
Constraint-Based Analysis of Concurrent Probabilistic

Hybrid Systems: An Application to Networked

Automation Systems✩

Tino Teige∗, Andreas Eggers, Martin Fränzle

Carl von Ossietzky Universität Oldenburg, Germany

Dpt. of Computing Science, Research Group Hybrid Systems

Abstract

In previous publications, the authors have introduced the notion of stochastic
satisfiability modulo theories (SSMT) and the corresponding SiSAT solving
algorithm, which provide a symbolic method for the reachability analysis of
probabilistic hybrid systems. SSMT extends satisfiability modulo theories
(SMT) with randomized (or stochastic), existential, and universal quantifi-
cation, as known from stochastic propositional satisfiability. In this paper,
we extend the SSMT-based procedures to the symbolic analysis of concurrent
probabilistic hybrid systems. After formally introducing the computational
model, we provide a mechanized translation scheme to encode probabilistic
bounded reachability problems of concurrent probabilistic hybrid automata
as linearly sized SSMT formulae, which in turn can be solved by the SiSAT
tool. We furthermore propose an algorithmic enhancement which tailors
SiSAT to probabilistic bounded reachability problems by caching and reusing
solutions obtained on bounded reachability problems of smaller depth. An
essential part of this article is devoted to a case study from the networked
automation systems domain. We explain in detail the formal model in terms
of concurrent probabilistic automata, its encoding into the SiSAT modeling

✩This work has been partially supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

∗Corresponding author
Email addresses: tino.teige@informatik.uni-oldenburg.de (Tino Teige),

andreas.eggers@informatik.uni-oldenburg.de (Andreas Eggers),
fraenzle@informatik.uni-oldenburg.de (Martin Fränzle)

Preprint submitted to Nonlinear Analysis: Hybrid Systems April 27, 2010

language, and finally the automated quantitative analysis.

Keywords: Concurrent probabilistic hybrid systems, probabilistic logic,
constraint satisfaction problems, problem solvers, automatic verification

1. Introduction

Hybrid discrete-continuous dynamic behavior arises when discrete and
continuous dynamic processes become connected, as in the case of embedded
computers and their physical environment. An increasing number of the tech-
nical artifacts shaping our ambience are such hybrid systems relying on, often
invisible, embedded computer systems. Their safety assessment amounts to
showing that the joint dynamics of the embedded system and its environment
is well-behaved, e.g. that it avoids undesirable states or that it converges to a
desirable state, regardless of the actual disturbance. Disturbances may origi-
nate from uncontrolled inputs in an open system, like a car driver performing
her driving task, as well as from internal sources of the overall technical sys-
tem, like failing system components, including sensors or even actuators.
Gradually advancing the capabilities of addressing such systems, research in
hybrid system verification has thus traditionally focused on different classes
of system structures and disturbances, ranging from a closed-system view
over non-deterministic to probabilistic or stochastic hybrid systems. While
the closed-system view necessitates a reasonably exact representation of the
rather intricate yet deterministic feedback dynamics of coupled discrete and
continuous systems, non-deterministic systems extend this view by unknown
inputs of an open system. Probabilistic systems, finally, allow to capture
unpredictable, yet statistically characterizable disturbances.

Within this article, we present an automatic approach to the constraint-
based, symbolic analysis of concurrent probabilistic hybrid systems exhibiting
both non-deterministic and probabilistic behavior as in infinite-state Markov
decision processes. Our procedure belongs to the class of depth-bounded
state-space exploration methods based on satisfiability solvers, which have
originally been suggested for large finite-state systems by Groote et al. in [1]
and Biere et al. in [2] and have since become popular under the term bounded
model checking (BMC), now accounting for a major fraction of the industrial
applications of formal verification. The idea of BMC is to encode the next-
state relation of a system as a propositional formula, to unroll this to some
given finite depth k, and to augment it with a corresponding finite unrav-

2

elling of the tableaux of (the negation of) a temporal formula in order to
obtain a propositional SAT problem which is satisfiable if and only if an er-
ror trace of length k exists. Enabled by the impressive gains in performance
of propositional SAT checkers in recent years, BMC can now be applied to
very large finite-state designs.

Though originally formulated for discrete transition systems, the concept
of BMC also applies to hybrid discrete-continuous systems. The BMC for-
mulae arising from such systems comprise complex Boolean combinations of
arithmetic constraints over real-valued variables, thus entailing the need for
satisfiability modulo theories (SMT) solvers over arithmetic theories to solve
them. Such SMT procedures are thus currently in the focus of the SAT-
solving community [e.g., 3, 4, 5, 6], as is their application to and tailoring
for BMC of hybrid system [e.g., 7, 8, 9, 10, 11].

The scope of the aforementioned procedures, however, is confined to qual-
itative (i.e., non-probabilistic) models of hybrid behavior as well as to purely
Boolean queries of the form “can the system ever exhibit an undesirable
behavior?”, whereas requirements for safety-critical systems frequently take
the form of bounds on error probability, requiring the residual probability of
engaging into undesirable behavior to be below an acceptable threshold. Au-
tomatically answering such queries requires, first, models of hybrid behavior
that are able to represent probabilistic effects like component breakdown and,
second, algorithms for state space traversal of such hybrid models. Address-
ing this problem, the authors have suggested the scheme of stochastic satisfia-
bility modulo theories (SSMT) [12, 13], which advances the reasoning power of
SMT-based BMC to probabilistic hybrid models. Mirroring the tight integra-
tion of propositional SAT solving and theory solvers underlying the currently
most successful SMT solver designs, SSMT solving borrows from stochastic
propositional satisfiability (SSAT) solving [14, 15, 16, 17] and integrates the
respective search algorithms with theory solving. Thereby, quantifiers of the
classical existential and universal forms as well as of randomized (or, equiv-
alently, stochastic) type become available in SMT, facilitating a symbolic
encoding of probabilistic hybrid automata (PHA). The idea of the encoding
is, in a nutshell, to encode the transition effects as an SMT formula, as usual,
yet add the branching structure to the encoding by means of quantification,
with existential quantification reflecting nondeterministic choices and ran-
domized quantification reflecting probabilistic events [12]. This provides a
symbolic encoding of the game semantics of PHA, rendering their analysis
a matter of SSMT solving with the SSMT solver SiSAT [13, 18] whenever

3

the analysis problem can be formulated as a finite unravelling of the transi-
tion relation and the branching structure, as in probabilistic bounded model
checking (PBMC). PBMC is the probabilistic extension to BMC, where the
likelihood of reaching a given state within a given number of steps under an
optimal strategy resolving the nondeterminism is computed rather than just
reachability within that number of steps.

Previous publications provided a proof of concept in exploring symbolic
encodings of PHA [12] and SSMT solving [13] for a single, monolithic prob-
abilistic hybrid automaton, yet left the particular advantages of symbolic
encodings on concurrent systems unexplored. It is well-known that in the
non-probabilistic case, symbolic encodings permit an encoding of size linear
in the number of parallel components, alleviating the state explosion arising
from explicit construction of the product automaton, and thus enhancing the
scalability of the automated analysis procedures. As this issue has not been
explored for probabilistic systems so far, we devote this article to a further
exploration of SSMT-based PBMC of systems of concurrent probabilistic hy-
brid automata. It is to be noted that this extension is far from trivial, as the
usual mechanisms of compositionally representing concurrency in predicative
semantics (e.g., using disjunction as a model of interleaving concurrency) do
not directly apply due to the presence of the additional quantifiers explicating
the game structure.

With its focus on scalability in the number of concurrent components
and in the size of the discrete components, we consider this line of work
complementary to the body of analytic techniques developed for classes of
hybrid systems with more intricate stochastic dynamics. Our approach is
very confined concerning the stochastic behavior; actually, it only admits
probabilistic events within transitions. In the context of hybrid systems aug-
mented with probabilities, a wealth of other, often richer models has been
suggested by various authors. Basic models are the probabilistic hybrid au-
tomata addressed herein, where state changes forced by continuous dynam-
ics may involve discrete random events determining both the discrete and
the continuous successor state [19, 20, 12], piecewise deterministic Markov
processes [21], where state changes may happen spontaneously in a manner
similar to continuous-time Markov processes, and stochastic differential equa-
tions [22], where, like in Brownian motion, the random perturbation affects
the dynamics continuously. In full generality, stochastic hybrid system (SHS)
models can cover all such ingredients [23, 24].

