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Abstract

Reconstructed microbial metabolic networks facilitate a mechanistic description of the genotype-
phenotype relationship through the deployment of methods in constraint-based reconstruction and
analysis (COBRA). Since reconstructed networks leverage genomic data for insight and
phenotype prediction, the development of COBRA methods has accelerated, following the advent
of whole-genome sequencing. Here, we describe a phylogeny of COBRA methods that has rapidly
evolved from early methods, such as flux balance analysis and elementary flux mode analysis, into
a repertoire of more than 100 methods. These methods have enabled genome-scale analysis of
microbial metabolism for numerous basic and applied uses, including antibiotic discovery,
metabolic engineering, and modeling of microbial community behavior.

Introduction

The genotype-phenotype relationship is fundamental to biology. For decades this
relationship has been subject to mostly argument, speculation and qualitative analysis.
However, our ability to fundamentally understand the genotype-phenotype relationship
began changing in the mid-1990s, on completion of the first bacterial genome sequencing
projects. Full genome sequences provide comprehensive, albeit not yet complete,
information about the genetic elements that create an organism. The comprehensive
understanding for some cellular processes, such as metabolism, has resulted in structured
knowledge-bases that can be mathematically represented1–3. This mathematical
representation enables the computation of phenotypic states4–7 based on genetic and
environmental parameters. Remarkably, this provides a mechanistic representation of the
microbial metabolic genotype-phenotype relationship.

Constraint-based models of genome-scale metabolic networks capture the genotype-
phenotype relationship by simultaneously accounting for constraints on phenotype imposed
by physicochemical laws and genetics. The realization that these quantitative genotype-
phenotype relationships could be constructed from a genome has driven the emergence of
this area of research, and the flood of increasingly rich high-throughput data has accelerated
the evolution of constraint-based reconstruction and analysis (COBRA) methods from a set
of basic tools for metabolic network analysis into a powerful analytical framework that is
increasingly used. Here, we describe basic features of the COBRA framework, the
‘phylogeny’ of evolving COBRA methods, and the COBRA ‘ecology,’ i.e., how COBRA
methods complement each other in answering larger questions in biology.
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Constraint-based modeling defined

The COBRA approach is based on a few fundamental concepts. These concepts include the
imposition of physicochemical constraints that limit computable phenotypes (Figure 1.a–d),
the identification and mathematical description of evolutionary selective pressures (Figure
1.e), and a genome-scale perspective of cell metabolism that accounts of all metabolic gene
products in a cell (Figure 1.d,f). These fundamental concepts are briefly described here.

Constraints on reaction networks

Metabolism is a complex network of biochemical reactions. The reaction occurrence is
limited by three primary constraints: reaction substrate and enzyme availability, mass and
charge conservation, and thermodynamics. For metabolism, reaction substrates must be
present in a cell’s microenvironment or produced from other reactions, and enzymes must be
available. Mass conservation further limits the possible reaction products and their
stoichiometry, while thermodynamics constrain reaction directionality. For a given
organism, this information can be obtained from careful biochemical and genetic studies or
inferred from related organisms, and then catalogued in metabolic reconstruction
knowledgebases1, 2.

In the COBRA framework, a metabolic reconstruction is converted into an in silico model
by mathematically describing the reactions and adding network inputs and outputs (e.g.,
uptake and secretion products). Much like a cell has one genome and many transcriptional
states, an organism has one metabolic reconstruction from which context-specific models
can be derived, each representing cellular functions under different conditions.

Physicochemical constraints on the metabolic network are mathematically described by a
matrix representing the stoichiometric coefficients of each reaction (Figure 1.a–b)8. Known
upper and lower bounds on each reaction flux are imposed as additional constraints.
Mathematically, these constraints define a multi-dimensional “solution space” of allowable
reaction flux distributions, and the actual expressed flux state resides in this solution space.
Additional constraints can further shrink the solution space to focus in on the actual flux
state of the network (Figure 1.c). These additional constraints may include enzyme capacity,
spatial localization, metabolite sequestration, and multiple levels of gene, transcript, and
protein regulation (Figure 1.d).

Mathematical statement of cell objectives: a reflection of evolution

In non-biological chemical networks, the material flow through pathways can be predicted
in a “cause and effect” manner, using mathematical models that describe the associated
physical laws. This description can be achieved in a “time-invariant” manner, since
reproducing the same physical conditions will drive flux through the same pathways. By
contrast, causation in biology is “time-variant”. A plethora of chemical reactions may occur
inside a cell, and many “pathways” can link a starting molecule to a given product.
However, regulatory mechanisms have evolved to select when and where pathways will be
used in an organism under a given condition. Thus, if the cellular objectives that drive
evolution are understood or can be inferred, optimal flux states of biochemical reaction
networks can be predicted. In the COBRA framework these cellular objectives are described
mathematically and used for computation of phenotypic states.

Many cellular objectives can be defined in the context of metabolism. For example, as a
proxy for growth, a biomass reaction9 can be defined that contains all necessary precursors
for synthesizing the cell components for growth (e.g., with amounts of amino acids for
proteins and the nucleic acids for RNA) (Figure 1.e). The biomass function and other
objective functions can be used with optimization algorithms, such as linear
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programming10, 11 to predict metabolic pathway usage and cellular phenotypes11. Since
these objective functions mathematically state cellular aims and can predict phenotypes,
they capture pressures guiding evolution, and therefore represent a determinant of causation
in biology. The objective function is thus an important part of the COBRA framework. It is
not based on fundamental physical principles, but based on biological functions that are
selected for over many generations.

