one
can envisage a visible-sector inflation scenario within the Minimal Supersymmetric Standard
Model (MSSM), where inflation can be driven by the superpartners of quarks and leptons [8–
10]. Note that the DM particles can also be created from the scatterings of the inflaton
quanta as it happens in the case of preheating [11], but here we will not discuss this scenario
as the detailed computation of such processes requires both analytical and lattice simulations,
and a precise definition of the reheat temperature of the Universe which goes well beyond
the scope of the present paper.

Irrespective of how the DM particles were initially created, they will remain in local
thermodynamic equilibrium (LTE) as long as their reaction rate Γχ is larger than the Hubble
expansion rate H(t). As the temperature of the Universe decreases, the reaction rate will
eventually drop below the Hubble rate, after which the DM particles will freeze out as a
‘thermal relic’ with a constant comoving number density. Now depending on their mass
and interaction rate, they could freeze out as a cold, warm, or hot relic [12]. It is well-
known that weak-scale cross sections (of order of 1 pb) naturally reproduce the observed
cold DM relic density [2], almost independent of the DM mass.1 For this reason, the Weakly
Interacting Massive Particle (WIMP) DM candidates, naturally arising in many beyond SM
scenarios [1, 14], are the main focus of current experimental searches.

On the other hand, if the DM can have a significant coupling to the inflaton or the
moduli field, it can be created efficiently from the direct decay of the inflaton or the moduli.2

The initial abundance of such DM particles could be large enough to overclose the Universe,
unless their interaction rate is sufficiently large in the early Universe, i.e. Γχ � H(t), to
annihilate them efficiently into the SM dof. The requirement of not to overproduce the DM
poses a stringent constraint on its mass and interaction rates. In fact, a small branching
fraction of the inflaton energy density to DM particles can be sufficient to overclose the
Universe [19].

In this paper, we will seek a model-independent way to analyze the thermal and non-
thermal properties of the DM directly produced from the inflaton decay, in terms of their
masses, the initial inflaton branching ratio and its coupling to the thermal bath. For this
purpose, we will make the following minimal assumptions:

1. The inflaton decays into the SM dof and the DM in a perturbative scenario; hence on
kinematical grounds, mχ < mφ/2. We do not consider non-perturbative DM production
processes during the coherent oscillations of the inflaton, e.g., superheavy DM with
mχ � mφ for large enough amplitude of the inflaton field [11], or fragmentation of the
inflaton condensate associated with a global symmetry [20, 21].

1This is strictly true only for mχ
>
∼ 10 GeV, whereas for lower DM masses, the thermal relic abundance

roughly increases by a factor of two for the same interaction strength [13].
2During inflation, there could be many fields dynamically present [15] – some may assist during inflation,

and some may obtain quantum-induced vacuum fluctuations to be displaced at very large vacuum expectation
values, commonly known as ‘moduli’ in string theory [16]. They typically couple very weakly via Planck-
suppressed interactions. Their decay products could also create DM, see e.g., Refs. [17, 18].
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2. The process of reheating is such that the decay products of the inflaton thermalize to
achieve LTE, i.e., both chemical and kinetic equilibrium, and provide us with a unique
reheat temperature TR [22] at which the Universe is dominated by relativistic species.
Since the DM is part of the decay products of the inflaton, its initial number density
nχ will be determined in terms of the number density of the inflaton field (nφ) and
the branching ratio of the inflaton decay to DM (Bχ) which should be small in order
to have the standard radiation-domination epoch immediately after reheating. Once
produced, assuming that they are stable on a cosmological time scale (in order to be a
viable DM candidate), the evolution of the χ particles can be parametrized in a model-
independent way by their average thermal annihilation rate �σv�, which we will treat
as a free parameter.

Depending on the size of the annihilation rate �σv� we can have the following three
possible scenarios for the evolution of the DM from the direct inflaton decay that could give
the observed relic abundance:3

1. For strong enough interaction rates, the DM particles will quickly thermalize, losing
their initial abundance, and follow the equilibrium distribution until they freeze out
as a thermal relic. This leads to the standard WIMP scenario [12] in which the final
relic abundance is independent of the initial conditions or the details of the production
mechanism.

2. For smaller annihilation rates such that the interaction of DM particles with the thermal
bath is too feeble to bring them into complete thermal equilibrium, they will decouple
from the bath soon after being produced. Hence, if they are produced abundantly,
the final number density will remain large, thus leading to overclosure of the Universe.
However, if their initial abundance is negligibly small, the interactions with the thermal
bath, although feeble, could still produce some DM particles whose final abundance
freezes in at some point as the interaction rate eventually becomes smaller than the
expansion rate. This is the FIMP (Feebly Interacting Massive Particle or Frozen-In
Massive Particle) scenario [24, 25].

3. For extremely small annihilation rates, the DM particles are never in thermal con-
tact with the bath, and are practically produced decoupled in an out-of-equilibrium
condition, and remain non-thermal throughout their evolution. This leads to a super-
WIMP (SWIMP) like scenario [26], where the final abundance is primarily determined
by the initial conditions (in our case set by the inflaton mass, reheat temperature and
branching ratio [27, 28]), just diluted by the expansion of the Universe.4

3Again a concrete example is MSSM inflation in which case the gravitino or neutralino could be the
lightest supersymmetric particle (LSP) which could be excited directly from the inflaton decay or its decay
products [23], besides exciting the SM dof. Since gravitinos mostly interact via Planck-suppressed interactions,
their abundance will freeze out soon after their production and will be mainly determined by the reheat
temperature, while neutralinos have weak interactions and can be brought into LTE once the decay products
of the inflaton completely thermalize. Therefore irrespective of how the neutralinos were initially created,
their final abundance is always set by the thermal decoupling temperature, unless the reheat temperature of
the Universe is much lower than the chemical decoupling temperature.

4An alternative example where the DM could still be produced from the thermal bath, while its relic
abundance is fixed by the reheating temperature is the Non-equilibrium thermal DM scenario [29].
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For each of the above three scenarios, we study the evolution of the DM number density
by numerically solving the Boltzmann equation, and obtain their final relic abundance as
a function of their mass and interaction rates for cold, warm as well as hot relics. For a
given reheat temperature and initial abundance, we identify the overclosure region and show
it as a function of the DM mass and annihilation rate in a model-independent way. For
the non-thermal case, we further show the overclosure and allowed regions in the (mφ, mχ)
plane for different reheat temperatures and inflaton branching ratios. For the thermal WIMP
case, we show the relevant constraints on the parameter space by taking into account various
theoretical as well as experimental and observational limits, such as unitarity, dark radiation,
indirect detection, Big Bang Nucleosynthesis (BBN), Cosmic Microwave Background (CMB)
and Planck. We conclude that while the allowed parameter space for the thermal WIMP
scenario is gradually shrinking due to a plethora of experimental constraints, the other viable
scenarios still remain rather unconstrained and unexplored.

The rest of the paper is organized as follows: In Section 2, we briefly review the evolution
of DM as governed by the Boltzmann equation. In Section 3, we discuss the production
of DM from inflaton decay: thermal production (both freeze-out and freeze-in scenarios)
in Section 3.1, and non-thermal production in Section 3.2. In section 4, we discuss various
experimental/observational constraints on DM. In Section 5, we present our numerical results
for both thermal and non-thermal scenarios. Our conclusions are given in Section 6.

