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ABSTRACT

In the Nice model, the late heavy bombardment (LHB) is related to an orbital instability of giant planets which causes a fast dynamical
dispersion of a trans-Neptunian cometary disk. We study effects produced by these hypothetical cometary projectiles on main belt
asteroids. In particular, we want to check whether the observed collisional families provide a lower or an upper limit for the cometary
flux during the LHB. We present an updated list of observed asteroid families as identified in the space of synthetic proper elements by
the hierarchical clustering method, colour data, albedo data and dynamical considerations and we estimate their physical parameters.
We selected 12 families which may be related to the LHB according to their dynamical ages. We then used collisional models
and N-body orbital simulations to gain insight into the long-term dynamical evolution of synthetic LHB families over 4 Gyr. We
account for the mutual collisions between comets, main belt asteroids, and family members, the physical disruptions of comets,
the Yarkovsky/YORP drift in semimajor axis, chaotic diffusion in eccentricity/inclination, or possible perturbations by the giant-
planet migration. Assuming a “standard” size-frequency distribution of primordial comets, we predict the number of families with
parent-body sizes DPB ≥ 200 km – created during the LHB and subsequent ≃4 Gyr of collisional evolution – which seems consistent
with observations. However, more than 100 asteroid families with DPB ≥ 100 km should be created at the same time which are not
observed. This discrepancy can be nevertheless explained by the following processes: i) asteroid families are efficiently destroyed by
comminution (via collisional cascade), ii) disruptions of comets below some critical perihelion distance (q <∼ 1.5 AU) are common.
Given the freedom in the cometary-disruption law, we cannot provide stringent limits on the cometary flux, but we can conclude that
the observed distribution of asteroid families does not contradict with a cometary LHB.
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1. Introduction

The late heavy bombardment (LHB) is an important period in the
history of the solar system. It is often defined as the process that
made the huge but relatively young impact basins (a 300 km or
larger diameter crater) on the Moon like Imbrium and Orientale.
The sources and extent of the LHB, however, has been under-
going recent revisions. In the past, there were two end-member
schools of thought describing the LHB. The first school argued
that nearly all lunar basins, including the young ones, were made
by impacting planetesimals left over from terrestrial planet for-
mation (Neukum et al. 2001; Hartmann et al. 2000, 2007; see
Chapman et al. 2007, for a review). The second school argued
that most lunar basins were made during a spike of impacts that
took place near 3.9 Ga (e.g., Tera et al. 1974; Ryder et al. 2000).

Recent studies, however, suggest that a compromise scenario
may be the best solution: the oldest basins were mainly made by
leftover planetesimals, while the last 12–15 or so lunar basins
were created by asteroids driven out of the primordial main belt
by the effects of late giant-planet migration (Tsiganis et al. 2005;
Gomes et al. 2005; Minton & Malhotra 2009; Morbidelli et al.
2010; Marchi et al. 2012; Bottke et al. 2012). This would mean
the LHB is limited in extent and does not encompass all lunar

⋆ Table 1 is available in electronic form at http://www.aanda.org

basins. If this view is correct, we can use studies of lunar and
asteroid samples heated by impact events, together with dynam-
ical modelling work, to suggest that the basin-forming portion
of the LHB lasted from approximately 4.1–4.2 to 3.7–3.8 billion
years ago on the Moon (Bogard 1995, 2011; Swindle et al. 2009;
Bottke et al. 2012; Norman & Nemchin 2012).

The so-called “Nice model” provides a coherent explanation
of the origin of the LHB as an impact spike or rather a “saw-
tooth” (Morbidelli et al. 2012). According to this model, the
bombardment was triggered by a late dynamical orbital insta-
bility of the giant planets, in turn driven by the gravitational in-
teractions between said planets and a massive trans-Neptunian
disk of planetesimals (see Morbidelli 2010, for a review). In this
scenario, three projectile populations contributed to the LHB:
the comets from the original trans-Neptunian disk (Gomes et al.
2005), the asteroids from the main belt (Morbidelli et al. 2010)
and those from a putative extension of the main belt towards
Mars, inwards of its current inner edge (Bottke et al. 2012). The
last could have been enough of a source for the LHB, as recorded
in the lunar crater record (Bottke et al. 2012), while the asteroids
from the current main belt boundaries would have only been a
minor contributor (Morbidelli et al. 2010).

The Nice model, however, predicts a very intense cometary
bombardment of which there seems to be no obvious traces on
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the Moon. In fact, given the expected total mass in the origi-
nal trans-Neptunian disk (Gomes et al. 2005) and the size distri-
bution of objects in this disk (Morbidelli et al. 2009), the Nice
model predicts that about 5 × 104 km-size comets should have
hit the Moon during the LHB. This would have formed 20 km
craters with a surface density of 1.7 × 10−3 craters per km2. But
the highest crater densities of 20 km craters on the lunar high-
lands is less than 2 × 10−4 (Strom et al. 2005). This discrepancy
might be explained by a gross overestimate of the number of
small bodies in the original trans-Neptunian disk in Morbidelli
et al. (2009). However, all impact clast analyses of samples asso-
ciated to major LHB basins (Kring & Cohen 2002; Tagle 2005)
show that also the major projectiles were not carbonaceous chon-
drites or similar primitive, comet-like objects.

The lack of evidence of a cometary bombardment of the
Moon can be considered as a fatal flaw in the Nice model.
Curiously, however, in the outer solar system we see evidence
of the cometary flux predicted by the Nice model. Such a flux is
consistent with the number of impact basins on Iapetus (Charnoz
et al. 2009), with the number and the size distribution of the
irregular satellites of the giant planets (Nesvorný et al. 2007;
Bottke et al. 2010) and of the Trojans of Jupiter (Morbidelli et al.
2005), as well as with the capture of D-type asteroids in the outer
asteroid belt (Levison et al. 2009). Moreover, the Nice model
cometary flux is required to explain the origin of the collisional
break-up of the asteroid (153) Hilda in the 3/2 resonance with
Jupiter (located at ≃4 AU, i.e. beyond the nominal outer border
of the asteroid belt at ≃3.2 AU; Brož et al. 2011).

Missing signs of an intense cometary bombardment on the
Moon and the evidence for a large cometary flux in the outer
solar system suggest that the Nice model may be correct in its
basic features, but most comets disintegrated as they penetrated
deep into the inner solar system.

To support or reject this possibility, this paper focusses on the
main asteroid belt, looking for constraints on the flux of comets
through this region at the time of the LHB. In particular we focus
on old asteroid families, produced by the collisional break-up
of large asteroids, which may date back at the LHB time. We
provide a census of these families in Sect. 2.

In Sect. 3, we construct a collisional model of the main
belt population. We show that, on average, this population alone
could not have produced the observed number of families with
DPB = 200–400 km. Instead, the required number of families
with large parent bodies is systematically produced if the aster-
oid belt was crossed by a large number of comets during the
LHB, as expected in the Nice model (see Sect. 4). However, for
any reasonable size distribution of the cometary population, the
same cometary flux that would produce the correct number of
families with DPB = 200–400 km would produce too many fam-
ilies with DPB ≃ 100 km relative to what is observed. Therefore,
in the subsequent sections we look for mechanisms that might
prevent detection of most of these families.