A genome-wide basis for modeling metabolism

Constraint-based modeling has rapidly developed since the advent of whole-genome
sequencing12, 13. A genome provides the genetic basis for an organism’s metabolic network,
and genome annotation defines the relationships between genes, enzymes, and the reactions
they catalyze (Figure 1.f)14. Annotated genomes and their associated biochemical and
genetic data have facilitated the development of carefully curated metabolic network
reconstructions containing thousands of reactions. When a reconstruction knowledgebase for
an organism is converted into a genome-scale model (GEM), the mathematical
representation provides constraints, and the objective function can be used to represent the
optimal biological functions the organism strives to achieve. Thus, simulation of an
organism’s phenotypes can be performed using its GEM.

The genome-scale view of metabolism of these models has two primary implications. First,
in principle, they account for all known metabolic genes in a cell. Thus, when used in
genome-scale dataset analysis (e.g., proteomics, metabolomics, etc.)15, they provide novel
insight since they account for real chemical connections between components (Figure 1.f).
Second, since metabolic genes are associated with the biochemical functions of their gene
products, simulations of metabolite flow through the network can provide mechanistic
predictions of how each gene product affects the metabolic network function. Thus, cell
phenotypes can be computed and data can be interpreted with GEMs, thereby providing
mechanistic insight into how the cell genotype may contribute to the cell phenotype.

A phylogeny of constraint-based methods

COBRA methods have ‘evolved’ and ‘diversified’ over the past decade, leading to more
than 100 different methods (Supplementary Table 1 and http://sourceforge.net/apps/
mediawiki/opencobra/), many of which have been implemented in available software
packages (Supplementary Table 2). These developments may be likened to an evolutionary
process, in which specific scientific questions have selected for algorithmic innovations,
yielding a phylogenetic tree of COBRA methods (Figure 2). We classify these methods into
major groups and describe examples that address the broader scientific questions.

Global characterization of solution spaces

Metabolic pathways are conceptual abstractions that group reactions. However, sometimes
these “pathways” fail to reflect actual metabolic network usage16, since textbook pathways
often reflect the order of enzyme discovery or pathway usage in one model organism.
Fortunately, through computational analysis of metabolic networks, the required “pathways”
for specific metabolic functions can be identified without biases from traditional pathway
concepts. In constraint-based modeling, this is approached through unbiased and biased
methods, represented by the two primary branches of the phylogenetic tree (Figure 2).
Unbiased methods describe all steady-state flux distributions, including reaction sets that
function together without belonging to the same traditional pathway concepts.

Two such unbiased approaches, elementary flux mode (EFM) analysis and extreme pathway
(ExPa) analysis, globally characterize allowable phenotypes, and have been reviewed and
compared previously17–19. These methods identify reaction sets (i.e., pathways) that achieve
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specific metabolic functions, and combinations of these reaction sets describe the entire
solution space (i.e., all steady-state phenotypes). These methods have enjoyed many
applications. For example, in studying E. coli metabolism, they have helped assess global
pathway regulation20, facilitated the design of an ethanol-secreting strain21, identified
synthetic lethal gene interactions22, and demonstrated the trade-off between reducing
translation costs and rapidly responding to environmental changes23. These methods are
usually applied to small models or portions of GEMs24, since their computational
complexity scales exponentially25, 26. However, their use on larger models is becoming
possible through simplifications that, for example, calculate a subset of potential pathways
or find minimal pathways that accomplish a biological function27–30.

Alternative approaches can also describe the entire “solution space” in an unbiased
fashion31, 32. For example, Markov-chain Monte Carlo sampling (MCMC) methods32

characterize all feasible steady-state reaction fluxes. This provides a probability distribution
of feasible fluxes for each reaction under the user-provided growth conditions. These
methods have provided insight into several biological properties, such as the high flux
backbone of central metabolism in E. coli33, condition-specific regulation of yeast34, 35 and
E. coli36 metabolism, and disease states in cardiac myocytes37, erythrocytes38, and the
human brain39.

Finding the ‘optimal’ metabolic state with FBA methods

EFM, ExPa, and MCMC methods characterize all flux states a metabolic network can
deploy. However, a cell does not use most possible flux states. Thus, biased COBRA
methods include the optimization of an objective function to identify physiologically
relevant flux distributions. Flux Balance Analysis (FBA) is the most basic and commonly
used biased method for simulating genome-scale metabolism. In FBA, the cellular objective
is defined, and metabolites in the media are supplied to the metabolic network. Using linear
programming, an objective function is optimized (e.g., the biomass objective function)
subject to the constraints imposed by the metabolic network and metabolite uptake
rates10, 11, 40. This calculation finds one solution in the solution space that is believed to best
represent the true cellular phenotype. The solution includes a prediction of the optimal
objective magnitude (e.g., biomass yield or growth rate) and potential flux values for each
reaction (Figure 3.a).

FBA successfully makes quantitative predictions using a few governing constraints on the
model. For example, a pre-genome era application of FBA recapitulated the acetate
overflow phenotype of E. coli41, in which acetate is excreted at high growth rates. Using
GEMs, FBA has since predicted growth rates42, pathway usage43, 44, and the effect of gene
expression noise on fitness45. It allowed the analysis complex phenotypes, such as
metabolism in non-growing cells46, and numerous variations on FBA have been developed
to assess alternative optimal solutions or to account for additional constraints on metabolic
flux in cells (Figure 2).