2 Evolution of DM: a Brief Review

The microscopic evolution of the number density nχ for any species χ, and its departure from
thermal equilibrium, can be computed exactly by solving the Boltzmann equation [12]. In
the absence of Bose-Einstein condensation or Fermi degeneracy, one can neglect the quantum
statistical factors which is essentially equivalent to assuming that the phase space distribu-
tion functions of all relevant species follow the Maxwell-Boltzmann statistics. Under this
assumption, the Boltzmann equation can be written as

dnχ

dt
+ 3Hnχ = −�σv�

�

n2
χ − n2

χ,eq

�

, (2.1)

where �σv� is the thermally averaged total annihilation rate, σ being the total (unpolarized)
annihilation cross section, and v being the relativistic relative velocity between the two
annihilating particles.5 nχ,eq is the equilibrium number density of χ:

nχ,eq =
gχ

(2π)3

�

d3p exp
�

−
��

|p|2 +m2
χ − µχ

�

/T
�

, (2.2)

where gχ is the number of internal (e.g., spin or color) degrees of freedom of χ, T is the
temperature, and µχ is the chemical potential of species χ (energy associated with change in
particle number) which we will assume to be zero for simplicity. The 3Hnχ term in Eq. (2.1)
accounts for the dilution of number density due to the expansion of the Universe, and the first
(second) term on the right-hand side of Eq. (2.1) accounts for the decrease (increase) in the

5For the non-relativistic case, v is approximated by the relative velocity vr = |v1−v2|, while in the general
case, it is usually taken to be the Møller velocity v̄ =

�

(v1 − v2)2 − (v1 × v2)2. However, the manifestly

Lorentz-invariant definition should be v = v̄/(1−v1 ·v2) =
�

(p1 · p2)2 −m2
1m

2
2/(p1 · p2), where p1, p2 are the

four-momenta of the annihilating particles with mass m1 and m2 respectively [30].

– 4 –

dnχ + 3Hnχ = −⟨σv⟩ n2χ − n2χ,eq , (2.1)



number density due to annihilation into (production from) other particles at thermodynamic
equilibrium in the cosmic bath.

It is useful to express Eq. (2.1) in terms of the dimensionless quantities Yχ = nχ/s and
Yχ,eq = nχ,eq/s to scale out the redshift effect due to the expansion of the Universe. Here,

s =
2π2

45
gsT

3 (2.3)

is the entropy density and gs is the effective number of relativistic degrees of freedom con-
tributing to the total entropy density. Recall that in the early Universe with radiation
domination, gs is same as the relativistic degrees of freedom gρ contributing to the energy
density, and also appearing in the Hubble expansion rate:

H(T ) =

�

4π3

45

�1/2

g1/2ρ

T 2

mPl
, (2.4)

where mPl = 1.22 × 1019 GeV is the Planck mass. Henceforth, we will not distinguish the
two, and will take gρ = gs ≡ g which is valid for most of the thermal history of the Universe.6

Assuming an adiabatic and isentropic (constant entropy per comoving volume) expansion of
the Universe, Eq. (2.1) can be rewritten as [31, 32]:

dYχ
dx

= −s�σv�
Hx

�

1 +
1

3

d ln g

d lnT

�

�

Y 2
χ − Y 2

χ,eq

�

, (2.5)

with the introduction of a new independent variable x = mχ/T , since the interaction term
will depend explicitly on temperature rather than time. The current number density Yχ(x0)
of the species χ is obtained by integrating Eq. (2.5) from x = 0 to x = x0 ≡ mχ/T0, where
T0 = 2.7255(6) K is the present temperature of the CMB photons [33]. Knowing Yχ(x0), we
can compute the relic density of χ, conventionally defined as the ratio of its current mass
density, ρχ(x0) = mχs0Yχ(x0), and the critical density of the Universe, ρc = 3H2

0/8π. Using
the current values for the entropy density s0 = 2889.2 cm−3(T0/2.725 K)3, and the critical
mass density ρc = 1.05375(13)× 10−5h2 GeVcm−3 [34], we obtain

Ωχh
2 = 2.74× 108 Yχ(x0)

� mχ

1 GeV

�

. (2.6)

Eq. (2.5) is a form of the Riccati equation for which there is no general, closed-form
analytic solution. Therefore, the current density Yχ(x0) in Eq. (2.6) has to be either evaluated
by numerically solving Eq. (2.5) or approximated by analytical solutions in some special
cases. In the standard ΛCDM cosmology, the thermal WIMPs decouple (freeze out) from
the thermal plasma in the radiation-dominated era after inflation, and the decoupling occurs
at some freeze-out temperature TF when the annihilation rate Γχ = nχ�σv� drops below the
Hubble expansion rate H. Depending on the exact value of xF = TF /mχ, one can have the
following three scenarios, which we will discuss below.

6gs and gρ differ only when there are relativistic species not in equilibrium with photons which happens
in the SM for temperatures below the electron mass when the neutrinos have already decoupled from the
thermal bath, and e± pair-annihilation transfers entropy only to the photons, thus making gs slightly higher
than gρ today.
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2.1 Non-relativistic Case

For xF >∼ 3, the DM particles are mostly non-relativistic when they decouple from the thermal
plasma. This leads to the usual cold DM scenario with free streaming lengths of sub-pc
scale, as favored by the standard theory of large-scale structure formation [35, 36]. Analytic
approximate formulas for their relic abundance have been derived in the non-relativistic limit
xF � 1 [12, 32, 37, 38]. The analytic treatment has been improved recently [13] by using the
fact that the actual abundance Yχ tracks the equilibrium abundance Yχ,eq during early stages
of evolution (for x <∼ x∗), while at late stages (x >∼ x∗), Yχ,eq is exponentially suppressed and
has essentially no effect on the final abundance Yχ(x0). Here x∗ is some intermediate matching
point (not the freeze-out point xF , as commonly assumed before) where the deviation from
equilibrium starts to grow exponentially. After solving for x∗ iteratively as a function of mχ,
�σv� and g∗ (the relativistic degrees of freedom at x = x∗), Eq. (2.5) can be integrated from
x = x∗ to x = xF dropping the Yχ,eq term, to finally obtain an approximate analytic solution
for the relic density (in the s-wave limit) [13]:

Ωχh
2 =

9.92× 10−28 cm3s−1

�σv�
x∗

g
1/2
∗

(Γχ/H)∗
1 + α∗(Γχ/H)∗

, (2.7)

where the subscript ∗ means the values evaluated at x = x∗, and

α∗ =

� T∗

TF

dT

T∗

�

g

g∗

�1/2�

1 +
1

3

d ln g

d lnT

�

. (2.8)

The analytic result in Eq. (2.7) agrees with the exact numerical result within ∼ 3%. Note
that for an arbitrary l-wave annihilation, the above formalism can be repeated by Taylor-
expanding �σv� in powers of v2r ∼ 1/x.

