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Abstract. Ultralight bosons and axion-like particles appear naturally in different scenarios
and could solve some long-standing puzzles. Their detection is challenging, and all direct
methods hinge on unknown couplings to the Standard Model of particle physics. However,
the universal coupling to gravity provides model-independent signatures for these fields. We
explore here the superradiant instability of spinning black holes triggered in the presence of
such fields. The instability taps angular momentum from and limits the maximum spin of
astrophysical black holes. We compute, for the first time, the spectrum of the most unstable
modes of a massive vector (Proca) field for generic black-hole spin and Proca mass. The
observed stability of the inner disk of stellar-mass black holes can be used to derive direct
constraints on the mass of dark photons in the mass range 10−13 eV . mV . 3 × 10−12 eV.
By including also higher azimuthal modes, similar constraints apply to axion-like particles
in the mass range 6 × 10−13 eV . mALP . 10−11 eV. Likewise, mass and spin distributions
of supermassive BHs – as measured through continuum fitting, Kα iron line, or with the
future space-based gravitational-wave detector LISA – imply indirect bounds in the mass
range approximately 10−19 eV . mV ,mALP . 10−13 eV, for both axion-like particles and
dark photons. Overall, superradiance allows to explore a region of approximately 8 orders of
magnitude in the mass of ultralight bosons.
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1 Introduction

Two fundamental scales in nature – set by the electron mass and by the radius of the Universe –
are separated by roughly 40 orders of magnitude difference. New fundamental scales, such as
those dictated by new interactions, could be expected to set in and populate this seemingly
forlorn arena. In fact, there are arguments indicating that new, ultralight fields whose mass
falls in this broad range, are natural outcomes which can simultaneously solve important,
long-standing puzzles. Light bosonic fields with masses ≪ eV are promising dark-matter
candidates which offer a dramatically different phenomenology compared to that of weakly-
interacting massive particles at the GeV-TeV scale. Furthermore, relativistic, ultralight boson
fields can form macroscopic Bose-Einstein condensates which provide a natural alternative
to the standard structure formation through dark-matter seeds and to the cold dark-matter
paradigm (cf. [1–3] and references therein) .

The prototypical example of light bosons is the axion, a light pseudoscalar which was
introduced to solve the strong CP problem of QCD [4]. In this model, instanton effects give
axions a tiny mass which is inversely proportional to the axion decay constant. By relying on
this inverse proportionality, current bounds on QCD axions are derived from their overpro-
duction in the early Universe, from negative searches in accelerators, and from astrophysical
constraints [5, 6]. Axion-like particles (ALPs) [7, 8] have properties similar to those of the
QCD axion but their mass is not related to the decay constant. Phenomenological constraints
on these models are therefore much less stringent. These particles are ubiquitous in string-
inspired scenarios such as the axiverse and have been suggested as a generic signature of extra
dimensions [9, 10]. Due to moduli compactifications, in the axiverse scenario the spectrum of
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ALPs is populated uniformly down to the Hubble scale, mH ∼ 10−33 eV, so that ultralight
bosonic states are allowed. It has been recently recognized that ultralight boson fields with
masses of the order of 10−21 eV are a compelling candidate for cold dark matter [3]. A similar,
albeit much wider, phenomenology arises in models of ultralight vector fields (ULVs), such as
dark photons, also a generic prediction of string theory [11]. In this scenario, a “hidden U(1)”
sector is weakly coupled to the visible Maxwell field through a kinetic mixing term.
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Figure 1. Current experimental limits on ALPs (left) and ULVs (right) in their corresponding mass-
coupling plane (adapted from [12] and [13], respectively; courtesy of J. Redondo). The red dashed
areas denote the regions that can be probed through the superradiant instability of astrophysical
BHs [14–19] (cf. [20] for an overview), as discussed in this paper. These constraints do not require a
direct coupling between dark matter and ordinary particles, and are complementary to other bounds.

Constraints on ultralight bosons. Due to their tiny mass and weak coupling, direct
searches of ultralight bosons in the lab are extremely challenging, especially for masses ≪
10−10 eV. The current bounds and respective experiments/observations from which they
were derived are summarized in Fig. 1. Laboratory searches inevitably require the interaction
cross section of dark-matter particles with “ordinary” matter to be sufficiently large. For
vanishingly small couplings to the Standard Model, gravity is the only interaction able to
probe new fundamental fields.

There are at least two nontrivial effects of gravity on ALPs and ULVs. The first is
the formation of self-gravitating structures such as boson stars or oscillatons [21]. These
structures can become very compact, to the point of providing a compelling alternative to
supermassive dark objects [22–25]. The second, nonperturbative, effect is the triggering of
superradiant instabilities of spinning black holes (BHs) [20]. Superradiant instabilities spin
BHs down, and can affect the dynamics of astrophysical BHs in a dramatic fashion [14, 20],
providing a portal for astrophysical tests of bosonic dark matter in the poorly explored range
below 10−10 eV.

Superradiant instabilities of Kerr BHs and strong-gravity constraints. The super-
radiant instability of ALPs and ULVs around spinning Kerr BHs is the focus of this work.
The precise evolution or end-state of the instability for minimally coupled bosons is not fully
understood [20, 26, 27], but recent numerical simulations [28, 29] support the conclusions of
previous perturbative studies [20, 30]: the instability proceeds in a two-step process. Dur-
ing the first stage, the geometry is well described by a (vacuum) Kerr BH. This geometry

– 2 –



is unstable against nonaxisymmetric modes of massive bosonic fields, and any initial (low-
frequency) small fluctuation will grow exponentially [20, 31–34]. The boson accumulates
outside the horizon, forming an asymmetric (mostly dipolar in pattern) time-varying conden-
sate, extending for roughly a de Broglie wavelength outside the horizon. Because of its purely
gravitational nature, this effect is essentially independent of the dark-matter coupling to the
Standard Model, provided the latter is sufficiently weak in order to avoid boson decay into
other channels [14].

During the second stage, the condensate is massive enough that backreaction effects
are no longer negligible.1 In particular, the condensate emits monochromatic gravitational
waves on large timescales. The condensate is then dissipated through the emission of mostly
quadrupolar gravitational waves, with frequency scale set by the boson mass. The mechanism
is most effective when the boson Compton wavelength is comparable to the gravitational
radius of the BH, Mµ ≃ 0.4 (henceforth, we use G = c = 1 units and µ~ will denote the
mass of the boson). Detailed calculations for the instability rate for scalar fields was done
in [33, 34] and highly accurate numerical results will be given in Section 2.3. Eventually, the
BH spins down, the condensate shrinks and the emission of waves is suppressed [30].

