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ABSTRACT

Aims. The Galileon theory belongs to the class of modified gravity models that can explain the late-time accelerated expansion of the
Universe. In previous works, cosmological constraints on the Galileon model were derived, both in the uncoupled case and with a
disformal coupling of the Galileon field to matter. There, we showed that these models agree with the most recent cosmological data.
In this work, we used updated cosmological data sets to derive new constraints on Galileon models, including the case of a constant
conformal Galileon coupling to matter. We also explored the tracker solution of the uncoupled Galileon model.
Methods. After updating our data sets, especially with the latest Planck data and baryonic acoustic oscillation (BAO) measurements,
we fitted the cosmological parameters of theΛCDM and Galileon models. The same analysis framework as in our previous papers was
used to derive cosmological constraints, using precise measurements of cosmological distances and of the cosmic structure growth
rate.
Results. We show that all tested Galileon models are as compatible with cosmological data as the ΛCDM model. This means that
present cosmological data are not accurate enough to distinguish clearly between the two theories. Among the different Galileon
models, we find that a conformal coupling is not favoured, contrary to the disformal coupling which is preferred at the 2.3σ level
over the uncoupled case. The tracker solution of the uncoupled Galileon model is also highly disfavoured owing to large tensions with
supernovae and Planck+BAO data. However, outside of the tracker solution, the general uncoupled Galileon model, as well as the
general disformally coupled Galileon model, remain the most promising Galileon scenarios to confront with future cosmological data.
Finally, we also discuss constraints coming from the Lunar Laser Ranging experiment and gravitational wave speed of propagation.

Key words. dark energy – cosmology: observations – cosmology: theory

1. Introduction

Since the discovery of the accelerated expansion of the
Universe (Riess et al. 1998; Perlmutter et al. 1999), the exact
nature of dark energy is still unknown. The Einstein cosmo-
logical constant Λ is the simplest way to describe the ex-
pansion measurements. The so-called ΛCDM model is the
model that best agrees with actual cosmological data (see e.g.
Planck Collaboration XIII 2015). However, the physical justifi-
cation behind the cosmological constant is still under question.
Despite a very good agreement with data, alternatives to the
ΛCDM model have been introduced to escape the theoretical
difficulties raised by the cosmological constant.

The Galileon theory (Nicolis et al. 2009) belongs to the class
of modified gravity models which aims to give an alternative
explanation to the nature of dark energy. It introduces a scalar
field, hereafter called π, whose equation of motion must be
of second order and invariant under a Galilean shift symmetry
∂µπ → ∂µπ + bµ, where bµ is a constant vector. This symme-
try was first identified as an interesting property in the DGP
model (Dvali et al. 2000). Nicolis et al. (2009) derived the five

possible Lagrangian terms for the π field, which were then for-
mulated in a covariant formalism by Deffayet et al. (2009a,b).
The phenomenology of the Galileon theory was then studied in
e.g. Gannouji & Sami (2010) and Appleby & Linder (2012a).

This model forms a subclass of general tensor-scalar theories
involving only up to second-order derivatives originally found by
Horndeski (Horndeski 1974). Later, subsets of Galileon theory
were also found to be the decoupling limit of numerous broader
theories, such as massive gravity (de Rham & Gabadadze
2010; de Rham & Heisenberg 2011) or brane constructions
(de Rham & Tolley 2010; Hinterbichler et al. 2010; Acoleyen &
Doorsselaere 2011). Braneworld approaches give a deeper theo-
retical basis to Galileon theories. The usual and simple construc-
tion involves a 3+1 dimensional brane, our Universe, embedded
in a higher dimensional bulk. The Galileon field π can be in-
terpreted as the brane transverse position in the bulk, and the
Galilean symmetry appears naturally as a remnant of the broken
space-time symmetries of the bulk (Hinterbichler et al. 2010).
The Galilean symmetry is then no longer imposed as a principle
of construction, but is a consequence of space-time geometry.
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Models that modify general relativity have to alter gravity
only at cosmological scales in order to agree with the solar
system tests of gravity (see e.g. Will 2006). The Galileon field
can be coupled to matter either explicitly or through a coupling
induced by its temporal variation (Babichev & Esposito-Farese
2013). This leads to a so-called fifth force, which by definition
modifies gravity around massive objects like the Sun. But the
non-linear nature of the Galileon theory ensures that this fifth
force is screened near massive objects in case of an explicit con-
formal coupling of the form ∼πT

µ
µ (where T

µ
µ is the trace of the

matter energy-momentum tensor) or in the case of an induced
coupling. This is called the Vainshtein effect (Vainshtein 1972
and Babichev & Deffayet 2013; for a modern introduction). The
fifth force is thus negligible with respect to general relativity
within a certain radius from a massive object that depends on
the object mass and on the values of the Galileon parameters
(Vainshtein 1972; Nicolis et al. 2009; Brax et al. 2011).

Braneworld constructions and massive gravity models give
rise to an explicit disformal coupling to matter of the form
∼∂µπ∂νπT µν (see e.g. Trodden & Hinterbichler 2011). The dis-
formal coupling plays a role in the field cosmological evolu-
tion, which makes this kind of Galileon model interesting to
compare with cosmological data. Such a coupling between a
scalar field and matter has also been widely studied in Koivisto
(2012), Zumalacarregui (2013), Brax et al. (2012, 2013, 2015),
Brax & Burrage (2014).

The uncoupled Galileon model has already been constrained
by observational data in Ali et al. (2010), Appleby & Linder
(2012b), Okada et al. (2013), Nesseris et al. (2010), and more
recently in Neveu et al. (2013, hereafter N13; 2014, here-
after N14), Barreira et al. (2013a, 2014a, and b). In N13, we
introduced a new parametrisation of the model which allowed
us to break degeneracies between Galileon parameters and to
constrain them independently of initial conditions on the π field.
The same methodology was adopted here, and we refer the in-
terested reader to N13 for more details. Moreover, in N14, we
tested for the first time a Galileon model disformally coupled
to matter and showed that a non-zero disformal coupling was
preferred at the 2.5σ level by cosmological data, favouring a
braneworld origin of the Galileon theory. In N13 and N14, we
concluded that the uncoupled Galileon model provides as good
an agreement with current data as the ΛCDM model. More re-
cently, Barreira et al. (2014a) and Barreira et al. (2014b) have
shown that the ΛCDM model was favoured over the uncoupled
Galileon model restricted to its tracker solution because of ten-
sions between cosmological data sets. To compare our conclu-
sions, this particular case of the Galileon theory was also ex-
plored in the present paper.

In this paper, our aim was to set cosmological constraints
on the Galileon conformal coupling to matter and to update the
ΛCDM and Galileon constraints with the latest available cosmo-
logical data. In particular, for the cosmic microwave background
(CMB), we used distance priors derived from the Planck satel-
lite polarised data (Planck Collaboration XIII 2015). The latest
baryonic acoustic oscillations (BAO) measurements were also
included, as well as the latest growth of structure measurements.

Section 2 describes our updated data sets. Section 3 shows
their impact on the cosmological standard model constraints.
The Galileon theory is introduced in Sect. 4 and the correspond-
ing cosmological constraints are described in Sect. 5. Section 6
discusses these results and their implications, in particular when
including non-cosmological data to constrain the Galileon cou-
plings. We conclude in Sect. 7.

2. Data sets

In this work, we follow the same methodology developed in N13,
with changes described below.

2.1. Type Ia supernovae

We used the recent type Ia supernovae (SNe Ia) sample pub-
lished jointly by the SuperNova Legacy Survey (SNLS) and the
Sloan Digital Sky Survey (SDSS) collaborations (Betoule et al.
2013, 2014). This SN Ia sample is referred to as the Joint Light-
curve Analysis (JLA) sample in the following. The 740 super-
novae with their full systematic and statistic covariance matri-
ces were considered. We recall that, usually, one should fit and
marginalise over two nuisance parameters α and β, which de-
scribe the SN Ia variability in stretch and colour (Astier et al.
2006; Guy et al. 2010; Conley et al. 2011). However, in N13 it
was shown that for the Galileon model we can keep α and β
fixed to their marginalised values as found in the ΛCDM model
with the same data set. In this study, as in N14, we thus took the
α and β values directly from Betoule et al. (2014).

2.2. Updated CMB data

In this work, as in N13 and N14, we did not compute a full CMB
power spectrum in the frame of the Galileon theory. Instead, sim-
ple CMB priors were considered. These priors contain mostly in-
formation from the first acoustic peak of the CMB power spec-
trum, and thus are less constraining than the full CMB power
spectrum. However, they are easier to handle when dealing with
complex alternative cosmological models, and contain enough
information to set constraints. More specifically, the priors con-
cern three parameters, which are z∗ the redshift of the last scatter-
ing surface, la the acoustic scale related to the comoving sound
speed horizon rs(z∗), and R the shift parameter related to the an-
gular distance between us and the last scattering surface.

The Planck collaboration recently released new likeli-
hoods including data on the temperature and polarisation of
the CMB from the full mission. As shown in Table 3 of
Planck Collaboration XIII (2015), using polarisation data can re-
duce cosmological parameter uncertainties by a factor of 2 com-
pared to using temperature data alone. To derive our CMB priors
from the Planck data, we used the 2015 likelihoods correspond-
ing to a flat w-CDM cosmology and the full polarisation data
(TT, TE, and EE power spectra)1. The obtained priors are

〈VCMB〉 =


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
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with the corresponding inverse covariance matrix

C
−1
CMB =

















162.48 −1529.4 2.0688
−1529.4 207232 −2866.8
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
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
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







. (2)

It should be noted that the WMAP papers (Komatsu et al. 2009,
2011; Hinshaw et al. 2012) used a similar recipe to derive
their CMB priors. Furthermore, as pointed out in Nesseris et al.
(2010), the Galileon model fulfils the assumptions required in

1 Likelihoods can be retrieved from the Planck Legacy Archive
http://www.cosmos.esa.int/web/planck/pla. Scripts to derive
parameters from this likelihood come from CosmoMC (Lewis & Bridle
2002; Lewis 2013) as detailled in http://cosmologist.info/
cosmomc/readme_python.html
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Table 1. CMB distance priors.

WMAP9 Planck TT Planck TT, TE, EE
R 1.725 ± 0.018 1.7489 ± 0.0074 1.7492 ± 0.0049
la 302.40 ± 0.69 301.76 ± 0.14 301.787 ± 0.089
z∗ 1090.88 ± 1.00 1090.00 ± 0.43 1089.99 ± 0.29

Notes. WMAP9 priors are quoted from Hinshaw et al. (2012). Planck
priors are derived using the 2015 Planck likelihoods with either the
TT spectrum only (Col. 2) or the TT, TE, and EE spectra (Col. 3) as
detailed in Table 3 of Planck Collaboration XIII (2015). Correlations
between the parameters are not presented in the table for clarity but are
taken into account in our analysis.