2.2 Relativistic Case

In the other extreme limit, where the freeze-out occurs when the χ particles are still relativis-
tic (xF � 1), their current relic abundance Yχ(x0) is approximated by the equilibrium abun-
dance at freeze-out Yχ,eq(xF ) [12, 39]. In this case, Eq. (2.2) gives nχ,eq = (ζ(3)/π2)geffT

3,
where geff = gχ (3gχ/4) for bosonic (fermionic) χ, and ζ(x) is the Riemann zeta func-
tion. Using the entropy density in the relativistic limit as given by Eq. (2.3), we obtain
Yχ,eq(xF ) = 0.28geff/g(xF ) which is insensitive to the details of freeze-out. From Eq. (2.6),
the present relic density is then given by

Ωχh
2 = 7.62× 10−2 geff

g(xF )

� mχ

1 eV

�

. (2.9)

Relativistic DM particles in our Universe will lead to large damping scales >∼ 10 Mpc (roughly
the size of typical galaxy clusters), thereby suppressing the growth of small-scale structures.
They would predict a top-down hierarchy in the structure formation [40, 41], with small struc-
tures forming by fragmentation of larger ones, while observations have shown no convincing
evidence of such effects, thereby imposing quite stringent upper limits on these ‘hot’ DM
species. For instance, the light neutrino contribution to the non-baryonic DM relic density
is currently constrained to be Ωνh

2 ≤ 0.0062 at 95% confidence level (CL) [34]. Thus, hot
DM cannot yield the total observed DM density in our Universe [2], and if it exists,7 must

7Recently some hints for the presence of a hot DM component at 3σ have been found in order to resolve
the inconsistencies of the Planck measurements with other observations, such as the current Hubble rate, the
galaxy shear power spectrum and galaxy cluster counts [42].
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coexist with other cold/warm components. For example scenarios of such multi-component
DM, see Refs. [19, 43–46].

2.3 Semi-relativistic Case

In the intermediate regime xF ∼ 1, the χ particles are semi-relativistic when they decouple
from the thermal bath. The improved analytic treatment of [13], as discussed in Section 2.1,
is applicable only in the cold DM limit v2 � 1. In the semi-relativistic (‘warm’ DM) case, the
thermally averaged cross section �σv� involves multiple integrals, and cannot be expanded in a
Taylor series of the velocity-squared, as usually done for the non-relativistic case. In Ref. [47],
an ansatz was proposed to approximate the cross section by interpolating between its rel-
ativistic and non-relativistic expressions. It was also shown that the Maxwell-Boltzmann
distribution can still be used to compute �σv�, and the more appropriate Fermi-Dirac or
Bose-Einstein distributions are only needed for the calculation of the freeze-out abundance
Yχ,eq(xF ). Note that although the current observations do not rule out the possibility of the
whole DM density being comprised of warm DM species, there exist strong constraints from
observations of early structure, in particular from Lyman-α forest data [48, 49].

On the other hand, if the interaction of the DM particles with the thermal bath is not
large enough, they may not come into full LTE before they decouple from the plasma. In such
cases, their current relic density Yχ(x0) in Eq. (2.6) will also depend on the initial abundance,
and hence, on the production mechanism. This is discussed in the following section with a
simple production mechanism.

3 DM from Inflaton Decay

As discussed in Section 1, we assume that the DM particles χ directly couple to the inflaton
field φ so that it can be produced in the perturbative inflaton decay for mχ < mφ/2.

8 The
initial energy density stored in the inflaton field is ρφ ≈ nφmφ which is transferred to the
decay products at the end of inflation, thereby (re)heating the Universe with a temperature
TR. Assuming the Universe to be radiation dominated immediately after inflation, the total
energy density is given by ρr = (π2/30)gT 4

R.
9 Hence, the initial DM number density is given

by

nχ,in = Bχnφ � Bχ
π2g

30

T 4
R

mφ

, (3.1)

where Bχ is the branching ratio of the inflaton decay to DM. Since we are interested in
model-independent constraints on the DM parameter space, we keep our discussion general
in terms of the branching ratio, without specifying its exact formula in terms of the DM-
inflaton couplings, their masses, and the n-body decay kinematics (for n ≥ 2, depending on
the specific DM candidates).

8This is the minimum condition required solely due to kinematic reasons, and could be enough, for instance,
for fermionic DM coupling to the inflaton through a φχ̄χ term in the Lagrangian. For more complicated
inflaton decay chains involving many particles, a more stringent kinematic condition may be required.

9Note that the assumption ρφ = ρr = (π2/30)gT 4
R in order to determine the reheat temperature may not

be correct for all possible inflaton or moduli coupling to the SM dof. This definition is correct for large inflaton
coupling to matter, i.e. αφ ≥ 10−7 [22]. Typically the moduli coupling to the SM dof and DM will be very
small, i.e. αφ ∼ (mφ/mpl)

2. Therefore, strictly speaking our following analysis may not apply to the case of
moduli decay.
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where Bχ is the branching ratio of the inflaton decay to DM.



Once produced, depending on the strength of their interaction with the thermal plasma,
they could either thermalize fully/partially with the thermal bath or could remain non-
thermal throughout their evolution. In the former case, their current relic density will be
determined by their freeze-out abundance, independent of their initial abundance, and hence,
the inflation parameters. This is also true for the freeze-in scenario, provided the initial
abundance is small compared to the thermal abundance. In the non-thermal case, however,
their final number density is essentially the same as their initial abundance, only redshifted
by the Hubble expansion rate. These two different scenarios are discussed below in somewhat
details, with some numerical examples.

3.1 Thermal DM

In this case, depending on their thermal annihilation rate �σv�, the χ particles can either
reach full LTE (i.e. both kinetic and chemical equilibrium) with the plasma before decoupling
or decouple from the plasma before the full equilibrium could be established. The former
case occurs for large annihilation rates, which enable the χ particles to attain equilibrium
soon after their production. In this case, the χ particles follow the equilibrium distribution
until they freeze out at a certain stage, depending on the exact value of the interaction rate.
Thus, the initial abundance is irrelevant for their final relic density. In the latter case, the
annihilation rates are not large enough to bring the χ particles into full LTE, and hence,
their final abundance is determined by the annihilation rate as well as the initial abundance
given by Eq. (3.1). For given inflaton and DM masses, the final relic abundance Ωχh

2 will
exceed the observed value for a large reheat temperature and/or large branching ratio of the
inflaton to DM, thus overclosing the Universe. If the initial abundance is small, the DM
particles can still be produced from the thermal plasma unless the interaction rate is utterly
negligible. The dominant production in this case occurs at temperatures T >∼ mχ when the
interaction rate is still larger than the Hubble rate, and as the interaction rate drops below
the Hubble rate, the relic abundance will freeze-in. We discuss below both freeze-out and
freeze-in scenarios for the DM produced from inflaton decay, and give a numerical example
for each case to illustrate the magnitudes of the interaction cross section, as compared to the
well-known thermal WIMP scenario.

3.1.1 Freeze-out

In this case, the final relic abundance of the DM species is set by the freeze-out abundance
which is determined by the freeze-out temperature. This is obtained by solving the Boltzmann
equation (2.5) for Yχ. To calculate the freeze-out abundance more precisely, we track the
evolution of the quantity ∆χ = (Yχ − Yχ,eq)/Yχ,eq which represents the departure from
equilibrium. From Eq. (2.5), the evolution equation for ∆ is obtained to be of the form

d ln (1 +∆)

d lnx
= −d lnYχ,eq

d lnx
− Γχ,eq

H

�

1 +
1

3

d ln g

d lnT

�

∆(2 +∆)

1 +∆
, (3.2)

where Γχ,eq = nχ,eq�σv� = Yχ,eqs�σv� is the equilibrium annihilation rate, and H(x) can be
readily obtained from Eq. (2.4). For a Maxwell-Boltzmann distribution, the equilibrium num-
ber density and thermally averaged annihilation cross section are respectively given by [32]

Yχ,eq(x) =
45

4π4

gχ
g
x2K2(x), (3.3)

�σv� =
1

8m4
χTK

2
2 (x)

�

∞

4m2
χ

ds̄(s̄− 4m2
χ)
√
s̄K1

�
√
s̄

T

�

σ, (3.4)
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depending on their thermal annihilation rate ⟨σv⟩, the χ particles can either reach full LTE (i.e. both kinetic and chemical equilibrium) with the plasma before decoupling or decouple from the plasma before the full equilibrium could be established.