More specifically, in Sect. 5 we discuss the possibility that
families with DPB ≃ 100 km are so numerous that they cannot
be identified because they overlap with each other. In Sect. 6
we investigate their possible dispersal below detectability due to
the Yarkovsky effect and chaotic diffusion. In Sect. 7 we dis-
cuss the role of the physical lifetime of comets. In Sect. 8 we
analyse the dispersal of families due to the changes in the or-
bits of the giant planets expected in the Nice model. In Sect. 9
we consider the subsequent collisional comminution of the fam-
ilies. Of all investigated processes, the last one seems to be the
most promising for reducing the number of visible families with

DPB ≃ 100 km while not affecting the detectability of old fami-
lies with DPB = 200–400 km.

Finally, in Sect. 10 we analyse a curious portion of the main
belt, located in a narrow semi-major axis zone bounded by the
5:2 and 7:3 resonances with Jupiter. This zone is severely de-
ficient in small asteroids compared to the other zones of the
main belt. For the reasons explained in the section, we think that
this zone best preserves the initial asteroid belt population, and
therefore we call it the “pristine zone”. We checked the num-
ber of families in the pristine zone, their sizes, and ages and we
found that they are consistent with the number expected in our
model invoking a cometary bombardment at the LHB time and a
subsequent collisional comminution and dispersion of the family
members. The conclusions follow in Sect. 11.

2. A list of known families

Although several lists of families exist in the literature (Zappalá
et al. 1995; Nesvorný et al. 2005; Parker et al. 2008; Nesvorný
2010), we are going to identify the families once again. The rea-
son is that we seek an upper limit for the number of old families
that may be significantly dispersed and depleted, while the pre-
vious works often focussed on well-defined families. Moreover,
we need to calculate several physical parameters of the families
(such as the parent-body size, slopes of the size-frequency dis-
tribution (SFD), a dynamical age estimate if not available in the
literature) which are crucial for further modelling. Last but not
least, we use more precise synthetic proper elements from the
AstDyS database (Knežević & Milani 2003, version Aug. 2010)
instead of semi-analytic ones.

We employed a hierarchical clustering method (HCM,
Zappalá et al. 1995) for the initial identification of families in
the proper element space (ap, ep, sin Ip), but then we had to per-
form a lot of manual operations, because i) we had to select a
reasonable cut-off velocity vcutoff , usually such that the number
of members N(vcutoff) increases relatively slowly with increas-
ing vcutoff. ii) The resulting family should also have a “reason-
able” shape in the space of proper elements, which should some-
how correspond to the local dynamical features1. iii) We checked
taxonomic types (colour indices from the Sloan DSS MOC cat-
alogue version 4, Parker et al. 2008), which should be consistent
among family members. We can recognise interlopers or over-
lapping families this way. iv) Finally, the SFD should exhibit
one or two well-defined slopes, otherwise the cluster is consid-
ered uncertain.

Our results are summarised in online Table 1 and the posi-
tions of families within the main belt are plotted in Fig. 1. Our
list is “optimistic”, so that even not very prominent families are
included here2.

There are, however, several potential problems we are
aware of:

1. There may be inconsistencies among different lists of fam-
ilies. For example, sometimes a clump may be regarded as
a single family or as two separate families. This may be the
case of: Padua and Lydia, Rafita and Cameron.

2. To identify families we used synthetic proper elements,
which are more precise than the semi-analytic ones.

1 For example, the Eos family has a complicated but still reasonable
shape, since it is determined by several intersecting high-order mean-
motion or secular resonances, see Vokrouhlický et al. (2006).
2 On the other hand, we do not include all of the small and less-certain
clumps in a high-inclination region as listed by Novaković et al. (2011).
We do not focus on small or high-I families in this paper.
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families background

Fig. 1. Asteroids from the synthetic AstDyS catalogue plotted in the proper semimajor axis ap vs. proper eccentricity ep (top panels) and ap vs.
proper inclination sin Ip planes (bottom panels). We show the identified asteroid families (left panels) with the positions of the largest members
indicated by red symbols, and also remaining background objects (right panels). The labels correspond to designations of the asteroid families that
we focus on in this paper. There are still some structures consisting of small objects in the background population, visible only in the inclinations
(bottom right panel). These “halos” may arise for two reasons: i) a family has no sharp boundary and its transition to the background is smooth,
or ii) there are bodies escaping from the families due to long-term dynamical evolution. Nevertheless, we checked that these halo objects do not
significantly affect our estimates of parent-body sizes.

Sometimes the families look more regular (e.g., Teutonia)
or more tightly clustered (Beagle) when we use the syn-
thetic elements. This very choice may, however, affect re-
sults substantially! A clear example is the Teutonia family,
which also contains the big asteroid (5) Astraea if the syn-
thetic proper elements are used, but not if the semi-analytic
proper elements are used. This is due to the large differences
between the semi-analytic and synthetic proper elements of
(5) Astraea. Consequently, the physical properties of the two
families differ considerably. We believe that the family de-
fined from the synthetic elements is more reliable.

3. Durda et al. (2007) often claim a larger size for the parent
body (e.g., Themis, Meliboea, Maria, Eos, Gefion), because
they try to match the SFD of larger bodies and the results of
SPH experiments. This way they also account for small bod-
ies that existed at the time of the disruption, but which do not
exist today since they were lost due to collisional grinding
and the Yarkovsky effect. We prefer to use DDurda instead of
the value DPB estimated from the currently observed SFD.
The geometric method of Tanga et al. (1999), which uses
the sum of the diameters of the first and third largest family

members as a first guess of the parent-body size, is essen-
tially similar to our approach3.

2.1. A definition of the production function

To compare observed families to simulations, we define a “pro-
duction function” as the cumulative number N(>D) of families
with parent-body size DPB larger than a given D. The observed
production function is shown in Fig. 2, and it is worth noting that
it is very shallow. The number of families with DPB ≃ 100 km is
comparable to the number of families in the DPB = 200–400 km
range.

It is important to note that the observed production func-
tion is likely to be affected by biases (the family sample
may not be complete, especially below DPB <∼ 100 km) and
also by long-term collisional/dynamical evolution which may

3 A complete list of all families’ members is available at our web site
http://sirrah.troja.mff.cuni.cz/~mira/mp/fams/, including
supporting figures.
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Fig. 2. A production function (i.e. the cumulative number N(>D) of
families with parent-body size DPB larger than D) for all observed fami-
lies (black) and families corresponding to catastrophic disruptions (red),
i.e. with largest remnant/parent body mass ratio lower than 0.5. We also
plot a theoretical slope according to Eq. (1), assuming qtarget = −3.2 and
qproject = −1.2, which correspond to the slopes of the main belt popula-
tion in the range D = 100–200 km and D = 15–60 km, respectively.

prevent a detection of old comminutioned/dispersed families to-
day (Marzari et al. 1999).