Komatsu et al. (2009) to use these distance priors when testing
a dark energy model, namely a Friedmann-Lemaître-Robertson-
Walker (FLRW) Universe with the standard number of neutrinos
and a dark energy background with negligible interactions with
the primordial Universe. For this point, we a posteriori checked
that in all our best fit scenarios the amount of dark energy
at decoupling remains below 2% of the total energy content
of the Universe. Finally, it has been shown in many works
that the above CMB priors are independent of the dark en-
ergy model used to derive them (see Wang & Mukherjee 2007;
Mukherjee et al. 2008; Elgarøy & Multamäki 2007; Cai et al.
2015).

In Table 1, these CMB priors are compared to the previous
WMAP9 priors (Hinshaw et al. 2012) that were used in N14 and
to Planck priors derived from temperature data only. Compared
to N14, uncertainties on the priors are approximately divided by
a factor of 5, with central values compatible within uncertainties.
The gain on the cosmological constraints is detailed in Sect. 3.
We checked that the priors are consistent with those already de-
rived by Wang (2013) and Cai et al. (2015) using the 2013 data
release from the Planck collaboration.

To use the CMB priors, we followed again the recipe recom-
mended by Komatsu et al. (2009). The key point of the recipe
consists in minimising χ2

CMB over the reduced Hubble con-
stant h = H0/(100 km s−1/Mpc) (where H0 is the Hubble con-
stant value) and the baryon density today Ω0

bh2. We used the
Hu & Sugiyama (1996) fitting formula to compute z∗.

Owing to the controversy between direct measurements
of H0 and indirect constraints from BAO and CMB data
(see e.g. Anderson et al. 2014; Planck Collaboration XVI 2014;
Planck Collaboration XIII 2015), we did not use a Gaussian
prior on H0 to guide the minimisation procedure over h. How-
ever, we report the existing direct measurements of H0 in Table 2
for comparison with our constraints in the different models we
studied.

2.3. Updated BAO and Lyman-α measurements

BAO distances provide information on the imprint on the dis-
tribution of galaxies of the comoving sound horizon at recom-
bination. BAO surveys exploit this standard ruler to derive ob-
servables which map the Universe expansion. These can be H(z)
the Hubble parameter derived jointly with DA(z) the angular dis-
tance if the survey is wide enough, or an effective distance DV (z)
(Eisenstein et al. 2005) given by

DV (z) =

[

(1 + z)2D2
A(z)

cz

H(z)

]1/3

· (3)

Table 2. H0 direct measurements.

H0 (km s−1/Mpc) Reference
73.8 ± 2.4 Riess et al. (2011)
74.3 ± 2.1 Freedman et al. (2012)
72.5 ± 2.5 Efstathiou (2014)
70.6 ± 3.3 Efstathiou (2014)
73.2 ± 1.7 Riess et al. (2016)

Notes. In this paper, as in N14, none of these measurements is used as
a Gaussian prior on H0, contrary to N13.

Generally, constraints on these observables are derived by com-
paring data to mock catalogues built with a fiducial cosmol-
ogy which fixes rd = rs(zd), the comoving sound horizon at
the baryon drag epoch redshift zd. In order to provide measure-
ments independent of this fiducial choice, the observables are
usually expressed in terms of a ratio (rfid

d /rd). Then, to com-
pare predictions to these measurements, one has to compute
H(z) and DA(z), but also rd and rfid

d . To compute the rfid
d val-

ues, the fiducial cosmology proper to each measurement is used.
In our code, the baryon drag epoch redshift zd is computed
using the Eisenstein & Hu (1998) fitting formula. The validity
of this approximate formula to compute the ratio (rfid

d /rd) has
been checked in Mehta et al. (2012) and is further discussed in
Appendix A. We note that the BAO constraints are computed
together with CMB priors described in Sect. 2.2 as both probes
share the computation of the comoving sound horizon rs (at red-
shifts zd and z∗) and depend on Ω0

bh2 and h.
In N13 and N14, only three BAO measurements were

used, from Beutler et al. (2011), Padmanabhan et al. (2012),
Anderson et al. (2013). Since then, the last two measurements
have been updated by the BOSS collaboration at redshift z =
0.32 and z = 0.57 (Tojeiro et al. 2014; Anderson et al. 2014),
and three new measurements from the WiggleZ survey have been
released in Blake et al. (2012) and re-analysed in Kazin et al.
(2014). The compilation of the BAO measurements used in
the present paper is presented in Table 3. We note that the
full inverse covariance matrices reported in these papers are
used to compute our χ2 values. The BAO data set presented
in Planck Collaboration XIII (2015) is similar to ours, but they
preferred not to use WiggleZ BAO measurements as there is a
small overlap with the BOSS survey. The correlation between
BOSS and WiggleZ measurements has been recently evaluated
in Beutler et al. (2016) and appears to be small. We thus decided
to use both data sets.

The above measurements use galaxies to extract the BAO
scale at redshifts z . 1. The BAO feature was also detected at
redshift z ≈ 2.3 in the flux-correlation function of the Lyman-
α (hereafter Lyα) forest of high-redshift quasars (Delubac et al.
2015) and in the cross-correlation of quasars with the Lyα forest
absorption (Font-Ribera et al. 2014), see Table 3. Delubac et al.
(2015) notes that these two measurements are nearly uncorre-
lated and can be used together to build stronger cosmological
constraints.

The Galileon best fit scenarios from N13 and N14 revealed
important deviations from ΛCDM mostly at redshifts z . 3. The
precise mapping of the Universe expansion in this redshift range
could be used to discriminate between the cosmological models.
The Lyα distance measurements at redshift z ≈ 2.3 allow the
mapping of the Universe expansion history at intermediate red-
shifts between the anchor of the CMB measurement at z ≈ 1100
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Table 3. Updated BAO (top) and Lyman-α (bottom) measurements.

z DV

(

rfid
d
rd

)

(Mpc) H

(

rd

rfid
d

)

(km s−1/Mpc) DA

(

rfid
d
rd

)

(Mpc) r Survey Reference

0.106 456 ± 20 – – – 6dFGS Beutler et al. (2011)
0.15 664 ± 25 – – – SDSS MGS Ross et al. (2015)
0.32 1264 ± 25 – – – BOSS LOWZ Tojeiro et al. (2014)
0.44 1716 ± 83 – – – WiggleZ Kazin et al. (2014)
0.57 – 96.8 ± 3.4 1421 ± 20 0.539 BOSS CMASS Anderson et al. (2014)
0.6 2221 ± 101 – – – WiggleZ Kazin et al. (2014)
0.73 2516 ± 86 – – – WiggleZ Kazin et al. (2014)

2.34 – 222 ± 7 1662 ± 96 0.43 BOSS DR11 Delubac et al. (2015)
2.36 – 223 ± 7 1616 ± 60 0.39 BOSS DR11 Font-Ribera et al. (2014)

Notes. Parameter r is the cross-correlation between H(z) and DA(z) measurements. The r values for the Lyman-α measurements are taken from
Aubourg et al. (2014). WiggleZ DV (rfid

d /rd) three measurements are correlated: the full inverse covariance matrix from Kazin et al. (2014) is used
to compute our χ2 values, but not detailed here for brevity.

Table 4. Updated growth of structure data.

z fσ8(z) F(z) r Survey Reference
0.067 0.423 ± 0.055 – – 6dFGRSa Beutler et al. (2012)
0.15 0.53 ± 0.19 – – SDSS MGSb Howlett et al. (2015)
0.32 0.384 ± 0.095 0.327 ± 0.030 0.71 BOSS LOWZ Chuang et al. (2016)
0.44 0.413 ± 0.080 0.482 ± 0.049 0.73 WiggleZ Blake et al. (2012)
0.57 0.441 ± 0.044 – – BOSS CMASSc Samushia et al. (2014)
0.6 0.390 ± 0.063 0.650 ± 0.053 0.74 WiggleZ Blake et al. (2012)

0.73 0.437 ± 0.072 0.865 ± 0.073 0.85 WiggleZ Blake et al. (2012)
0.8 0.47 ± 0.08 – – VIPERSa de la Torre et al. (2013)

Notes. Parameter r is the cross-correlation between the fσ8(z) and F(z) measurements. Correlations between the three WiggleZ measurements
also exist but are not reported here. (a) The Alcock-Paczynski effect is supposed to be negligible in these analysis. (b) Values of fσ8 are corrected for
the Alcock-Paczynski effect but no F(z) values are provided. (c) Samushia et al. (2014) provides a F(z) measurement, but to avoid double counting
with the BOSS CMASS H(z) and DA(z) measurements in Table 3 here we used only their fσ8(z) result marginalised over F(z).

and the local z . 1 distance measurements from SNe Ia and BAO
surveys.

In their cosmological paper Planck Collaboration XIII
(2015), the Planck Collaboration decided not to use the two
Lyα measurements as they exhibit a ≈ 2σ tension with ΛCDM
(see also Delubac et al. 2015). This kind of measurement is less
mature than galaxy measurements and may be affected by still
unknown systematics. However, as our aim is to look beyond
ΛCDM, it would be biased to reject these two measurements be-
cause of this tension. In this paper, we preferred to use them and
check their impact on the ΛCDM and Galileon models.

2.4. Updated growth of structure data

In N13 and N14, we used nine linear growth rate measurements
fσ8(z) jointly with five Alcock-Paczynski parameter F(z) mea-
surements to compute constraints on the Universe growth his-
tory. We chose measurements that do not use an underlying fidu-
cial ΛCDM cosmology but rely on the Alcock-Paczynski test
(Alcock & Paczynski 1979) to derive a value for fσ8 from raw
data. In the above, f (z) stands for the linear growth rate of struc-
tures and σ8(z) for the RMS of matter fluctuations in spheres of
8 h−1 Mpc radius. The Alcock-Paczynski parameter is defined as

F(z) =
1 + z

c
DA(z)H(z). (4)

The precise methodology for computing the above observables
and the corresponding χ2 values is described in N13 and N14.
In summary, f (z) is computed by integrating the perturbation
equations corresponding to the cosmological model under study.
As regards σ8(z), since we are dealing with the linear growth of
structures, we followed the Samushia et al. (2012) method

σ8(z) = σ8(z∗)
D(z)
D(z∗)

, (5)

with

σ8(z∗) = σ
0
8

DΛCDM(z∗)
DΛCDM(0)

, (6)

where D(z) is the linear growth of structures and σ0
8 the present

value of the power spectrum normalisation derived from CMB
data in the ΛCDM model. Doing so we assumed that the σ8
value at decoupling is the same in all cosmological models,
which is the case if dark energy was subdominant during the
radiation era. This hypothesis is consistent with the assumptions
made to derive the CMB priors in Sect. 2.2.

In this paper we use the updated growth measurements pre-
sented in Table 4, together with their full covariance matrix. We
also updated the present value of σ8 to

σ0
8 = 0.8150 ± 0.0087, (7)
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from Planck Collaboration XIII (2015) using CMB polarisation
information. This value is 1σ lower than that used in N14, σ0

8 =

0.829 ± 0.012 from Planck Collaboration XVI (2014). It is used
as a common seed at z = 103 (after removing growth evolution
from z = 0 to z = 103, see Eqs. (5) and (6)) for the standard and
Galileon models.