Predicted flux values from FBA can vary due to alternate optimal solutions (i.e., the same
objective value using different reactions) (Figure 3.b–d). Alternate optimal solutions are
enumerated using mixed-integer linear programming (MILP)47 and the ranges spanned by
alternate optima are found for each reaction using flux variability analysis (Figure 3.b)48, 49.
The consideration of all alternate optima is crucial when interpreting an FBA solution, since
the flux through a single reaction can vary considerably depending on which solution is
found. For example, the COBRA method Minimization of Metabolic Adjustment
(MOMA)50 predicts a new flux vector and objective value after a perturbation (e.g., gene
deletion). To do this, MOMA computes one “wild type” FBA solution, and finds the nearest
solution after perturbing the network (i.e., the minimum change to reaction fluxes from the
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FBA solution). Since the new predicted flux vector and growth rate can differ considerably
depending on which alternate optimal solution is used (Figure 3.d), all possible results from
alternate optima must be assessed.

To identify realistic microbial phenotypes in FBA predictions, additional biologically-
relevant constraints have been proposed. These include constraints imposed by economy in
enzyme usage43, 51–53, metabolite dilution54, and changes in transcript level55, 56. These
FBA refinements further decrease the range of feasible reaction fluxes to obtain solutions
closely resembling cellular physiology under certain growth conditions. For example,
constraints from enzyme crowding have been applied to FBA solutions (FBAwMC)57, 58. In
FBAwMC, reaction flux is constrained to reflect internal spatial limitations on enzyme
abundance in the crowded cytoplasm. This method predicted that molecular crowding
contributes to substrate preferences in E. coli57. In a medium with multiple carbon
substrates, FBAwMC accurately predicted that glucose would be preferentially consumed,
followed by mixed-substrate consumption and a late usage of glycerol and the excreted
acetate (Figure 3.e), suggesting that molecular crowding may contribute to substrate
preference. A similar variation on FBA accounts for cytoplasmic membrane crowding
(FBAME) by limiting the flux through the glucose transporter and the three cytochromes in
E. coli59. This constraint recapitulated the simultaneous use of respiratory and fermentative
pathways and predicted the effect of glucose and oxygen availability on cytochrome oxidase
expression. Thus, the imposition of crowding constraints on metabolic flux has provided
additional insights into cell physiology57–59.

Modeling genetic perturbations

Since genome-scale metabolic networks capture the activities of hundreds of enzymes,
mutant phenotypes can be assayed through in silico gene perturbation and simulation. On
the first GEMs12, 13, such approaches demonstrated the predictive power of COBRA
methods when metabolic genes were “knocked out” in the model by restricting flux through
their associated reactions. When growth of mutant E. coli was simulated with FBA, 86% of
the mutant phenotypes (i.e., growth or no growth) were accurately predicted13. This success
rate exceeded any other phenotype-predicting algorithm at the time. Subsequent studies have
identified growth conditions60 and genetic backgrounds61 for which genes in S. cerevisiae
are conditionally essential. For example, combinations of gene knockouts were simulated
and tested for essentiality. This demonstrated that 74% of yeast metabolic genes contribute
to essential metabolic processes, and most of these are masked by isozymes and alternative
pathways61. To address additional questions concerning gene deletion, new methods have
been introduced such as MOMA50, Regulatory On/Off Minimization62, and Metabolite
Essentiality Analysis (MEA)63(Figure 2).

Gene and reaction perturbation studies have aided health-related applications, such as
predicting metabolic side-effects of off-target protein-drug interactions64 and predicting
novel anti-microbial targets65. For example, MEA63 was applied to the Vibrio vulnificus
GEM66 to identify potential antibiotic targets for this pathogenic relative to Vibrio cholerae.
MEA was used since it identifies metabolites that, if removed, inhibit biomass production.
These metabolites could possibly be blocked in vivo with analogues that bind or modify
active sites on their associated enzymes. This analysis identified five metabolites as potential
antibiotic targets. Thus, only 352 analogues had to be tested for antimicrobial properties,
allowing for a smaller screen than commonly required for drug discovery. One of screened
molecules with antimicrobial properties was subjected to additional study, and this candidate
molecule considerably out-performed sulfamethoxazole, an existing therapeutic for V.
vulnificus infection. Although additional drug safety assessment and optimization is
required for this candidate drug, this study demonstrates how COBRA methods can guide
antibiotic screens and provide immediate insight into their mode of action.
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In silico design of production strains

Metabolic engineering approaches often perturb and screen cells for desired phenotypes.
However, engineered strains can decrease product yield over time, since products drain
cellular resources. Thus, several COBRA methods aim to predict perturbations (e.g., gene
deletions or additions) that force the strain to couple product yield to a cellular objective.
For example, the secretion of a product can be coupled to growth if its precursor provides an
essential biomass component, and if pathways are removed that would metabolize the
desired product. Thus, as cells grow exponentially, they can actually increase productivity67

(Figure 4.a).

Most COBRA strain-design methods systematically identify reactions that, when perturbed,
may couple a product to a selective pressure (Figure 2). For example, OptKnock68 employs
MILP on a wild-type model (Figure 4.b.i) to find reaction deletions that force product
secretion under optimal growth (Figure 4.b.ii). However, since OptKnock optimizes both the
biomass objective function and product yield, strain designs occasionally have alternate
optima with other secretion products (Figure 4.b.iii). To avoid this, the product can be added
to the biomass function (Objective Tilting69) or MILP can be used (RobustKnock70) to find
designs that provide the maximum lower bound on product yield while maximizing growth
(Figure 4.b.iv).

For algorithmic simplicity, most strain design methods perturb reactions. However, strain
designs based on reactions can require additional gene deletions (isozymes). Moreover,
predictions are occasionally not feasible if they require the removal of one reaction
catalyzed by a multi-specific enzyme (Figure 4.c). To avoid such predictions, heuristic
approaches, such as OptGene71 and GDLS72, identify growth-coupled production strain
designs that directly involve gene deletions. Thus, these strain designs are more realistic and
easier to test in vivo.