4

y = 0

x = 0

p = 0.6 p = 0.6
y = 0

Φ = ∃x ∈ {0, 1}

R

[0→0.6,1→0.4]y ∈ {0, 1} :

(x > 0 ∨ 2a · sin(4b) ≥ 3) ∧ (y > 0 ∨ 2a · sin(4b) < 1)

2a · sin(4b) ≥ 3
2a · sin(4b) < 1

2a · sin(4b) ≥ 3

x

unsat satsat sat

y y
= 1

x = 1

Pr = 0.6 · 1 + 0.4 · 1Pr = 0.6 · 0 + 0.4 · 1
= 0.4

y = 1
p = 0.4

y = 1
p = 0.4

2a · sin(4b) < 1

Pr = 1 Pr = 1 Pr = 1Pr = 0

Pr(Φ) = max(0.4, 1) = 1

Figure 1: Semantics of an SSMT formula depicted as a tree illustrating the recursive
descent through the quantifier prefix.

Structure of the paper. We first recall the notion of stochastic satisfiability
modulo theories (SSMT) in Section 2. Thereafter, we present our compu-
tational model of a system of concurrent discrete-time probabilistic hybrid
automata and the corresponding probabilistic bounded reachability computa-
tion (PBRC) and probabilistic bounded model checking (PBMC) problems
(Section 3). To solve these PBRC and PBMC problems of concurrent prob-
abilistic hybrid systems, we then describe the reduction from PBRC/PBMC
to SSMT in Section 4 as well as the modeling language and algorithmic
core of the SSMT-solver SiSAT (Section 5). In the latter section, we fur-
thermore propose a novel PBRC/PBMC-related enhancement of the solver.
To complement the presentation of the theoretical results and to show their
practical feasibility, we apply the proposed approach to a realistic case study
from the domain of networked automation systems (Section 6). Section 7
finally presents some conclusions.

2. Stochastic SMT

Stochastic satisfiability modulo theories (SSMT) combines the concepts of
stochastic propositional satisfiability (SSAT) [14] and satisfiability modulo
theories (SMT), e.g. [25]. SSMT thus enhances the reasoning power of SMT
to probabilistic logics.

Let ϕ be a formula over some quantifier-free arithmetic theory T over the
reals, integers, and Booleans, as in ϕ = (x > 0 ∨ 2a · sin(4b) ≥ 3) ∧ (y >

5

0∨ 2a · sin(4b) < 1). An SSMT problem adds to the SMT problem ϕ a quan-
tifier prefix Q1x1 ∈ Dx1

. . . Qnxn ∈ Dxn
binding some variables xi by quan-

tifiers Qi, yielding the SSMT formula Φ = Q1x1 ∈ Dx1
. . . Qnxn ∈ Dxn

: ϕ.
The quantifier-free SMT formula ϕ is also called the matrix of Φ. We de-
mand that the individual domains Dx of quantified variables x are finite.
A quantifier Qi, associated with variable xi, is either existential, denoted
as ∃, universal, denoted as ∀, or randomized, denoted as

R

di
where di is a

discrete probability distribution over Dxi
. The value of a variable xi bound

by a randomized quantifier (randomized variable for short) is determined
stochastically according to the corresponding distribution di, while the value
of an existentially or universally quantified variable can be set arbitrarily. We
denote a probability distribution di by a function [v1 → p1, . . . , vm → pm] as-
sociating probability pj ≥ 0 to value vj. The mapping vj → pj is understood
as pj is the probability of setting variable xi to value vj. The distribution
satisfies vk 6= vl for k 6= l,

∑m

j=1 pj = 1, and Dxi
= {v1, . . . , vm}. For instance,

R

[0→0.2,1→0.5,2→0.3]x ∈ {0, 1, 2} expresses that the variable x is assigned the
values 0, 1, and 2 with probabilities 0.2, 0.5, and 0.3, respectively.

The semantics of an SSMT problem Φ is given by its probability of satis-
faction Pr(Φ) defined as follows:

1. P r(ε : ϕ) = 0 if ϕ is unsatisfiable.

2. P r(ε : ϕ) = 1 if ϕ is satisfiable.

3. P r(∃xi ∈ Dxi
· Q : ϕ) = maxv∈Dxi

Pr(Q : ϕ[v/xi]).

4. P r(∀xi ∈ Dxi
· Q : ϕ) = minv∈Dxi

Pr(Q : ϕ[v/xi]).

5. P r(

R

di
xi ∈ Dxi

· Q : ϕ) =
∑

v∈dom(di)
di(v) · Pr(Q : ϕ[v/xi]).

For an example see Figure 1.

3. Concurrent probabilistic hybrid automata

In practice, hybrid systems generally consist of multiple components evolv-
ing concurrently, both in the small, where controllers, sensor, actuators form
identifiable units being coupled by one or more communication busses, or
in the large, where a number of otherwise independent physical processes
becomes connected via embedded control, as in a car platooning maneuver.
Given the ubiquity of concurrency in such embedded control applications, it
makes sense to avoid the detrimental effects of flattening concurrent systems

6

before verification, which have become known as state explosion in the finite-
state case, and offer models directly accommodating concurrency instead.

In the sequel, we elaborate on such a model, where probabilistic hybrid
automata evolve concurrently subject to a synchronous semantics involving
global agreement on transitions as in CSP [26]. Within their evolution, the
individual automata

1. non-deterministically select local transitions and synchronously suggest
them to the environment,

2. establish consensus on a global transition comprising one selected local
transition from each concurrent component by checking mutual consis-
tency between the individual activation conditions of the selected local
transitions, releasing the synchronous global transition iff the condi-
tions are consistent,

3. after having committed to this global transition, do locally select one of
the available probabilistic variants of the corresponding local transition,

4. establish global consensus on execution of the locally selected proba-
bilistic variants by checking mutual consistency of their side effects,

5. in case of consensus, execute the transition concurrently by applying
their associated effects on the global state, or else deadlock due to
inconsistent assignments in the committed transitions.

The semantics has been defined with the goals of, firstly, permitting concise
models by not imposing overly restrictive rules on use of variables and, sec-
ondly, providing separation between the possibly non-deterministic process of
transition selection and the then purely probabilistic process of selection of a
transition variant, as in classical, monolithic PHA [19, 20, 12]. To achieve the
first, both the (then not really) local conditions for transition selection and
the side effects can refer to non-local variables in both pre- and post-states,
forcing parallel automata to agree on mutually consistent local transitions.
The second, which is a necessary prerequisite for avoiding ill-formed probabil-
ity measures due to interference between policies (or schedulers, adversaries)
resolving non-determinism and the probabilistic choices, is accomplished by
first committing a non-deterministic transition selection and then pursuing
the probabilistic selection of a variant, yielding a deadlock if the latter ex-
periment yields an outcome which is inconsistent to the earlier selection.

7

3.1. Syntax and semantics of concurrent PHA

A system of concurrent discrete-time probabilistic hybrid automata S =
{A1, . . . ,An} is given by a set of discrete-time probabilistic hybrid automata,
where each probabilistic hybrid automaton Ai consists of the following.1

• A finite set Di = {di
1, . . . , d

i
ki
} of discrete variables spanning the dis-

crete state space (sometimes called the locations) of the hybrid automa-
ton by means of the Cartesian product

∏ki

j=1 range(di
j) of their finite

ranges range(di
j). In order to permit non-local referencing of the state

variables, we demand that Di ∩ Dj = ∅ if i 6= j, i.e. that the variable
names used in different concurrent automata are disjoint.

• A finite vector Ri = {xi
1, . . . , x

i
mi
} of continuous state components con-

trolled by that automaton (yet visible to all others). Each continuous
component xi

j ranges over an interval range(xi
j) = [lxi

j
, uxi

j
] within the

reals R. Again, we demand that Ri ∩ Rj = ∅ if i 6= j. Additionally,
we require discrete variable names and continuous variable names to
be disjoint, i.e. Di ∩ Rj = ∅ for all i and j.

• A predicate init i in an arithmetic theory T with free variables in Di and
Ri describing the initial state of the automaton. For technical reasons
and without loss of generality, we demand that there is exactly one
valuation in the state set States i =

∏ki

j=1 range(di
j)×

∏mi

j=1 range(xi
j) of

the automaton which satisfies init i. Note that due to the disjointness
of the local variable name spaces, this implies existence of exactly one
global initial state s ∈

∏n

i=1 States i satisfying
∧n

i=1 init i.

• A finite family Tri = {tri
1, . . . , tr

i
ℓi
} of symbolic transitions.

Each symbolic transition tri
j comprises the following.

• A generalized transition guard g(tri
j) expressing the conditions on local

and global variables required for establishing consensus on that tran-
sition. g(tri

j) is an arithmetic predicate in the arithmetic theory T
over variables in D1, . . . , Dn and R1, . . . , Rn as well as primed variants
thereof, the latter representing the post-states. A transition guard

1Please note that there is an intuitive example complementing this formal description
at the end of this subsection beginning on page 12.