Growth of structure measurements are a key probe for testing
modified gravity models. However, they are also the most diffi-
cult to handle as only the linear growth rate of perturbations is
easily computable in general relativity and modified gravity the-
ories. Non-linearities play an important role at small scales, but
their inclusion requires heavy simulations, in particular for the
modified gravity theories which include screening mechanism
through non-linear features.

It is thus important to recall the main hypothesis when test-
ing a Galileon theory with growth data. In our analysis, we
used linear growth rate measurements which include scales up
to ≈0.1 h Mpc−1 measured through redshift space distortions
(RSD). Most measurements are derived from raw data using
models that encompass non-linearities which are thought to be
important at scales above 0.05 h Mpc−1 (Jennings et al. 2011;
Blake et al. 2011). The choice of the cut-off scale is an ex-
perimental compromise between cutting small scales in matter
power spectra and increasing the statistical size of the galaxy
samples.

Our code includes only linear growth rate predictions based
on linear theory to describe the growth of matter and of Galileon
field perturbations. In particular, this means that we assumed
that the Galileon screening mechanism, which is due to the
non-linear Galileon field Lagrangians, can be neglected over the
range of scales probed by the observations. However, the transi-
tion scale between the screened and unscreened regimes is still
difficult to estimate, but progress has been made. Heavy numer-
ical simulations have been performed in the Galileon to charac-
terise the impact of the non-linear screening mechanism on sev-
eral observables (Li et al. 2013; Barreira et al. 2013b,c, 2014c,
2016; Gronke al. 2015). Barreira et al. (2014c) have shown that
the screening sets approximately on scales k > 0.1 h Mpc−1 in
the cubic (c4 = c5 = 0) and quartic (c5 = 0) Galileon models,
but not for the full Galileon model. The corresponding thresh-
old in the full Galileon model is difficult to estimate. However,
with the above value it seems that present measurements lay at
the frontier of the Vainshtein regime. Until future works indicate
whether non-linear scales have a significant impact on present
growth measurements, we choose to show how growth data con-
strain the Galileon model.

Concerning the BOSS CMASS results at z = 0.57, two
measurements exist, Samushia et al. (2014) and Beutler et al.
(2014), derived using two different techniques. Beutler et al.
(2014) have shown that their measurement is less stable with
respect to the values of the cut-off scale than the measure-
ment from Samushia et al. (2014). In the light of the above
discussion, we only used the latter. However, as the BOSS
CMASS measurements of H(z) and DA(z) are also included in
our data (see Table 3), we marginalised their value of fσ8(z)
over F(z) to avoid double counting. Doing so, we keep the sta-
tistical power of the precise anisotropic BAO measurement of
Anderson et al. (2014) instead of using the full RSD information
in Samushia et al. (2014).

In summary, this paper encompasses seven more measure-
ments than N13 and N14 (principally in the BAO data set).
We thus expect an increase in the total χ2 values by a similar
amount.

Fig. 1. Cosmological constraints on the ΛCDM model from JLA
SNe Ia (blue), growth data (red), Planck+BAO+Lyα data (green, nearly
masked by the yellow contour), and all data combined (yellow). The
black dashed line indicates the flatness condition Ωm + ΩΛ = 1.

3. Cosmological constraints on standard

cosmological models

To derive constraints on cosmological models (standard ones or
the Galileon model), we sampled the model parameter space as
in N13, namely using a grid technique with a fixed step size to
ensure that all parameter sets of interest are explored.

3.1. Cosmological constant model ΛCDM

We used all the data presented in Sect. 2 to constrain the cos-
mological constant ΛCDM model. The results are presented in
Fig. 1 and Table 5.

The use of the latest Planck priors combined with the latest
BAO measurements is responsible for a reduction of a factor of 2
of the uncertainties on theΛCDM parameters, compared to what
we observed with the previous data set. The Ω0

m best fit value in-
creased from ≈0.28 to 0.30, as expected when using Planck data
instead of WMAP9 priors (Planck Collaboration XIII 2015).

Tests have been conducted with and without the Lyman-α
measurements to see the evolution of χ2. Without them, the same
best fit as that in the third row of Table 5 is obtained, but the χ2

decreased from 14.5 to 4.5. This reflects the tensions reported
for these measurements with the ΛCDM model (Delubac et al.
2015; Aubourg et al. 2014).

Compared to N13, there is a 1σ shift in the best fit values
from growth data, leading to better agreement with ΛCDM. Two
factors explain that change. Half of the shift is due to the updated
fσ8 measurements and the other half comes from the lower σ0

8
value. A lower σ0

8 value is indeed favourable to a Universe with
less matter and more dark energy in general as σ0

8 describes how
matter is distributed in 8 h−1 Mpc spheres.

The minimised h values in Table 5 are compatible with
other cosmological studies from e.g. Planck Collaboration XIII
(2015) and Anderson et al. (2014), but Ω0

bh2 is higher than in
these studies. This is probably due to the use of the approximate
Eisenstein & Hu (1998) formula in our code for z∗. The tension
with the H0 Riess et al. (2011) measurement presented in Table 2
is still present.

Compared to N13 and N14, the agreement between all
probes is better since the final χ2 moved from 705.5 in N14 to
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Table 5. ΛCDM best fit values from different data samples.

Probe Ω0
m Ω0

Λ
h Ω0

bh2 χ2 Ndata

SNe Ia 0.214+0.109
−0.103 0.588+0.158

−0.157 – – 691.0 740

Growth 0.265+0.048
−0.039 0.759+0.078

−0.091 – – 2.9 12

Planck+BAO+Lyα 0.305+0.007
−0.006 0.693+0.006

−0.006 0.695 0.0240 14.5 15

All 0.303+0.007
−0.006 0.695+0.006

−0.006 0.697 0.0241 710.6 767

All N14 0.284+0.012
−0.009 0.720+0.015

−0.012 0.689 0.0226 705.5 760

Notes. The JLA SNe Ia is used with systematics included; α and β are fixed to their marginalised value. h and Ω0
bh2 have been minimised so no

error bars are provided. Ndata is the number of measurements in each data set.

Fig. 2. Cosmological constraints on the FWCDM model from SNe Ia
(blue), growth data (red), Planck+BAO+Lyα data (green), and all data
combined (yellow).

710.6 while adding seven new measurements. Our global best fit
is compatible with the Planck Collaboration XIII (2015) ΛCDM
best fit using all data (last column in their Table 4) and uncer-
tainties are of the same size despite the use of CMB derived pa-
rameters instead of the full power spectrum.

3.2. FWCDM model

All data sets presented in Sect. 2 were used to constrain another
standard cosmological model, FWCDM, which assumes a con-
stant equation of state w for dark energy and a flat Universe.
Results are presented in Fig. 2 and Table 6. The combination of
all data sets leads to a w best fit value compatible with −1 and
the final χ2 shifts from 703.3 to 711.7 compared to N14. The
tendencies observed in Sect. 3.1 are also present in this model.
The total χ2 is equivalent to the ΛCDM value.

4. Galileon theory

4.1. Lagrangians

In this paper, as in N13 and N14, we use the Galileon covariant
action with the parametrisation of Appleby & Linder (2012a) es-
tablished in the Jordan frame,

S =

∫

d4x
√
−g

















M2
PR

2
− Lm −

1
2

5
∑

i=1

ciLi − LG − L0

















, (8)

with MP the Planck mass, R the Ricci scalar, g the determinant
of the metric gµν, Lm the matter Lagrangian, and Li the Galileon
Lagrangians. The cis are the arbitrary dimensionless parame-
ters of the Galileon model that weight the different terms. The
Galileon Lagrangians have a covariant formulation derived in
Deffayet et al. (2009a)

L1 = M3π, L2 = (π;µπ
;µ), L3 = (π;µπ

;µ)(�π)/M3,

L4 = (π;µπ
;µ)

[

2(�π)2 − 2π;µνπ
;µν − R(π;µπ

;µ)/2
]

/M6,

L5 = (π;µπ
;µ)

[

(�π)3 − 3(�π)π;µνπ
;µν + 2π ;ν

;µ π
;ρ

;ν π
;µ

;ρ

−6π;µπ
;µνπ;ρGνρ

]

/M9,

LG = cGMPGµνπ;µπ;ν/M
3, L0 = c0MPRπ, (9)

where �π ≡ π;µ
;µ, M is a mass parameter defined as M3 = H2

0 MP.
With this definition the ci free parameters are dimensionless.

L2 is the usual kinetic term for a scalar field, while L3 to
L5 are non-linear couplings of the Galileon field to itself, to the
Ricci scalar R, and to the Einstein tensor Gµν, providing the nec-
essary features for modifying gravity and mimicking dark en-
ergy. L1 is a tadpole term that acts as the usual cosmological con-
stant, and may furthermore lead to vacuum instability because it
is an unbounded potential term. Therefore, in the following we
set c1 = 0.

LG and L0 are Lagrangians appearing in the generalised
Galileon theory. They can be understood, correspondingly, as di-
rect disformal and conformal couplings between matter and the
Galileon field when translated in the Einstein frame and in the
weak field limit (Appleby & Linder 2012a). They introduce two
dimensionless and constant parameters cG and c0. Defining T µν

as the matter energy-momentum tensor, in the Einstein frame
these two Lagrangians are

LG =
cG

MPM3
∂µπ∂νπT µν, L0 =

c0

MP
πT

µ
µ. (10)

Given these expressions, LG is called the disformal coupling
to matter and L0 the conformal coupling to matter. Although
throughout this paper we work in the Jordan (physical) frame,
where definitions from Eq. (10) are not present, we loosely use
the terms “disformal” and “conformal” couplings when refer-
ring to cG and c0. With this convention by uncoupled Galileon
we mean cG = c0 = 0. The disformal coupling is motivated
by extra-dimension considerations. It naturally arises in the de-
coupling limit of massive gravity (see de Rham & Heisenberg
2011). It also automatically arises when dealing with a fluctuat-
ing 3+1 brane in a D = 4+n dimensional bulk when matter lives
exclusively in the brane. This disformal coupling has already
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Table 6. FWCDM best fit values from different data samples.

Probe Ω0
m w h Ω0

bh2 χ2 Ndata

SNe Ia 0.231+0.112
−0.132 −0.92+0.20

−0.23 – – 691.7 740

Growth 0.261+0.048
−0.039 −1.11+0.14

−0.15 – – 3.0 12

Planck+BAO+Lyα 0.301+0.013
−0.012 −1.04+0.06

−0.06 0.698 0.0241 15.5 15

All 0.301+0.010
−0.008 −1.03+0.04

−0.04 0.697 0.0241 711.7 767

All N14 0.294+0.014
−0.010 −0.93+0.05

−0.04 0.678 0.0226 703.3 760

Notes. The JLA SNe Ia is used with systematics included; α and β are fixed to their marginalised value. h and Ω0
bh2 have been minimised so no

error bars are provided. Ndata is the number of measurements in each data set.

been studied in scalar field theories as reported in Brax et al.
(2012, 2013), and Brax & Burrage (2014). The disformal cou-
pling to photons can play a role in gravitational lensing and has
an observational signature (see Wyman 2011). In the more gen-
eral context of scalar field theories, the disformal coupling has
been recently constrained in particle physics using Large Hadron
Collider data (CMS Collaboration 2016; Brax et al. 2015).