Thus, strong-field gravity provides some novel mechanisms able to constraint ultralight
bosons:

• Gravitational-wave emission by the bosonic condensate. This is a monochro-
matic signal at a frequency ∼ µ/π that can be detected with Earth- or space-based
detectors, either as a resolvable event or as part of a stochastic background. Recent
calculations show that both would be seen by LIGO and LISA [16–19, 38]. In particular,
the non-detection of these events in LIGO O1 could be used to exclude certain mass
ranges for the boson [18, 19].

• Spin-down of astrophysical BHs and pulsars. Gravitational-wave emission of
periodic signal is a very clear sign of new physics. On the other hand, such an emission
is driven by energy extraction from the BH, which spins down. Thus, another clear
sign for new physics is statistical evidence for slowly rotating BHs in a part of the
Regge plane (mass versus angular momentum plane) [14, 17–20]. The X-ray spectrum
of accreting compact sources, together with modeling of the emission from the accretion
disc, provide a mean to measure the spin of stellar BHs in binaries and of active galactic
nuclei [39]. These measurements are affected by the systematic uncertainty within the
emission models. On the other hand, precise gravitational-wave measurements of the
inspiral phase of two merging objects can provide accurate estimates for their spins [16–
19, 38]. Likewise, superradiant instabilities might also occur in the presence of spinning
stars made of material with nonvanishing resistivity [40]. In such case, the astonishing
precision of pulsar timing provides accurate measurements of the spin and of the spin-
down rate of pulsars, which can be used to set direct constraints on certain models of
ULVs.

In summary, electromagnetic and gravitational-wave observations provide a way to ex-
plore ultralight bosons in a mass range set by the size of astrophysical compact objects. Since

1For complex massive scalar fields in certain configurations, an interesting analytical model for the modified
Kerr geometry was recently discussed in [35]. Note, however, that the stationary hairy black holes [36] that
exist in this case above the superradiant threshold for a given azimuthal quantum number m, were recently
found to be unstable against nonaxisymmetric perturbations with azimuthal number larger than m [37].
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the latter ranges from a few kilometers for stellar objects to O(109) km for supermassive BHs,
these observations can potentially cover (at least) 9 orders of magnitude. The potential con-
straints are mostly independent on the couplings of these fields to the Standard Model and
are summarized in Fig. 1, anticipating the discussion presented in the rest of this paper.

Purpose of this work. To be able to derive bounds on the boson mass, one needs to
have accurate knowledge of how the superradiant instability proceeds in the two stages dis-
cussed above. For scalars, the linearized instability regime is very well understood, both
from frequency-domain calculations [31–34] and from time-domain evolutions [41]. Nonlinear
evolutions are still in their infancy [26], but as we remarked it is thought that backreac-
tion can be included using a perturbative approach [18, 30, 42]. Building on these analysis,
bounds from gravitational radiation and from the Regge plane distribution were recently
derived [18, 19, 38].

The extension of the above results to massive vectors is nontrivial. In particular, the
corresponding linearized evolution equations do not seem to separate [15, 43, 44], which
makes the analysis somewhat more complicated. A slow-rotation expansion was used in
Refs. [15, 44, 45], and it was observed that the instability timescales could be substantially
shorter [15, 44] than for scalars (thus potentially improving constraints on ULVs). Time-
domain, linearized investigations extended these predictions to highly spinning BHs [46].
Analytical results valid for small coupling parameter Mµ but for arbitrary spin were recently
derived in Ref. [17]. Very recently, full nonlinear time-domain simulations of the superradiant
instability for vector fields were performed and accurate predictions for the timescale were
derived [28, 29]. The results of Refs. [28, 29] are obtained in the time-domain and depend on
the initial data. In particular, this means that (i) small values of the coupling parameter Mµ,
which lead to very long instability timescales, are not accessible and that (ii) it is, in principle,
possible that different initial conditions excite modes with an even smaller timescale.

With this is mind, the purpose of this work is two-fold: on the one hand, we close
an important gap by computing the spectrum of unstable Proca modes in the frequency
domain for generic values of the BH spin and of the coupling parameter µM . This allows
us to estimate precisely the instability time scale for massive vector (Proca) fields around a
Kerr BH in the entire parameter space of interest. On the other hand, we use these results
together with recent electromagnetic observations of accreting BHs to refine the constraints
on the mass of ULVs and ALPs coming from the Regge plane. In particular, we use the
observed stability of the inner accretion disc of X-ray sources Cygnus X-1 and LMC X-3 over
14 yr [47] and 26 yr [48], respectively, to derive more robust constraints on the basis that
– were these BHs superradiantly unstable – their spin (and hence their inner accretion disc)
would not be stable over this baseline. We also discuss the potential of electromagnetic spin
measurements of supermassive BHs and the projected constraints expected from the future
gravitational-wave space detector LISA [49], thus extending some of the results of Ref. [19]
to the vector case.

2 Bosonic condensates around spinning BHs

2.1 Setup

We focus on the following unified Lagrangian which collectively describes ALPs and dark
photons (minimally) coupled to gravity,
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L =
√−g

(
R

16π
− 1

4
FµνF

µν − 1

4
BµνB

µν − 1

2
(∂µΦ∂

µΦ+ µ2
aΦ

2) +
gaγγ
4

ΦFµν
∗Fµν

+
γ

2
FµνB

µν − 1

2
µ2
γBµB

µ

)
, (2.1)

where R is the Ricci curvature, Φ, Aµ and Bµ are the axion-like field, the visible (Maxwell)
gauge field and a hidden U(1) gauge field, respectively [11], Fµν and Bµν are the corresponding
field strengths. For definiteness, we focus on the simplest model with diagonalized mass matrix
and with the simplest possible kinetic coupling matrix, which can be also obtained through
a rotation in the vector field space [11]. The constant gaγγ is the axion-photon coupling. In
our units, the mass of the boson fields is related to the mass parameter µa,γ through

mALP,V = µa,γ~ , (2.2)

where the subscript refers to ALPs and ULVs, respectively. Astrophysical BHs are electri-
cally neutral due to quantum discharge effects, electron-positron pair production, and charge
neutralization by astrophysical plasma, and the magnetic fields of accretion disks is too weak
to affect the dynamics of the system [50, 51]. We will therefore neglect any background elec-
tromagnetic fields; in view of the small couplings to the hidden vector, this approximation is
not likely to have any impact on the physics of superradiance explored here. In this case, the
field equations for the ALP and the dark photon read

(�− µ2
a)Φ = 0 , (2.3)

∇µB
µν − µ2

γB
ν = 0 , (2.4)

so they reduce to the massive Klein-Gordon and Proca equations on a curved spacetime.