From the theoretical point of view, the slope q of the produc-
tion function N(>D) ∝ Dq should correspond to the cumulative
slopes of the SFDs of the target and projectile populations. It is
easy to show4 that the relation is

q = 2 + qtarget +
5
3

qproject. (1)

Of course, real populations may have complicated SFDs, with
different slopes in different ranges. Nevertheless, any popula-
tions that have a steep SFD (e.g. qtarget = qproject = −2.5) would
inevitably produce a steep production function (q � −4.7).

In the following analysis, we drop cratering events and
discuss catastrophic disruptions only, i.e. families which have
largest remnant/parent body mass ratio less than 0.5. The rea-
son is that the same criterion LR/PB < 0.5 is used in colli-
sional models. Moreover, cratering events were not yet systemat-
ically explored by SPH simulations due to insufficient resolution
(Durda et al. 2007).

2.2. Methods for family age determination

If there is no previous estimate of the age of a family, we
used one of the following three dynamical methods to deter-
mine it: i) a simple (ap,H) analysis as in Nesvorný et al.
(2005); ii) a C-parameter distribution fitting as introduced by
Vokrouhlický et al. (2006); iii) a full N-body simulation de-
scribed e.g. in Brož et al. (2011).

In the first approach, we assume zero initial velocities,
and the current extent of the family is explained by the size-
dependent Yarkovsky semimajor axis drift. This way we can ob-
tain only an upper limit for the dynamical age, of course. We
show an example for the Eos family in Fig. 3. The extent of the
family in the proper semimajor axis vs the absolute magnitude
(ap,H) plane can be described by the parametric relation

0.2H = log10

|ap − ac|

C
, (2)

where ac denotes the centre of the family, and C is the parameter.
Such relation can be naturally expected when the semimajor-axis

4 Assuming that the strength is approximately Q⋆D ∝ D2 in the gravity
regime, the necessary projectile size d ∝ (Q⋆

D
)1/3D (Bottke et al. 2005),

and the number of disruptions n ∝ D2Dqtarget dqproject .
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Fig. 3. An example of the Eos asteroid family, shown on the proper
semimajor axis ap vs. absolute magnitude H plot. We also plot curves
defined by Eq. (2) and parameters ac = 3.019 AU, C = 1.5 to 2.0 ×
10−4 AU, which is related to the upper limit of the dynamical age of the
family.

Table 2. Nominal thermal parameters for S and C/X taxonomic types
of asteroids.

Type ρbulk ρsurf K Cth ABond ǫ

(kg/m3) (kg/m3) (W/m/K) (J/kg/K)
S 2500 1500 0.001 680 0.1 0.9
C/X 1300 1300 0.01 680 0.02 0.9

Notes. ρbulk denotes the bulk density, ρsurf the surface density, K the
thermal conductivity, Cth the specific thermal capacity, ABond the Bond
albedo and ǫ the infrared emissivity.

drift rate is inversely proportional to the size, da/dt ∝ 1/D, and
the size is related to the absolute magnitude via the Pogson equa-
tion H = −2.5 log10(pV D2/D2

0), where D0 denotes the reference
diameter and pV the geometric albedo (see Vokrouhlický et al.
2006 for a detailed discussion). The limiting value, for which
all Eos family members (except interlopers) are above the cor-
responding curve, is C = 1.5 to 2.0 × 10−4 AU. Assuming rea-
sonable thermal parameters (summarised in Table 2), we calcu-
late the expected Yarkovsky drift rates da/dt (using the theory
from Brož 2006) and consequently can determine the age to be
t < 1.5 to 2.0 Gyr.

The second method uses a histogram N(C,C + ∆C) of the
number of asteroids with respect to the C parameter defined
above, which is fitted by a dynamical model of the initial ve-
locity field and the Yarkovsky/YORP evolution. This enables us
to determine the lower limit for the age too (so the resulting age
estimate is t = 1.3+0.15

−0.2 Gyr for the Eos family).
In the third case, we start an N-body simulation using a

modified SWIFT integrator (Levison & Duncan 1994), with the
Yarkovsky/YORP acceleration included, and evolve a synthetic
family up to 4 Gyr. We try to match the shape of the observed
family in all three proper orbital elements (ap, ep, sin Ip). In prin-
ciple, this method may provide a somewhat independent esti-
mate of the age. For example, there is a “halo” of asteroids in the
surroundings of the nominal Eos family, which are of the same
taxonomic type K, and we may fit the ratio Nhalo/Ncore of the
number of objects in the “halo” and in the family “core” (Brož
et al., in prep.).

The major source of uncertainty in all methods are unknown
bulk densities of asteroids (although we use the most likely
values for the S or C/X taxonomic classes, Carry 2012). The
age scales approximately as t ∝ ρbulk. Nevertheless, we are
still able to distinguish families that are young from those that

A117, page 4 of 16

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219296&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219296&pdf_id=3


M. Brož et al.: Constraining the cometary flux through the asteroid belt during the late heavy bombardment

D
P

B
 [

k
m

]

age [Gyr]

young old

3

10

15
87

24

137

158

170

221

3556
375

107
121

709

 0

 100

 200

 300

 400

 500

 0  0.5  1  1.5  2  2.5  3  3.5  4

Fig. 4. The relation between dynamical ages of families and the sizes of
their parent bodies. Red labels correspond to catastrophic disruptions,
while cratering events are labelled in black. Some of the families are
denoted by the designation of the largest member. The uncertainties of
both parameters are listed in Table 1 (we do not include overlapping
error bars here for clarity).

are old, because the allowed ranges of densities for S-types
(2 to 3 g/cm3) and C/X-types (1 to 2 g/cm3) are limited (Carry
2012) and so are the allowed ages of families.

2.3. Which families can be of LHB origin?

The ages of the observed families and their parent-body sizes are
shown in Fig. 4. Because the ages are generally very uncertain,
we consider that any family whose nominal age is older than
2 Gyr is potentially a family formed ∼4 Gyr ago, i.e. at the LHB
time. If we compare the number of “young” (<2 Gyr) and old
families (>2 Gyr) with DPB = 200–400 km, we cannot see a sig-
nificant over-abundance of old family formation events. On the
other hand, we almost do not find any small old families.

Only 12 families from the whole list may be possibly
dated back to the LHB, because their dynamical ages ap-
proach ∼3.8 Gyr (including the relatively large uncertainties; see
Table 3, which is an excerpt from Table 1).

If we drop cratering events and the families of Camilla
and Hermione, which do not exist any more today (their exis-
tence was inferred from the satellite systems, Vokrouhlický et al.
2010), we end up with only five families created by catastrophic
disruptions that may potentially date from the LHB time (i.e.
their nominal age is more than 2 Gy). As we shall see in Sect. 4,
this is an unexpectedly low number.