The action in Eq. (8) leads to three differential equations:
two Einstein equations (with (00) the temporal component and
(i j) the spatial one) coming from the action variation with re-
spect to the metric gµν, and the scalar field equation of motion,
from the action variation with respect to the π field. The equa-
tions are given explicitly in Appendix B of Appleby & Linder
(2012a). With these three differential equations the evolution of
the Universe and the dynamics of the field can be computed.

To solve the cosmological equations, we chose the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric. The
functions to compute are the Hubble parameter H = ȧ/a (with a
the cosmic scale factor), y = π/MP, and x = π′/MP, with a prime
denoting d/d ln a (see Appleby & Linder 2012a, and Sect. 4.3).

The rest of this section describes the Galileon equations with
couplings that can be compared with the uncoupled case detailed
in N13.

4.2. Initial conditions

To compute the solutions of these cosmological equations, we
need to set initial conditions, in particular for x as was shown
in N13. We arbitrarily chose to define this initial condition at
z = 0, which we denote x0 = x(z = 0). There is no prior informa-
tion about the value of the Galileon field or its derivative at any
epoch. But, as shown in N13, x0 can be absorbed by redefining
the cis and functions as

c̄i = cix
i
0 for i = 2...5, c̄G = cGx2

0, c̄0 = c0x0, (11)

x̄ = x/x0, ȳ = y/x0, H̄ = H/H0. (12)

In several papers (Appleby & Linder 2012b; Nesseris et al.
2010; Neveu et al. 2013; Barreira et al. 2013a), a degeneracy be-
tween the cis and x0 was noted which prevents the Galileon
model from being compared with data. Our parametrisation
avoids this problem by absorbing the degeneracy between the
cis and x0 into the c̄is (more details in N13). This redefinition al-
lows us to avoid treating the initial condition x0 as an extra free

parameter of the model. Doing so, the c̄is remain dimensionless,
and the initial conditions are simple for x̄ and H̄:

x̄0 = 1, H̄0 = 1. (13)

The initial conditions for ȳ are discussed in the next section.

4.3. Cosmological equations

To compute cosmic evolution in the Galileon model, we assume
for simplicity that the Universe is spatially flat, in agreement
with current observations. We used the FLRW metric in a flat
space

ds2 = −dt2 + a2δi jdxidx j. (14)

When writing the cosmological equations, we can mix the (i j)
Einstein equation and the π equation of motion to obtain the fol-
lowing system of differential equations for x̄, ȳ, and H̄

ȳ′ = x̄, (15)

x̄′ = −x̄ +
αλ − σγ
σβ − αω

, (16)

H̄′ =
ωγ − λβ
σβ − αω

, (17)

with

α =
c̄2

6
H̄ x̄ − 3c̄3H̄3 x̄2 + 15c̄4H̄5 x̄3 −

35
2

c̄5H̄7 x̄4

+ c̄0H̄ − 3c̄GH̄3 x̄,

γ =
c̄2

3
H̄2 x̄ − c̄3H̄4 x̄2 +

5
2

c̄5H̄8 x̄4 + 2c̄0H̄2 − 2c̄GH̄4 x̄,

β =
c̄2

6
H̄2 − 2c̄3H̄4 x̄ + 9c̄4H̄6 x̄2 − 10c̄5H̄8 x̄3 − c̄GH̄4,

σ = 2(1 − 2c̄0ȳ)H̄ − 2c̄0H̄ x̄ + 2c̄3H̄3 x̄3 − 15c̄4H̄5 x̄4

+ 21c̄5H̄7 x̄5 + 6c̄GH̄3 x̄2,

ω = 2c̄3H̄4 x̄2 − 12c̄4H̄6 x̄3 + 15c̄5H̄8 x̄4 − 2c̄0H̄2 + 4c̄GH̄4 x̄,

λ = 3(1 − 2c̄0ȳ)H̄2 − 2c̄0H̄2 x̄ +
Ω0

r

a4
+

c̄2

2
H̄2 x̄2 − 2c̄3H̄4 x̄3

+
15
2

c̄4H̄6 x̄4 − 9c̄5H̄8 x̄5 − c̄GH̄4 x̄2, (18)
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as derived in the formalism of Appleby & Linder (2012a), but
using our normalisation for the cis. We obtain the same equa-
tions except that the cis are changed to c̄is, and that we have
a different treatment for the initial conditions. Equations (16)
and (17) depend only on the c̄is and Ω0

r . The radiation en-
ergy density in Eq. (18) is computed from the usual formula
Ω0

r = Ω
0
γ(1 + 0.2271Neff) with Neff = 3.04 the standard ef-

fective number of neutrino species (Mangano et al. 2002). The
photon energy density at the current epoch is given by Ω0

γh2 =

2.469 × 10−5 for TCMB = 2.725 K.
If c̄0 = 0 whatever the value of c̄G, the differential equation

system is only of first order and can be solved with the two initial
conditions in Eq. (13). If c̄0 , 0, the differential equation system
becomes of second order. Thus, an initial condition ȳ0 must be
set. From the (00) Einstein equation

(1 − 2c̄0ȳ)H̄2 =
Ω0

m

a3
+
Ω0

r

a4
+

c̄2

6
H̄2 x̄2 − 2c̄3H̄4 x̄3 +

15
2

c̄4H̄6 x̄4

− 7c̄5H̄8 x̄5 − 3c̄GH̄4 x̄2 + 2c̄0H̄2 x̄, (19)

it can be noted that the effect of ȳ in the Friedmann equation is
to renormalise the Newton constant GN by a factor (1 − 2c̄0ȳ)
(Brax et al. 2015). In order to avoid adding a new parameter y0
to constrain, it is physically motivated to restrain our study to
the case where the Newton constant at cosmological scales has
its standard value today, i.e. ȳ0 = 0.

4.4. Perturbation equations

To test the Galileon model predictions for the growth of struc-
tures, we also need the equations describing density perturba-
tions. We followed the approach of Appleby & Linder (2012a)
for the scalar perturbation. Appleby & Linder (2012a) per-
formed their computation in the frame of the Newtonian gauge,
for scalar modes in the subhorizon limit, with the following per-
turbed metric:

ds2 = −(1 + 2ψ)dt2 + a2(1 − 2φ)δi jdxidx j. (20)

In this context, the perturbed equations of the (00) Einstein
equation, the (i j) Einstein equation, the π equation of mo-
tion, and the equation of state of matter are, in the quasi-static
approximation (proved to be valid in the Galileon model by
Barreira et al. 2012)

1
2
κ4∇̄2ψ − κ3∇̄2φ = κ1∇̄2δy, (21)

κ5∇̄2δy − κ4∇̄2φ =
a2ρm

H2
0 M2

P

δm, (22)

1
2
κ5∇̄2ψ − κ1∇̄2φ = κ6∇̄2δy, (23)

H̄2δ′′m + H̄H̄′δ′m+2H̄2δ′m =
1
a2
∇̄2ψ, (24)

where δy= δπ/MP is the perturbed Galileon, ∇̄ = ∇/H0, ρm is the
matter density, and δm = δρm/ρm is the matter density contrast.
The formula for κis are the same as in Appleby & Linder (2012a),

but rewritten following our parametrisation

κ1 = − 6c̄4H̄3 x̄3

(

H̄′ x̄ + H̄ x̄′ +
H̄ x̄

3

)

+ c̄5H̄5 x̄3(12H̄ x̄′ + 15H̄′ x̄ + 3H̄ x̄)

+ 2c̄G(H̄H̄′ x̄ + H̄2 x̄′ + H̄2 x̄) − 2c̄0,

κ3 = − (1 − 2c̄0ȳ) −
c̄4

2
H̄4 x̄4 − 3c̄5H̄5 x̄4(H̄′ x̄ + H̄ x̄′)

+ c̄GH̄2 x̄2,

κ4 = − 2(1 − 2c̄0ȳ) + 3c̄4H̄4 x̄4 − 6c̄5H̄6 x̄5 − 2c̄GH̄2 x̄2,

κ5 = 2c̄3H̄2 x̄2 − 12c̄4H̄4 x̄3 + 15c̄5H̄6 x̄5 + 4c̄GH̄2 x̄ − 2c̄0,

κ6 =
c̄2

2
− 2c̄3

(

H̄2 x̄′ + H̄H̄′ x̄ + 2H̄2 x̄
)

− c̄G

(

2H̄H̄′ + 3H̄2
)

+ c̄4

(

12H̄4 x̄x̄′ + 18H̄3 x̄2H̄′ + 13H̄4 x̄2
)

− c̄5

(

18H̄6 x̄2 x̄′ + 30H̄5 x̄3H̄′ + 12H̄6 x̄3
)

. (25)

With Eqs. (21) to (24), we can obtain a Poisson equation for ψ
with an effective gravitational coupling G

(ψ)
eff that varies with time

and depends on the Galileon model parameters c̄is:

∇̄2ψ =
4πa2G

(ψ)
eff ρm

H2
0

δm, (26)

G
(ψ)
eff =

4(κ3κ6 − κ2
1)

κ5(κ4κ1 − κ5κ3) − κ4(κ4κ6 − κ5κ1)
GN. (27)

These equations can be used to compute the growth of matter
perturbations in the frame of the Galileon model. Tensorial per-
turbation modes also exist, and are studied in Sect. 4.5.4.

4.5. Theoretical constraints

With at least six free parameters (Ω0
m, h, and the various c̄is), it is

necessary to restrict the parameter space on theoretical grounds
before comparing the model to data. The theoretical constraints
arise from multiple considerations: using the (00) Einstein equa-
tion, requiring positive energy densities, and avoiding instabili-
ties in scalar and tensorial perturbations.

4.5.1. The (00) Einstein equation and c̄5

Because we used only the (i j) Einstein equation and the π
equation of motion to compute the dynamics of the Universe
(Eqs. (16) and (17)), we are able to use the (00) Einstein equa-
tion as a constraint on the model parameters. More precisely, we
used this constraint both at z = 0 to fix one of our parameters
and at other redshifts to check the reliability of our numerical
computations. The parameter we chose to fix at z = 0 is

c̄5 =
1
7

(

−1 + Ω0
m + Ω

0
r +

c̄2

6
− 2c̄3 +

15
2

c̄4 + 2c̄0 − 3c̄G

)

. (28)

We chose to fix c̄5 as a function of the other parameters because
allowing it to float introduces significant numerical difficulties
when solving Eqs. (16) and (17) since it represents the weight
of the most non-linear term in these equations. As Ω0

r is fixed
given h, our parameter space has been reduced to Ω0

m, h, c̄2, c̄3,
c̄4 and the optional Galileon couplings to matter.
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Table 7. Uncoupled Galileon model best fit values from different data samples.