Several properties of bosonic condensates near spinning BHs can be understood through
a perturbative analysis. We therefore neglect the stress-energy tensors of the massive bosons
which source Einstein’s equations, and consider Eqs. (2.3)–(2.4) propagating on a Kerr metric.
This approximation is consistent as long as the energy density of these fields is much smaller
than that of the BH, as expected if the instability arises from a small seed (e.g., from quantum
fluctuations) [20].

The Kerr BH is described by the gravitational field

ds2 = −∆

Σ

[
dt− a sin2 θ dφ

]2
+

sin2 θ

Σ

[
(r2 + a2)dφ− a dt

]2
+

Σ

∆
dr2 +Σdθ2 , (2.5)

where

∆ = r2 + a2 − 2Mr , Σ = r2 + a2 cos2 θ . (2.6)

The event horizon is a null hypersurface with r = r+, with r+ being the largest positive real

root of ∆. Furthermore, M =
r2++a2

2r+
is the ADM mass of the BH, J = Ma is its ADM angular

momentum, and |a| ≤ M , with equality saturating at extremality, where the black hole event
horizon becomes degenerate. The temperature and angular velocity of the Kerr solution are

TH =
r2+ − a2

4πr+(r2+ + a2)
, ΩH =

a

r2 + a2
. (2.7)
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Figure 2. The three sectors of massive Proca unstable modes for a/M = 0.998 and m = 1. Left
panel: Instability rate MωI as a function of the dimensionless Proca field mass Mµγ . The inset plot
is a zoom-in of the lower curve in the main plot. The blue dashed curve is the analytical fit (2.13).
Right panel: Characteristic frequency Mω as a function of the dimensionless Proca field mass Mµγ .
The dashed brown curve is an auxiliary reference curve with ωR = µγ . The blue dashed curve is the
analytical fit (2.12).

2.2 The spectrum of dark-photon condensates

We are interested in studying perturbations of a test Proca field with mass µγ on the Kerr
background (2.5). The field equation for these perturbations is given in Eq. (2.4), with the
field strength related to the potential via Bµν = ∂µBν − ∂νBµ. Since ∂t and ∂φ are Killing
vector fields of the Kerr background (2.5), one can do a Fourier decomposition of the Proca
field perturbations along these directions:

B = e−iωteimφ
(
Bt(r, θ)dt+Br(r, θ)dr +Bθ(r, θ)dθ +Bφ(r, θ)dφ

)
, (2.8)

where ω and m are, respectively, the frequency and azimuthal quantum number of the per-
turbation. The resulting field equations are a coupled system of four PDEs and associated
boundary conditions which yield a quadratic eigenvalue problem in the frequency ω, for a
given mode m. Details of the numerical procedure [52–63] that we use to solve the problem
are presented in the Appendix A.

Our numerical method allows to compute very accurately the characteristic eigenvalue
frequency satisfying the appropriate boundary conditions. We write this frequency ω as

ω = ωR + i ωI . (2.9)

Our main results concerning the spectra of Proca fields around Kerr BHs are summarized in
Figs. 2-6. There are three families of Proca modes. To specify these three sectors it is useful
to analyze their connection with the harmonic decomposition of a massive Proca field in the
Schwarzschild background, i.e. in the limit where the background rotation a vanishes. In this
case the perturbations can be decomposed in a basis of spherical harmonics and we can then
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Figure 3. Onset curve with ωI = 0 and ωR = mΩH and m = 1 for the massive Proca superradiant
instability for the two most unstable sectors (out of three) of perturbations. In particular, we focus on
S = −1, 0 and m = 1. The lower blue curve with disks is the onset curve for the polar S = −1 family
of modes (see this blue curve also in Figs. 4 and 5), while the upper magenta curve with squares is the
onset curve for the second most unstable family, the S = 0 axial family (see this magenta curve also
in Fig. 6). The region above the onset curve is unstable. The disk (square) curve here corresponds
to the modes also represented with disks (squares) in Fig. 2. The dashed green line is the analytical
curve a/M = 4µγM/(4µ2

γM
2 + 1), obtained in the small Mµγ limit by requiring ωR = mΩH [15].

use the Regge-Wheeler-Zerilli [64, 65] (or the equivalent Kodama-Ishibashi [66]) classification
of perturbations to distinguish these modes. The three families are [67]:

i) S = 0 (also called axial) modes,

ii) S = ±1 (also called polar) modes.

All the three sectors of perturbations are unstable against superradiant effects. For small
Proca field masses Mµγ , the instability timescale is smaller for modes with azimuthal number
m = 1. Therefore we focus our attention on m = 1 modes and discuss later the m = 2 case2.

The broad features of the superradiant instability of Proca fields are the same as
scalars [20], as the reader can confirm explicitly comparing the Proca spectrum plots in
Figs. 4-5 with the scalar field ones in Figs. 7-8. The superradiant instability is present for
low-frequency modes satisfying ωR < mΩH . For massive fields, the frequency is set by the
field mass, ωR . µγ . Thus, for very large mass couplings Mµγ the superradiant condition is
no longer satisfied and the instability is quenched. This is apparent in all our results. For
example, at fixed rotation the instability rate MωI grows with mass coupling Mµγ , until the
threshold is saturated. This is nicely illustrated in the left panel of Fig. 2, where we fix the BH
rotation at a/M = 0.998 (approximately the Thorne’s limit on the spin of an accreting Kerr
BH [68]) and we show how the instability rate, MωI , varies as a function of the dimensionless

2Moreover, given m = 1, perturbative studies in the small-rotation regime [15, 44] indicate that the most
unstable perturbation is the one that connects to the Schwarzschild mode S = −1, with harmonic index l = 1

(or, equivalently, {j, ℓ} = {1, 0} in the notation of Refs. [17, 45]) and overtone number n = 0 when a → 0.
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Figure 4. Superradiant instability of Kerr BHs against massive vector (Proca) fields. The plot shows
the instability rate MωI as a function of the dimensionless rotation a/M and of the dimensionless
Proca field mass Mµγ for −S = m = 1. The blue curve with ωI = 0 signals the onset of the instability.