8

states the conditions on the discrete as well as the continuous state
under which the transition may be taken. Note that the guard pred-
icate can refer to the current states and post-states of all concurrent
automata in S. It thus provides an expressive formalism supporting
synchronization through global consensus.

• A probability distribution p(tri
j) ∈ P (PCtri

j
), where PCtri

j
is a finite

and nonempty set of symbolic transition alternatives and P (PCtri
j
)

denotes the set of probability distributions over PCtri
j
. p(tri

j) assigns to

transition tri
j a distribution over |PCtri

j
| many transition alternatives.

• For each transition alternative pc ∈ PCtri
j

of transition tri
j an assign-

ment predicate asgn(tri
j, pc) defining the successor state. As for tran-

sition guards, asgn(tri
j, pc) is an arithmetic predicate in the arithmetic

theory T over variables in D1, . . . , Dn and R1, . . . , Rn as well as primed
variants thereof, the latter again representing the post-states.

Note that the assignment predicate may again refer to the global pre-
and post-state, i.e. the current states and the post-states of all con-
current automata in S. This definition enables an automaton to read
state variables of other automata, and moreover offers the possibility
of non-local writes, entailing agreement in case of multiple concurrent
updates to the same variables. Semantically, updates will only be per-
formed in case all concurrent automata agree on them, and the system
will become deadlocked in case of inconsistent updates. Furthermore,
we require that the concurrent execution of assignments are determin-
istic wrt. the primed variables, i.e. the concurrent execution of the local
transition alternatives of the individual automata uniquely determines
the global post-state of the overall system.

The above two requirements imply that any concurrently enabled com-
bination of local transitions may permit at most one successor state
for each possible resolution of the local probabilistic choices. This
condition necessitates a global view of transitions and their related
assignments, which motivates the following definitions, as illustrated
in Figure 2. To obtain such a global view, let NChoice =

∏n

i=1 Tri

denote the Cartesian product of the local transition sets, thus repre-
senting the set of all potentially possible global transitions. As each
local transition may have multiple probabilistic variants, the same

9

tr1
1

tr2
1

pc2
1,1

tr2
2

pc2
2,1

0.2 0.8

A2A1

pc2
1,2

y′ = x2

pc1
1,2pc1

1,1

x′ = 0

0.60.4

1

NChoice = {(tr1
1, tr

2
1), (tr

1
1, tr

2
2)}

PChoice((tr1
1, tr

2
1)) = {(pc1

1,1, pc
2
1,1), (pc

1
1,2, pc

2
1,1),

(pc1
1,1, pc

2
1,2), (pc

1
1,2, pc

2
1,2)}

PChoice((tr1
1, tr

2
2)) = {(pc1

1,1, pc
2
2,1), (pc

1
1,2, pc

2
2,1)}

PChoice = PChoice((tr1
1, tr

2
1))

∪ PChoice((tr1
1, tr

2
2))

Assign((tr1
1, tr

2
1), (pc

1
1,1, pc

2
1,2)) ≡ x′ = 0 ∧ y′ = x2

p((tr1
1, tr

2
1), (pc

1
1,1, pc

2
1,2)) = 0.2 · 0.6 = 0.12

Figure 2: A parallel combination of probabilistic hybrid automata (guards omitted for the
sake of clarity).

applies for global transitions. With regard to a single global transi-
tion (tr1, . . . , trn) ∈ NChoice, the set of associated probabilistic tran-
sition alternatives is PChoice((tr1, . . . , trn)) =

∏n

i=1 PCtri , which is
the Cartesian product of the local probabilistic transition alternatives
available for the individual local transitions tr1, . . . , trn. Taking to-
gether all the global probabilistic alternatives of all global transitions,
PChoice :=

⋃

nc∈NChoice PChoice(nc) denotes the set of all global prob-
abilistic choices. Given a global non-deterministic transition choice
tr = (tr1, . . . , trn) ∈ NChoice and a corresponding global probabilis-
tic alternative choice pc = (pc1, . . . , pcn) ∈ PChoice(tr), we denote
by Assign(tr, pc) =

∧n

i=1 asgn(tri, pci) the conjunction of the selected
local assignment predicates. With these definitions, we can formal-
ize the requirements that each concurrent execution of local transi-
tion alternatives be deterministic: We demand that for each global
transition tr ∈ NChoice and for each global probabilistic alternative
pc ∈ PChoice(tr), the associated global assignment Assign(tr, pc) is
deterministic or, equivalently, a partial function, i.e. it satisfies

Assign(tr, pc) ∧ Assign(tr, pc)[~e/~d′, ~y/~x′] ⇒ ~e = ~d′ ∧ ~y = ~x′

where ~d′ and ~x′ denote the vectors of all primed discrete and continu-
ous variables of all automata A1, . . . ,An, respectively. Intuitively, the
current global state and a global assignment uniquely determines the
global post-state.

10

Let StatesS =
∏n

i=1 States i be the global state space of system S. In the
sequel, we will define the concurrent semantics of the system S. Here, all
partners do propose a local transition which is fixed as soon as the partners
have reached consensus in the sense of the guards of the involved local transi-
tions being consistent, which amounts to checking whether a global post-state
exists which together with the current pre-state satisfies the conjunction of
the (generalized) local guards. Once the global transition has been negoti-
ated, all partners do randomly select a local transition alternative. Provided
that the assignments corresponding to the resulting global probabilistic al-
ternative are consistent, each system enters the unique post-state of S arising
due to determinacy of assignments. In case the selected global system step is
impossible due to inconsistency between the selected guards of all Ai or due
to inconsistency of the randomly selected assignments, the overall system S
deadlocks in a distinguished state ⊥.

Given a selection of transitions and transition alternatives, at most one
post-state exists:

Property 1 (Existence and uniqueness of post-states). Let S be a sys-
tem of concurrent discrete-time probabilistic hybrid automata. Further, let
s ∈ StatesS be a state of S, tr = (tr1, . . . , trn) ∈ NChoice be a non-
deterministic transition choice, and pc = (pc1, . . . , pcn) ∈ PChoice(tr) be a
probabilistic choice of transition alternatives. We define the predicate val(z)
for z ∈ StatesS as a conjunction of equations

∧

v∈
Sn

i=1
(Di∪Ri)

v = z(v), where

z(v) is the value of v in state z. Then, if

val(s) ∧
n
∧

i=1

(

g(tri) ∧ asgn(tri, pci)
)

is satisfiable then there exists exactly one state s′ such that

val(s) ∧ val(s′)′ ∧
n
∧

i=1

(

g(tri) ∧ asgn(tri, pci)
)

is satisfiable, where val(.)′ is val(.) with all variable names decorated by
primes.

In this case, we denote by Post(s, tr, pc) the unique post-state s′. Oth-
erwise, the system deadlocks and we define Post(s, tr, pc) = ⊥. For conve-
nience, we define Post(⊥, tr, pc) = ⊥ for all tr, pc.

11

The semantics of S is then defined by runs of S that are finite2 alternating se-
quences of states and transitions, the latter involving both non-deterministic
and probabilistic choices. A run 〈s0, (tr1, pc1), s1, . . . , (trk, pck), sk〉 with s0 ∈
StatesS , si ∈ StatesS ∪ {⊥} for i > 0, and (tri, pci) ∈ NChoice ×PChoice of
S satisfies the following properties:

1. s0 satisfies the initial predicate
∧n

i=1 initi,

2. pcj ∈ PChoice(trj) for all 1 ≤ j ≤ k.

3. sj+1 = Post(sj, trj, pcj) for all 0 ≤ j ≤ k − 1.

Thus, each run starts in the global initial state defined by the initial state
predicates of the concurrent components. Upon each computation step, all
concurrent automata first select non-deterministically among their transi-
tions and then probabilistically under their variants. The corresponding
transition step leads to a unique post-state, if existent, or to deadlock other-
wise. The probability of a transition step from s to s′ under non-deterministic
choice tr = (tr1, . . . , trn) and probabilistic choices pc = (pc1, . . . , pcn) is given
by p(tr, pc) =

∏n

i=1 p(tri)(pci) (cf. Figure 2). The probability of a (finite) run
is the product of the probabilities of all transition steps of that run. The
length of a run coincides to the number of transition steps involved. Note
that the accumulated probability of all runs of a given length k under a given
policy resolving non-determinism is always 1.