Probe Ω0
m c̄2 c̄3 c̄4 h Ω0

bh2 χ2 Ndata

SNe Ia 0.328+0.055
−0.047 −4.2+1.7

−3.0 −1.3+1.0
−1.5 −0.48+0.46

−0.35 – – 692.8 740

Growth 0.206+0.053
−0.043 −5.7+1.2

−2.0 −1.9+0.6
−1.2 −0.64+0.35

−0.26 – – 2.9 12

Planck+BAO+Lyα 0.279+0.008
−0.007 −5.4+1.9

−2.8 −1.9+0.9
−1.4 −0.63+0.46

−0.31 0.727 0.0241 22.0 15

JPBL 0.284+0.008
−0.007 −5.1+1.7

−2.8 −1.8+0.9
−1.4 −0.63+0.45

−0.28 0.719 0.0241 720.7 755

All 0.275+0.006
−0.006 −4.1+0.5

−0.9 −1.5+0.2
−0.4 −0.78+0.13

−0.06 0.736 0.0240 731.9 767

All N14 0.276+0.014
−0.009 −4.3+0.5

−1.1 −1.6+0.2
−0.6 −0.77+0.10

−0.06 0.726 0.0219 731.6 760

Notes. The combination of all distance measurements from JLA+Planck+BAO+Lyα data is denoted JPBL in the following. The JLA SN Ia sample
is used with systematics included; α and β are fixed to their marginalised values. h andΩ0

bh2 have been minimised so no uncertainties are provided.
The best fit χ2 for the N14 analysis was reevaluated to account for an error in the SN Ia χ2 contribution.

4.5.2. Positive energy density

We require that the energy density of the Galileon field be pos-
itive from z = 0 to z = 107. At every redshift in this range, this
constraint amounts to

ρπ

H2
0 M2

P

=
c̄2

2
H̄2 x̄2 − 6c̄3H̄4 x̄3 +

45
2

c̄4H̄6 x̄4 − 21c̄5H̄8 x̄5

− 9c̄GH̄4 x̄2 + 6c̄0(H̄2 x̄ + H̄2ȳ) > 0. (29)

This constraint is not really necessary for generic scalar field
models and has actually no impact on the parameter space
because the other theoretical conditions described below are
stronger (see N13). We kept it for consistency with previous
works.

4.5.3. Scalar perturbations

As suggested by Appleby & Linder (2012a), outside the quasi-
static approximation the propagation equation for δy leads to two
conditions, which we again checked from z = 0 to z = 107 to
ensure the viability of the linearly perturbed model:

1. a no-ghost condition, which requires a positive energy for the
perturbation

κ2 +
3
2

κ2
5

κ4
< 0; (30)

2. a Laplace stability condition for the propagation speed of the
perturbed field

c2
s =

4κ1κ4κ5 − 2κ3κ
2
5 − 2κ2

4κ6

κ4(2κ4κ2 + 3κ2
5)

> 0 (31)

with

κ2 = −
c̄2

2
+ 6c̄3H̄3 x̄ − 27c̄4H̄4 x̄2 + 30c̄5H̄6 x̄3 + 2c̄GH̄2. (32)

4.5.4. Tensorial perturbations

We also added two conditions derived by De Felice & Tsujikawa
(2011) for the propagation of tensor perturbations. Considering
a traceless and divergence-free perturbation δgi j = a2hi j, these
authors obtained identical perturbed actions at second order for
each of the two polarisation modes h⊕ and h⊗. For h⊕,

δS
(2)
T =

1
2

∫

dtd3xa3QT













ḣ2
⊕ −

c2
T

a2
(∇h⊕)2













(33)

with QT and cT as defined below. From that equation, we ex-
tracted two conditions in our parametrisation that have to be sat-
isfied (again from z = 0 to z = 107):

1. a no-ghost condition

QT

M2
P

=
1
2
− 3

4
c̄4H̄4 x̄4 +

3
2

c̄5H̄5 x̄5 +
c̄G

2
H̄2 x̄2 − c̄0ȳ > 0; (34)

2. a Laplace stability condition

c2
T =

1
2 +

c̄4
4 H̄4 x̄4 + 3

2 c̄5H̄5 x̄4(H̄ x̄)′ − c̄G

2 H̄2 x̄2 − c̄0ȳ

1
2 −

3
4 c̄4H̄4 x̄4 + 3

2 c̄5H̄6 x̄5 +
c̄G

2 H̄2 x̄2 − c̄0ȳ
> 0. (35)

All these conditions allowed us to reduce the Galileon parameter
space significantly.

5. Results

In this section, we present new cosmological constraints on the
c̄i parameters of the Galileon model with different couplings to
matter. Results are discussed further in Sect. 6.

To appreciate the goodness of fit of the Galileon models, it is
better to avoid reduced χ2 values because they require the num-
ber of degrees of freedom Nd.o.f. to be determined. As explained
in Andrae et al. (2010), the usual definition of Nd.o.f. as the dif-
ference between the number of measurements and the number of
free independent parameters, is generally not valid in the case of
non-linear models, nor when the parameter space is limited by
priors like the theoretical conditions we presented in Sect. 4.5.
In our papers, we thus prefer to compare values of the best fit χ2

to the number of measurements Ndata, as the total χ2 gives an es-
timate of the mean size of the residuals between predictions and
data. This technical point is discussed further in Appendix B. A
summary of the best fit χ2 and Ndata values for each cosmological
probe and all tested models is given in Sect. 6.

5.1. Uncoupled Galileon model

New constraints on the uncoupled Galileon model are presented
in Table 7 and Fig. 3. Results are very similar to those obtained
with previous data sets in N13 and N14 as shown in the last row
of Table 7. Although there is more data, the final χ2 is nearly un-
changed because there is better agreement with data, especially
growth rate measurements. We note that the use of Planck priors
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Fig. 3. Top: cosmological constraints on the uncoupled Galileon model from growth data (red) and from JLA+Planck+BAO+Lyα data (dashed).
Bottom: combined constraints on the uncoupled Galileon model from all data combined. The filled dark, medium and light coloured contours
enclose 68.3, 95.4 and 99.7% of the probability, respectively. Dark dotted regions correspond to scenarios rejected by theoretical constraints. Only
two projections out of six are shown. Results in the other projections are similar.

Table 8. Disformally coupled Galileon model best fit values from JPBL data alone and combined with growth rate measurements.

Probe Ω0
m c̄2 c̄3 c̄4 c̄G h Ω0

bh2 χ2 Ndata

JPBL 0.288+0.009
−0.007 −3.1+1.8

−1.6 0.1+1.6
−1.2 0.20+0.65

−0.63 0.69+0.55
−0.46 0.710 0.0244 721.1 755

All 0.280+0.007
−0.005 −3.4+0.4

−0.7 −1.1+0.2
−0.3 −0.61+0.09

−0.09 0.15+0.09
−0.06 0.727 0.0240 724.7 767

All N14 0.279+0.013
−0.008 −3.4+0.3

−0.6 −1.0+0.2
−0.3 −0.61+0.09

−0.08 0.15+0.08
−0.06 0.719 0.0220 722.8 760

Notes. The best fit χ2 for the N14 analysis was reevaluated to account for an error in the SN Ia χ2 contribution.

containing polarisation information brought tighter constraints
on Ω0

m as already observed with the standard cosmological mod-
els (see Sect. 3).

5.2. Galileon model disformally coupled to matter

New constraints on the disformally coupled Galileon model are
presented in Table 8 and Fig. 4. Results are very similar to those
obtained with previous data sets in N14 as shown in the last row
of Table 8. The final χ2 is still better than in the uncoupled case.
Moreover, the c̄G constraint, c̄G = 0.15+0.09

−0.06, excludes a null cou-
pling at the 2.3σ level. With the new growth rate measurements,
the tension between growth data and distance measurements de-
creased and the agreement between the Galileon best fit scenario
and growth data alone improved.

Figure 4 shows that for the c̄is contours from distance mea-
surements are only determined by the theoretical conditions. The
probability density functions for these parameters are wide as il-
lustrated in Fig. 5. Only growth data brought constraints on the
c̄i parameters, in particular on c̄G.

The reason why distance measurements lead to flat prob-
ability density functions over the available c̄i parameter space
may have a more fundamental origin. Indeed, the Galileon
theory belongs to the Horndeski model class and it has been
shown that these models are invariant under disformal transfor-
mations (Bettoni & Liberati 2013). Moreover, Zumalacarregui
(2013) has shown that a disformally coupled theory in which
the gravitational sector has the Einstein-Hilbert form is equiv-
alent to a quartic Dirac-Born-Infeld Galileon Lagrangian
de Rham & Tolley (2010). Thus, a disformally coupled Galileon
model belongs to a wide class of equivalent disformal models
which may also present equivalent expansion histories that cos-
mological distances are not able to distinguish. The wide con-
tours in Fig. 4 in the allowed c̄i parameter space may be related
to this theoretical property.

5.3. Galileon model conformally coupled to matter

For the first time, we explored the parameter space of the
Galileon model conformally coupled to matter. First, we found
that the region c̄0 > 0 is forbidden by theoretical constraints,
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Fig. 4. Top: cosmological constraints on the disformally coupled Galileon model from growth data (red) and from JLA+Planck+BAO+Lyα data
(dashed). Bottom: combined constraints on the disformally coupled Galileon model from all data combined. The filled dark, medium and light
coloured contours enclose 68.3, 95.4 and 99.7% of the probability, respectively. Dark dotted regions correspond to scenarios rejected by theoretical
constraints. Three projections out of ten are shown.

Fig. 5. Left: disformally coupled Galileon mode c̄G probability density functions obtained with different data sets, marginalising over all other
parameters. Right: conformally coupled Galileon mode c̄G probability density functions obtained with different data sets, marginalising over all
other parameters. For clarity, probability density function maxima are normalised to one.

in particular by Eq. (31). In the following, only c̄0 < 0 is ex-
plored. The cosmological constraints are presented in Table 9
and Fig. 6.

Contrary to the disformal coupling, the conformal coupling
is tightly constrained by the JPBL data set. Growth data are less
severe and allow large non-zero values for this coupling to mat-
ter. As the maximum of the c̄0 probability density function is
zero with the JPBL data set, only a 95% confidence level limit is
set on this parameter. However, when combining with growth
data, a non-zero value is preferred at the 1.6σ level only, as
also shown in Fig. 5. The level of agreement between data and

predictions is similar to that in the uncoupled case, even though
one parameter has been added. The conformal coupling does not
appear to be favoured by the data, at least at the present level of
precision.

5.4. Galileon model conformally and disformally coupled
to matter

Finally, we also tested a Galileon model with both disformal
and conformal couplings to matter. The parameter space is so
wide that, for computational reasons, we imposed a fixed value
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Fig. 6. Top: cosmological constraints on the conformally coupled Galileon model from growth data (red) and from JLA+Planck+BAO+Lyα data
(dashed). Bottom: combined constraints on the conformally coupled Galileon model from all data combined. The filled dark, medium and light
yellow contours enclose 68.3, 95.4 and 99.7% of the probability, respectively. Dark dotted regions correspond to scenarios rejected by theoretical
constraints. Only three projections out of 10 are shown.