Figure 5. Frequency MωR for the most unstable massive Proca family of modes with −S = m = 1.
Left panel: the difference ωR − mΩH is always negative for the unstable modes of Fig. 4. The blue
curve with ωR = mΩH signals the onset of the instability already shown in Figs. 3 and 4. Right panel:
difference ωR − µγ is always negative for the unstable modes of Fig. 4.

mass coupling Mµγ for the three families.3 The instability rate MωI grows with Mµγ at
small mass couplings, it attains a maximum, decreases and eventually the mode becomes
stable. For this value of the rotation parameter, MΩH ∼ 0.47, thus we expect the instability
to shut off at roughly Mµγ ∼ 0.5, as confirmed by the plot. This argument can be made

3For each family, the most unstable modes are those with smaller number of radial zeros, i.e those that
connect to the n = 0 mode when a → 0.
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more precise by inspecting the behavior of the frequency ωR as function of the mass coupling;
this is shown in the right panel of Fig. 2: the modes do obey to good precision ωR . µ (but
see below for more accurate quantitative fits), and modes where this relation is observed to a
good precision are also the modes where the instability turns off very close to Mµγ ∼ 0.47.
To sum up, as expected for superradiant modes that are trapped by the potential barrier
created by the Proca field mass, Fig. 2 shows that one always has ωR < mΩH and ωR < µγ

(cf. also Fig. 5 below).

Figure 2 is also interesting in another perspective: it shows that there is a clear dis-
tinction between the three different families of modes. The curves never intersect: the most
unstable, S = −1 family (upper red curve with disks) is the same for any µγ . Moreover, this
family is also the one that is unstable up to higher values of the Proca mass µγ . This result
will be important when deriving constraints on the ULV mass (cf. Sec. 3) because it allows
us to focus on the most unstable family (S = −1) in the entire parameter space.

In addition, this very same family is also the one that, for a given Proca mass µγ , starts
becoming unstable at a smaller value of the rotation. This is best illustrated in Fig. 3 where
we plot the threshold line for the superradiant instability in a (a/M,Mµγ) plane, for the two
most unstable sectors (namely, the S = −1 and S = 0 families represented by the disks and
squares in Fig. 2). In other words, this is the line for which ωI = 0 and ωR = mΩH . Above
this curve, the Kerr BH is unstable. The lower blue curve with disks (with S = −1) is the
most unstable family and it is also the one that becomes unstable at (slightly) lower values
of a/M .

Figure 6. Complex frequency Mω for the unstable massive Proca family of modes with S = 0,m =
1. Left panel: instability rate MωI as a function of the dimensionless rotation a/M and of the
dimensionless Proca field mass Mµγ . The magenta curve with ωI = 0 signals the onset of the
instability and was already displayed in Figs. 3. Right panel: the unstable modes of the left panel
have ωR < mΩH (and ωR < µγ).

The full dependence of the instability rate on Mµγ and on the BH rotation a/M is shown
in Fig. 4 for the family with the smallest instability timescale, i.e. modes with −S = m = 1.
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For fixed Proca field mass Mµγ , the instability typically grows with rotation (up to a point
very close to extremality where it reaches a maximum, see below), as might be anticipated.
Among the particular modes that we computed explicitly, we find that the most unstable
mode occurs for

{µγM,a/M} = {0.539459, 0.998027} with ωM = 0.435065 + 4.256752× 10−4 i , (2.10)

which corresponds to an instability timescale

τinst ≡
1

ωI
≈ 0.1

(
M

10M⊙

)
s . (2.11)

For reference, we also give the data for three other modes:

{µγM,a/M} = {0.301385, 0.991758} with ωM = 0.285193 + 6.805245× 10−5 i

{µγM,a/M} = {0.393974, 0.988584} with ωM = 0.355112 + 2.246362× 10−4 i

{µγM,a/M} = {0.498262, 0.988584} with ωM = 0.415059 + 3.019861× 10−4 i .

This data is consistent with the findings of [29] where the superradiant instability timescales
were read from time domain simulations. Indeed, Ref. [29] finds: i) MωI ∼ 7 × 10−5 for
(Mµγ , a/M) = (0.3, 0.99), ii) MωI ∼ 2× 10−4 for (Mµγ , a/M) = (0.4, 0.99) and iii) MωI ∼
3× 10−4 for (Mµγ , a/M) = (0.5, 0.99).

For completeness, in Fig. 5 we also give the real part of the frequency MωR of the
unstable modes considered in Fig. 4. We do so by comparing MωR with the quantity mΩH

(left panel) and with the Proca mass µγ (right panel). As expected our unstable modes satisfy
the superradiant condition ωR < mΩH and they have ωR < µγ which indicates that they are
trapped by the potential barrier created by the Proca field mass. The onset curve (blue) of
the instability has ωR = mΩH and coincides with the onset curve (blue) of Fig. 4, namely
ωI = 0. This onset curve is also the blue curve with disks in Fig. 3.4

Finally, for the sake of completeness, we also take the opportunity to show the full
frequency spectrum of superradiant modes of the family with S = 0 and m = 1 in Fig. 6 (a
particular curve with a/M = 0.998 of this second most unstable family was already displayed
in the black curve of Fig. 2). Note that the onset curve (magenta) of the instability with
ωR = mΩH and ωI = 0 is also the magenta onset curve with squares already shown in Fig. 3.