For given inflaton and DM masses, the final relic abundance Ωχh2 will exceed the observed value for a large reheat temperature and/or large branching ratio of the inflaton to DM, thus overclosing the Universe

3.1.1 Freeze-out



where K1(x) and K2(x) are the first and second modified Bessel functions of the second kind,
and s̄ = (p1+p2)

2 is the Mandelstam variable. Strictly speaking, Eq. (3.4) is only applicable
for the non-relativistic case with T <∼ 3mχ. However, as noted in Refs. [37, 47], this is a good
approximation (within 3% accuracy) even for the semi-relativistic case with T ∼ mχ. For
the relativistic case with T >∼ 3m, the final abundance is simply the equilibrium abundance,
as given in Eq. (2.9).

Following the strategy developed in Ref. [13] to solve Eq. (3.2) for ∆, we note that in
the early stages of evolution, Yχ tracks Yχ,eq closely, and hence, ∆, d∆/dx � 1. In this case,
the left-hand side of Eq. (3.2) can be safely dropped, thus leading to

∆(2 +∆)

1 +∆
= −d lnYχ,eq

d lnx

H

Γχ,eq

�

1 +
1

3

d ln g

d lnT

�

−1

. (3.5)

As the χ particles start freezing out with increasing x, ∆ increases exponentially, eventually
becoming much larger than 1. Thus for some intermediate value of x = x∗, ∆ ∼ O(1), and
for x > x∗, it grows exponentially. We define x∗ when ∆(x∗) ≡ ∆∗ = 1/2,10 and solve
Eq. (3.5) iteratively for x∗ as a function of mχ, �σv� and g∗. For the logarithmic derivative
of of g(T ), we use the calculations of Ref. [50] for the SM relativistic dof. For the cases with
no phase transition around T∗ = mχ/x∗, g(T ) is almost constant, and hence, this term can
be ignored in Eq. (3.5). Once the value of x∗ is found, we can determine T∗ = mχ/x∗ and
Yχ(x∗) = (3/2)Yχ,eq(x∗) (corresponding to ∆∗ = 1/2). The actual freeze-out temperature TF

is somewhere below T∗, since at T = T∗, (Γχ/H)∗ is still larger than 1 [13].
For x > x∗, Yχ � Yχ,eq, and hence, the Y 2

χ,eq term in Eq. (2.5) can be dropped.
Integrating from x = x∗ to x = x0, we obtain the present relic abundance:

Yχ(x0) =

�

1

Yχ(x∗)
+

� x0

x∗

dx
s�σv�
Hx

�

1 +
1

3

d ln g

d lnT

��

−1

, (3.6)

which can be used in Eq. (2.6) to compute Ωχh
2.

To perform the integration in Eq. (3.6), we need to know the x-dependence of �σv�
using Eq. (3.4) which is one of the key quantities that determine the current relic density.
In general, one can find an ansatz for �σv� which smoothly interpolates between the non-
relativistic and relativistic regimes. For simplicity, we will use the ansatz for an s-wave
annihilation of two Dirac fermions [47]:

�σv� =
α2
χm

2
χ

16π

�

12

x2
+

5 + 4x

1 + x

�

, (3.7)

where αχ denotes the coupling constant of the four-fermion interaction, which we will treat
as a free parameter. This approach works well for DM species that freeze out between
0.5 � xF � 15. For xF > 15 (roughly corresponding to mχ > 10 MeV), the particles are
already non-relativistic at decoupling, and hence, one can expand �σv� in a Taylor series in
terms of the averaged relative velocity:

�σv� = a+ b
�

v2r
�

+O
��

v4r
��

= a+
b�

x
+O

�

1

x2

�

. (3.8)

For s-wave annihilation, only the first term is considered, and in this case, Eq. (3.6) simplifies
further to finally yield the relic density given by Eq. (2.7). We note that this approximation

10As verified in Ref. [13], other alternate choices of ∆∗ change the final result only by about 0.1%.
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αχ2m2χ 12 5+4x ⟨σv⟩=16π x2+1+x ,



of using a constant value for �σv� also works well in the semi-relativistic case, and induces
an error of only about 6%, as compared to using the ansatz given by Eq. (3.7).

From Eq. (3.6), it is clear that the final abundance is inversely proportional to the
thermal annihilation rate. Thus, the larger the cross section, the longer the DM particles
stay in equilibrium with the thermal bath, and hence, the lower the final abundance. This is
true for both cold and warm DM cases, while for the hot DM case, the freeze-out is insensitive
to the interaction cross section, as discussed in Section 2.2.

The dependence of the current relic abundance on the annihilation rate for the thermal
DM which has frozen out is illustrated in Figure 1. Here we have chosen mχ = 100 GeV. The
solid black line shows the equilibrium distribution which is constant in the extreme relativistic
regime (x � 3), and exponentially suppressed in the non-relativistic regime (x � 3), as can
also be seen from Eq. (3.3) by taking the asymptotic limits of the Bessel function. For
large enough annihilation rates, the DM particles quickly thermalize, thereafter following
the equilibrium evolution until their freeze-out, and the final relic abundance is independent
of the initial abundance. The observed relic density as measured by Planck, shown as the
horizontal band, is obtained for the thermal annihilation rate of �σv� = 2 × 10−26 cm3s−1,
as shown by the solid red line. As the annihilation rate decreases, the DM freezes out earlier
(with smaller xF ), thus giving a larger relic density.

3.1.2 Freeze-in

In this scenario, the DM particles are very weakly coupled to the bath particles, and hence,
cannot reach full thermal equilibrium with the bath before decoupling. However, the feeble
interactions with the thermal bath (either directly [25] or mediated by a portal [51]) could
still populate the DM, until the interaction rate drops below the Hubble rate when the DM
abundance will freeze in. In this case, the final abundance is directly proportional to the
interaction strength; the larger the interaction cross section is, the more DM particles are
produced. In this sense, freeze-in can be viewed as the opposite process to freeze-out.