Moreover, it is really intriguing that most “possibly-LHB”
families are larger than DPB ≃ 200 km. It seems that old fam-
ilies with DPB ≃ 100 km are missing in the observed sample.
This is an important aspect that we have to explain, because it
contradicts our expectation of a steep production function.

3. Collisions in the main belt alone

Before we proceed to scenarios involving the LHB, we try to
explain the observed families with ages spanning 0–4 Gyr as a
result of collisions only among main belt bodies. To this pur-
pose, we used the collisional code called Boulder (Morbidelli
et al. 2009) with the following setup: the intrinsic probabil-
ities Pi = 3.1 × 10−18 km−2 yr−1, and the mutual velocities
Vimp = 5.28 km s−1 for the MB vs. MB collisions (both were
taken from the work of Dahlgren 1998). The assumption of a
single Vimp value is a simplification, but about 90% collisions
have mutual velocities between 2 and 8 km s−1 (Dahlgren 1998),
which assures a similar collisional regime.

Table 3. Old families with ages possibly approaching the LHB.

Designation DPB DDurda Note
(km) (km)

24 Themis 209c 380–430!
10 Hygiea 410 442 cratering
15 Eunomia 259 292 cratering
702 Alauda 218c 290–330! high-I
87 Sylvia 261 272 cratering
137 Meliboea 174c 240–290!
375 Ursula 198 240–280 cratering
107 Camilla >226 – non-existent
121 Hermione >209 – non-existent
158 Koronis 122c 170–180
709 Fringilla 99c 130–140 cratering
170 Maria 100c 120–130

Notes. They are sorted according to the parent body size, where DDurda

determined by the Durda et al. (2007) method is preferred to the es-
timate DPB inferred from the observed SFD. An additional “c” letter
indicates that we extrapolated the SFD down to D = 0 km to account
for small (unobserved) asteroids, an exclamation mark denotes a signif-
icant mismatch between DPB and DDurda.

The scaling law is described by the polynomial relation
(r denotes radius in cm)

Q⋆D(r) =
1

qfact

(

Q0ra + Bρrb
)

(3)

with the parameters corresponding to basaltic material at
5 km s−1 (Benz & Asphaug 1999, Table 4):

Table 4. Parameters of the scaling law (Eq. (3)) corresponding to
basaltic material at 5 km s−1, according to Benz & Asphaug (1999).

ρ Q0 a B b qfact

(g/cm3) (erg/g) (erg/g)

3.0 7 × 107 −0.45 2.1 1.19 1.0

Even though not all asteroids are basaltic, we use the scaling
law above as a mean one for the main belt population. Below, we
discuss also the case of significantly lower strengths (i.e. higher
qfact values).

We selected the time span of the simulation 4 Gyr (not
4.5 Gyr) since we are interested in this last evolutionary phase
of the main belt, when its population and collisional activity is
nearly same as today (Bottke et al. 2005). The outcome of a sin-
gle simulation also depends on the “seed” value of the random-
number generator that is used in the Boulder code to decide
whether a collision with a fractional probability actually occurs
or not in a given time step. We thus have to run multiple simula-
tions (usually 100) to obtain information on this stochasticity of
the collisional evolution process.

The initial SFD of the main belt population conditions was
approximated by a three-segment power law (see also thin grey
line in Fig. 5, 1st row) with differential slopes qa = −4.3 (for
D > D1), qb = −2.2, qc = −3.5 (for D < D2) where the size
ranges were delimited by D1 = 80 km and D2 = 16 km. We also
added a few big bodies to reflect the observed shape of the SFD
at large sizes (D > 400 km). The normalisation was Nnorm(D >
D1) = 350 bodies in this case.

We used the observed SFD of the main belt as the first con-
straint for our collisional model. We verified that the outcome
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Fig. 5. Results of three different collisional models: main belt alone which is discussed in Sect. 3 (left column), main belt and comets from Sect. 4
(middle column), main belt and disrupting comets from Sect. 7 (right column). 1st row: the initial and evolved SFDs of the main belt populations
for 100 Boulder simulations; 2nd row: the resulting family production functions (in order to distinguish 100 lines we plot them using different
colours ranging from black to yellow) and their comparison to the observations; 3rd row: the production function affected by comminution for
a selected simulation; and 4th row: the distribution of synthetic families with DPB ≥ 50 km in the (age, DPB) plot for a selected simulation,
without comminution. The positions of synthetic families in the 4th-row figures may differ significantly for a different Boulder simulation due to
stochasticity and low-number statistics. Moreover, in the middle and right columns, many families were created during the LHB, so there are many
overlapping crosses close to 4 Gyr.

our model after 4 Gyr is not sensitive to the value of qc. Namely,
a change of qc by as much as ±1 does not affect the final SFD in
any significant way. On the other hand, the values of the remain-
ing parameters (qa, qb, D1, D2, Nnorm) are enforced by the ob-
served SFD. To obtain a reasonable fit, they cannot differ much
(by more than 5–10%) from the values presented above.

We do not use only a single number to describe the number
of observed families (e.g. N = 20 for DPB ≥ 100 km), but we dis-
cuss a complete production function instead. The results in terms
of the production function are shown in Fig. 5 (left column, 2nd
row). On average, the synthetic production function is steeper
and below the observed one, even though there is approximately
a 5% chance that a single realization of the computer model will
resemble the observations quite well. This also holds for the dis-
tribution of DPB = 200–400 km families in the course of time
(age).

In this case, the synthetic production function of DPB >∼
100 km families is not significantly affected by comminution.
According to Bottke et al. (2005), most of D > 10 km fragments
survive intact and a DPB >∼ 100 km family should be recognis-
able today. This is also confirmed by calculations with Boulder
(see Fig. 5, left column, 3rd row).

To improve the match between the synthetic and the ob-
served production function, we can do the following: i) mod-
ify the scaling law, or ii) account for a dynamical decay of the
MB population. Using a substantially lower strength (qfact = 5
in Eq. (3), which is not likely, though) one can obtain a synthetic
production function which is on average consistent with the ob-
servations in the DPB = 200–400 km range.

Regarding the dynamical decay, Minton & Malhotra (2010)
suggest that initially the MB was three times more populous than
today while the decay timescale was very short: after 100 Myr
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Fig. 6. Temporal evolution of the intrinsic collisional probability Pi

(bottom) and mean collisional velocity Vimp (top) computed for colli-
sions between cometary-disk bodies and the main belt asteroids. The
time t = 0 is arbitrary here; the sudden increase in Pi values corre-
sponds to the beginning of the LHB.

of evolution the number of bodies is almost at the current level.
In this brief period of time, about 50% more families will be
created, but all of them will be old, of course. For the remain-
ing ∼3.9 Gyr, the above model (without any dynamical decay) is
valid.

To conclude, it is possible – though not very likely – that
the observed families were produced by the collisional activity
in the main belt alone. A dynamical decay of the MB population
would create more families that are old, but technically speaking,
this cannot be distinguished from the LHB scenario, which is
discussed next.