2.2.1 Fitting formulas for the most unstable Proca modes of a Kerr BH

While the behavior of ωR is regular and straightforward to fit, the behavior of ωI as a function
of a/M and µγM is more involved. For the most unstable family of modes with −S = m = 1
and n = 0, we find that the following functions

MωR ≃ Mµγ

(
1 + α1Mµγ + α2(Mµγ)

2 + α3(Mµγ)
3
)
, (2.12)

MωI ≃ β0 (Mµγ)
7
(
1 + β1Mµγ + β2(Mµγ)

2
)
(χ− 2ωRr+) , (2.13)

4For the benefit of the reader interested on using or reproducing our results, the list of unstable modes
plotted in Figs. 4 and 5 is available in a file named "data" with the format {µγM,a/M,ωM} that is included
in the arXiv version of this manuscript. Our pseudospectral method has exponential convergence and we used
quadruple precision. This guarantees that our results for the frequency are accurate up to, at least, 8 decimal
digits.
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Table 1. Coefficient γSm of (2.15) as computed with different methods or approximations. The
coefficient β0 depends on the spin χ ≡ a/M and roughly ranges between 2 and 6 for χ ∈ (0, 1). A
question mark indicates that the results has not been computed or is not enough accurate within the
corresponding approximation scheme.

Reference Approximation γS1
S = −1 S = 0 S = 1

Pani et al. [15, 44] a/M ≪ 1, numerical to second order 20± 10 1/12 ?
Endlich and Penco [45] a/M ≪ 1, analytical to first order 20/3 1/3 320/59049
Baryakhtar et al. [17] Mµγ ≪ 1, analytical to leading order 4 1/6 ?

This work Mµγ & 0.06, exact β0(χ) ? ?

provide a good fit of our numerical results, as shown in Fig. 2. In the above equations, the
coefficients αi(χ) and βi(χ) are functions of the dimensionless spin χ ≡ a/M . For these
coefficients we find the following polynomial fit in powers of

√
1− χ2,

αi =
4∑

j=0

A
(i)
j (1− χ2)j/2 , βi =

4∑

j=1

B
(i)
j (1− χ2)j/2 +

4∑

j=0

C
(i)
j χj , (2.14)

where the coefficients A
(i)
j , B

(i)
j and C

(i)
j are given in Table 2 in Appendix B, where we provide

more details on the fit. As discussed in Appendix B, in a large region of the parameter space
the precision of the fit is at least 0.2% (50%) for the real (imaginary) part of the frequency.

Unfortunately, we are unable to extract accurate results for coupling Mµγ . 0.06, so
the above fit should be extrapolated with some care when µγM ≪ 0.1. Nonetheless, it agrees
with known analytical results when µγM ≪ 1, as discussed in the next section.

2.2.2 Comparison to previous results

Previous studies in the frequency domain either approximated the background as nearly
Newtonian (Mµγ ≪ 1) or through a slow-rotation expansion (a/M ≪ 1). In the small-
coupling limit, studies of Proca field around slowly spinning Kerr BHs suggested that [15, 44]

MωI ≃ 2γSmr+ (mΩH − ωR) (Mµγ)
4m+5+2S , (2.15)

where S labels the family. The dependence on the family was further established via pertur-
bative studies around nearly Newtonian backgrounds [17, 45]. The results in the literature
for γSm are summarized in Table 1. Our results, with the provisos above, yield γ−11 = β0(χ),
which roughly ranges between 2 and 6 for χ ∈ (0, 1) (cf. Eq. (2.14) and Table 2). Although our
data are in fact complementary to the Mµγ ≪ 1 regime, it is reassuring that an extrapolation
to Mµγ → 0 is consistent with existing analytical results. In Sec. 3, we will use the unstable
modes to derive constraints on the ULV mass using BH mass and spin measurements.

Finally, we have also tried to fit the modes for S = 0 using the fitting function (2.15).
In this case, the fit is less accurate and it is not listed in Table 1. We suspect that the S = 0
Proca instability has a behavior similar to the ultralight-scalar instability (reviewed in the
next subsection). In particular, ωI might display a more complex behavior as a function of
the spin for moderately large values of a/M , as suggested by Eq. (2.18) below for the scalar
case. Nonetheless, as previously shown, the S = 0 Proca modes are always subleading relative
to the S = −1 modes, so they play a negligible role for the bounds discussed in Sec. 3.
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2.3 The spectrum of ALP condensates

We summarize here the known properties of the instability for ultralight scalars. In this case,
the solutions are known well, both numerically and analytically. The scalar can be expanded
in scalar spheroidal harmonics labeled by the “usual” angular numbers l and m. The solution
for the characteristic frequencies is labeled with one more integer, the overtone number n.

Nevertheless, for completeness, we take the opportunity to present the full spectrum of
characteristic frequencies for the the most unstable scalar field mode, namely with {l,m, n} =
{1, 1, 0} (as far as we are aware this spectrum was never shown for the full phase space {µa, a}).
The imaginary part of the frequency is given in Fig. 7, while the real part of the frequency is
displayed in Fig. 8. Among the particular modes that we have computed explicitly, we find
that the most unstable mode occurs for

{µaM,a/M} = {0.448262, 0.995656} with ωM = 0.474649 + 1.704340× 10−7 i , (2.16)

and its associated instability timescale is roughly 2500 times longer than in the vector case.

Figure 7. Superradiant instability of Kerr BHs against massive scalar fields. The plot shows the
instability rate MωI as a function of the dimensionless rotation a/M and of the dimensionless scalar
field mass µM for {l,m, n} = {1, 1, 0}. The blue curve with ωI = 0 signals the onset of the instability.

The characteristic frequencies can also be computed analytically in a perturbative expan-
sion about the scalar field mass. In the nonrelativistic regime, Mµa ≪ l, the eigenfrequencies
read [20, 31, 44]

ωR ∼ µa

(
1− (Mµa)

2

2(l + 1 + n)2

)
, (2.17)

MωI ∼ Dlmnr+(mΩH − ωR)(Mµa)
4l+5 , (2.18)

where

Dlmn =
24l+2(2l + n+ 1)!

(l + 1 + n)2l+4n!

[
l!

(2l)!(2l + 1!)

]2 l∏

j=1

[
j2

(
1− a2/M2

)
+ 4r2+(ωR −mΩH)2

]
.

(2.19)
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In the following we will focus on fundamental (n = 0) modes with m = l since these are the
modes with the shorter instability time scale5.