Strain-design predictions are not limited to manipulations of the host cell’s metabolic
pathways. The repertoire of products may be expanded in silico by adding genes from other
organisms to confer novel metabolic functions. In silico methods have used graph theoretical
approaches73, 74 or kinetic parameters75 to build novel biosynthetic pathways, which were
subsequently tested or ranked using COBRA methods. Unfortunately, without accounting
for the host metabolic network, these approaches cannot guarantee growth-coupled strain
designs. Thus, without further engineering (e.g., with scaffolds that physically couple
enzymes76) predicted biosynthetic pathways may not yield product in vivo. However, this
concern has been addressed through a few approaches, such as by manually removing genes
to growth-couple the new pathways75, or systematically following pathway prediction with
OptKnock77. Optstrain goes further by conducting the novel pathway search within the host-
cell metabolic network to optimize the balance between reaction addition and deletion78.
Thus, COBRA approaches allow the coupling of non-native product synthesis to a cellular
objective.

The concept of designing strains that couple a product to a defined selective pressure is not
only intriguing, but a few COBRA-based in silico predictions have been implemented in
vivo67, 77. It is anticipated that these tools will continue to aid metabolic engineering
projects.

Refining representations of biological causation

Simulating cell phenotypes requires accurate representations of metabolic network
stoichiometry and objective functions. Although metabolic reconstructions are usually
carefully built and rigorously tested, they are often incomplete, and may contain a few errors
in stoichiometry, thermodynamics, gene associations, or biomass composition, resulting
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from ambiguities in associated biochemical studies79 or genome annotation80. Moreover,
biomass composition and cellular objectives can vary between environments81, 82, especially
under nutrient limitation, stationary phase, or stress46, 83. To address these concerns,
phenotypic screens have been analyzed with gap-filling COBRA methods (Figure 2) to
predict missing pathways 84, 85, to identify incorrect reaction directionality or
inclusion79, 86–88, and to suggest subcellular reaction localization in microorganisms with
multiple organelles89. Complementary COBRA methods also improve the definition of
cellular objectives by integrating data to systematically assess90–92, predict93, or modify
objective functions79, 81, 87.

Recently, high-throughput genetic interaction screens have helped refine metabolic networks
and the biomass objective function of yeast79, 94. For example, model-predicted epistasis in
S. cerevisiae was compared with 176,821 experimentally measured genetic interaction pairs.
Although the COBRA model predictions were enriched for high-confidence measured
genetic interactions, it did not predict many epistatic interactions. The authors developed an
algorithm that reconciled discrepancies between model-predicted and experimentally
measured interactions. Several predicted model improvements were experimentally
validated. For example, the authors found that quinolinate formation from aspartate was
mistakenly included in the yeast reconstruction. In addition, the algorithm predicted that
glycogen should be removed as an essential component in the biomass objective function,
since it is not essential for growth. Thus, this study demonstrated that COBRA methods
could be deployed to improve the yeast metabolic network and provide condition-specific
updates to the biomass objective function.

Thermodynamics

COBRA methods provide quantitative predictions without detailed parameterization of each
reaction, beyond declaring directionality to reflect reaction thermodynamics. Directionality
is often determined from biochemical assays, but such assays may not recapitulate the
conditions and metabolite concentrations inside the cell. Therefore, reaction directionality in
vitro may be inconsistent with in vivo flux. In addition, unrealistic fluxes can be predicted in
silico if a reaction is reversible in a model, but irreversible in vivo. Thus, methods are now
applying more rigorous thermodynamic constraints (Figure 2) by removing
thermodynamically infeasible pathway usage95–97 or constraining flux based on Gibbs free
energy calculations51, 98, 99. Methods are also being used to infer thermodynamic
parameters100.

Most COBRA models contain sets of reactions that can cycle metabolites amongst
themselves (Figure 5.a). In these cases, FBA cannot predict flux values for these reactions,
since their metabolites are cycled infinitely. Such “loops” are biologically unrealistic since
no net thermodynamic driving force exists, akin to Kirchhoff’s second law for electric
circuits. Thus the net flux around these loops should be zero95. Although these loops often
do not affect non-loop reaction flux, their existence can upset some model predictions.
Approaches to systematically remove loops have been proposed95–97. For example,
loopless-COBRA96 improves FBA solutions by employing MILP to cancel out loop flux
(Figure 5.b).

Although loop-removal methods can be easily deployed without extra parameterization,
detailed thermodynamic approaches may provide more biologically meaningful reaction flux
predictions. Thermodynamic parameters for many metabolites are not known. Fortunately,
recent advances in group contribution theory provide Gibbs free energy of formation
estimates for metabolites in COBRA models101. With these predicted values, the standard
Gibbs free energy change can be predicted for each reaction. These values can help
determine reaction directionality51, 102, predict reasonable concentration levels98, and allow
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the use of metabolite concentrations103 and ranges on kinetic parameters99 as constraints. A
recent study104 used estimated metabolite free energy with experimentally measured
equilibrium constants to quantitatively assign reaction directionality. This approach also
incorporated in vivo pH, temperature, and ionic strength to quantitatively assign reaction
directionality to the E. coli metabolic network. When the authors compared the model-
predicted and experimentally measured growth rates, they found that the quantitative
assignment of directionality matched model predictions with experimental data, and only
required qualitative directionality assignment for certain reactions (e.g., ABC and proton
coupled transporters). Since thermodynamics represents one primary model constraint
necessary for accurate COBRA predictions, it is expected that further developments in this
area will be of great importance to the field.