The final relic density in the freeze-in scenario will in general be determined by both
the interaction cross section and the initial abundance which in turn depends on the reheat
temperature and the branching ratio of the inflaton in our case. Note that the decoupling in
this case occurs for small values of xF , where the equilibrium abundance Yχ,eq is independent
of x, as can be seen from Eq. (3.3):

Yχ,eq(x � 1) =
45ζ(3)

2π2

geff
g

(3.9)

Also since the DM particles decouple very soon after being produced, the annihilation cross
section as well as the number of relativistic degrees of freedom can be treated as constant
with respect to x during this short period of time. Hence, the general Boltzmann equation
(2.5) can be approximated in this case to the following simple form:

dYχ
dx

=

�

π

45
g1/2�σv�mχmPl

x2
(Y 2

χ − Y 2
χ,eq) � − A

x2
(Y 2

χ −B), (3.10)

where A and B are constants in x. Eq. (3.10) has a simple analytical solution in terms of the
initial values xi = mχ/TR and Yχ,in, where the latter can be obtained from Eqs. (3.1) and
(2.3):

Yχ,in =
nχ,in

s(TR)
� 3

4
Bχ

TR

mφ

. (3.11)
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Figure 1. The illustration of freeze-out and freeze-in scenarios in the evolution of thermal DM
abundance as a function of x = mχ/T for different annihilation rates. Here we have chosen mχ = 100
GeV and for the initial conditions, mφ = 1013 GeV, TR = 10 TeV, Bχ = 10−15. The horizontal band
gives the observed relic density from Planck data [2].

In the limit x → ∞, the expression for Yχ(x) simplifies further, and the final relic density
can then be obtained using Eq. (2.6). This has two contributions:

Ωχh
2 = 2.06× 108 Bχ

mχ

mφ

�

TR

1 GeV

�

+g1/2�σv�mPlmχ

�

TR

1 GeV

�

�

5.6× 106
g2eff
g2

− 4.1× 107B2
χ

T 2
R

m2
φ

�

(3.12)

where the first term represents the non-thermal contribution which only depends on the
initial abundance, and the other two terms represent the thermal contribution which also
depend on the interaction rate. Note that the analytic expression (3.12) is valid as long as
mχ � TR otherwise the thermal production will be delayed to lower values of temperature
(or higher values of x) when the equilibrium distribution in Eq. (3.10) may no longer be flat,
but exponentially decaying. For the freeze-in scenario, it is usually assumed that the initial
abundance is negligible, so that the final abundance is solely determined by the interaction
strength in Eq. (3.12), as in the freeze-out scenario. This is illustrated in Figure 1 for a typical
choice of parameters: mχ = 100 GeV, mφ = 1013 GeV, TR = 10 TeV, and Bχ = 10−15 so that
the initial abundance given by Eq. (3.11) is negligible. The different dashed lines in Figure 1
correspond to the freeze-in scenario with various interaction rates, and hence, different final
abundances. Note that the final abundance increases with increasing interaction rate, in
contrast with the freeze-out scenario (the solid lines) where the final abundance decreases

with increasing interaction rate. As shown here, the observed relic abundance shown by
the gray horizontal band can be obtained in the freeze-in scenario for an interaction rate of
10−47 cm3s−1, which is much smaller than the typical value of 2 × 10−26 cm3s−1, as in the
freeze-out scenario.
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The illustration of freeze-out and freeze-in scenarios in the evolution of thermal DM abundance as a function of x = mχ/T for different annihilation rates. Here we have chosen mχ = 100 GeV and for the initial conditions, mφ = 1013 GeV, TR = 10 TeV, Bχ = 10−15.

Ωh2=2.06×108BmχTR χ χ mφ 1 GeV T g2 T2 +g1/2⟨σv⟩m m R 5.6 × 106 eff − 4.1 × 107B2 R (3.12) Pl χ 1GeV g2 χm2φ

where the first term represents the non-thermal contribution which only depends on the initial abundance, and the other two terms represent the thermal contribution which also depend on the interaction rate.



We should mention here that there could be other thermal production mechanisms for
the DM in specific models, depending on its interaction with the SM particles and/or the
model construction. For instance, a keV-scale sterile neutrino DM can be produced by the
Dodelson-Widrow mechanism [52], which is very similar to the freeze-in mechanism discussed
above.

3.2 Non-thermal DM

For very small cross sections, the DM particles are produced already decoupled from the
thermal bath, and hence, the thermal production in Eq. (3.12) is negligible compared to
the initial abundance, which could be sizable for large branching ratios. In this case, the
annihilation rate, and hence, the right-hand side of Eq. (2.5) can be neglected, thus leading
to dYχ/dx � 0. Hence, the final relic abundance is completely determined by the initial one
given by Eq. (3.11). Using the general expression (2.6), this yields the non-thermal relic DM
density

Ωχh
2 � 2.06× 108 Bχ

mχ

mφ

�

TR

1 GeV

�

, (3.13)

which can also be identified with the first term on the right-hand side of Eq. (3.12). Thus for
super-weak interaction rates, the final abundance only depends on the reheat temperature and
inflaton branching fraction for given DM and inflaton masses.11 Some illustrative cases for the
non-thermal DM are shown in Figure 2 for two typical values of the branching ratioBχ = 10−5

and 10−15. The choice of small values of Bχ will be justified below. The various contours
show the reheat temperature values required to obtain the correct relic density Ωχh

2 = 0.12
for given values of the inflaton and DM masses. These plots were obtained by numerically
solving the Boltzmann equation (2.5) for a typical annihilation rate �σv� = 10−60 cm3s−1 (see
Section 5 for details) following the procedure mentioned above, but the results agree quite
well with the approximate analytic formula given in Eq. (3.13). From Figure 2 it is clear
that as the inflaton branching fraction increases, the allowed range of the DM mass shifts
to lower values in order to satisfy the observed relic density, in accordance with Eq. (3.13).
We have shown the results for the inflaton mass mφ in the range 103 - 1013 GeV, the reheat
temperature TR between 1 - 109 GeV and for the DM mass mχ ≤ mφ/2.

For mχ � mφ, the non-thermal DM directly pair-produced from the inflaton decay
will have a large velocity at the time of matter-radiation equality (teq), unless the reheat
temperature is sufficiently high to make the velocity small due to redshift. The comoving
free-streaming length of a non-thermal DM at matter-radiation equality is given by

λfs =

� teq

tD

dt
vχ(t)

a(t)
, (3.14)

where a(t) is the scale factor, tD is the time at inflaton decay, and

vχ(t) =
|pχ|

Eχ

�
mφ

2
a(tD)
a(t)

�

m2
χ +

�

mφ

2
a(tD)
a(t)

�2
(3.15)

11Similar results were obtained in Ref. [53] for superheavy metastable DM candidates. Our result is valid
for all non-thermal DM production mechanisms as long as it is a perturbative process.
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Figure 2. The colored contours show the reheat temperature values required to give the correct
relic density for non-thermal DM as a function of the inflaton and DM masses, for a given inflaton
branching ratio.

is the magnitude of the velocity of the DM particle. Integrating Eq. (3.14), and requiring
that λfs

<∼ 1 Mpc, from Lyman-α constraints (for warm/cold DM), one obtains a lower limit
on the reheat temperature [54]

TR
>∼ 5× 104 GeV

� g

200

�

−1/4
�

1 GeV

mχ

�

� mφ

1012 GeV

�

(3.16)

Combining this with Eq. (3.13), and requiring that Ωχh
2 ≤ 0.12 to satisfy the observed

relic density for cold/warm DM relics, we derive an upper limit on the branching ratio of
the inflaton decay to DM: Bχ

<∼ 0.01(g/200)1/4. This is complementary to what is already
expected from the fact that for a standard Cosmology, Bχ must be small in order to have
a radiation-domination epoch immediately after reheating, followed by matter domination
only at a late stage.

4 Experimental Constraints

In this section, we summarize the various experimental constraints on the DM properties
relevant for our analysis.