As clear from Eq. (2.18), the time scale associated with higher-l modes is considerably
longer than that associated with the dominant l = 1 modes, namely

τinst,l+1

τinst,l
∼ (Mµa)

4 . (2.20)

Therefore, at least in the nonrelativistic regime Mµa ≪ 1, modes with different harmonic
index l have very different time scales and can be treated separately. This separation of time
scales is also confirmed by an exact numerical analysis [20, 42, 69]. On the other hand, for
l = m the unstable modes must satisfy ωR < lΩ, so there might be regions of the parameter
space in which l = m = 1 modes are stable but modes with higher l = m are not [34].

3 Constraining ultralight bosons with BH spin measurements

A generic prediction of the BH superradiant instability is the fact that – in the presence of
ultralight bosons – highly spinning BHs would lose angular momentum through the instability
over a timescale that might be much shorter than typical astrophysical timescales – although
parametrically longer than the dynamical timescale of the BH, the latter being O(M). Thus,
accurate measurements of the mass and spin of astrophysical BHs can be turned into indirect
constraints on the mass of ultralight bosons [14].

BH spin is routinely obtained from the electromagnetic spectrum using reliable prox-
ies for the position of the innermost stable circular orbit (ISCO) [70]. Both the (mass-
independent) shape of the iron Kα line seen in reflection [71] and the thermal emission from
the inner edge of the disc [72] – assumed to be the ISCO [73, 74] (see also [75] for a discussion

5Near extremality, higher modes with n > 0 might have slightly shorter time scale than n = 0 modes [42, 69].
Because the order of magnitude of the time scale is the same, we ignore here this possibility.

Figure 8. Frequency MωR for unstable massive scalar field modes with {l,m, n} = {1, 1, 0}. Left
panel: the difference ωR −mΩH is always negative for the unstable modes of Fig. 7. The blue curve
with ωR = mΩH signals the onset of the instability already shown in Fig. 4. Right panel: difference
ωR − µa is always negative for the unstable modes of Fig. 7.
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on the emission from within the plunging region) – are commonly employed for both stellar
mass BHs in binaries and supermassive BHs in active galactic nuclei (although the latter’s use
is a more recent development [76]). Whilst important caveats exist for both traditional ap-
proaches, convincing evidence for truncation at the ISCO comes from the consistent position
of the inner disc edge in LMC X-3 from modeling of the thermal dominant state, providing
a remarkably stable spin value over a baseline of 26 yr [48]. Whilst not as well sampled (due
to the source rarely entering the requisite thermal dominant state), Cyg X-1 also shows a re-
markably stable spin value over 14 yr from the same approach [47]. These observations imply
that at the moment LMC X-3 and Cyg X-1 are not undergoing a superradiant instability at
least over a timescale of 26 yr and 14 yr, respectively. Below, we will use this fact – together
with our computation of the instability timescale done in the previous section – to put direct
constraints on the mass of ULVs and ALPs.

More stringent (albeit less direct) constraints come from comparing the instability
timescale against a typical accretion timescale, that we estimate here to be the Salpeter
time,

tS = 4.5× 108 yr
η

fEdd(1− η)
, (3.1)

where fEdd is the Eddington ratio for mass accretion, and the thin-disk radiative efficiency
η ≡ 1− EISCO is a function of the spin related to the specific energy EISCO at the ISCO [77].

A novel approach to measure the masses and spins of astrophysical BHs come from
gravitational-wave astronomy. Binary BHs are arguably the cleanest gravitational sources
so measurements of the mass and spin of the binary components should be less affected by
systematics than in the electromagnetic case. Whilst the spins of the primary and secondary
objects in the coalescence events detected so far by LIGO are affected by large uncertainties
and are anyway (marginally) compatible to zero spin, future detections will provide more
stringent constraints on the individual spins, at the level of 30% [78]. More precise measure-
ment will come from the LISA space mission [49]. LISA will be able to measure the mass
and spin of binary BH components out to cosmological distances. Depending on the mass of
BH seeds in the early Universe, LISA will also detect intermediate mass BHs, thus probing
the existence of light bosonic particles in a large mass range (roughly ms ∼ 10−13–10−16 eV)
that is inaccessible to electromagnetic observations of stellar and supermassive BHs and to
Earth-based gravitational-wave detectors [18, 19].

3.1 Constraints on dark photons

Figure 9 summarizes the constraints on dark photons coming from the mass-spin measure-
ments of stellar (left panel) and supermassive (right panel) BHs. For each Proca mass, BHs
laying in the shaded region would have an instability time scale shorter than a given threshold.

As previously discussed, the location of the inner disk of stellar mass BHs is observed
to remain constant over several years, strongly suggesting that the spin of these objects is
constant over (at least) the same period. For this reason, in the left panel of Fig. 9 the
separatrix for each Proca mass is defined by τ = (14, 26) yr. These two values correspond to
the baseline over which the spin of sources Cyg X-1 and LMC X-3 is measured to remain stable
(a/M > 0.95 at 3σ for Cyg X-1 and a/M ≈ 0.5 for LMC X-3 [82], respectively). Therefore,
mass and spin measurements of Cyg X-1 and LMC X-3 already put a robust constrain on
dark photons. The rest of the observational points in the left panel of Fig. 9 would imply
similar constraints assuming their spin is observed to remain constant over such baseline. For
completeness, in the left panel of Fig. 9 we also consider a larger threshold given by a typical
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Figure 9. Exclusion regions in the BH spin-mass diagram obtained from the superradiant instability
of Kerr BHs against massive vector (Proca) fields. Left panel: for each Proca mass, BHs laying in the
shaded region would have an instability time scale shorter than 14 yr (darker filling), 26 yr (lighter
filling) or 5Myr (even lighter filling). Right panel: for each Proca mass, BHs laying in the shaded
region would have an instability time scale shorter than 5Myr (darker filling) or 500Myr (lighter fill-
ing). Black markers (with error bars) are mass and spin measurements of supermassive BHs obtained
through the Kα iron line or by continuum fitting [39, 79]. Red markers denote LIGO measurements
of the spin of the primary and secondary BH for GW150914, GW151226 and GW170104 [78, 80]. The
arrows denote the range of projected LISA measurements using three different population models for
supermassive BH growth (popIII, Q3 and Q3-nod from [81], cf. Ref. [19] for details).

accretion time scale, which is customary when constraining the BH Regge plane [14, 15, 17,
30, 44]. We considered τ = 5Myr, corresponding to an extremely conservative accretion
time scale, obtained from the Salpeter time in Eq. (3.1) by considering an efficiency η ≈ 0.1
and fEdd ≈ 10 to account for phases of super-Eddington accretion. Obviously, the excluded
region is larger in this case, although the corresponding constraints are less robust because
they assume that the BH spin is constant at the observation time.