Example. Consider the system S = {sensor, controller} depicted in Figure 3.
For the sake of clarity, we omitted probabilistic transition alternatives when-
ever just one exists, e.g. in the entire controller automaton. The idea of this
very simple model is that sensor shall perform discrete state changes when-
ever the sine curve (evaluated over time) reaches its extremal values. That
is, from sns rise to sns fall when hitting the maximum, and vice versa when
reaching the minimum value. This switching behavior is synchronized with
the controller, i.e. the controller retrieves such state changes of sensor in its
guards. The controller regulates the continuous variable y that is increasing
over time in discrete state ctr rise and decreasing over time in ctr fall. The
global time of the system is modeled by variable t, and the time passage is
governed by automaton sensor. A safety requirement of the system, e.g., is
that the value of y may never leave the safe region [−π/2, 3π/2]. In case of

2Considering finite runs suffices for the purpose of this paper, since we investigate
bounded reachability.

12

ctr_error

sensor

controller

y = −π
2

trc
4

sin(x) = 1 0.9 sin(x) = −10.9

trs
1 trs

2

sns fall fail sns rise fail

x′ = π
2 ∧ t′ = tx′ = −π

2 ∧ t′ = t
∧ t′ = t + π

2 − x ∧ t′ = t + 3π
2 − x

0.1 0.1

pc1,1 pc2,1

pc2,2pc1,2

trs
3 trs

4

x ′
= π

2 ∧ t ′= tx
′ = −

π
2
∧ t′ = t

trs
6

trc
1

ctr fall

trc
2

sns rise sns fall

ctr rise

−π
2 ≤ y ≤ 3π

2 ∧ sns rise ∧ sns fall′/y′ = y

−π
2 ≤ y ≤ 3π

2 ∧ sns fall ∧ sns rise′/y′ = y

x′ = x + (t′ − t)

sin(x) 6= 1/

x′ = x + (t′ − t)

sin(x) 6= −1/

y′ = y − (t′ − t)

∧ ¬(sns fall ∧ sns rise′)/

−π
2 ≤ y ≤ 3π

2

y′ = y + (t′ − t)

∧ ¬(sns rise ∧ sns fall′)/

−π
2 ≤ y ≤ 3π

2

y < −π
2 ∨ y > 3π

2 /

y′ = yy′ = y

y < −π
2 ∨ y > 3π

2 /trc
6trc

5

trs
5

trc
3

true/y′ = y

trc
7

∧ t = −π
2

true/

x′ = x ∧ t′ = t

true/

x′ = x ∧ t′ = t

x = −π
2

Figure 3: Two concurrent probabilistic hybrid automata sensor and controller.

violation, the controller enters the discrete state ctr error and remains there
forever. It is thus of interest whether the overall system may violate the
safety property, and, if so, to quantify the system error.

The probabilistic behavior of S arises from the fact that the modeled
sensor may overlook an optimum of the sine curve with some probability, say
0.1. In such cases, the controller may not perform a state change from ctr rise

to ctr fall or vice versa. As depicted in Figure 3, this is modeled by the
transition alternatives pc1,2 and pc2,2 of transitions trs

1 and trs
2, respectively.

Each such alternative occurs with probability 0.1 forcing the sensor to visit
one of the fail states sns rise fail and sns fall fail. These fail states are then left
immediately, but the effect is that the controller does not detect the discrete
state change of sensor as desired.

Figure 4 depicts a possible run of S. Initially (a) it starts in the (unique)
initial state ((sns rise, x = −π/2, t = −π/2), (ctr rise, y = −π/2)). The

13

(a) (b) (c) (d) (e) (f) (g) (h)
sns rise 1 1 0 0 0 1 1 0
sns fall 0 0 0 1 1 0 0 1
sns fall fail 0 0 0 0 0 0 0 0
sns rise fail 0 0 1 0 0 0 0 0
x -π

2
π
2

π
2

π
2

3π
2

-π
2

π
2

π
2

(sin(x)) -1 1 1 1 -1 -1 1 1
t -π

2
π
2

π
2

π
2

3π
2

3π
2

5π
2

5π
2

ctr rise 1 1 1 1 1 1 1 0
ctr fall 0 0 0 0 0 0 0 0
ctr error 0 0 0 0 0 0 0 1
y -π

2
π
2

π
2

π
2

3π
2

3π
2

5π
2

5π
2

Figure 4: Sample run of S.

choice (trs
3, tr

c
3), (−,−) (where the probabilistic alternatives are left free due

to uniqueness) leads to state (b) ((sns rise, x = π/2, t = π/2), (ctr rise, y =
π/2)). Now, the guard sin(x) = 1 of trs

1 is true. The only enabled transi-
tion of sensor thus is trs

1. Assume that the sensor fails now which is modeled
by the probabilistic transition alternative pc1,2. The controller consistently
selects transition trc

3 to remain in ctr rise. Under this choice the next sys-
tem state (c) is ((sns rise fail, x = π/2, t = π/2), (ctr rise, y = π/2)), and
immediately thereafter (d) ((sns fall, x = π/2, t = π/2), (ctr rise, y = π/2)).
The sensor now takes transition trs

4 and the controller trc
3, and the system

enters state (e) ((sns fall, x = 3π/2, t = 3π/2), (ctr rise, y = 3π/2)). By the
next choice (trs

2, tr
c
3), (pc2,1,−), a discrete state change in sensor is performed

while setting x to −π/2, and results in state (f) ((sns rise, x = −π/2, t =
3π/2), (ctr rise, y = 3π/2)). Then, both automata perform a self loop in their
current discrete states yielding (g) ((sns rise, x = π/2, t = 5π/2), (ctr rise, y =
5π/2)). Now, the value of variable y has left the safety interval [−π/2, 3π/2],
and selecting transition trc

5 of controller leads to location ctr error. The sensor
selects transition trs

1 and probabilistically the alternative pc1,1. So, the next
state (h) is ((sns fall, x = π/2, t = 5π/2), (ctr error, y = 5π/2)). The length
of this run is 7, and its probability is given by the probabilities of the steps.
There are just 3 steps with a probability lower than 1, namely these with
transition alternatives pc1,2, pc2,1, and pc1,1. Therefore, the probability of
this run is 0.1 · 0.9 · 0.9 = 0.081. 2

14

3.2. Probabilistic bounded reachability

In the sequel, we will be interested in the probability of reaching a set
of target states within a given number of transition steps. In accordance
with the predicative description of the system S, we again define the target
states by a predicate Target over variables in D1, . . . , Dn and R1, . . . , Rn. For
technical reasons, we assume the target states to be sinks of the transition
relation. That is, once the system enters a target state it can remain there
forever. This guarantees that each run of length k reaching the target states
can be extended to a run of length k + ℓ also reaching the target states with
the same probability.

Since the selection of transitions by the concurrent automata Ai involves
non-determinism, a probability measure is well-defined only if considering
a particular policy (scheduler, adversary) that resolves the nondeterminism.
In most applications, we are interested in the maximum probability of reach-
ing the target states achieved if ranging over arbitrary policies that may
resolve nondeterminism using randomization, the history, etc. Such maxi-
mal probabilities are of interest in cases where the non-determinism models
the choices available to a control algorithm and the target states define the
desired goal, such that an optimal controller maximizes the probability of
hitting the target states. Dually, maximum probabilities are also of interest
when the non-determinism represents uncontrollable actions, like those of a
(non-expert) human user of some plant, and the target states represent fatal
system errors.

Due to considering step-bounded probabilities, we can avoid the explicit
introduction of policies, and instead define the maximum probability of reach-
ing some target states defined by a predicate Target within k steps directly
as follows. For a proof that this coincides to the maximum probability of
reaching the target within k steps, with the maximum taken over all possible
schedulers, confer [18]. The proof provided there for the non-concurrent case
does directly generalize to the concurrent case considered here, as the con-
current components engage into globally consistent synchronous transitions
such that the overall system is semantically equivalent to the monolithic PHA
spanned by the Post operation.

Definition 1 (Probabilistic bounded reachability). Given a system of
concurrent discrete-time probabilistic hybrid automata S, a predicate Target
over variables in D1, . . . , Dn and R1, . . . , Rn, a depth k ∈ N, and a state
z ∈ StatesS , the maximum probability of reaching states satisfying Target

15

from z in at most k steps is denoted P k
Target(z). It is defined recursively over

the depth k ∈ N as follows, where s ∈ StatesS ∪ {⊥}.

P k
Target(s) =

1 if s |= Target ,

0 if s 6|= Target and k = 0,

max
tr∈NChoice

∑

pc∈PChoice(tr)

p(tr, pc) · P k−1
Target(Post(s, tr, pc))

if s 6|= Target and k > 0

where ⊥ does not satisfy any T -predicate, i.e. in particular ⊥ 6|= Target.