4.1 Overclosure

For any DM candidate, we must ensure that it does not lead to an overclosure of the Universe.
Thus, we set the upper limit on the relic density of our χ particles coming from inflaton decay
using the observed value ΩCDMh2 = 0.1199 ± 0.0027 (68% CL;Planck +WP) [2], which
combines the Planck temperature data with WMAP polarization data at low multipoles. We
do not set a lower limit on Ωχ since for the cases in which the χ particles do not account
for the total observed abundance, the remaining fraction can be obtained by invoking a
hidden-sector/multi-component DM scenario (see e.g., [19, 43–46]).
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Figure 2. The colored contours show the reheat temperature values required to give the correct relic density for non-thermal DM as a function of the inflaton and DM masses, for a given inflaton branching ratio.
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4.2 Unitarity

The partial-wave unitarity of the scattering matrix, together with the conservation of total
energy and momentum, impose a generic upper bound on the cross section of thermal DM
annihilation into the j-th partial wave [55]:

σj ≤
4π(2j + 1)

m2
χv

2

�

1− v2r
4

�

, (4.1)

where vr = 2
�

1− 4m2
χ/s̄ is the relative velocity between the two annihilating particles

in the center-of-mass frame with total energy
√
s̄. Assuming that the s-wave piece with

j = 0 dominates in the partial-wave expansion, we obtain an upper bound on the thermally
averaged annihilation rate �σv� as a function of the DM mass from Eq. (3.4), where σ is
replaced with (σ0)max from Eq. (4.1). Since the current abundance of a non-relativistic
thermal relic scales as Ωχ ∝ 1/�σv�, the observed DM relic density constrains the mass of
the thermal relic to be mχ

<∼ 130 TeV to satisfy the unitarity bound. Note however that this
bound may not be applicable when the higher partial-waves are not suppressed, as is the case
when the DM particles decouple from the thermal bath while still being relativistic.

4.3 Planck

Precision measurements of the CMB angular power spectrum by Planck put stringent con-
straints on the number of effective neutrino species (Neff), which parametrizes the total
radiation energy density of the Universe:

ρr = ργ

�

1 +
7

8

�

Tν

Tγ

�4

Neff

�

, (4.2)

where ργ = (π2/15)T 4 is the energy density of photons, and the neutrino-to-photon tempera-
ture ratio Tν/Tγ = (4/11)1/3 assuming exactly three neutrino flavors and their instantaneous
decoupling. In the standard cosmological model, Tν/Tγ is slightly higher than (4/11)1/3 due
to partial reheating of neutrinos when electron-positron pairs annihilate transferring their
entropy to photons, thus giving Neff = 3.046 [56]. Now if the DM species remains in ther-
mal equilibrium with the neutrinos or electrons and photons after neutrino decoupling, and
transfers its entropy to them during its annihilation after it decouples at a later stage, it can
increase or decrease the value of Neff as we decrease the DM mass. Using the constraints
on Neff from Planck [2], together with the helium abundance Yp, Ref. [57] derived a robust
lower bound of 2-10 MeV on the thermal DM mass, depending on whether it is a fermion
(Dirac/Majorana) or scalar (real/complex) and whether it was in equilibrium with neutrinos
or with electrons and photons.

Another generic lower bound on the cold DM mass can be obtained using the CMB and
matter power spectrum observations which place an upper bound on the DM temperature-
to-mass ratio: T/mχ ≤ 1.07× 10−14 (1+ z)2 [58]. Evaluating this bound at matter-radiation
equality with a redshift of zeq = 3391 [2] and Tγ,eq � 0.77 eV [12], we obtain a lower limit of
mχ

>∼ 6.5 keV, which is much weaker than the limit derived in Ref. [57] using Neff .

4.4 Dark Radiation

The Planck constraints on Neff can also be used to set an upper limit on the amount of dark
radiation at decoupling. From Eq. (4.2), the radiation energy density apart from the photon
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and SM neutrino contribution is given by

Ωdarkh
2 =

7

8

�

4

11

�4/3

∆Neff Ωγh
2, (4.3)

where Ωγh
2 = 2.471 × 10−5(T/2.725)4 is the CMB radiation density [34], and ∆Neff =

Neff − 3.046. Using the 95% CL measured value of Neff = 3.30+0.54
−0.51 from Planck+WMAP-9

polarization data+SPT high-multipole measurement+Baryon Acoustic Oscillation measure-
ments from large scale structure surveys (Planck+WP+highL+BAO) [2], we obtain an upper
limit on the amount of dark radiation from Eq. (4.3): Ωdarkh

2 ≤ 4.46× 10−6. This also sets
the upper limit on the relic density of hot DM species. In order to obtain the mass range
in which the thermal DM species decouple while being relativistic, we calculate their free-
streaming length [59]:

λfs(z) = (1.4× 10−2 Mpc)g−1/3

�

1 + z

I0

�

1 keV

mχ

�

, (4.4)

where z is the redshift, and I0 = [
�

∞

0 f (0)(y)dy]/[
�

∞

0 y2f (0)(y)dy] is a dimensionless ratio,

given in terms of the comoving energy distribution function f(y) = 1/ exp [
�

y2 + x2 + 1]
with x = mχ/T and the superscript (0) refers to the current value of the distribution.
From the Ly-α constraints, we require λfs(0) <∼ 1 Mpc for cold/warm DM candidates. For
concreteness, we will impose the dark radiation upper limit from Eq. (4.3) for the parameter
space corresponding to λfs(0) > 2 Mpc.

4.5 BBN and CMB

The late annihilation of DM particles (after freeze out) can deposit hadronic and/or elec-
tromagnetic energy in the primordial plasma, thereby altering the history of nucleosynthesis
(BBN) [60–62] and recombination (CMB) [63–70]. These effects depend only on the type and
rate of energy injection into the thermal bath, thus allowing to set rather model-independent
bounds on the annihilation rate, especially for DM masses in the MeV-GeV range. During
nucleosynthesis, the injection of hadronic and/or electromagnetic energy can affect the abun-
dance of nuclei via (i) raising the neutron-to-proton ratio and therefore the primordial 4He
abundance, and (ii) high energy nucleons and photons disassociating nuclei. During recom-
bination, the injected electromagnetic energy ionizes hydrogen atoms, which results in an
increased number of free electrons, causing the broadening of the surface of last scattering,
and results in scale-dependent changes to the CMB temperature and polarization power spec-
tra, especially in the low multipole modes. The precision measurements of BBN and CMB
from WMAP and Planck data have been used to set upper bounds on the DM annihilation
cross section �σv�, as a function of the DM mass [60–62, 66–70].

4.6 Indirect Detection

After freeze-out, the relic annihilations of WIMP DMmay be indirectly observed by searching
for their annihilation products such as charged particles, photons and neutrinos (for a review,
see Ref. [71]). In fact, a number of indirect detection experiments have observed an excess of
electrons and positrons in the charged cosmic ray flux, and this was recently confirmed with
the precision measurements by AMS-02 [72]. Assuming a possible DM contribution to this
positron excess and using the high quality of AMS-02 data, Ref. [73] has performed a spectral
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analysis to put stringent constraints on the DM annihilation cross section for various leptonic
final states.12 Similar constraints were obtained for the DM annihilation into hadronic final
states [78, 79] in order to explain the absence of a corresponding excess in the cosmic-ray
antiproton flux in the PAMELA data [80, 81].