4. Collisions between a “classical” cometary disk

and the main belt

In this section, we construct a collisional model and estimate an
expected number of families created during the LHB due to col-
lisions between cometary-disk bodies and main belt asteroids.
We start with a simple stationary model and we confirm the re-
sults using a more sophisticated Boulder code (Morbidelli et al.
2009).

Using the data from Vokrouhlický et al. (2008) for a “clas-
sical” cometary disk, we can estimate the intrinsic collisional
probability and the collisional velocity between comets and
asteroids. A typical time-dependent evolution of Pi and Vimp
is shown in Fig. 6. The probabilities increase at first, as the
trans-Neptunian cometary disk starts to decay, reaching up to
6 × 10−21 km−2 yr−1, and after 100 Myr they decrease to zero.
These results do not differ significantly from run to run.

4.1. Simple stationary model

In a stationary collisional model, we choose an SFD for the
cometary disk, we assume a current population of the main belt;
estimate the projectile size needed to disrupt a given target ac-
cording to (Bottke et al. 2005)

ddisrupt =
(

2Q⋆D/V
2
imp

)1/3
Dtarget, (4)

where Q⋆
D

denotes the specific energy for disruption and disper-
sion of the target (Benz & Asphaug 1999); and finally calculate
the number of events during the LHB as

nevents =
D2

target

4
ntarget

∫

Pi(t) nproject(t) dt, (5)

where ntarget and nproject are the number of targets (i.e. main belt
asteroids) and the number of projectiles (comets), respectively.
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Fig. 7. Cumulative SFDs of the cometary disk tested in this work. All
the parameters of our nominal choice are given in the top label; the other
labels just report the parameters that changed relative to our nominal
choice.

The actual number of bodies (27 000) in the dynamical simula-
tion of Vokrouhlický et al. (2008) changes in the course of time,
and it was scaled such that it was initially equal to the number of
projectiles N(>ddisrupt) inferred from the SFD of the disk. This
is clearly a lower limit for the number of families created, since
the main belt was definitely more populous in the past.

The average impact velocity is Vimp ≃ 10 km s−1, so we need
the projectile sizes to disrupt given target sizes listed in Table 5.

Table 5. Projectile sizes ddisrupt needed to disrupt targets with
sizes Dtarget, as computed from Eq. (4).

Dtarget Ntargets Q⋆
D

ddisrupt for
ρtarget

ρproject
= 3 to 6

(km) in the MB (J/kg) (km)

100 ∼192 1 × 105 12.6 to 23
200 ∼23 4 × 105 40.0 to 73

Notes. Ntargets denotes the number of targets in the main belt, Q⋆
D

the
specific energy needed for disruption, and ρtarget/ρproject the ratio of the
respective bulk densities.

We tried to use various SFDs for the cometary disk (i.e., with
various differential slopes q1 for D > D0 and q2 for D < D0, the
elbow diameter D0 and total mass Mdisk), including rather ex-
treme cases (see Fig. 7). The resulting numbers of LHB families
are summarised in Table 6. Usually, we obtain several families
with DPB ≃ 200 km and about 100 families with DPB ≃ 100 km.
This result is robust with respect to the slope q2, because even
very shallow SFDs should produce a lot of these families5. The
only way to decrease the number of families significantly is to
assume the elbow at a larger diameter D0 ≃ 150 km.

5 The extreme case with q2 = 0 is not likely at all, e.g. because of
the continuous SFD of basins on Iapetus and Rhea, which only ex-
hibits a mild depletion of D ≃ 100 km size craters; see Kirchoff &
Schenk (2010). On the other hand, Sheppard & Trujillo (2010) report
an extremely shallow cumulative SFD of Neptune Trojans that is akin
to low q2.
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Table 6. Results of a stationary collisional model between the cometary disk and the main belt.

q1 q2 D0 Mdisk nevents Notes
(km) (M⊕) for DPB ≥ 100 km DPB ≥ 200 km Vesta craterings

5.0 3.0 100 45 115–55 4.9–2.1 2.0 nominal case
5.0 2.0 100 45 35–23 4.0–2.2 1.1 shallow SFD
5.0 3.5 100 45 174–70 4.3–1.6 1.8 steep SFD
5.0 1.1 100 45 14–12 3.1–2.1 1.1 extremely shallow SFD
4.5 3.0 100 45 77–37 3.3–1.5 1.3 lower q1

5.0 3.0 50 45 225–104 7.2–1.7 3.2 smaller turn-off
5.0 3.0 100 25 64–40 2.7–1.5 1.1 lower Mdisk

5.0 3.0 100 17 34 1.2 1.9 ρcomets = 500 kg/m3

5.0 3.0 150 45 77–23 3.4–0.95 0.74 larger turn-off
5.0 0.0 100 10 1.5–1.4 0.5–0.4 0.16 worst case (zero q2 and low Mdisk)

Notes. The parameters characterise the SFD of the disk: q1, q2 are differential slopes for the diameters larger/smaller than the elbow diameter D0,
Mdisk denotes the total mass of the disk, and nevents is the resulting number of families created during the LHB for a given parent body size DPB.
The ranges of nevents are due to variable density ratios ρtarget/ρproject = 1 to 3/1.

Table 7. Parameters of the scaling law (Eq. (3)) corresponding to
basaltic material at 5 km s−1 (first row), and to water ice (second row),
according to Benz & Asphaug (1999).

ρ Q0 a B b qfact

(g/cm3) (erg/g) (erg/g)

Asteroids 3.0 7 × 107 −0.45 2.1 1.19 1.0
Comets 1.0 1.6 × 107 −0.39 1.2 1.26 3.0

It is thus no problem to explain the existence of approxi-
mately five large families with DPB = 200–400 km, which are
indeed observed, since they can be readily produced during the
LHB. On the other hand, the high number of DPB ≃ 100 km
families clearly contradicts the observations, since we observe
almost no LHB families of this size.

4.2. Constraints from (4) Vesta

The asteroid (4) Vesta presents a significant constraint for col-
lisional models, being a differentiated body with a preserved
basaltic crust (Keil 2002) and a 500 km large basin on its surface
(a feature indicated by the photometric analysis of Cellino et al.
1987), which is significantly younger than 4 Gyr (Marchi et al.
2012). It is highly unlikely that Vesta experienced a catastrophic
disruption in the past, and even large cratering events were lim-
ited. We thus have to check the number of collisions between
one D = 530 km target and D ≃ 35 km projectiles, which are
capable of producing the basin and the Vesta family (Thomas
et al. 1997). According to Table 6, the predicted number of such
events does not exceed ∼2, so given the stochasticity of the re-
sults there is a significant chance that Vesta indeed experienced
zero such impacts during the LHB.

4.3. Simulations with the Boulder code

To confirm results of the simple stationary model, we also per-
formed simulations with the Boulder code. We modified the code
to include a time-dependent collisional probability Pi(t) and im-
pact velocity Vimp(t) of the cometary-disk population.