Incorporating regulatory constraints and signaling

Transcriptional regulation and signaling networks interface extensively with metabolism to
produce cellular phenotypes (Figure 6.a). By incorporating regulatory and signaling
constraints into metabolic network models, interactions between the systems can be captured
to enhance COBRA predictions. There are two primary paradigms on how regulatory
constraints are implemented in constraint-based models (Figure 2). Either experimental data
are used55, 56, 105–108 to constrain flux through specific reactions (Figure 6.b), or a
mathematical representation of transcription regulation109, 110 or signaling111, 112 is
interfaced directly with the metabolic network to aid in modeling (Figure 6.c).

Not all pathways are active under all growth conditions. Thus, ‘omic data can be used to
constrain models accordingly (Figure 6.b)55, 56, 105–108. Methods such as GIMME105,
Shlomi-NBT-08106, and MBA107 each remove pathways lacking expression in ‘omic data to
obtain functional models that are consistent with the cell gene or protein expression. These
approaches have provided novel insights and discoveries in tissue-specific human
metabolism39, 64, 113, 114. However, they were also recently used to model metabolic
interactions between M. tuberculosis and a macrophage81.

To expand model predictions beyond metabolism, regulatory mechanisms are being
integrated with metabolic models (Figure 6.c). Such integrated metabolic and regulatory
models can improve phenotype predictions and even suggest novel regulatory interactions.
This was done for the nutrient-controlled transcriptional regulatory network for S.
cerevisiae115, which included Boolean regulatory interactions between 55 transcription
factors and 750 metabolic genes. This integrated regulatory-metabolic network could
simulate growth under different environmental and genetic perturbations using regulatory
FBA (rFBA). The model predicted new transcriptional regulatory interactions, and
elucidated regulatory cascades using chromatin immunoprecipitation data and transcription
factor binding motifs. While integrated models of metabolism and transcription regulation
provide improved phenotype predictions, this study showed they can also expand regulatory
knowledge. It is anticipated that such models may further demonstrate metabolic pathway
usage in conditions for which ‘omic data are not available.

Variations on rFBA have been suggested110, 111. Despite their success, rFBA and related
methods have two primary weaknesses. First, they assume binary responses for all
transcriptional regulatory interactions, when real biological systems exhibit a range of
behavior in transcriptional regulation, from binary to continuous. Second, few organisms
have been studied enough to provide adequate regulatory information for rFBA. However, a
method called probabilistic regulation of metabolism (PROM) addresses these concerns116.
When ample transcriptomic data are available, PROM can infer an organism’s
transcriptional regulatory network and integrate it with the metabolic network, yielding an
improved regulatory-metabolic network model. Moreover, PROM can apply intermediate
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responses (as opposed to binary), since it uses conditional probabilities for modeling
transcription regulation instead of hard Boolean rules (Figure 6.d).

PROM was deployed to infer the regulatory network of M. tuberculosis and integrate it with
metabolism116. Each transcription factor (TF) modulating metabolic gene expression was
systematically deleted from the model and in silico growth phenotypes were compared with
experimentally measured phenotypes. PROM correctly predicted 96% of the TF knockout
phenotypes, including 5 of the 6 TFs that were essential for optimal growth. This suggests
that this method may help predict antibiotic targets for both regulatory and metabolic genes.
Furthermore, the connections between the inferred regulatory network and metabolism may
represent novel regulatory targets for uncharacterized transcription factors.

An ecosystem of COBRA methods

Individual COBRA methods can answer numerous scientific questions. However, multiple
methods can be deployed in parallel to obtain additional insights into a question of interest.
Moreover, different models can be easily swapped or combined to test hypotheses relevant
to different species. Thus by using a community of methods and several data types, deeper
insights into larger questions may be attained. For example, COBRA methods have
complemented each other and provided insight into microbial community interactions.

The community structure in an organism’s microenvironment can shape metabolic pathways
usage. Organisms compete for scarce resources or depend on the metabolic capabilities of
their cohabitants. Evolution often selects for cells that leverage this community structure117.
COBRA methods are now characterizing metabolism’s role in microbial community
structure118–120. These studies are providing insight into mutualism121, competition122,
parasitism81, 123, and community evolution117, 124.

Mutalism

Synthetic mutualism between auxotrophic E. coli mutants was recently studied using
COBRA methods121. The authors grew pairs of auxotrophic mutants and then modeled their
coupled metabolism using MOMA to identify mutant pairs that exchange essential
metabolites to improve growth (Figure 7.a). FBA shadow prices demonstrated the balance
between the cost (from metabolite loss) and the benefit (from receiving missing essential
metabolites) to each rescued auxotroph. The cooperative efficiency (i.e., the ratio of uptake
benefit to production cost) recapitulated the observed growth of the co-cultures. Substantial
increases in growth (Figure 7.b) were witnessed in co-cultures that exchanged beneficial, but
less costly metabolites (i.e., higher cooperative efficiency). Although it is difficult to directly
measure metabolite exchange between the auxotrophs, the computed cooperation efficiency
provides an indirect quantitative assessment of the metabolite cross-feeding in this
mutualistic system.