Let S be a system of concurrent discrete-time probabilistic hybrid automata
and Target be a predicate. Based on probabilistic bounded reachability, we
denote the problem of computing the maximum probability of reaching states
in S satisfying Target from the initial state of S within a given number of
steps as the probabilistic bounded reachability computation (PBRC, for short)
problem. The computation problem can also be stated as a decision problem,
i.e. to determine whether the maximum reachability probability lies below
or above a given probability threshold θ ∈ [0, 1]. This decision problem is
called probabilistic bounded model checking (PBMC, for short).

4. Reducing PBRC to SSMT

Probabilistic bounded reachability computation (PBRC) of a single prob-
abilistic hybrid automaton can be reduced to stochastic satisfiability modulo
theories (SSMT), as observed in [12], thus yielding a symbolic procedure for
solving probabilistic bounded model checking (PBMC) problems. In this pa-
per, we further extend this symbolic technique to systems of concurrent prob-
abilistic hybrid automata. In contrast to explicit-state approaches (which
many approaches in the realm of hybrid systems belong to with respect to
the discrete state space), the predicative nature of the translation scheme
to SSMT avoids the explicit construction of the product automaton, which
grows exponentially in the number of parallel components.

As in the original paper [12], our construction proceeds in two phases:
First, we generate the matrix of the SSMT formula. This matrix is an SMT
formula encoding all non-deadlocked runs of system S of the given length
k ∈ N. The exclusion of deadlocked runs simplifies the matrix and is justified

16

transition relation:non−deterministic choices:

initial state:

probabilistic choices:

0.50.5

0.8 0.2

s

(

(s ∧ tr = t1 ∧ pc1 = p1
1) ⇒ (s′ ∧ x′ = 0)

)

∧

(

(s ∧ tr = t1 ∧ pc1 = p1
2) ⇒ (s′ ∧ x′ = 2x)

)

∧

(

(s ∧ tr = t2 ∧ pc2 = p2
1) ⇒ (s′ ∧ x′ = x

2
)
)

∧

(

(s ∧ tr = t2 ∧ pc2 = p2
2) ⇒ (s′ ∧ x′ = x + 1)

)

∃tr ∈ {t1, t2}

R

[p1
1
→0.5,p1

2
→0.5]pc1

s ∧ x = 0

R

[p2
1
→0.2,p2

2
→0.8]pc2 t

r
u
et2

t1

t
r
u
e

p2
2 p2

1

x
′
=

x2
x
′
=

2x

p1
1 p1

2

x
′
=

0
x
′
=

x
+

1

x = 0

Figure 5: Example of the SSMT encoding scheme.

by the fact that such runs have no contribution to the probability of reaching
the target states due to ⊥ 6|= Target . Thereafter, we add the quantifier
prefix, which encodes the non-deterministic and the probabilistic choices of
the concurrent automata, whereby non-deterministic choices yield existential
quantifiers and probabilistic choices reduce to randomized quantifiers.

Before formally presenting the details of this encoding scheme in Sec-
tion 4.2, we introduce the intuition by means of an example in Section 4.1.

4.1. Introductory example of the encoding

We illustrate the SSMT encoding of probabilistic hybrid automata by the
simple example shown in Figure 5. For the sake of simplicity, the probabilis-
tic automaton consists of only one location s and of one continuous variable
x (initialized to zero). To perform a transition step, the automaton may non-
deterministically select either transition t1 or t2 since both transition guards
are trivially satisfied. As the definition of probabilistic bounded reachabil-
ity (Definition 1) calls for maximizing the probability of reaching the target
states, we need to select a transition for each step that maximizes the reach-
ability probability. To do so, we encode the non-deterministic selection of
transitions by existential quantification. In the example, we introduce an
existentially quantified variable tr with a domain that consists of both tran-
sitions t1 and t2, i.e. ∃tr ∈ {t1, t2}. Transition selection is then followed by

17

a probabilistic choice of transition alternatives. When taking transition t1,
one of alternatives p1

1 and p1
2 are executed with equal probability 0.5. In

case t2 was selected, alternative p2
1 is performed with probability 0.2 and p2

2

with probability 0.8. This probabilistic selection of transition alternatives is
mapped to randomized quantification. In the example, we introduce two ran-
domized variables pc1 for the probabilistic choice after transition t1, and pc2

for t2, i.e.

R

[p1
1
→0.5,p1

2
→0.5]pc1 and

R

[p2
1
→0.2,p2

2
→0.8]pc2. By these quantified vari-

ables, we have described the non-deterministic choice of a transition and the
probabilistic choice of a transition alternative for one step in the automaton.

In the following, we symbolically encode all system runs of bounded
length. Each run starts in the initial system state. The initial state in
the example is given by the predicate Init(s, x) := s ∧ x = 0, where s is a
Boolean variable that is set to true if and only if the automaton is in location
s. Thus, the satisfying valuation of Init(s, x) represents the initial state of
the automaton. In order to symbolically encode all systems runs, we have to
symbolically describe all possible transition steps in the automaton, i.e. the
relation between the pre- and post-state for all transitions and their transi-
tion alternatives. If the automaton is in location s, transition t1 is selected
non-deterministically, and alternative p1

1 probabilistically, then the automa-
ton re-enters location s and sets variable x to zero. This is described by the
predicate (s ∧ tr = t1 ∧ pc1 = p1

1) ⇒ (s′ ∧ x′ = 0). The primed variables s′

and x′ represent the values of variables s and x after the transition step. The
encodings for the remaining transition steps are shown in Figure 5. Conjoin-
ing the encodings for all transition steps by a logical conjunction, we obtain
the transition relation predicate Trans(s, x, s′, x′) that encodes all possible
system steps from state (s, x) to state (s′, x′). Thus, the assembled predicate
Reach(k) :=

Init(s0, x0) ∧ Trans(s0, x0, s1, x1) ∧ . . . ∧ Trans(sk−1, xk−1, sk, xk)

represents all system runs of length k. That is, each satisfying valuation of
the predicate Reach(k) encodes a run of the given probabilistic automaton.
As the goal of the paper is probabilistic state reachability, we furthermore
need to add a predicate that specifies the target states. Let us be interested
in reaching states for which the value of variable x exceeds 100. Then, the
target states predicate is given by Target(s, x) := x > 100. In reachability
analysis, we are then just interested in all system runs that reach the target

18

states. Thus, the conjunction

Reach(k) ∧ (Target(s0, x0) ∨ . . . ∨ Target(sk, xk))

filters out these runs.
To take into account the alternation of non-deterministic selections of

transitions and probabilistic choices of transition alternatives, we need to
add the quantifier prefix

∃tr1 ∈ {t1, t2}

R

[p1
1
→0.5,p1

2
→0.5]pc1,1

R

[p2
1
→0.2,p2

2
→0.8]pc1,2

. . .
∃trk ∈ {t1, t2}

R

[p1
1
→0.5,p1

2
→0.5]pck,1

R

[p2
1
→0.2,p2

2
→0.8]pck,2

to the predicate above yielding an SSMT formula Φ(k). Note that the prefix
contains k copies of the quantified variables to represent all possible combi-
nations of transitions and transition alternatives for k steps.

By the construction of the overall SSMT formula Φ(k), it follows an
important observation (that will be stated by Proposition 1 in the next Sec-
tion 4.2): the probability of satisfaction of Φ(k), i.e. Pr(Φ(k)), coincides
with the maximum probability of reaching the target states within k transi-
tion steps, i.e. Pr(Φ(k)) = P k

Target(init) where init is the initial state of the
system.

To clarify the basic idea of the symbolic SSMT encoding, we have just
illustrated the translation scheme by a single probabilistic automaton. Based
on this translation scheme, we can now provide a compact intuition for the
SSMT encoding of parallel automata before presenting the formalized ap-
proach in the next subsection.

When considering a system of concurrently running probabilistic hybrid
automata, we separately construct the predicates Reach(k) for each automa-
ton. The conjunction of these predicates then describes the runs of all single
automata that are consistent among each other. Again adding k copies of the
target states predicate, just system runs reaching the target states are left.
For the construction of the quantifier prefix, we need to pay attention to the
order of the quantified variables. Before each transition step, all automata
non-deterministically select local transitions synchronously. After having es-
tablished consensus on a global transition, each automaton probabilistically
selects one of the available alternatives. In the quantifier prefix, for each un-
winding depth, we thus first compile the existential variables of all automata

19

and thereafter the randomized ones representing the probabilistic alterna-
tives. The quantifier prefix for k unwindings of the transition system is then
composed by concatenating these quantifier prefixes in the same manner as
was presented above for the single automaton.