The excluded regions become smaller as the Proca mass decreases, which corresponds to
BHs of larger mass. However, for supermassive objects it is more reasonable to compare the
instability time scale with the typical time scale for accretion. This is done in the right panel
of Fig. 9, where the separatrix for each Proca mass is defined by τ = (5, 500)Myr. The latter
threshold is obtained from Eq. (3.1) with η ≈ 0.1 and a more realistic choice fEdd ≈ 0.1.
Furthermore, this time scale was chosen because it also roughly corresponds to the age of the
Universe at redshift z ≈ 10, which will be relevant for LISA detections of supermassive BHs
at cosmological distance [49] (see Refs. [18, 19] for a detailed analysis of LISA constraints on
light scalar fields).

3.2 Constraints on ALPs

For completeness, in Fig. 10 we repeat the analysis previously done for ULVs and we compute
the exclusion regions in the BH spin-mass diagram obtained from the superradiant instability
of Kerr BHs against massive scalar fields, which was explored in detail in previous work.
In this case, we have included also the first most unstable modes with l = m > 1, namely
l = m = 2, 3.

To avoid cluttering of the plots, we have considered only one threshold time scale for each
panel: in the left panel we consider the most conservative case, τ = 14 yr, corresponding to
the baseline of Cyg-X1, whereas in the right panel we considered τ = 50Myr, corresponding
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Figure 10. Exclusion regions in the BH spin-mass diagram obtained from the superradiant instability
of Kerr BHs against massive scalar fields for the most unstable m = 1, 2, 3 modes. For each axion
mass, the separatrix in the left (right) plot corresponds to an instability time scale equal to 14 yr
(50Myr). Markers are the same as those in Fig. 9.

to the Salpeter time scale defined in Eq. (3.1) for a typical efficiency η ≈ 0.1 and Eddington
mass-accretion rate fEdd ≈ 1.

Comparison between Fig. 9 and Fig. 10 leads to two important remarks. First, the con-
straints on ULVs are more stringent than those on ALPs, because the superradiant instability
of the former is more efficient [15, 17, 28, 44]. Furthermore, higher-m modes (previously ne-
glected for the Proca field) would allow to extend the rightmost part of each Regge gap shown
in Fig. 9. Thus, the constraints that can be derived from Fig. 9 are in fact conservative and
should be extended by including higher-m Proca modes as done in Ref. [17] in the Newtonian
limit.

4 Conclusion and discussion

We have computed, for the first time, the entire spectrum of the most unstable superradiant
modes of a Proca field around a Kerr BH. Our results confirm and extend some recent work,
showing that the instability of massive vector fields is stronger than in the scalar case. As a
consequence, the constraints on the Proca mass are more stringent than those of the scalar
mass. Our results, together with the observed stability of the inner disk of stellar-mass BH
candidates, can be used to exclude ULVs and ALPs in the mass range

mV ∈ (10−13, 3× 10−12) eV , (4.1)

mALP ∈ (6× 10−13, 10−11) eV . (4.2)

The lower limit on ALPs is less stringent because the superradiant instability is weaker,
whereas the upper limit is more stringent because of the inclusion of higher-m modes. Note
that the above bounds are necessarily less stringent than those obtained by comparing the
instability with accretion. Nonetheless, they are much more robust as based on direct obser-
vations. To the best of our knowledge, it is the first time that the observed stability of the
inner disk of BH candidates is used in the context of BH superradiance.

Statistical evidence of highly-spinning BHs provides an indirect way to constrain ul-
tralight bosons [16–19, 38] and possibly to measure their mass in case of detection [19]. In
particular, recent work shows that LISA will be able to fill the gap between stellar BHs and
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supermassive BHs in the Regge plane [18, 19]. Similarly to the scalar case [19], our results
suggest that LISA will be able to constrain the range

10−19 eV . mALP,V . 10−13 eV . (4.3)

Overall, present and future constraints will allow to probe the entire region 10−19 eV .

mALP,V . 10−11 eV, as discussed in Refs. [18, 19] for ultralight scalars.
An obvious extension of this work is the inclusion of higher-m modes, which would en-

large the exclusion regions shown in Fig. 9 similarly to those in Fig. 10. Other interesting
extensions are the inclusion of the gravitational-wave emission for ULVs (extending the anal-
ysis of Ref. [17] beyond the Newtonian regime and along the lines of Refs. [18, 19] for the
scalar case), the study of the evolution of the superradiant instability in the case of real fields
(extending the recent numerical analysis of Ref. [28]), inclusion of plasma effects [83, 84] and
boson self-interactions [85], and extension to massive spin-2 fields, whose instability time scale
is even shorter than for spin-1 fields [86]. Finally, it would be interesting to investigate the
Proca instability of highly-spinning conducting stars, as recently done in the slow-rotation
limit [40].
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A Numerical procedure to compute the spectrum of Proca fields

Taking the external derivative of (2.4) requires that for a massive Proca field one must have

µ2
γ∇νB

ν = 0. (A.1)

Thus, the condition ∇νB
ν = 0 – that for a massless field is just a gauge choice known as the

Lorentz gauge condition – is promoted to a constraint that must be obeyed by the field when
µγ 6= 0. It gives an algebraic equation for Bt(r, θ) in terms of the other three components
and their first derivatives.

We will find convenient to work with a compact radial coordinate y ∈ [0, 1] and with a
new polar coordinate x ∈ [−1, 1] related with the standard coordinates r, θ of (2.5) by

r =
r+

1− y2
, cos θ = x

√
2− x2 . (A.2)
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Note that the horizon is located at y = 0 and asymptotic infinity is at y = 1. It is further
convenient to work with the dimensionless quantities6

α =
a

r+
, ω̃ = ω r+ , β = µγ r+ . (A.3)

In this setting, we have four unknown functions Bν(y, x), with ν = {t, y, x, φ}, of two
variables. We find that a convenient minimal set of four PDEs to solve for these functions is
given by (A.1) and the three components y, x, φ of (2.4).