We started a simulation with a setup for the cometary disk
resembling the nominal case from Table 6. The scaling law is
described by Eq. (3) with the parameters given in Table 7, suit-
able for asteroids (basalt) and comets (water ice).

The intrinsic probabilities Pi = 3.1 × 10−18 km−2 yr−1 and
velocities Vimp = 5.28 km s−1 for the MB vs MB collisions were
again taken from the work of Dahlgren (1998). We do not ac-
count for comet-comet collisions since their evolution is dom-
inated by the dynamical decay. The initial SFD of the main
belt was similar to the one in Sect. 3, qa = −4.2, qb = −2.2,
qc = −3.5, D1 = 80 km, D2 = 14 km, and only the normalisation
was increased up to Nnorm(D > D1) = 560 in this case.

The resulting SFDs of 100 independent simulations with dif-
ferent random seeds are shown in Fig. 5 (middle column). The
number of LHB families (approximately 10 with DPB ≃ 200 km
and 200 with DPB ≃ 100 km) is even larger compared to the sta-
tionary model, as expected, because we had to start with a larger
main belt to get a good fit of the currently observed MB after
4 Gyr of collisional evolution.

To conclude, the stationary model and the Boulder code give
results that are compatible with each other, but that clearly con-
tradict the observed production function of families. In particu-
lar, they predict far too many families with D = 100 km parent
bodies. At first sight, this may be interpreted as proof that there
was no cometary LHB on the asteroids. Before jumping to this
conclusion, however, one has to investigate whether there are bi-
ases against identifying of DPB = 100 km families. In Sects. 5–9
we discuss several mechanisms that all contribute, at some level,
to reducing the number of observable DPB = 100 km families
over time. They are addressed in order of relevance, from the
least to the most effective.

5. Families overlap

Because the number of expected DPB ≥ 100 km LHB families
is very high (of the order of 100) we now want to verify if these
families can overlap in such a way that they cannot be distin-
guished from each other and from the background. We thus took
192 main belt bodies with D ≥ 100 km and selected randomly
100 of them that will break apart. For each one we created an ar-
tificial family with 102 members, assume a size-dependent ejec-
tion velocity V ∝ 1/D (with V = 50 m/s for D = 5 km) and
the size distribution resembling that of the Koronis family. The
choice of the true anomaly and the argument of perihelion at the
instant of the break-up event was random. We then calculated
proper elements (ap, ep, sin Ip) for all bodies. This type of anal-
ysis is in some respects similar to the work of Bendjoya et al.
(1993).
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Fig. 8. Proper semimajor axis ap vs. proper eccentricity ep for 100 syn-
thetic families created in the main belt. It is the initial state, shortly after
disruption events. We assume the SFD of bodies in each synthetic fam-
ily similar to that of the Koronis family (down to D ≃ 2 km). Break-ups
with the true anomaly f ≃ 0 to 30◦ and 150◦ to 180◦ are more easily
visible on this plot, even though the choice of both f and the argument
of perihelion ̟ was random for all families.

According to the resulting Fig. 8 the answer to the question
is simple: the families do not overlap sufficiently, and they can-
not be hidden that way. Moreover, if we take only bigger bod-
ies (D > 10 km), these would be clustered even more tightly.
The same is true for proper inclinations, which are usually more
clustered than eccentricities, so families could be more easily
recognised.

6. Dispersion of families by the Yarkovsky drift

In this section, we model long-term evolution of synthetic fami-
lies driven by the Yarkovsky effect and chaotic diffusion. For one
synthetic family located in the outer belt, we have performed a
full N-body integration with the SWIFT package (Levison &
Duncan 1994), which includes also an implementation of the
Yarkovsky/YORP effect (Brož 2006) and second-order integra-
tor by Laskar & Robutel (2001). We included 4 giant planets in
this simulation. To speed-up the integration, we used ten times
smaller sizes of the test particles and thus a ten times shorter
time span (400 Myr instead of 4 Gyr). The selected time step is
∆t = 91 d. We computed proper elements, namely their differ-
ences ∆ap,∆ep,∆ sin Ip between the initial and final positions.

Then we used a simple Monte-Carlo approach for the
whole set of 100 synthetic families – we assigned a suitable
drift ∆ap(D) in semimajor axis, and also drifts in eccentric-
ity ∆ep and inclination ∆ sin Ip to each member of 100 families,
respecting asteroid sizes, of course. This way we account for the
Yarkovsky semimajor axis drift and also for interactions with
mean-motion and secular resonances. This Monte-Carlo method
tends to smear all structures, so we can regard our results as the
upper limits for dispersion of families.

While the eccentricities of small asteroids (down to D ≃
2 km) seem to be dispersed enough to hide the families, there are
still some persistent structures in inclinations, which would be
observable today. Moreover, large asteroids (D ≥ 10 km) seem
to be clustered even after 4 Gyr, so that more than 50% of fami-
lies can be easily recognised against the background (see Fig. 9).
We thus can conclude that it is not possible to disperse the fami-
lies by the Yarkovsky effect alone.
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Fig. 9. Proper semimajor axis ap vs. proper inclination sin Ip for
100 synthetic asteroid families (black dots), evolved over 4 Gyr using
a Monte-Carlo model. The assumed SFDs correspond to the Koronis
family, but we show only D > 10 km bodies here. We also include
D > 10 km background asteroids (grey dots) for comparison.

7. Reduced physical lifetime of comets

in the MB crossing zone

To illustrate the effects that the physical disruption of comets
(due to volatile pressure build-up, amorphous/crystalline phase
transitions, spin-up by jets, etc.) can have on the collisional
evolution of the asteroid belt, we adopted here a simplistic as-
sumption. We considered that no comet disrupt beyond 1.5 AU,
whereas all comets disrupt the first time that they penetrate in-
side 1.5 AU. Both conditions are clearly not true in reality: some
comets are observed to blow up beyond 1.5 AU, and others are
seen to survive on an Earth-crossing orbit. Thus we adopted our
disruption law just as an example of a drastic reduction of the
number of comets with small perihelion distance, as required to
explain the absence of evidence for a cometary bombardment on
the Moon.

We then removed all those objects from output of comet evo-
lution during the LHB that had a passage within 1.5 AU from
the Sun, from the time of their first passage below this thresh-
old. We then recomputed the mean intrinsic collision probabil-
ity of a comet with the asteroid belt. The result is a factor ∼3
smaller than when no physical disruption of comets is taken into
account as in Fig. 6. The mean impact velocity with asteroids
also decreases, from 12 km s−1 to 8 km s−1.

The resulting number of asteroid disruption events is thus
decreased by a factor ∼4.5, which can be also seen in the pro-
duction function shown in Fig. 5 (right column). The production
of families with DPB = 200–400 km is consistent with observa-
tions, while the number of DPB ≃ 100 km families is reduced to
30–70, but is still too high, by a factor 2–3. More importantly,
the slope of the production function remains steeper than that
of the observed function. Thus, our conclusion is that physical
disruptions of comets alone cannot explain the observation, but
may be an important factor to keep in mind for reconciling the
model with the data.