4.2. Formalized encoding scheme

In the sequel, let S = {A1, . . . ,An} be a system of concurrent discrete-
time probabilistic hybrid automata using the definitions from Section 3.1,
and Target be a predicate over variables in D1, . . . , Dn and R1, . . . , Rn. Fur-
thermore, let k ∈ N be the bound on the length of the system runs.

Phase 1: Constructing the matrix. We start by constructing the matrix
BMC S,Target(k) of the resulting SSMT formula. The predicate BMC S,Target(k)
encodes all runs of S of length k that reach some states satisfying Target .
More formally, it will be defined by the predicates INIT S(0),

∧k

i=1 TRANSS(i−

1, i), and
∨k

j=0 TARGET (j) representing the initial state of S, the state
changes by taking a transition from depth i− 1 to i, and the target states at
depth j, respectively.

1. For each discrete variable di ∈ Di of automaton Ai for 1 ≤ i ≤ n, we
take k + 1 integer variables [di]j for 0 ≤ j ≤ k, each with range range(di).
A valuation of the variables [di

1]j, . . . , [d
i
ki

]j represents the discrete state of
automaton Ai at depth j.

2. For each continuous state component xi ∈ Ri of Ai for 1 ≤ i ≤ n, we take
k + 1 real-valued variables [xi]j for 0 ≤ j ≤ k, each with range range(xi).
The value of [xi]j encodes the value of xi at depth j.

3. For representing transitions of Ai, for 1 ≤ i ≤ n, we take k variables [Tri]j
with domain Tri, for 1 ≤ j ≤ k. The value of [Tri]j encodes the transition
selection of Ai at step j.

4. For representing the probabilistic transition alternatives in PCtri for each
transition in tri ∈ Tri of Ai, for 1 ≤ i ≤ n, we take k variables [pctri]j with
domain PCtri , for 1 ≤ j ≤ k. The value of [pctri]j encodes the transition
alternative for transition tri of Ai at step j. The value of such a variable
[pctri]j will be irrelevant if the associated transition tri is not selected in step
j, i.e. if [Tri]j 6= tri.

5. The initial state of system S is encoded by the predicate

INIT S(0) :=
n
∧

i=0

init i[[d
1
1]0, . . . , [x

n
mn

]0/d
1
1, . . . , x

n
mn

]

20

where in init i each variable v is substituted by its representative [v]0 at
depth 0.

6. The synchronization conditions of local transitions, i.e. validity of the
generalized transition guards, for all automata Ai at each step 1 ≤ j ≤ k are
enforced through the constraint system

n
∧

i=1

∧

tr∈Tri

(

[Tri]j = tr ⇒
g(tr)[[d1

1
]j−1, [d

1

1
]j . . . , [xn

mn

]j−1, [x
n
mn

]j/
d1

1
, (d1

1
)′ . . . , xn

mn

, (xn
mn

)′]

)

,

where in g(tr) each undecorated variable v is substituted by its representative
[v]j−1 at depth j−1, and each primed variable v′ is replaced by [v]j for depth
j.

7. Likewise, assignments at step 1 ≤ j ≤ k triggered by transition alterna-
tives are dealt with by

n
∧

i=1

∧

tr∈Tri

∧

pc∈PCtr

(

[Tri]j = tr ∧ [pctr]j = pc ⇒
asgn(tr, pc)[[d1

1
]j−1, [d

1

1
]j , . . . , [x

n
mn

]j−1, [x
n
mn

]j/
d1

1
, (d1

1
)′ . . . , xn

mn

, (xn
mn

)′]

)

.

The conjunction of formulae 6 and 7 yields the predicate TRANSS(j − 1, j)
encoding a system step from depth j−1 to j. Observe that with this predica-
tive encoding, an infeasible choice of transitions and transition alternatives
(e.g. due to inconsistent assignment predicates) that would lead to the dis-
tinguished state ⊥ in the semantics immediately causes unsatisfiability of the
formula TRANSS(j−1, j). That is, system runs reaching the deadlock state
⊥ do not satisfy the matrix generated by our translation scheme and are thus
excluded. Considering reachability of Target states, this handling is correct
as runs entering ⊥ will never reach any target state and, vice versa, states
reaching Target will never become deadlocked due to both ⊥ and Target
being sinks.

8. The next predicate denotes the target states for any of the steps depth
0 ≤ j ≤ k.

TARGET (j) := Target [[d1
1]j, . . . , [x

n
mn

]j/d
1
1, . . . , x

n
mn

]

Predicate TARGET (j) is satisfied iff a target state is reached in step j.

9. It remains to compile the matrix BMC S,Target(k) of the SSMT formula.

BMC S,Target(k) := INIT S(0) ∧
k
∧

j=1

TRANSS(j − 1, j) ∧

(

k
∨

j=0

TARGET (j)

)

21

Satisfying valuations of the quantifier-free formula BMC S,Target(k) are in one-
to-one correspondence to the runs of the system S of length k that reach
states satisfying the Target predicate.

Please note that we required all target states to be sinks of the transition
relation in the sense that a stuttering step of probability 1 is enabled in each
target state. If this is not the case then the above scheme should be replaced
by

BMC ′

S,Target(k) := INIT S(0) ∧
k
∧

j=1

(

TARGET (j − 1) ∨
TRANSS(j − 1, j)

)

∧ TARGET (k)

in order to ensure that the matrix does not impose further constraints on the
tail of a run once a target state has been reached.

Phase 2: Constructing the prefix. To construct the prefix of the SSMT for-
mula PBRC S,Target(k), we need to encode the non-deterministic selection of
transitions by all concurrent automata followed by the probabilistic choice of
transition alternatives. Since we aim at maximizing the probability of reach-
ing the target states, the non-determinism is resolved by existential quantifi-
cation, while the probabilistic choices are mapped to randomized quantifiers.

10. Before step j, 1 ≤ j ≤ k, can be executed, each automaton Ai non-
deterministically selects a transition. This is encoded by existential quantifi-
cation of the transition variables introduced in reduction step 3.

NCHOICES(j) := ∃[Tr1]j ∈ Tr1 . . . ∃[Trn]j ∈ Trn

11. Non-deterministic choice is followed by a probabilistic choice of a tran-
sition alternative for each automaton Ai before step j, 1 ≤ j ≤ k. This is
reflected by randomized quantification of the variables introduced by reduc-
tion step 4.

PCHOICES(i, j) :=

R

pd
tri

1

[pctri
1
]j ∈ PCtri

1
. . .

R

pd
tri

ℓi

[pctri
ℓi

]j ∈ PCtri
ℓi

where the probability distributions pdtri
q

are defined as pdtri
q
(v) = p(tri

q)(v)
if and only if v ∈ PCtri

q
.

12. The combined quantifier sequence for a single computation step j, 1 ≤
j ≤ k, is given by the existential quantifiers followed by the randomized ones.

CHOICES(j) := NCHOICES(j) PCHOICES(1, j) . . . PCHOICES(n, j)

22

13. Finally, we construct the SSMT formula by concatenating the quan-
tifier prefixes of the different computation steps in their natural sequence,
representing the fact that the policy may draw decisions for later compu-
tation steps based on the outcomes of earlier ones, and adding the matrix
representing runs of the system.

PBRC S,Target(k) := CHOICES(1) . . . CHOICES(k) : BMC S,Target(k)

Given the structural similarity between probabilistic bounded reachability
and quantification in SSMT, this reduction is exact in the following sense.

Proposition 1 (Correctness of reduction). Given any system S and any
depth k ∈ N, the equality Pr(PBRC S,Target(k)) = P k

Target(initS) holds, where
initS ∈ StatesS is the unique initial state of S. That is, the satisfaction prob-
ability of the symbolic encoding PBRC S,Target(k) coincides with the maximum
probability of reaching a state in Target within k steps.

5. The SSMT-based probabilistic bounded model checker SiSAT

In this section, we describe the SSMT solver SiSAT which was first pub-
lished in [13]. In Section 5.1, we elaborate on the input language of the tool
for modeling systems of concurrent probabilistic hybrid automata. There-
after, we explain the algorithmic core of the tool and its optimizations in Sec-
tion 5.2. Finally, we propose a novel algorithmic enhancement in the context
of probabilistic bounded reachability computation, where the SiSAT tool is
repeatedly called on PBRC S,Target(k) formulae with increasing depth k (Sec-
tion 5.3). The main idea is to save satisfying assignments of PBRC S,Target(k)
in order to reuse that information when solving PBRC S,Target(k

′) formulae
with k′ > k.