These equations have to be solved subject to appropriate physical boundary conditions7.
We are interested on searching for unstable modes. These have frequencies whose real part is
smaller than the potential barrier height set by the Proca field mass, ωR < µγ . A Frobenius
analysis at the asymptotic infinity y = 1 then indicates that unstable modes must decay as

Bν

∣∣
y→1

∼ e
−
√

β2−ω̃2

1−y2 (1− y2)1+σ if ν = t, y , Bν

∣∣
y→1

∼ e
−
√

β2−ω̃2

1−y2 (1− y2)σ if ν = x, φ ,

with σ ≡ i (1 + α2)
(β2 − 2ω̃2)

2
√
β2 − ω̃2

. (A.4)

Here, as a boundary condition, we have already eliminated a solution that grows unbounded

at infinity as e
√

β2−ω̃2/(1−y2).
At the horizon, regularity of the perturbation in ingoing Eddington-Finkelstein coordi-

nates requires that we impose the boundary condition,

Bν

∣∣
y→0

∼ y
−2 i

ω−mΩH
4πTH if ν = t, x, φ , By

∣∣
y→0

∼ y
−2−2 i

ω−mΩH
4πTH , (A.5)

which effectively excludes outgoing modes, ∼ y2 i (ω−mΩH)/(4πTH), at the horizon.
Finally, we have to discuss the boundary conditions at north and south poles of the S2.

Here, regularity of the perturbations requires that m is quantized to be an integer. We are
interested on unstable modes which must have m 6= 0. In these conditions, regularity requires
that the perturbations behave as

Bν

∣∣
x→±1

∼ (1− x2)|m|, if ν = t, x, φ , By

∣∣
x→±1

∼ (1− x2)|m|−1 , (A.6)

which eliminates irregular modes that would diverge as (1− x2)−|m|.
To impose the boundary conditions (A.4)-(A.6) we find convenient to define the new

functions qi, i = 1, 2, 3, 4 defined has

Bt(y, x) = e
−
√

β2−ω̃2

1−y2 (1− y2)
1+i (1+α2)

(β2−2ω̃2)

2
√

β2−ω̃2 y
−2 i

ω−mΩH
4πTH (1− x2)|m| q1(y, x),

By(y, x) = e
−
√

β2−ω̃2

1−y2 (1− y2)
1+i (1+α2)

(β2−2ω̃2)

2
√

β2−ω̃2 y
−2−2 i

ω−mΩH
4πTH (1− x2)|m| q2(y, x),

Bx(y, x) = e
−
√

β2−ω̃2

1−y2 (1− y2)
i (1+α2)

(β2−2ω̃2)

2
√

β2−ω̃2 y
−2 i

ω−mΩH
4πTH (1− x2)|m|−1 q3(y, x),

Bx(y, x) = e
−
√

β2−ω̃2

1−y2 (1− y2)
i (1+α2)

(β2−2ω̃2)

2
√

β2−ω̃2 y
−2 i

ω−mΩH
4πTH (1− x2)|m| q4(y, x), (A.7)

6Our final results are presented in the main text in terms of the more natural dimensionless quantities
a/M , ωM and µγ M .

7For a detailed and systematic discussion of regularity of perturbations and associated boundary conditions,
the reader is invited to see the discussions in [54, 55] and in the review [52].
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This redefinition of functions together with the coordinate transformations (A.2) have the
added value of simplifying considerably the procedure of imposing the boundary conditions
discussed above. Indeed, in terms of the new variables, the horizon the boundary conditions
are simply

q1(0, x)−
1− α2

1 + α2
q2(0, x) +

α

1 + α2
q4(0, x) = 0, ∂yq2,3,4(0, x) = 0 , (A.8)

while at the poles x = ±1 the boundary conditions (A.6) translate into

∂xq1,2(y,±1) = 0 , ∂xq3(y,±1) = ±q3(y,±1) , q4(y,±1) = ∓i
|m|
2m

q3(y,±1) . (A.9)

At y = 1, we have mixed Robin boundary conditions that are not enlightening to display.
To discretize the field equations we use a pseudospectral collocation grid, in the x and y

directions, on Gauss-Chebyshev-Lobbato points. The eigenfrequencies and associated eigen-
vectors are then found using Mathematica’s built-in routine Eigensystem. This method has
the advantage of finding several modes (i.e., belonging to different sectors of perturbations
and with distinct radial overtones) simultaneously. However, to increase the accuracy of our
results at a much lower computational cost we then use a powerful numerical procedure which
uses the Newton-Raphson root-finding algorithm discussed in detail in section III.C of the re-
view [52]. These numerical methods are very well tested. In particular they are the same that
were used to compute the ultraspinning and bar-mode gravitational instabilities of rapidly
spinning Myers-Perry BHs [53–58], the near-horizon scalar condensation and superradiant in-
stabilities of BHs [59, 60], the gravitational superradiant instability of Kerr-AdS BHs [61, 62]
and the electro-gravitational quasinormal modes of the Kerr-Newman BHs [63].

B On the accuracy of the fitting formulas (2.12) and (2.13)

The behavior of the fitting coefficients appearing in Eqs. (2.12) and (2.13) as a function of
the spin is shown in Fig. 11. Interestingly, at variance with what found in Refs. [17, 29],
the subleading terms in Eq. (2.12) clearly display some spin dependence at large spin. This
includes the coefficient α1, which is almost zero for small spins. The behavior of αi in the
near extremal limit shows that the first derivative is diverging, which in turn suggests a
fitting polynomial in powers of

√
1− χ2, as the one adopted in Eq. (2.14). In Fig. 11, we

also compare the numerical coefficients with their corresponding fitting formulas given in
Eq. (2.14). The fitting parameters appearing in Eq. (2.14) are given in Table 2.

Finally, in Fig. 12 we show a contour plot of the (percentage) difference between our
exact numerical result and the fitting formulas (2.12) and (2.13). The agreement for ωR is
excellent, whereas the agreement for ωI is better than 50% in a large region of the parameter
space and it is about a factor of 2 in the (a/M ∼ 1,Mµγ ∼ 0) corner.
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Figure 12. Percentage difference between our exact numerical result and the fitting formula (2.12)
(left) and (2.13) (right) in the superradiant region ωR < mΩH for the most unstable Proca mode with
m = 1. We also superimpose the values of (Mµγ , χ) corresponding to our dataset.
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