The DM annihilation to various SM final states can also lead to an observable photon flux
which can be produced either by direct DM annihilation (‘prompt’ gamma-rays) or by inverse
Compton scattering and synchrotron emission of the electrons and positrons created in the
DM annihilation. These photon signals are preferentially searched for in regions with high DM
densities and/or regions with reduced astrophysical background. The Fermi-LAT, with its
unprecedented sensitivity to gamma rays in the MeV-TeV energy range, has performed deep
searches for line spectrum (mono-energetic gamma-rays due to direct DM annihilation) [82] as
well as continuum spectrum (through DM annihilation into intermediate states) [83].13 They
have derived additional constraints on the DM annihilation cross section from the isotropic
diffuse gamma-ray emission in the galactic halo [85], nearby galaxy clusters [86], and nearby
dwarf spheroidal galaxies [87]. Similar constraints were also derived from the galactic center
region for various DM density profiles [88]. Complementing the Fermi-LAT range toward
higher energies, the HESS collaboration has performed a number of DM searches up to
multi-TeV DM masses [89–91].

The DM annihilation can also produce neutrinos which, like gamma-rays, can travel
essentially unabsorbed through the galaxy, and can be observed at large neutrino detectors
on Earth. Constraints on the DM annihilation rate were derived by the IceCube experiment
from the upper limits on the high-energy neutrino fluxes from the galactic halo [92], galactic
center [93], dwarf galaxies and clusters of galaxies [94]. These limits are currently somewhat
weaker than the gamma-ray limits for low DM masses, but become competitive at larger DM
masses. Combining the Fermi-LAT data on the diffuse gamma-ray and the IceCube data on
diffuse neutrino flux, robust constraints were derived on the DM annihilation rate for heavy
DM masses (1 TeV - 1010 GeV) [95].

5 Results

Using the model-independent approach outlined in Section 3, we solve the Boltzmann equa-
tion (2.5) numerically for the evolution of DM produced from inflaton decay. Here we assume
an s-wave annihilation, and take the annihilation rate �σv� to be a free parameter.14 Both
thermal and non-thermal regions are identified in the (mχ, �σv�) parameter space. Our re-
sults are shown in Figures 3-6 for a fixed inflaton mass mφ = 1013 GeV. We consider two
typical values of the reheat temperature TR = 109 GeV and 104 GeV, and branching ratios
of the inflaton decay Bχ = 10−5 and 10−15 for our illustration purposes. We have considered
the DM masses only below the reheating temperature, and do not analyze scenarios in which
DM could be produced during preheating or reheating (e.g., the WIMPzilla scenario [99]).

12A DM interpretation of the AMS-02 positron excess is still viable, if the DM annihilates to four-lepton
final states [74–77].

13There exists yet another class of spectral signature, namely, box-shaped gamma-ray spectrum, which
arises if the DM annihilates/decays into intermediate particles which further decay into photons [84]. The
cross-section limits derived using this feature are currently comparable to those obtained using the line-like
spectral feature.

14 This of course obliterates additional complications that could arise in special cases such as co-annihilation
and resonant annihilation. However, these are highly model-dependent effects, and we cannot easily generalize
our results to such scenarios. A more accurate, model-specific numerical analysis for the relic density can be
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Figure 3. Model-independent constraints on the DM annihilation rate as a function of the DM mass
for both thermal and non-thermal production mechanisms. Here we have chosen mφ = 1013 GeV,
TR = 109 GeV and Bχ = 10−5 as the initial parameters for the DM evolution. The blue-shaded region
is excluded from relic density constraints, and the observed relic density is obtained at its boundary
(shown by the solid and dotted blue lines). The green-shaded region at the bottom represents the
non-thermal DM scenario, while in the rest of the parameter space, the DM can be fully/partly
thermalized with the primordial bath. The various colored-shaded regions in the thermal region are
excluded (under certain assumptions) by the constraints given in Section 4; see text for details.

For each case shown in Figures 3-6, we calculate the current relic density of the ther-
mal DM to show the overclosure region (blue-shaded) which rules out a wide range of the
parameter space, irrespective of the initial choice of parameters. In the remaining allowed
parameter space, we identify the region with very low annihilation rates belonging to the non-
thermal DM scenario (green-shaded region) since for such extremely small interaction rates,
the DM particles cannot achieve LTE, and decouple soon after being produced essentially
with their initial abundance, as discussed in Section 3.2. So the overclosure condition for
non-thermal DM will be determined solely by the initial conditions, and this will be discussed
in Section 5.2.

5.1 Thermal Case

In the thermal DM regime, the region above the overclosure region with large annihilation
rate belongs to the freeze-out scenario, while in the white region below the overclosure one
with small annihilation rate belongs to either freeze-out or freeze-in scenario, depending on

done with publicly available codes [96–98].
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Figure 4. The parameters and labels are the same as in Figure 3, except for Bχ = 10−15 to show
the dependence on the initial conditions.

the initial conditions. The observed value of the relic density is obtained at the boundary
between these regions with the overclosure region (shown by the solid and dotted blue lines).
The thermal freeze-out region with large annihilation rate is severely constrained by many
experimental searches, as discussed in Section 4, some of which are shown by the shaded
regions 1-14 in Figures 3-6, and also summarized below:

• Region 1 is excluded by the dark radiation constraint, as discussed in Section 4.4. In this
region, the comoving free-streaming length is greater than 2 Mpc, thus corresponding
to a hot DM regime, while the relic density Ωχh

2 exceeds the upper limit of 4.46×10−6

derived from the Planck data [2].

• Region 2 is excluded by the recent Planck measurements of the effective number of
neutrino species, as discussed in Section 4.3, assuming that the DM interacts with
neutrinos or electrons and photons after the neutrino decoupling. This sets a robust
lower bound of order of MeV on the thermal DM mass with large interaction rates. The
precise value of the lower bound depends on whether the DM is a scalar or fermion and
on whether it couples to neutrinos or to electrons and photons. The bound shown by
region 2 assumes a Majorana fermion DM coupling to neutrinos. Note that Ref. [57] had
originally derived this limit for a cold DM candidate, but this is generically applicable
as long as the interaction rate is large enough to keep the DM in LTE after the neutrino
decoupling, thus transferring entropy at a late stage and affecting Neff .
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Figure 5. Same as Figure 3, except for TR = 104 GeV.

• Regions 3 and 4 are excluded by the BBN data, as discussed in Section 4.5, and assum-
ing DM annihilation into electron-positron and quark-antiquark pairs respectively [62].
Similarly, the region 9 is excluded by constraints derived from a combination of the
CMB power spectrum measurements from Planck, WMAP9, ACT and SPT, and low-
redshift datasets from BAO, HST and supernovae [70].

• Region 5 is excluded by the Fermi-LAT limit at 95% CL derived using the diffuse
gamma-ray flux from a combined analysis of 15 dwarf spheroidal galaxies, for an NFW
DM density profile and assuming DM annihilation into tau-antitau final states [87].
Region 7 is excluded by the 3σ Fermi-LAT limit obtained using the diffuse gamma-ray
emission in the Milky Way halo, assuming an NFW DM distribution and for annihila-
tion into bottom-antibottom quark pairs [85]. Region 8 is excluded by a similar analysis
using the Fermi-LAT data from galactic center [88]. The corresponding limits for other
SM final states are weaker, and are not shown here for clarity purposes.