Table 9. Conformally coupled Galileon model best fit values from JPBL data alone and combined with growth rate measurements.

Probe Ω0
m c̄2 c̄3 c̄4 c̄0 < 0 h Ω0

bh2 χ2 Ndata

JPBL 0.284+0.008
−0.006 −5.1+1.7

−2.8 −1.8+0.9
−1.4 −0.63+0.47

−0.28 −0.017 (95% CL) 0.719 0.0241 720.2 755

All 0.276+0.007
−0.005 −4.4+0.6

−1.4 −1.6+0.3
−0.7 −0.74+0.16

−0.08 −0.013+0.008
−0.008 0.747 0.0244 730.6 767

Notes. With JPBL data, the c̄0 probability density function is maximum at 0. As c̄0 > 0 values are forbidden, only a lower bound is quoted in this
line, and the best fit values of the other parameters are evaluated assuming c̄0 = 0.

Table 10. Galileon model conformally and disformally coupled to matter best fit values from JPBL data alone and combined with growth rate
measurements, with fixed matter density Ω0

m = 0.28.

Probe c̄2 c̄3 c̄4 c̄G c̄0 h Ω0
bh2 χ2 Ndata

All −3.4+0.4
−0.7 −1.0+0.2

−0.3 −0.61+0.10
−0.06 0.15+0.10

−0.06 −0.027 (95% CL) 0.727 0.0240 724.6 767

Notes. The c̄0 probability density function is maximum at 0. As c̄0 > 0 values are forbidden, only a lower bound is quoted, and the best fit values
of the other parameters are evaluated assuming c̄0 = 0.

Ω0
m = 0.28, in agreement with all previous Galileon constraints.

Results are presented in Table 10 and Fig. 7.

The conclusions are very similar to the previous ones. A null
conformal coupling and a non-zero disformal coupling are pre-
ferred. We observed no new interplay between the additional
coupling terms in the theory leading to differences in the best fit
scenarios. The best fit and χ2 values are completely equivalent
to those of the disformally coupled Galileon model.

6. Discussion

6.1. Comparing the Galileon models

The particular behaviour of the Galileon best fit scenarios is dis-
played in Fig. 8. For the four cases, the equation of state parame-
ter w(z) deviates strongly from wΛ = −1 between z = 0 and z = 3
before converging toward a value close to 0 in the early Universe
as already shown in N13 and N14. The effective gravitational
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Fig. 7. Top: cosmological constraints on the Galileon model coupled conformally and disformally to matter from growth data (red) and from
JLA+Planck+BAO+Lyα data (dashed). Bottom: combined constraints on the Galileon model coupled conformally and disformally to matter from
all data combined. The filled dark, medium and light yellow contours enclose 68.3, 95.4 and 99.7% of the probability, respectively. Dark dotted
regions correspond to scenarios rejected by theoretical constraints. In all results, Ω0

m was fixed to 0.28. Only three projections out of ten are shown.
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Fig. 8. Expansion speed parameter H(z)/(1 + z) (left), effective equation of state parameter w(z) (middle) and gravitational coupling G
(ψ)
eff (z) (right)

as a function of redshift in the best fit scenarios of the four Galileon models studied in this paper, compared with ΛCDM best fit predictions (with
68% and 95% confidence ranges indicated as grey bands, whenever relevant).

coupling G
(ψ)
eff (z) also deviates from GN in the late Universe. We

note that G
(ψ)
eff (z) determines the gravitational strength that rules

structure formation at large scales and there is no reason why
this coupling should be GN as measured in local experiments.
The introduction of the Galileon couplings to matter leads to
best fit scenarios which are rather similar to the uncoupled best
fit scenario.

A summary of the different χ2 values obtained with the full
data set is given in Fig. 9. In each case, the contribution from
the different probes is detailed. It confirms that a disformal cou-
pling improves the agreement between data and the Galileon
model, whether the Galileon field is also conformally coupled
or not. This histogram also shows that if the individual χ2 val-
ues are compared with the number of measurements Ndata, ex-
cept the two Lyα measurements, no probe is particularly in ten-
sion with the Galileon model. But the Lyα probe exhibits similar

tensions in the standard cosmological models as also revealed in
many other works (Delubac et al. 2015; Font-Ribera et al. 2014;
Aubourg et al. 2014; Planck Collaboration XIII 2015).

6.2. Comparing the Galileon models with ΛCDM

6.2.1. Distance measurements

The strong variations of the Galileon effective dark energy equa-
tion of state parameter w(z) translates into a specific signature in
the observables linked to cosmological distances. As shown in
the left plot in Fig. 8, the deceleration of the expansion of the
Universe and its re-acceleration after matter-dark energy tran-
sition at z ≈ 0.7 are expected to be more important than in the
ΛCDM model. The impact on the cosmological distance observ-
ables is shown in Figs. 10−12.
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nitude predictions with data. The grey bands show the 68% and 95%
confidence ranges allowed for the ΛCDM prediction using all data. The
JLA data points are from Betoule et al. (2014).

The best fit SN Ia magnitude predictions are plotted in
Fig. 10 and are compared to JLA data. A deviation of about
0.08 mag is observed at redshift z ≈ 1 between the ΛCDM and
Galileon best fit scenarios, which corresponds to a deviation of
1.3% on the luminosity distances. However, current SN Ia mea-
surements are limited by systematics, so larger supernova sur-
veys will not help in discriminating between ΛCDM and the
Galileon models unless calibration systematics improve.

Effective distance DV (z) is presented in Fig. 11. A good
agreement is found between data and best fit scenario predic-
tions for the ΛCDM and the Galileon models. However, as for
luminosity distances, the strong variations in the Galileon w pa-
rameter do not translate into significant deviations in the DV

distances. The same is observed for angular distance DA(z), see
Fig. 12 (left). The reason lies in the fact that these distances are
integrals of the Hubble expansion rate H(z).
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Fig. 11. Comparison of the best fit Galileon and ΛCDM DV/rd pre-
dictions with data. The grey bands show the 68% and 95% confi-
dence ranges allowed for the ΛCDM prediction using all data. The
data points come from Table 3. BOSS CMASS DV/rd measurement
from Anderson et al. (2014) is plotted for convenience, but is not used
in the fitting procedure; the BOSS CMASS anistropic measurement is
preferred.

The impact of the Galileon w variations is more visible di-
rectly on the expansion rate (Fig. 12 right), which exhibits devi-
ations from ΛCDM on a larger redshift range than distances. In
this plot, the BOSS CMASS anisotropic measurement is in ten-
sion with the Galileon best fit scenarios, which predict a lower
expansion rate than the ΛCDM model at z & 0.5. On the other
hand, the DA(z = 0.57) measurement agrees correctly with the
Galileon predictions and the impact of that result on the final χ2

is not too important.
As for future prospects, Fig. 12 gives confidence that dis-

tance measurements with sub-percent accuracy will be able to
distinguish ΛCDM from dark energy models with dynamical
scalar fields. The best target range lies between z ≈ 0.5 and
z ≈ 1.5, and requires H(z) measurements, i.e. anisotropic BAO
observable derivation. In conclusion, H(z) measurements in a
wide redshift range at several redshifts will be a key probe used
to either confirm ΛCDM or Galileon models. Future surveys
such as Euclid (Laureijs et al. 2011), DESI (Levi et al. 2013),
or LSST (Ivezic et al. 2008) have the necessary precision to do
this, as we will show in a future paper.

To distinguish Galileon models from ΛCDM, H0 direct mea-
surements may provide an additional lever arm. Indeed, the
present H0 direct measurements (Table 2), and in particular the
last measurement from Riess et al. (2016), agree better with the
Galileon models than withΛCDM (see Tables 5−10 and Fig. 13)
even though they were not used in the fitting procedure. If the
tension with ΛCDM is confirmed by future more precise H0
measurements, Galileon models can be favoured.

6.2.2. Growth of structure measurements

Growth of structure measurements are often advocated as the
key probe for distinguishing modified gravity theories from the
ΛCDM model. However, they are also the most difficult to use as
the growth rate of structures depends on non-linear processes at
small scales in general relativity and in modified gravity theories.
Thus, the use of growth measurements often relies on linearised
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Fig. 12. Comparison of the best fit Galileon and ΛCDM BAO predictions with data. The grey bands show the 68% and 95% confidence ranges
allowed for the ΛCDM prediction using all data. Left: DA/rd predictions normalised to ΛCDM best fit scenario from Table 5 and compared to
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equations which are supposed to be valid in the scale range ex-
plored in the data (see e.g. N13 for more details).

Both N13 and N14 exhibit small tensions between con-
straints from growth data and distances in the ΛCDM and
Galileon models. In this paper, the updated growth data set in-
volves measurements less plagued by non-linear effects than
those in our previous works. As better agreement is now ob-
served between growth and distance data, it seems that the
growth measurements become more and more mature thanks to
larger surveys.

Figure 14 shows the quality of the agreement between
growth measurements and the cosmological models. Because
of a different gravitational coupling, Galileon models present a
different fσ8(z) evolution to that of ΛCDM. The largest differ-
ence occurs at low redshift, but the volume of galaxy surveys
in this range of redshifts is too limited to provide fσ8 measure-
ments precise enough to distinguish the Galileon theory from
ΛCDM. However, fσ8 measurements at redshifts z & 0.8 will
have this capability. In particular, the precision expected for the
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Fig. 14. Comparison of the best fit Galileon and ΛCDM fσ8(z) pre-
dictions with data. The grey bands show the 68% and 95% confidence
ranges allowed for the ΛCDM prediction using all data. The data points
are from Table 4.

DESI, Euclid, and LSST surveys will allow the Galileon growth
rate predictions to be tested. However, work remains to be done
to check whether the Vainshtein radius, which determines at
which scale the Galileon fifth force becomes negligible because
of non-linearities, is within the range of scales probed by the
observations.

6.3. External constraints

The following non-cosmological constraints were not used di-
rectly in our analysis to constrain coupled Galileon models.
However, we can check a posteriori whether the Galileon best
fit scenarios are compatible with these requirements.