8. Perturbation of families by migrating planets

(a jumping-Jupiter scenario)

In principle, families created during the LHB may be perturbed
by still-migrating planets. It is an open question what the ex-
act orbital evolution of planets was at that time. Nevertheless, a
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Fig. 10. Proper semimajor axis vs. proper inclination for four synthetic families (distinguished by symbols) as perturbed by giant-planet migration.
Left panel: the case when families were evolved over the “jump” due to the encounter between Jupiter and Neptune. Right panel: the families
created just after the jump and perturbed only by later phases of migration.

plausible scenario called a “jumping Jupiter” was presented by
Morbidelli et al. (2010). It explains major features of the main
belt (namely the paucity of high-inclination asteroids above the
ν6 secular resonance), and is consistent with amplitudes of the
secular frequencies of both giant and terrestrial planets and also
with other features of the solar system. In this work, we thus
investigated this particular migration scenario.

We used the data from Morbidelli et al. (2010) for the orbital
evolution of giant planets. We then employed a modified SWIFT
integrator, which read orbital elements for planets from an in-
put file and calculated only the evolution of test particles. Four
synthetic families located in the inner/middle/outer belt were in-
tegrated. We started the evolution of planets at various times,
ranging from t0 to (t0 + 4 Myr) and stopped the integration at
(t0 + 4 My), in order to test the perturbation on families created
in different phases of migration. Finally, we calculated proper
elements of asteroids when the planets do not migrate anymore.
(We also had to move planets smoothly to their exact current
orbital positions.)

The results are shown in Fig. 10. While the proper eccentric-
ities seem to be sufficiently perturbed and families are dispersed
even when created at late phases of migration, the proper in-
clinations are not very dispersed, except for families in the outer
asteroid belt that formed at the very beginning of the giant planet
instability (which may be unlikely, as there must be a delay be-
tween the onset of planet instability and the beginning of the
cometary flux through the asteroid belt). In most cases, the LHB
families could still be identified as clumps in semi-major axis vs
inclination space. We do not see any of such (ap, sin Ip)-clumps,
dispersed in eccentricity, in the asteroid belt6.

The conclusion is clear: it is not possible to destroy low-e and
low-I families by perturbations arising from giant-planet migra-
tion, at least in the case of the “jumping-Jupiter” scenario7.

9. Collisional comminution of asteroid families

We have already mentioned that the comminution is not suffi-
cient to destroy a DPB = 100 km family in the current environ-
ment of the main belt (Bottke et al. 2005).

6 High-inclination families would be dispersed much more owing to
the Kozai mechanism, because eccentricities that are sufficiently per-
turbed exhibit oscillations coupled with inclinations.
7 The currently non-existent families around (107) Camilla and
(121) Hermione – inferred from the existence of their satellites – cannot
be destroyed in the jumping-Jupiter scenario, unless the families were
actually pre-LHB and had experienced the jump.

However, the situation in case of the LHB scenario is differ-
ent. Both the large population of comets and the several-times
larger main belt, which has to withstand the cometary bombard-
ment, contribute to the enhanced comminution of the LHB fam-
ilies. To estimate the amount of comminution, we performed
the following calculations: i) for a selected collisional simula-
tion, whose production function is close to the average one, we
recorded the SFDs of all synthetic families created in the course
of time; ii) for each synthetic family, we restarted the simula-
tion from the time t0 when the family was crated until 4 Gyr and
saved the final SFD, i.e. after the comminution. The results are
shown in Fig. 11.

It is now important to discuss criteria, which enable us to
decide if the comminutioned synthetic family would indeed be
observable or not. We use the following set of conditions: DPB ≥

50 km, DLF ≥ 10 km (largest fragment is the first or the second
largest body, where the SFD becomes steep), LR/PB < 0.5 (i.e. a
catastrophic disruption). Furthermore, we define Nmembers as the
number of the remaining family members larger than observa-
tional limit Dlimit ≃ 2 km and use a condition Nmembers ≥ 10. The
latter number depends on the position of the family within the
main belt, though. In the favourable “almost-empty” zone (be-
tween ap = 2.825 and 2.955 AU), Nmembers ≥ 10 may be valid,
but in a populated part of the MB one would need Nmembers � 100
to detect the family. The size distributions of synthetic families
selected this way resemble the observed SFDs of the main belt
families.

According to Fig. 5 (3rd row), where we can see the
production functions after comminution for increasing values
of Nmembers, families with DPB = 200–400 km remain more
prominent than DPB ≃ 100 km families simply because they
contain much more members with D > 10 km that survive in-
tact. Our conclusion is thus that comminution may explain the
paucity of the observed DPB ≃ 100 km families.

10. “Pristine zone” between the 5:2

and 7:3 resonances

We now focus on the zone between the 5:2 and 7:3 mean-motion
resonances, with ap = 2.825 to 2.955 AU, which is not as pop-
ulated as the surrounding regions of the main belt (see Fig. 1).
This is a unique situation, because both bounding resonances are
strong enough to prevent any asteroids from outside to enter this
zone owing the Yarkovsky semimajor axis drift. Any family for-
mation event in the surroundings has only a minor influence on
this narrow region. It thus can be called “pristine zone” because
it may resemble the belt prior to creation of big asteroid families.
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Fig. 11. Left panel: SFDs of the observed asteroid families. Middle panel: SFDs of 378 distinct synthetic families created during one of the
collisional simulations of the MB and comets. Initially, all synthetic SFDs are very steep, in agreement with SPH simulations (Durda et al. 2007).
We plot only the SFDs that fulfil the following criteria: DPB ≥ 50 km, DLF ≥ 10 km, LR/PB < 0.5 (i.e. catastrophic disruptions). Right panel:
the evolved SFDs after comminution. Only a minority of families are observable now, since the number of remaining members larger than the
observational limit Dlimit ≃ 2 km is often much smaller than 100. The SFD that we use for the simulation in Sect. 10 is denoted by red.
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Fig. 12. “Pristine zone” of the main belt (ap = 2.825 to 2.955 AU) displayed on the proper eccentricity ep vs. proper inclination sin Ip plot. Left
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We identified nine previously unknown small families that
are visible on the (ep, sin Ip) plot (see Fig. 12). They are
confirmed by the SDSS colours and WISE albedos, too.
Nevertheless, there is only one big and old family in this zone
(DPB ≥ 100 km), i.e. Koronis.

That at most one LHB family (Koronis) is observed in the
“pristine zone” can give us a simple probabilistic estimate for
the maximum number of disruptions during the LHB. We take
the 192 existing main belt bodies which have D ≥ 100 km and
select randomly 100 of them that will break apart. We repeat this
selection 1000 times and always count the number of families in
the pristine zone. The resulting histogram is shown in Fig. 13. As
we can see, there is very low (<0.001) probability that the num-
ber of families in the pristine zone is zero or one. On average we
get eight families there, i.e. about half of the 16 asteroids with
D ≥ 100 km present in this zone. It seems that either the number
of disruptions should be substantially lower than 100 or we ex-
pect to find at least some “remnants” of the LHB families here.