5.1. Modeling language

An encoding of a system of concurrent probabilistic hybrid automata – as
formally introduced in Section 4 – in SiSAT requires, first, the declaration of
variables to be used in the predicates3, and the definition of the pattern of the
quantifier prefix DISTR to encode non-deterministic and probabilistic choices

3An explicit declaration is necessary as SiSAT supports a many-sorted logics without
imposing a naming convention on variables.

23

for each system step as by CHOICES(j). In order to describe the predicates
INIT S(0), TRANSS(j − 1, j), and TARGET (k), SiSAT then provides the
formula sections INIT, TRANS, and TARGET. Thus, a SiSAT input file consists
of five sections:

1. The DECL section contains the declarations of all variables to be used
in the individual predicates, where the types supported by SiSAT are
range-bounded float, range-bounded int, and boole. Examples are
the declaration float [0, 1000] x of a real-valued variable or boole
jump of a Boolean variable. The section furthermore may contain con-
stant declarations, like define f = 2.0.

2. The INIT section states a list of formulae comprising arbitrary Boolean
combinations of arithmetic and propositional constraints. The conjunc-
tion of these formulae defines the set of possible initial states, as in x

= 0.6; !jump;.

3. The DISTR section permits defining a pattern for the quantifier prefix
to be unravelled during bounded model checking. This is done by
stating quantifiers for unprimed variables, writing E. x {1,2}: for
∃x ∈ {1, 2}, A. y {1,2}: for ∀y ∈ {1, 2}, and R. z p = [1 -> 0.8,

2 -> 0.2]: for the randomized quantification

R

[1→0.8,2→0.2]z ∈ {1, 2}.

4. In the TRANS section, which defines the transition relation of the sys-
tem, variables may occur in both primed and unprimed form. An
unprimed variable name denotes the value of the variable in the cur-
rent step while a primed variable represents the value of that variable
in the successor step, i.e. after the transition has taken place. For ex-
ample, jump’ <-> !jump; jump -> f * x’ = x; !jump -> x’ = x

+ 2; defines, among others, jump to be alternating.

5. The TARGET formula, finally, characterizes the set of states that shall be
attempted to be reached, i.e. for which SiSAT shall check reachability,
e.g. x > 3.5;.

Given these five parts, the SiSAT tool automatically constructs and solves the
probabilistic bounded reachability formula PBRC S,Target(k) for some depth
k. Moreover, the PBRC procedure works iteratively, i.e. it successively solves
the unwindings of depths s, s+1, . . ., where the start depth s and – if desired –
the final depth can be specified by input parameters.

24

5.2. Algorithmic core

Algorithmically, the SiSAT tool builds on the iSAT algorithm [6] for
solving the satisfiability problem of (quantifier-free) Boolean combinations
of non-linear arithmetic constraints over the reals and integers. The iSAT
approach tightly integrates modern propositional satisfiability (SAT) tech-
niques (for an in-depth overview of SAT solving confer [27]), which are used
to traverse the Boolean structure, with interval constraint propagation (for a
comprehensive survey confer [28]) for reasoning about the non-linear arith-
metics. Due to general undecidability of the problem and due to the use of
interval constraint propagation, which is a highly incomplete deduction cal-
culus, iSAT cannot decide the satisfiability of all input formulae in general.
However in such undecided cases, iSAT always returns a consistent inter-
val valuation of small volume4 which can be considered as an approximate
solution. The soundness properties are that unsatisfiability results are al-
ways reliable, i.e. a constraint system is unsatisfiable whenever iSAT claims
it to be so, yet satisfiability results are approximate in the sense that they
prove availability of a valuation which either satisfies all constraints or vio-
lates any arithmetic (in-)equality by at most a tiny, user-definable margin.
In the sequel, we will call any constraint solver featuring this property an
almost-decision procedure with definable tolerance.

Basically, SiSAT adds an additional layer for quantifier handling to iSAT
which traverses the Cartesian product of the domains of the quantified vari-
ables in lexicographic order and computes the satisfaction probabilities for
the individual quantifiers, as depicted in Figure 1. Upon each complete
assignment to the quantified variables, iSAT is called to almost-decide the
satisfiability of the corresponding quantifier-free subproblem. However, that
naive approach is far from scalable as it has to solve one SMT problem per
element of the Cartesian product of the quantifier ranges, which is exponen-
tial in the number of quantified variables. To overcome that problem, we
have added aggressive pruning rules that save visits to major parts of the
quantifier ranges based on semantic inferences (for details confer [13]). Such
pruning exploits the conflict clauses generated by iSAT through its conflict-
driven clause learning, as these record inconsistent value assignments which
need not be probed again when traversing the set of possible assignments

4The maximum width of each interval occurring in that consistent interval valuation
can be specified by setting an input parameter of iSAT.

25

to quantified variables. Dually, solution-directed backjumping hits when a
satisfying assignment has been found: Upon satisfying assignments, SiSAT
analyzes which quantified variables have no impact on the solution and saves
probing their alternative values by directly assigning the same satisfaction
probability to them. Thresholding exploits the fact that the PBMC problem
does not ask for computing the exact satisfaction probability, but rather for
deciding whether the probability of satisfaction exceeds or misses certain up-
per or lower target thresholds. When branching through the different value
assignments permitted by a quantifier, it suffices to check whether the upper
threshold is exceeded by the already processed branches or whether the lower
threshold can no longer be reached by all remaining branches, abandoning
the whole quantifier if one of these checks succeeds.

In the following, we explain some recent algorithmic features that are
adapted from stochastic propositional satisfiability (SSAT) (an overview of
SSAT algorithms and optimizations is given in [29]). Purification as a mech-
anism to prune the quantifier tree, as already considered for SSAT is adapted
to the SSMT setting as follows. Assume that the remaining undecided
clauses5 of the formula are monotonic (or antitonic) in a (quantified) variable
x in the sense that if x = v satisfies some undecided clauses then so does
x = v′ for each v′ > v (for each v′ < v, resp.). For an existential or universal
quantifier binding x, it then suffices to investigate only one of the possible
values for x: for an existentially quantified x, we probe the largest possible
value in case of monotonicity and the smallest in case of antitonicity, and vice
versa for a universal one. Purification is in general impossible for randomized
variables, since all branches give some contribution. Detecting monotonicity
is hard as soon as arithmetic constraints are involved. The current version of
SiSAT recognizes monotonicity for a variable x if each undecided arithmetic
constraint containing x is either inside a satisfied clause or is a simple bound
like x ≥ 3 or x ≤ 6, with all bounds outside satisfied clauses sharing the
same polarity.

The efficiency of quantifier traversal heavily depends on the value or-
dering decision heuristics, i.e. the order in which possible assignments are
probed, as some values trigger earlier or more aggressive pruning. SiSAT
employs a dynamic decision heuristic based on value activities, where values

5The matrix of the SSMT formula is assumed here to be in conjunctive normal form

(CNF), i.e. a conjunction of disjunctions of constraints.

26

with highest activities are preferred for branching. Whenever a satisfaction
probability p for a branch x = v is computed, the activity actv of value v is
updated as follows: If variable x is existential or randomized then actv is in-
cremented by p, i.e. the higher probability the higher activity. For universal
variables, actv is incremented by the complementary probability (1− p), i.e.
the smaller probability the higher activity since universal quantifiers mini-
mize probabilities.

The idea of probability learning (aka. memoization [30]) is to store prob-
abilities for quantifier subtrees, or rather subformulae, in order to reuse that
information in future search. Whenever SiSAT needs to solve the same sub-
formula again, the corresponding stored satisfaction probability can be re-
trieved immediately without solving the subproblem again.

5.3. PBRC-related algorithmic tool enhancement

Let be given a system S of concurrent probabilistic hybrid automata and
some predicate Target defining the system states to be reached, both encoded
in the SiSAT modeling language (Section 5.1). Calling SiSAT on this input
with start depth s ≥ 0, the tool iteratively computes the satisfaction prob-
abilities6 of the SSMT formulae PBRC S,Target(s),PBRC S,Target(s + 1), . . .,
until some specified target threshold θ ∈ [0, 1] is exceeded by the computed
probability or the final depth is reached. In Section 3.2, we have required
each Target state to be a sink, i.e. once the system enters a target state it
remains there forever. By this assumption, we observe the following simple
but important property.

Property 2. Each system run r of length k satisfying some predicate Target
can be extended to a system run r · r′ of length k + k′ also satisfying Target.
Moreover, the probabilities of both runs r and r · r′ are the same.