Competition

Metabolic competition for scarce nutrients has also been assessed with COBRA methods.
Dynamic multi-species metabolic modeling (DMMM) characterized the competition for
acetate, Fe(III), and ammonia between Geobacter sulfurreducens and Rhodoferax
ferrireducens in subsurface anoxic environments (Figure 7.c)122. DMMM simulates the
growth rate of both organisms and the rates of change of external metabolites, to
dynamically predict population changes in the community. Using DMMM, the community
composition was predicted under geochemically distinct conditions of low, medium, and
high acetate flux. Under low acetate flux, DMMM predicts Rhodoferax dominates the
community when sufficient ammonia is available, whereas Geobacter dominates under low
ammonia and high acetate flux. This difference was attributed to the nitrogen fixation
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abilities of Geobacter, as well as its higher acetate uptake rate compared to Rhodoferax.
Moreover, it was also predicted that under nitrogen fixing conditions, Geobacter increases
its respiration at the expense of biomass production, thus showing how balancing
community structure can impact the efficacy of uranium bioremediation in low ammonium
zones.

Parasitism

Host-pathogen interactions have been studied with COBRA methods123. A recent study
modeled the metabolic interactions between a human alveolar macrophage and M.
tuberculosis81. Context-specific models of infection were built with GIMME105 and Shlomi-
NBT-08106 using transcriptomic data from three types of M. tuberculosis infections. Next,
the M. tuberculosis objective function was revised using infection-specific gene expression
data to better represent the metabolic activity of the internalized pathogen (Figure 7.d). Gene
deletion analysis was compared with in vivo gene essentiality data, and MCMC sampling
was also used to demonstrate a substantial alteration in metabolic pathway usage in M.
tuberculosis during macrophage infection, including a suppression of glycolysis and an
increased dependency on glyoxylate metabolism (Figure 7.e). This constraint of central
metabolism during M. tuberculosis infection was also suggested by DCP, another method
related to FBA125. This suppression of certain metabolic pathways with an increased
dependency on normally latent pathways may provide novel antibiotic targets.

Community evolution

In evolution, genetic drift and selective pressures cause organisms to optimize their cellular
machinery for a particular niche126. This assumption of cellular optimization has made
COBRA methods useful tools to investigate hypotheses concerning organismal evolution, as
reviewed by Papp, et al.6 In nature, the optimization of microbial metabolism is a multi-
species affair, as demonstrated by the aphid endosymbiant Buchnera aphidicola. This
descendant of the Enterobacteriaceae family has suffered drastic loss of genomic material as
it evolved in its host’s nutrient-rich innards. Since B. aphidicola is related to E. coli,
reductive evolutionary simulation (a gene deletion analysis derivative)117 on the E. coli
model provided minimal metabolic gene set predictions. These predicted minimal sets are
highly consistent with the metabolic gene content of B. aphidicola (Figure 7.f). In addition,
the predicted temporal order of gene loss was significantly consistent with the
phylogenetically reconstructed gene loss timing among the genomes of five Buchnera
species (Figure 7.g)124, thus suggesting that the bacterium optimized its pathway usage for
its new rich habitat. Interestingly, metabolic pathways retained in the computed minimal
gene sets highlight the bacterium’s role in symbiotic evolution. Retained pathways
contained reactions needed for producing riboflavin and essential amino acids lacking from
the aphid diet, thereby highlighting their role in the symbiotic relationship117. Thus,
COBRA methods are helping to describe how the community shapes gene content in
evolving symbiotic communities6.

Future directions

Constraint-based modeling has rapidly evolved over the past two decades and now forms a
foundation for achieving a genome-scale science of microbial metabolism. Prior to 2004,
studies in this field focused on its conceptualization and algorithmic development. Thus, the
methods developed were largely conceptual and employed for studying fundamental
properties of metabolic networks, such as robustness, alternate optima, and the functional
consequences of metabolic network topology. After 2004, the field expanded to provide
tools for addressing both basic and applied scientific questions focused on issues like strain
design, gap-filling85, and evolution6. Despite limitations in constraint-based modeling, its
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scope and uses are growing. GEMs and their corresponding analytical methods are
expanding in scope beyond microbial metabolism, facilitating ‘omic data analysis, and
directing scientific inquiry.

COBRA methods have gained rapid acceptance since their focus on governing constraints
facilitates genome-scale analysis. However, the simplifying assumptions can limit its scope.
COBRA methods focus on steady state flux, so models do not address metabolite
concentrations, changes in biochemistry from pH and SNPs, temporal metabolic changes,
and spatial constraints. Initial efforts are addressing some limitations and providing insight
into these properties of metabolism58, 103, 105, 122, 127, and additional efforts will further
address these and other limitations.

Metabolism is involved in most cell processes and phenotypes. However, genome-scale
models are extending beyond microbial metabolism to include transcription
regulation109, 110, 116, protein and transcript synthesis128, 129, signaling112, plant and animal
metabolism39, 58, 64, 113, 114, 130, 131, and host-pathogen interactions81, 123, 132. The advances
beyond microbial metabolism, invite additional applications by providing additional targets
for drug discovery and metabolic engineering133, and allowing studies on medicine and crop
engineering. This expansion of models and applications is requiring further evolution of
COBRA methods and theoretical breakthroughs to integrate non-stoichiometric networks
(e.g., transcriptional regulation) with metabolism, and account for interactions with spatial
constraints (e.g., multi-cell metabolism39, 81, 134).

The past decade has witnessed a deluge of high-throughput data ranging from phenotypic
screens, sequencing data, proteomics, metabolomics, and so forth. Recent studies have
demonstrated that novel insights can be gained when these data are analyzed in the context
of GEMs34, 39, 64, 79, 113, 125, 135. As models expand, they will increasingly aid in data
interpretation, since they provide a structured context for high-throughput data analysis.
Moreover, the biochemical mechanisms in these models will leverage ‘omic analysis to
inform experimental work.