It is interesting that the SFD of an old comminutioned fam-
ily is very flat in the range D = 1 to 10 km (see Fig. 11) – simi-
lar to those of some of the “less certain” observed families! We
may speculate that the families like (918) Itha, (5567) Durisen,

 0

 50
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 200

 250

 0  2  4  6  8  10  12  14  16

N

Nfamilies between a = 2.825 - 2.955 AU

Fig. 13. Histogram for the expected number of LHB families located in
the “pristine zone” of the main belt.

(12573) 1999 NJ53, or (15454) 1998 YB3 (all from the pristine
zone) are actually remnants of larger and older families, even
though they are denoted as young. It may be that the age esti-
mate based on the (ap,H) analysis is incorrect since small bodies
were destroyed by comminution and spread by the Yarkovsky ef-
fect too far away from the largest remnant, so they can no longer
be identified with the family.
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old/comminutioned family evolved dynamically over 4 Gyr. Only a few
family members (N ≃ 101) remained from the original number of
N(D ≥ 2 km) ≃ 102. The scales are the same as in Fig. 12, so we
can compare it easily to the “pristine zone”.

Finally, we have to ask an important question: what does
an old/comminutioned family with DPB ≃ 100 km look like in
proper-element space? To this aim, we created a synthetic fam-
ily in the “pristine zone”, and assumed the family has Nmembers ≃

100 larger than Dlimit ≃ 2 km and that the SFD is already flat in
the D = 1 to 10 km range. We evolved the asteroids up to 4 Gyr
due to the Yarkovsky effect and gravitational perturbations, us-
ing the N-body integrator as in Sect. 6. Most of the D ≃ 2 km
bodies were lost in the course of the dynamical evolution, of
course. The resulting family is shown in Fig. 14. We can also
imagine that this family is placed in the pristine zone among
other observed families, to get a feeling of whether it is easily
observed or not (refer to Fig. 12).

It is clear that such family is hardly observable even in the
almost empty zone of the main belt! Our conclusion is that
the comminution (as given by the Boulder code) can explain
the paucity of DPB ≃ 100 km LHB families, since we can hardly
distinguish old families from the background.

11. Conclusions

In this paper we investigated the cometary bombardment of the
asteroid belt at the time of the LHB, in the framework of the Nice
model. There is much evidence of a high cometary flux through
the giant planet region, but no strong evidence of a cometary
bombardment on the Moon. This suggests that many comets
broke up on their way to the inner solar system. By investigat-
ing the collisional evolution of the asteroid belt and comparing
the results to the collection of actual collisional families, our aim
was to constrain whether the asteroid belt experienced an intense
cometary bombardment at the time of the LHB and, if possible,
constrain the intensity of this bombardment.

Observations suggest that the number of collisional families
is a very shallow function of parent-body size (that we call in
this paper the “production function”). We show that the colli-
sional activity of the asteroid belt as a closed system, i.e. without
any external cometary bombardment, in general does not pro-
duce such a shallow production function. Moreover, the number
of families with parent bodies larger than 200 km in diameter
is in general too small compared to the observations. However,
there is a lot of stochasticity in the collisional evolution of the

asteroid belt, and about 5% of our simulations actually fit the
observational constraints (shallowness of the production func-
tion and number of large families) quite well. Thus, in principle,
there is no need for a bombardment due to external agents (i.e.
the comets) to explain the asteroid family collection, provided
that the real collisional evolution of the main belt was a “lucky”
one and not the “average” one.

If one accounts for the bombardment provided by the comets
crossing the main belt at the LHB time, predicted by the Nice
model, one can easily justify the number of observed families
with parent bodies larger than 200 km. However, the resulting
production function is steep, and the number of families pro-
duced by parent bodies of 100 km is almost an order of magni-
tude too large.

We have investigated several processes that may decimate
the number of families identifiable today with 100 km parent
bodies, without considerably affecting the survival of families
formed from larger parent bodies. Of all these processes, the col-
lisional comminution of the families and their dispersal by the
Yarkovsky effect are the most effective ones. Provided that the
physical disruption of comets due to activity reduced the effec-
tive cometary flux through the belt by a factor of ≈5, the result-
ing distribution of families (and consequently the Nice model) is
consistent with observations.

To better quantify the effects of various cometary-disruption
laws, we computed the numbers of asteroid families for differ-
ent critical perihelion distances qcrit and for different disruption
probabilities pcrit of comets during a given time step (∆t = 500 yr
in our case). The results are summarised in Fig. 15. Provided that
comets are disrupted frequently enough, namely the critical peri-
helion distance has to be at least qcrit � 1 AU, while the probabil-
ity of disruption is pcrit = 1, the number of DPB ≥ 100 km fami-
lies drops by the aforementioned factor of ≈5. Alternatively, qcrit
may be larger, but then comets have to survive multiple perihe-
lion passages (i.e. pcrit have to be lower than 1). It would be very
useful to test these conditions by independent models of the evo-
lution and physical disruptions of comets. Such additional con-
straints on cometary-disruption laws would then enable study of
the original SFD of the cometary disk in more detail.

We can also think of two “alternative” explanations: i) phys-
ical lifetime of comets was strongly size-dependent so that
smaller bodies break up easily compared to bigger ones; ii) high-
velocity collisions between hard targets (asteroids) and very
weak projectiles (comets) may result in different outcomes than
in low-velocity regimes explored so far. Our work thus may also
serve as a motivation for further SPH simulations.

We finally emphasize that any collisional/dynamical mod-
els of the main asteroid belt would benefit from the following
advances:

i) determination of reliable masses of asteroids of various
classes. This may be at least partly achieved by the Gaia
mission in the near future. Using up-to-date sizes and shape
models (volumes) of asteroids one can then derive their den-
sities, which are directly related to ages of asteroid families.

ii) Development of methods for identifying asteroid fami-
lies and possibly targeted observations of larger asteroids
addressing their membership, which is sometimes critical for
constructing SFDs and for estimating parent-body sizes.

iii) An extension of the SHP simulations for both smaller and
larger targets, to assure that the scaling we use now is
valid. Studies and laboratory measurements of equations of
states for different materials (e.g. cometary-like, porous) are
closely related to this issue.
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Fig. 15. Numbers of collisional families for different critical perihelion
distances qcrit at which comets break up and disruption probabilities pcrit

during one time step (∆t = 500 yr). In the top panel, we vary qcrit while
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stant and we vary pcrit. We always show the number of catastrophic
disruptions with parent-body sizes DPB ≥ 100 km (red line) and 200 km
(black line). The error bars indicate typical (1-σ) spreads of Boulder
simulations with different random seeds. The observed numbers of cor-
responding families are indicated by thin dotted lines.

The topics outlined above seem to be the most urgent develop-
ments to be pursued in the future.
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