• Region 6 is excluded by the Fermi-LAT 95% CL upper limit on the cross section of
DM annihilation to two photons from a dedicated search for the gamma-ray line spec-
trum [82]. Region 13 is excluded from a complementary search for the line spectrum
by HESS [91]. Note that these limits, although very stringent, can be evaded in most
of the popular WIMP DM models, since the direct annihilation to photon final states
is suppressed due to loop effects.

• Region 10 is excluded by the measurements of the antiproton flux from PAMELA,
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Figure 6. Same as Figure 3, except for TR = 104 GeV and Bχ = 10−15.

and assuming the DM annihilation to bb̄ final states [79]. These limits are applicable
only for hadronic final states. Similarly, region 15 is excluded by the 95% CL upper
limits, derived from the AMS-02 data, on the DM annihilation cross section for e+e−

final state [73]. The corresponding limits for other leptonic final states are somewhat
weaker, and hence, are not shown here.

• Region 11 is excluded by the IceCube upper limit on the DM annihilation cross section
for neutrino final states for the Virgo galaxy cluster including subhalos [94]. The
corresponding limits for other final states as well as from searches in galactic halo [92]
and galactic center [93] are somewhat weaker.

• Region 12 is excluded by the cascade gamma-ray constraints obtained using the Fermi-
LAT diffuse gamma-ray background data up to very high energies [95]. The corre-
sponding limits derived using the IceCube high-energy neutrino data are stronger at
higher DM masses, but weaker than the unitarity constraint (see Section 4.2).

• Region 14 is excluded by the unitarity constraints [55], as discussed in Section 4.2, which
sets an upper limit on the CDM mass of about 130 TeV for the allowed region, and
rules out heavy thermal DM, even with annihilation rates many orders of magnitude
below the thermal annihilation rate. This theoretical constraint is the most stringent
one for very heavy DM, and is applicable as long as the DM is produced thermally.

Note that for the indirect detection constraints, we have shown only a few of them (typi-
cally the most stringent ones) for illustration purposes. Most of these limits have limited
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applicability, as they were derived assuming DM annihilation into a particular final state,
and could be evaded in specific models where some of these annihilation channels might be
suppressed due to various reasons. Also note that additional constraints on the annihilation
cross section for a given DM mass might be derived using possible correlations with the DM
direct detection cross section limits [100] and collider search limits from mono-jet [101, 102]
and mono-photon [103, 104] final states with large missing energy. In the absence of a collider
signal for DM, model-independent constraints can be derived on the mass and interactions
of a generic WIMP DM candidate from direct and indirect detection searches [105].

The other allowed thermal DM parameter space, namely, the region with very low inter-
action rates such as the FIMP scenario, is hard to constrain from the existing experimental
limits. Various experimental tests of the freeze-in mechanism by measurements at colliders
or by cosmological observations were outlined in Ref. [25]. However, these signals depend
very much on the particular freeze-in scenario under consideration, and hence, it is diffi-
cult to derive model-independent constraints in the (mχ, �σv�) parameter space, except for
the generic dark radiation constraint as shown in Figures 3-6. Just to give an example of
additional model-specific bounds, a keV-scale sterile neutrino DM, which has a small inter-
action rate due to its mixing with the active neutrinos, could radiatively decay to an active
neutrino and a photon which will lead to a mono-energetic X-ray line [106], the absence
of which puts severe constraints on such keV-scale DM models, including their production
mechanisms [107].

5.2 Non-thermal Case

Now we move on to discuss the non-thermal DM region (green-shaded) in Figures 3-6. As
already discussed at length in Section 3.2, the final relic density of these DM particles is solely
determined by the initial conditions, which in our case, are set by the inflaton and DMmasses,
the reheat temperature and the branching ratio of the inflaton decay to DM. For fixed reheat
temperature and inflaton branching ratio, we show in Figures 7 and 8 the contours for relic
density computed using Eq. (3.13) in the (mφ,mχ) plane. We also calculate the comoving
free-streaming length using Eq. (3.14), and identify the regions with λfs < 10 kpc as cold
DM (CDM), with λfs > 2 Mpc as hot DM (HDM), and the rest as warm DM (WDM). Note
that there is no well-defined boundary between these regions, and we have just chosen some
typical values derived from various astrophysical data [49, 59] for our illustration purposes.
We find that the observed DM relic density can be satisfied for a narrow parameter space in
the CDM region (the boundary between the blue and orange regions), and the region above
this is excluded due to overclosure constraints. For the HDM case with TR = 109 GeV and
Bχ = 10−5 (Figure 7, left panel), an additional portion of the parameter space (blue-shaded
region at bottom-left corner) is ruled out due to the dark radiation constraint, as discussed
in Section 4.4.

Similar to the thermal DM case, additional constraints can be derived for specific non-
thermal DM candidates. For instance, a popular class of such candidates, known as the
Weakly Interacting sub-eV particles (WISPs) such as axions and axion-like particles which
often arise as the Nambu-Goldstone bosons associated with some global symmetry breaking,
can be constrained from various low-energy experiments involving lasers, microwave and
optical cavities, strong electromagnetic fields or torsion balances [108].
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Figure 7. The color-coded contours show the relic density of non-thermal DM produced from inflaton
decay as a function of the inflaton and DM masses for a fixed reheated temperature TR = 109 GeV
and fixed inflaton branching ratios Bχ = 10−5 and 10−15. We identify the cold, warm and hot DM
regions in each case by assuming that the corresponding free-streaming length given by Eq. (3.14)
should be < 10 kpc, between 10 kpc - 2 Mpc, and above 2 Mpc respectively. The blue-shaded
region for the CDM case is excluded by the overclosure constraint, as discussed in Section 4.1. The
additional blue-shaded region in the HDM case is ruled out by the dark radiation limit, as discussed
in Section 4.4.

Figure 8. The labels are the same as in Figure 7. Here TR = 104 GeV.
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Figure 7. The color-coded contours show the relic density of non-thermal DM produced from inflaton



6 Conclusions

In this paper, we have investigated the thermal and non-thermal properties of the DM in
a model-independent manner. In the thermal DM scenario, the relic abundance of the DM
species is determined by the freeze-out abundance, irrespective of the initial conditions or
production mechanism, provided its interaction with the thermal bath is large enough to
bring it into LTE soon after its production. For smaller interaction rates when the DM does
not attain full LTE, but can still be produced from the thermal bath, one can also obtain the
correct relic density through freeze-in mechanism. On the other hand, if the interaction rate is
negligibly small so that the DM remains decoupled from the thermal bath from the beginning,
the relic density is essentially determined by the initial conditions. Assuming that the DM has
a non-zero coupling to the inflaton so that it can be directly produced from the inflaton decay,
we have investigated all the above scenarios by tracking the evolution of the DM species from
the onset of its production. We have numerically solved the Boltzmann equation, and have
compared our results with the approximate analytical solutions in various regimes. We find
that a large portion of the parameter space is ruled out due to the overclosure constraint, and
the remaining parameter space for the usual WIMP DM candidate is highly constrained by
various experimental searches. On the other hand, the other viable regions for both thermal
and non-thermal DM candidates with very small interaction rate remain mostly unexplored.
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