Constraint-based modeling is already guiding discovery85 by identifying missing metabolic
and regulatory functions84, 86, 94, 115, 116, 136, predicting enzyme localization89, suggesting
novel drug targets65, 66, 114, and aiding in strain design for chemical production67, 77, 137–141

and biosensor development142. These studies are now increasingly directing experimental
work. As models expand and are used to integrate ‘omic data, COBRA methods will
increasingly be deployed to guide scientific inquiry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary terms

Metabolic
reconstruction

A carefully curated and biochemically validated knowledgebase in
which all known chemical reactions for an organism are detailed
and catalogued

Genome-scale
model (GEM)

A condition-specific, mathematically-described, computable
derivative of a metabolic reconstruction, containing comprehensive
knowledge of metabolism

Biomass function A pseudo reaction formed to aid in predicting growth of a cell in
COBRA models. Describes the rate and the accurate proportions at
which all of the biomass precursors are made

Flux distribution A set of steady-state fluxes for all reactions in the metabolic
network

Linear
programming
(LP)

A mathematical optimization technique that determines a way to
maximize a particular objective under a given set of conditions.
Linear programming involves the optimization of a linear objective
subject to linear equalities and inequalities as constraints. Typically
used in FBA, where the objective is generally the biomass function
(growth) and the constraints represent the growth conditions

Mixed integer
linear
programming
(MILP)

Similar to linear programming, but some of the constraints are
integer values. Used for applications such as enumerating alternate
optimal solutions, strain design, eliminating loops etc

Solution space The feasible region satisfying a set of constraints. In COBRA
models, this represents the feasible flux values for all the reactions
in the model

Epistasis The interaction between two genes where the phenotypic effects of
one gene is masked by that of the other. Usually identified by the
phenotype of the double mutant relative to the phenotype shown by
the two single mutants

Growth-coupled
design

The situation where the production of a particular compound is
positively correlated with the growth rate of the organism. Often
preferred in strain design to increase product yield as the cell
multiplies exponentially

Shadow Prices A mathematical term that refers to the dual of the linear
programming problem. It represents the rate at which the objective
value of the linear program (e.g. growth rate) changes as the supply
of a particular resource (e.g. metabolite) increases
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Online summary

• Genotype-phenotype relationships have classically been qualitative, but recent
advances are enabling us to overcome conceptual and technological barriers
leading to quantitative relationships. Within the constraint-based modeling
framework, generation of quantitative relationships is facilitated by the
realization that cell phenotypes are limited by physical and genetic constraints.

• Physical laws, such as mass conservation and thermodynamics, constrain the
possible metabolic and biosynthetic transformations that can occur in nature,
and genetics specify which sets of biochemical reactions have been selected
through evolution. Genome sequencing and annotation have allowed the
comprehensive reconstruction of microbial metabolic networks, and constraint-
based modeling has emerged as a set of valuable tools that allow for detailed
analyses of biochemical mechanisms underlying the metabolic genotype-
phenotype relationship.

• Network-based pathway analysis tools, such as elementary flux modes and
extreme pathways analysis, delineate pathways that can perform a given
metabolic function in an organism of interest. While these methods have been
difficult to use in larger metabolic networks, simplifications are now beginning
to allow their use on genome-scale models.

• Since not all pathways are used in a cell at a given time, optimization algorithms
are routinely used to identify pathway usage that best reflects the in vivo
metabolic state. Flux balance analysis, which uses linear programming to
optimize a mathematical description of the cellular objective, has been widely
used to understand microbial physiology and the effects of environmental and
genetic perturbations.

• The ability to model genetic perturbations has allowed constraint-based
modeling to be repeatedly deployed to help predict antimicrobial targets and aid
in the design of production strains for chemical production.

• Reconstructed metabolic networks are often incomplete and can have a small
fraction of incorrect reactions therein. However, the integration of phenotypic
screens with model simulations can provide a systematic approach to refine
models and discover new metabolic functions in an organism.

• COBRA methods are extending beyond metabolism, and approaches are
beginning to incorporate transcription regulation implicitly by constraining
models with multiple –omic datatypes or explicitly with detailed descriptions of
regulatory mechanisms.