6.3.1. Lunar Laser Ranging experiment

The conformal coupling can be tested using measurements
of the Newton constant variations with time. As shown in
Babichev et al. (2011), the conformal coupling of the Galileon is

A40, page 15 of 21

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628878&pdf_id=12
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628878&pdf_id=13
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628878&pdf_id=14


A&A 600, A40 (2017)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

c T
(z
)

ΛCDM

Unc. Galileon

Galileon+c̄G

Galileon+c̄0

Galileon+c̄0+c̄G

Fig. 15. Gravitational wave speed of propagation cT (z) as a function of
redshift in the best fit scenarios of the four Galileon models studied in
this paper, compared with the general relativity prediction cT = 1.

severely constrained by solar system tests. Indeed, from Eq. (19),
the Newton constant in a conformally coupled Galileon model
can be redefined as

GN = G0
N/(1 − 2c̄0ȳ), (36)

where G0
N is the present Newton constant. Measurements from

the Lunar Laser Ranging (LLR) experiments (Williams et al.
2004) put tight constraints on the variation of GN

ĠN

GN
< 1.3 × 10−12 yr−1 ≈ 0.02H0 ⇔

G′N
GN

< 0.02. (37)

In the Galileon theory, we have G′N/GN(z = 0) = −2c̄0ȳ
′
0 =

−2c̄0 to be compared with G′N/GN(z = 0) < 0.02. Using the
conformally coupled best fit Galileon model from Table 9 (last
row), we have c̄0 = −0.013 ± 0.008 and thus G′N/GN(z = 0) =
0.026 ± 0.016, which is compatible with the LLR constraint.

6.3.2. Propagation of gravitational waves on cosmological
scales

In modified gravity models the gravitational wave speed of prop-
agation cT can be different from the speed of light. For the
Galileon theory studied in this paper, cT is defined in Eq. (35).
For the four Galileon models tested in this paper, the best fitting
scenarios give cT (z = 0) ≈ 0.7 and the propagation is sublumi-
nal all over the past history of the Universe2. Figure 15 shows
the redshift evolution of cT in the four best fit scenarios obtained
in this paper.

Attempts to constrain the gravitational wave speed have been
conducted for many years, but most of them stand on astro-
physical scales where the Galileon gravity is in the Vainshtein
regime, whereas our prediction of cT from 35 is valid at cos-
mological scales. Constraints on cT have been derived using
the Hulse-Taylor binary pulsar assuming a Vainshtein screen-
ing, but this still relies on many assumptions (see Jimenez et al.
2016). The propagation speed of gravitational waves can also be
constrained with the gravi-Cherenkov effect (Moore & Nelson
2001). This effect predicts that the ultra-relativistic cosmic rays

2 If superluminal, the graviton may emit Cherenkov light that can be
observed by telescopes (Brax et al. 2016).

should emit gravitons if they travel faster than the speed of grav-
ity. The predicted loss of energy through this emission, together
with the observation of cosmic rays at the highest energy, bring
constraints on cT , depending on the source distance. If the source
is galactic, then the Vainshtein screening mechanism is at play
and the constraint (Moore & Nelson 2001) cannot be directly ap-
plied to the cosmological predictions we performed. Moreover,
as no extragalactic source of ultra-relativistic cosmic rays has
been identified yet, the most energetic cosmic rays that have
been detected are likely to come from a source located within
our local galaxy group but not at hundreds of megaparsecs.

Bounds coming from observations of gravitational wave
sources at cosmological scales would be safer when working
with cosmological models. The impact of modifications of cT

has been searched for in the B-mode polarisation spectrum using
BICEP2 data, but no firm conclusions could be derived owing to
insufficient statistics (Amendola et al. 2014; Raveri et al. 2015).
Data coming from future B-mode polarisation spectrum mea-
surements may bring tight constraints (Amendola et al. 2014;
Raveri et al. 2015).

The recently discovered gravitational wave signal
GW150914 (LIGO Scientific Collaboration and Virgo
Collaboration 2016) could tightly constrain the Galileon
theory on cosmological scales through the measurement of
the graviton speed, if a firm electromagnetic counterpart were
found. For instance, with cT ≈ 0.7, if some light has been
produced by the black hole merger, the electromagnetic signal is
expected to arrive well before the gravitational wave. In the case
of GW150914, detected at 1.3 Gly, light emitted at the moment
of the black hole fusion would have arrived ≈5 × 108 yr before
the gravitational signal.

Even if a light or neutrino counterpart is not expected a pri-
ori for such a black hole merger, a broadband follow-up has
been conducted by many observatories (Abbott et al. 2016). At
the moment no firm electromagnetic counterpart to GW150914
has been found to set a direct measurement of cT . Although the
Fermi gamma-ray space telescope has reported a detection com-
patible in time and space with the GW150914 event, this weak
transient can also be a coincidence (Connaughton et al. 2016).
In the next years, future detections of extragalactic black hole
mergers or even neutron star mergers (for which we do expect
a light emission) with ground-based gravitational wave interfer-
ometers will bring strong conclusions on the behaviour of grav-
ity on cosmological scales.

6.3.3. Particle physics and cosmology

Particle physics may be used to set constraints on the dis-
formal coupling between matter and scalar fields (Brax et al.
2015). In particular, the Compact Muon Solenoid (CMS) collab-
oration has recently published experimental limits on the Bra-
non theory (CMS Collaboration 2016). This extra-dimensional
model exhibits massive scalar fields scaling the 4D brane fluc-
tuations into a broader space, which depends of the brane en-
ergy scale tension f (Dobado & Maroto 2000; Cembranos et al.
2004). The scalar particles πB are possible dark matter candi-
dates and are coupled to Standard Model (SM) fields in the form
(∂µπB∂νπB −M2

B
πBπBgµν/4)T µν

SM/2 f 4, with MB the Branon mass
(Cembranos et al. 2004). In the case of a massless Branon, the
Branon coupling to matter can be identified with the Galileon
disformal coupling in the Einstein frame. Providing that the
transformations between the Einstein and Jordan frames and be-
tween the classical and quantum levels can be established thor-
oughly and the non-trivial background value of π is taken into
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account accordingly, the CMS 95% confidence level (CL) ex-
perimental limit f > 412 GeV (CMS Collaboration 2016) could
be translated into an upper bound on the cG coupling.

6.4. Tracker solution of the uncoupled Galileon model
and comparison with Barreira et al. (2014a)

As shown in the previous sections, Galileon models can provide
a good alternative to ΛCDM to describe present cosmological
data. Combining cosmological fits and external constraints, the
uncoupled Galileon model appears to be the most promising sce-
nario to consider.

In a recent phenomenological work on the uncoupled
Galileon model Barreira et al. (2014a) has suggested consider-
ing only a tracker solution as only scenarios that asymptotically
reach the tracker solution well before the onset of the accelerated
expansion era can provide a reasonable fit to CMB data. Then
only this subspace of the full parameter space of the uncoupled
Galileon model would be interesting to explore. The same paper
also shows that the tracker solution is rejected by present cos-
mological data using the full CMB power spectrum and BAO
measurements but no supernova or growth data. A good agree-
ment with data can be retrieved if massive neutrinos are added
to the fit (Barreira et al. 2014b).

Our findings that the general uncoupled Galileon model pro-
vides good agreement with data seems in contradiction with the
above results. It may invalidate the assumption that the tracker
solution is representative of the only solutions that provide a
good fit to CMB data. The different result could also stem from
differences in methodology or data sets. To check this point, we
also tested the tracker solution of the uncoupled Galileon model
within our framework, as described in the next sections.

6.4.1. Uncoupled Galileon tracker solution

The existence of an attractor solution to the uncoupled Galileon
equations was originally proved in De Felice & Tsujikawa
(2010) and De Felice & Tsujikawa (2011). The authors showed
that, whatever the initial conditions for the Galileon field at
the Big Bang, the Galileon equations converge towards a so-
lution where Hπ̇ is a constant. The tracker solution has been
widely tested with cosmological data in previous studies (see
e.g. Nesseris et al. 2010; Barreira et al. 2014a and b).

In the parametrisation frame we used, the tracker solution is
characterised by

H̄2 x̄ = 1. (38)

Multiplying Eq. (19) by H̄2 and inserting Eq. (38), we obtain

H̄4 =

(

Ω0
m

a3
+
Ω0

r

a4

)

H̄2 +
c̄2

6
− 2c̄3 +

15
2

c̄4 − 7c̄5 (39)

in the uncoupled case. With Ω0
π =

c̄2
6 − 2c̄3 +

15
2 c̄4 − 7c̄5, this

leads to an analytical formula to compute the expansion of the
Universe corresponding to the tracker solution:

H̄2 =
1
2
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















, (40)

x̄ = 1/H̄2. (41)

Equation (38) can also translate into a new constraint on the
c̄i parameters. Indeed, at z = 0 the Galileon field equation of
motion is

c̄2 − 6c̄3 + 18c̄4 − 15c̄5 = 0, (42)

for the tracker solution. So, combining this equation with the
constraint Eq. (28) (which comes from the (00) Einstein equation
at z = 0), we can fix two c̄i parameters. We choose to fix c̄4
and c̄5:

c̄4 =
1
9

[

10
(

Ω0
m + Ω

0
r − 1

)

− 3c̄2 + 8c̄3

]

, (43)

c̄5 =
1
3

[

4
(

Ω0
m + Ω

0
r − 1

)

− c̄2 + 2c̄3

]

. (44)

The set of equations presented in this section are equivalent
to the tracker equations exposed in Barreira et al. (2014a) and
Brax et al. (2015). In summary, using the Galileon tracker solu-
tion has remarkable advantages on the computational side, since
one more parameter can be fixed and analytical solutions are pro-
vided. In the following, to compute the evolution of Galileon
scenarios in the tracker solution, we took advantage of these an-
alytical formula instead of resorting to the numerical integration
of Eqs. (16) and (17).

6.4.2. Cosmological constraints

Cosmological constraints on the uncoupled Galileon tracker
model are presented in Table 11 and Fig. 16, using the same data
as in previous sections.

Figure 16 reveals that the constraints from supernovae and
Planck+BAO+Lyα data disagree at 3σ and that the growth data
contour barely overlaps that from supernovae. When compared
to values obtained in the ΛCDM or general uncoupled Galileon
model, the χ2 value of the tracker solution is significantly worse
for Planck+BAO+Lyα data, resulting in a degraded global χ2

value (see Table 11).
In conclusion, the tracker solution of the uncoupled Galileon

model cannot provide a good fit to all cosmological data and thus
is excluded. On this point we agree with Barreira et al. (2014a).
The hypothesis that the Galileon follows the tracker solution
all along the history of the Universe is excluded by cosmolog-
ical data. But this does not mean that the Galileon theory is in
trouble. As shown in Sect. 5, Galileon models not restricted to
tracker solutions have been proved to be compatible with present
cosmological data, using CMB priors only, even if the scenar-
ios converge to tracker solutions at late times. It remains to be
checked whether they are also compatible with the full CMB
power spectrum, which will be the subject of a future work (see
Appendix C for further discussions).

7. Conclusion

We have compared the ΛCDM and Galileon models to the
most recent cosmological data from SNe Ia, CMB, BAO, and
growth rate measurements. The uncoupled Galileon case and the
Galileon models disformally and conformally coupled to matter
were tested. Compared to our previous publication (N14), the
data set was updated using the most recent results for CMB (in
the form of distance priors), BAO, and growth data.

All probes agree well when compared to the ΛCDM model,
and the fit is mainly driven by the CMB priors and the BAO mea-
surements. In the Galileon case, the CMB priors set precisely
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Table 11. Best fit values from different data samples for the tracker solution of the uncoupled Galileon model.