• The diverse range of more than 100 constraint-based methods is being deployed
to address many questions in microbiology. For example, several recent studies
have begun to explore the roles of metabolism in community interactions,
including symbiosis, competition, parasitism, and evolution.
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Figure 1. Fundamentals of the genome-scale metabolic genotype-phenotype relationship
The COBRA approach is based on three primary fundamental concepts: network constraints
(a–d), objective functions (e), and the association of reactions with the genome. (a) A
complex mixture of molecules (red) can react to yield end products (blue). (b) The
stoichiometry of this reaction network is described mathematically in a stoichiometric
matrix, with each column representing the stoichiometry of a reaction. Negative and positive
values represent reactants and products, respectively. Reaction flux is limited by
thermodynamics and catalytic capacities (Vm=Vmax), described by upper and lower bounds
on flux for each reaction (green). (c) Reaction constraints result in a “solution space” that
contains all feasible flux distributions. Additional constraints (e.g., mass balance, the steady-
state assumption, and measured metabolite consumption rates) reduce the space of feasible
flux distributions, as shown by the pink line. (d) In vivo biochemical networks involve
additional complexity. Gene regulation can change the abundance of catalysts (e.g., the
transformation of D to E). Often components are also localized in different organelles (e.g.,
E and F), thereby blocking reactions. (e) The biomass objective function describes an
evolutionary pressure for microbial growth, and describes the metabolic demands to make
basic metabolite building blocks for all cellular components (e.g., membranes,
macromolecules, ATP, etc.). (f) The association of metabolism with the genome is done by
mathematically linking the genome to transcripts, proteins, and chemical reactions. The
gene-protein-reaction schema is used to describe gene association in the models, and provide
an interface for the integration of high-throughput data.
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Figure 2. The “phylogeny” of constraint-based modeling methods
Over the past years, the constraint-based modeling community has rapidly expanded.
Because of the versatility and scalability of these models, more than 100 methods have been
developed for their modeling and analysis, all based on the analysis of the underlying
metabolic network structure (i.e., the stoichiometric matrix). A phylogenetic tree is used to
depict the similarities between application and use of the methods, and the underlying
algorithms for many of the methods. See Supplementary Table 1 for a more complete list of
methods and descriptions of methods.
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Figure 3. Flux balance analysis (FBA)
(a) In FBA, a cellular objective (e.g., biomass production) is optimized. This provides the
predicted flux for each reaction in the network. (b) FBA solutions are typically not unique,
i.e., there are alternate optimal solutions that use different pathways to achieve the same
objective value (e.g., growth rate). (c) Additional constraints can be applied to reduce the
solution space size, and may remove competing optimal solutions, or (d) change the optimal
solution. If the optimal solution is moved, then the choice of the new optimal solution may
depend on the solver and/or algorithm, as shown for the MOMA50 method. (e) The addition
of constraints can enhance predictions. For example, when constraints on molecular
crowding are added, the model-predicted order of substrate metabolism is consistent with
experimental observation. Panel e reproduced from57, Copyright 2007, National Academy
of Sciences, USA. NTPs, nucleotide triphosphates; AAs, amino acids; FVA, flux variability
analysis; v, reaction flux; μmax, predicted maximum growth rate.
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Figure 4. Principles of model-guided strain design
(a) Non-growth-coupled production strains witness a decrease in product yield over time,
while growth-coupled strains can enhance product yield. (b) Growth-coupled strain designs
are predicted to force product secretion while growing optimally. Several methods have
been developed to predict growth-coupled production strains by modeling reaction deletion,
gene deletion, or reaction addition. Different reaction deletion algorithms, such as
OptKnock68, Objective tilting69, and RobustKnock70 can provide different optimal growth-
coupled strain designs, due to algorithmic differences. (d) Many algorithms predict the set of
reactions that must be blocked to obtain a desired product. However, methods like
OptGene71 and GDLS72, provide a more realistic view by modeling genetic modifications,
since some genes catalyze multiple reactions, and other reactions are spontaneous.
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Figure 5. Refining thermodynamic constraints
Thermodynamic constraints in COBRA models can be refined. (a) For example, when a
metabolic network is not adequately constrained, metabolites can cycle infinitely in loops.
Akin to Kirchhoff’s loop law for electrical circuits, this property is thermodynamically
infeasible. (b) Thus, methods like ll-FVA, which uses the loopless-COBRA96 constraints on
flux variability analysis, are able to systematically remove these loops by adding a constraint
that limits flux to the solution space regions that are not involved in these loops.
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Figure 6. Incorporating and inferring regulation
(a) Signaling, transcription regulation, and metabolism are interlinked in the cell. Therefore
integrating the networks may provide more holistic modeling of organisms. Two primary
paradigms exist in COBRA modeling for integrating transcription regulation and
metabolism. (b) Algorithms such as GIMME105 and MBA107 use high-throughput data and
model simulations to identify which pathways are likely expressed and active in the cells
when the data were sampled. This results in a tailored context-specific representation of the
metabolic network. (c) Algorithms such as rFBA109, iFBA111, and SR-FBA110 incorporate
detailed mathematical representations of the known molecular mechanisms of transcription
regulation. These approaches contain binary regulatory logic that dictates, under a specific
signal, which metabolic pathways are suppressed and cannot carry flux. (d) Hybrid methods,
such as PROM116 are arising, in which transcriptomic data are used to infer the regulatory
network. This allows for the elucidation of novel regulatory interactions and their immediate
incorporation into model simulations. PROM also uses probabilistic measures to allow for a
more continuous regulation of reaction flux. For example, Gene 2 is tightly regulated by a
transcription factor (TF). Thus, when the TF is activated by a signal, reaction flux is more
tightly constrained than Gene 1, which is only loosely regulated.
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Figure 7. Integrating COBRA methods to study community interactions
COBRA methods are providing insight into the metabolic interactions in various types of
microbial communities. (a) To study the mutualistic behavior of co-dependent mutant E.
coli, researchers used MOMA50 to simulate synergistic growth of pairs of auxotrophic E.
coli. (b) Shadow prices from FBA simulations of these pairs were used to compute
cooperation efficiencies between strains, which were subsequently compared with measured
fitness improvements. (c) Competition in communities was modeled using DMMM122 to
understand how communities of Geobacter and Rhodoferax compete for resources, and how
the demographics vary under different nutrient ratios, thereby affecting the efficiency of
bioremediation efforts. Host-pathogen interactions between M. tuberculosis and a human
macrophage were studied using COBRA. (d) While transcriptomic data were employed to
build host-pathogen models at different stages of infection, the cellular objective of
internalized M. tuberculosis is not known, so refinements to the objective function were
predicted from transcriptomic data to account for changes in required amounts of
compounds like lipids and amino acids (AAs). (e) This information was used to compute
flux states of internalized M. tuberculosis with MCMC sampling32. This demonstrated a
suppression of central metabolism and activation of the glyoxylate shunt, represented here
by enolase and isocitrate lyase, respectively. The role of communities in evolution has been
studied using Reductive evolutionary simulation117. In particular, this method predicted the
minimal set of genes needed to for Buchnera to grow in the rich innards of the aphid. The
predicted minimial gene sets (f) and temporal order of gene loss (g) were consistent with the
gene content and phylogenetic structure of several Buchnera species.
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