Probe Ω0
m c̄2 c̄3 h Ω0

bh2 χ2 χ2
ΛCDM χ2

Unc. Ndata

SNe Ia 0.392+0.038
−0.034 −3.9+1.9

−2.8 −0.8+1.3
−1.6 – – 693.5 691.0 692.8 740

Growth 0.213+0.057
−0.041 −5.6+1.2

−2.5 −1.6+0.6
−1.4 – – 2.8 2.9 2.9 12

Planck+BAO+Lyα 0.261+0.006
−0.005 −5.3+2.1

−3.1 −1.1+1.8
−1.7 0.763 0.0237 43.3 14.5 22.0 15

All 0.264+0.006
−0.005 −5.0+1.1

−1.7 −1.7+0.4
−1.1 0.760 0.0237 754.6 710.6 731.9 767

Notes. The JLA SN Ia sample is used with systematics included; α and β are fixed to their marginalised values. h and Ω0
bh2 have been minimised

so no uncertainties are provided. Best fit χ2 values from ΛCDM and uncoupled Galileon models are reported for comparison.

Fig. 16. Cosmological constraints on the tracker solution of the uncoupled Galileon model from growth data (red), JLA (blue), and
Planck+BAO+Lyα data (green). The filled dark, medium, and light yellow contours enclose 68.3, 95.4, and 99.7% of the probability, respec-
tively. Dark dotted regions correspond to scenarios rejected by theoretical constraints.

the Ω0
m best fit value with unprecedented precision, but the con-

straints on the c̄i parameters are driven by the combination of all
probes. A good agreement with data is observed with each of the
probes for all models.

We provided the first cosmological constraints on the confor-
mal coupling parameter in the framework of the Galileon model.
We showed that this type of coupling is not favoured by cosmo-
logical data and that the disformally coupled model is preferred
against the other Galileon cases, with a non-zero coupling ex-
cluded at the 2.3σ level. We also showed how non-cosmological
data sets can bring constraints on the Galileon parameters.

Barreira et al. (2014a) used the full CMB power spectrum to
set constraints on the tracker solution of the uncoupled Galileon
theory and found some tensions between CMB and BAO con-
straints. We also tested the uncoupled Galileon tracker solution
and found incompatibilities with supernovae and CMB+BAO
data. Although its tracker solution was rejected by the data, the
uncoupled Galileon model not restricted a priori to any particular
type of solution provides as good an agreement with cosmologi-
cal data as the ΛCDM model.

The Galileon theory provides specific predictions on the ex-
pansion and growth histories of the Universe that can be probed
by future dark energy experiments. But non-linearities of the
Vainshtein mechanism may prevent growth predictions to be
compared with future precise growth measurements from DESI,
LSST, or Euclid. However, we argued that upcoming distance
measurements can be important in order to discriminate between
the Galileon and the ΛCDM models. This will be detailed in a
forthcoming paper.
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Appendix A: Computation of rd

Since the publication of the first Planck cosmological results
(Planck Collaboration XVI 2014), the Eisenstein & Hu (1998)
fitting formula to compute zd is no longer precise enough to
describe data and should be avoided. The use of the CAMB
Lewis et al. (2000) non-approximate computation of rd is now
necessary. However, it has been shown in Mehta et al. (2012)
that the ratio rfid

d /rd is still independent of the methodology used
to compute rd. As emphasised by Anderson et al. (2014), any of
these conventions for the sound horizon can be followed when
using their measurements as long as consistency is maintained
when evaluating rd and rfid

d .
We checked that our code provided rfid

d /rd ratios identical to
those of CAMB. We explored both flat and open ΛCDM model
parameter spaces and computed ratios with CAMB and our code.
In the latter, zd is computed using the Eisenstein & Hu (1998)
formula and rd by numerically computing the integral

rd = rs(zd)
H0

c
=

∫ 1
1+zd

0
da

c̄s(a)

a2H̄(a)
(A.1)

and c̄s is the usual normalised sound speed in the baryon-photon
fluid before recombination

c̄s =
1

√

1 + 3(3Ω0
b/4Ω

0
γ)a

, (A.2)

where Ω0
b is the current baryon energy density parameter.

The fiducial cosmology chosen to make this test is Ω0
m =

0.27, Ω0
Λ
= 0.73, h = 0.7, and Ω0

bh2 = 0.0224. We found
rfid

d,CAMB = 149.74 Mpc and rfid
d,Cosfitter = 153.63 Mpc. As pointed

out in Anderson et al. (2014) and Planck Collaboration XVI
(2014), the discrepancy is about 2.5% and CAMB is better able
to reproduce Planck data. However, when exploring a wide part
of theΛCDM parameter space (0 < Ω0

m < 0.6 and 0 < Ω0
Λ
< 1.4,

with h and Ω0
bh2 varied thanks to the minimisation procedure),

the rfid
d,Cosfitter/rd,Cosfitter ratios differ from those of CAMB by at

most 0.6% (and by only 0.12% around the best fit values). Com-
pared to the ≈2% uncertainties from the BAO measurements,
this potential systematic uncertainty is thus negligible and our
code is precise enough to evaluate rfid

d /rd.

We also tested the new approximate formula for rd from
Aubourg et al. (2014) Eq. (16). This formula reproduces CAMB
rd ratios nearly exactly around the ΛCDM best fit values, but
can differ by 7% in some points of the same parameter space
previously explored.

Appendix B: Goodness of fit

To check the goodness of a cosmological fit when the number
of degrees of freedom Nd.o.f. is not available, an easy way is to
compare the number of measurements Ndata with the obtained
χ2. When both are equivalent, it means that residuals (yi

mes −
yi

mod)/σi
y, where yi

mod are predictions for observable y compared
to measurements yi

mes with uncertainties σi
y, follow a Gaussian

distribution of mean 0 and variance 1.
To have a more quantitative statement, it is possible to test

whether the observed residuals are likely to come from a normal
distribution of mean 0 and variance 1 by using a Kolmogorov-
Smirnov test, as suggested in Andrae et al. (2010). The output
of this test is a p-value which gives the probability that the ob-
served data are drawn from the probed model. We performed the
exercise with our best fit scenarios for the ΛCDM, uncoupled
Galileon, and tracker Galileon models. The p-values are reported
in Table B.1 separately for each probe and their combination. We
note that we did not take into account the covariances between
the measurements for this test (we took only the diagonal terms).

Table B.1 shows that the higher the p-value, the closer the χ2

is to Ndata. A low p-value is obtained in all other cases, whether
the χ2 is greater than Ndata, which may reveal tensions between
data and predictions, or lower than Ndata, which may indicate an
excellent fit to data or point towards overestimated uncertainties.

The conclusions based on p-values are similar to those
quoted in the paper when comparing the best fit χ2 with Ndata.
The tracker Galileon agrees with all data combined (p-value
of 0.78), but this masks a rejection by Planck+BAO+Lyα data
(p-value of 0.08). The ΛCDM provides a good fit to all data
separately and an excellent fit to all data combined (p-value of
0.23). The general uncoupled Galileon model offers a good fit to
all probes separately and combined (p-value of 0.71) and thus
remains a robust alternative to ΛCDM. The above test confirms
that comparing χ2 values with Ndata provides a reasonable esti-
mate of the goodness of fit for models studied in that work.

Table B.1. p-values of the compatibility test between a normal distribution of mean 0 and variance 1 and the residual distribution obtained for the
ΛCDM model, and the general and tracker solutions of the uncoupled Galileon model.

Probes Ndata ΛCDM Unc. Galileon Tracker
SNe Ia 740 0.38 (691.0) 0.21 (692.8) 0.23 (693.5)
Growth 12 0.17 (2.9) 0.17 (2.9) 0.26 (2.8)

Planck+BAO+Lyα 15 0.91 (14.5) 0.85 (22.0) 0.08 (43.3)
All 767 0.23 (710.6) 0.71 (731.9) 0.78 (754.6)

Notes. The best fit χ2 values are shown between parentheses.
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Fig. B.1. Evolution of the Hubble parameter H(a) (left) and the state equation parameter w(a) (right) for the uncoupled Galileon best fit scenario,
the asymptotic tracker solution, and the ΛCDM model with Ω0

m and Ω0
r set to the Galileon best fit values and Ω0

Λ
= 1 −Ω0

m −Ω0
r .

Appendix C: Convergence to the tracker solution

In this paper we showed that the uncoupled Galileon model
is compatible with cosmological data, using CMB priors but
not the full CMB power spectrum. Barreira et al. (2014c), Ap-
pendix A, argued that only Galileon scenarios that reach their
asymptotic tracker solution “sufficiently early” provide a reason-
able fit to the low-ℓ part of the power spectrum. In order to check
whether this is the case for our best fit scenario, we provide in
Fig. B.1 the H̄(z) and w(z) evolutions for the uncoupled Galileon
best fit scenario and its associated tracker solution. The latter is
computed assuming Ω0

π = 1 −Ω0
m −Ω0

r with Ω0
m and Ω0

r the best
fit values of the associated uncoupled Galileon scenario, from
Eqs. (40) and (41).

In Fig. B.1 we plot the evolution of H(a) for the uncoupled
Galileon best fit scenario, the associated tracker solution, and
a ΛCDM scenario. The latter is set to have the same best fit
values as the uncoupled Galileon best fit scenario for the Ω0

m
and Ω0

r parameters, and Ω0
Λ
= 1 − Ω0

m − Ω0
r . In this way, all the

scenarios have the same amount of matter, radiation, and dark
energy at a = 1, but the nature of dark energy is different. As we
can see both Galileon scenarios depart from the ΛCDM model
in the late Universe, but at the level of a few percent only. In the
uncoupled Galileon scenario, H(a) is greater than the Hubble
parameter of the associated ΛCDM model from decoupling

to a ≈ 0.2 and then goes to negative values. Concerning the
tracker solution, H(a) is always lower than in the ΛCDM model
and explores lower expansion rate values than in the Galileon
best fit scenario. This difference explains that observational con-
straints using cosmological distances rule out the tracker solu-
tion, but not the full Galileon model.

Figure B.1 shows the evolution of w for the uncoupled
Galileon best fit scenario, the associated tracker solution, and
the ΛCDM model. If we compare this result with what is pub-
lished in Barreira et al. (2014c), it seems that the uncoupled
Galileon best fit scenario reaches the tracker solution too late
(a & 0.6). However, Barreira et al. (2014c) studied the cubic
Galileon model (c̄4 = c̄5 = 0), and their best fit w values go
from +0.2 to −2. In Fig. B.1 the w values of the best fit Galileon
scenario remain between −0.2 and −1.3, which is likely to cor-
respond to different physics. This indicates that the full Galileon
model may be incompatible with the low-ℓ part of the CMB
power spectrum according to the Barreira et al. (2014c) argu-
ments. But, as the two studies have different methodologies in
particular concerning the Galileon initial conditions, applying
these arguments to our study may not be direct. In a future work
we plan to have CMB power spectrum predictions for the full
uncoupled Galileon model and to compare them with the most
recent Planck data with our methodology.
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