From Property 1 of a system S of concurrent probabilistic hybrid automata
as introduced in Section 3, namely that the post-state of some state in S is

6In general, SiSAT cannot compute the exact probability of satisfaction due to undecid-
ability of the arithmetic theory underlying the constraint language. As the incorporated
arithmetic constraint solver iSAT is an almost-decision procedure, satisfaction probabili-
ties can, however, at most be over-estimated, which provides safe approximations of the
risk of reaching an undesirable state. Furthermore, the amount of over-estimation will
generally be very small, if existent at all, due to the extremely small tolerances permitted
for approximate solutions in the almost-decision procedure.

27

unambiguously defined by the non-deterministic transition and probabilistic
transition alternative choices of the automata Ai, it follows that each run r
of S is unambiguously defined by the (unique) initial state and all choices in
r. We denote the sequence of transitions and transition alternatives choices
((tr1, pc1), . . . , (trk, pck)) of run r by Choice(r). The above observations facil-
itate the PBRC-related algorithmic tool enhancement of storing and reusing
system runs satisfying Target for later calls of SiSAT, which we refer to as
solution caching.

When solving an SSMT formula PBRC S,Target(k) and given that SiSAT
has found a run r which satisfies Target , then – as mentioned above – r is un-
ambiguously defined by all its non-deterministic and probabilistic choices. By
the reduction to SSMT (cf. Section 4), these transition and transition alter-
native choices were mapped to variables bound by existential and randomized
quantifiers, respectively, in the SSMT formula PBRC S,Target(k). Therefore,
the satisfying assignment of PBRC S,Target(k) corresponding to run r just
depends on the valuation vr of the quantified variables. Moreover, by Prop-
erty 2 we conclude that for each formula PBRC S,Target(k + k′) with k′ ≥ 0
the valuation vr determines a run r ·r′ that satisfies Target . In order to avoid
recomputing the same satisfying valuations vr in SSMT formulae of greater
depths k + k′, SiSAT stores all such satisfying valuations vr in a tree-like
data-structure spanned by the values of the quantified variables. Whenever
a stored valuation vr is visited when solving larger SSMT formulae, SiSAT
immediately deduces satisfaction probability 1 for the current quantifier sub-
tree without exploring the remaining quantifiers in the prefix.

An optimization of solution caching that we have implemented allows to
compress stored valuations vr in size. The idea is as follows: whenever for a
given run prefix r all possible extensions lead to a target state, r itself can be
considered as inevitably leading to the target states as well. For runs stored in
the solution cache of the form r · ((tr1, pc1), s1), . . . , r · ((trm, pcm), sm) with
states s1, . . . , sm ∈ StatesS satisfying Target and (tr1, pc1), . . . , (trm, pcm)
being all possible transition and transition alternative choices, we may thus
safely conclude that already the common prefix r is a run for which only
extensions exist that will finally satisfy Target . Under the already named
assumptions that Target is a sink and the adversary is always trying to
drive the system to Target , all longer runs starting with this prefix r and
all valuations representing these runs, will thus satisfy Target . By solving
the PBRC S,Target(k) formulae iteratively for increasing depth k, marking r
as satisfying Target itself is thus a correct simplification. Let nr be the last

28

object

transport unit

inputs
ex

ec
ut

io
n

outputs

PLC

P
LC

−
IO

network

SA SB

Figure 6: A networked automation system from [31].

node in the tree-like data-structure for run r (i.e. node nr represents the last
quantified variable in the valuation vr). Then, the data-structure is updated
by removing all successor nodes of node nr, i.e. by removing the choices
(tr1, pc1), . . . , (trm, pcm). Multiple applications of this optimization lead to
very compact representations of the solution set found so far, and facilitates
earlier pruning of the quantifier tree due to the presence of shorter runs. In
Section 6.5, we will evaluate the practical significance of solution caching on
a benchmark.

6. Application to a networked automation system

In this section, we illustrate the quantitative analysis approach using the
SiSAT tool. As a case study, we take the networked automation system (NAS)
studied in [31]. After a detailed description of the NAS application in Sec-
tion 6.1, we present the formal model as a system of concurrent probabilistic
hybrid automata in Section 6.2, and exemplify the encoding of the system
into the SSMT framework in Section 6.3. The last two subsections then deal
with the automatic analysis of the model using SiSAT: in Section 6.4, we give
results concerning the probabilistic behavior of the NAS model, whereas Sec-
tion 6.5 evaluates the optimization of solution caching recently incorporated
into SiSAT.

6.1. Description of the case study

A schematic overview of the networked automation system (NAS) studied
in [31] is depicted in Figure 6. As a typical NAS, it involves networked control

29

by programmable logic controllers (PLCs) connected to several sensors and
actuators via wired and wireless networks. Its objective is to transport a
workpiece from its initial position to the drilling position by means of a
transportation unit which controls the speed of the conveyor belt on which
the object is transported. The PLC can set the deceleration of the belt
via network messages to the transportation unit, but cannot determine the
position of the object unless it hits two sensors SA and SB close to the
drilling position. The sensors are connected to the IO card of the PLC
over the network. When the object reaches sensor SA, the PLC reacts with
sending a command to the transportation unit that forces it to decelerate to
slow speed. Likewise, the transportation unit is asked to decelerate to stand-
still when the PLC notices that SB has been reached. The goal is that the
object halts close to the drilling position despite the uncontrollable latencies
in the communication network. The parameters of the system are adopted
from [31] as far as indicated. Thus, one length unit (lu) is 0.01 mm, and one
time step (ts) is 1 ms. The positions of SA and SB are 699 lu and 470 lu,
respectively, while the desired drilling position is at 0 lu. The initial speed of
the object is 24 lu/ts and the slow speed is 4 lu/ts; the decelerations for the
two types of speed changes at SA and SB are 2 and 4 lu/ts2, respectively. The
network routing time is determined stochastically, needing 1 ts for delivery
with probability 0.9 and 2 ts with probability 0.1. The cycle time of the PLC-
IO card is 10 ts, and of the PLC is 7 ts. The minimum sampling interval is
1 ts. Due to the initial speed of 24 lu/ts, the initial position of the object
is thus equally distributed over 24 neighboring values. In our setting, the
initial position ranges between 999 and 976 lu. In this case study, no other
disturbances or delays are assumed. We remark that the case study features
probabilistic choices only, i.e. it lacks non-determinism.

6.2. Model of the case study

The NAS case study modeled as a system of 10 concurrent probabilistic
hybrid automata is depicted in Figures 7, 8, and 9. In order to get an intuition
of the rather large model and the interaction between the single automata,
we intuitively explain the basic ideas of each automaton in Section 6.2.1, and
exemplify the interconnections in the model by means of a sample system
run in Section 6.2.2.

30

obj preA obj betwAB obj postB

true/
dt = min(⌈sobj⌉, ⌈stu⌉, snetsA , snetsB , snetDECA

,
snetDECB

, sio in, sio out, splc)
∧ t′ = t + dt

t = 0

transportation unit

object

tu decA

tu slowspeedtu decB

tu stop

netDECB compl/
∧ẋ′ = ẋ
∧ẍ′ = 4

∧0 = ẋ − (n′
tu − t) · 4
∧stu = 0

t ≥ ntu/
∧ẋ′ = 0
∧ẍ′ = 0

∧n′
tu = Tmax

∧stu = 0

true/
ẋ′ = 0

∧ẍ′ = 0
∧n′

tu = Tmax

∧stu = 0

t < ntu/
ẋ′ = max(ẋ − dt · ẍ, 0)

∧ẍ′ = ẍ
∧n′

tu = ntu

∧stu = ntu − t

¬netDECA compl
∧¬netDECB compl/

ẋ′ = ẋ
∧ẍ′ = ẍ

∧n′
tu = ntu

∧stu = Smax

¬netDECB compl
∧t ≥ ntu/
ẋ′ = ẋ
∧ẍ′ = 0
∧n′

tu = Tmax

∧stu = 0

∧¬netDECB compl/
ẋ′ = ẋ
∧ẍ′ = ẍ
∧n′

tu = Tmax

∧stu = Smax

netDECA compl ∧¬netDECB compl/
ẋ′ = ẋ ∧ẍ′ = 2 ∧4 = ẋ − (n′

tu − t) · 2 ∧stu = 0

ẋ = 24 ∧ ẍ = 0 ∧ ntu = Tmax

netDECB compl/
∧ẋ′ = ẋ ∧ẍ′ = 4

∧0 = ẋ − (n′
tu − t) · 4 ∧stu = 0

¬netDECB compl
∧t < ntu/
ẋ′ = max(ẋ − dt · ẍ, 4)
∧ẍ′ = ẍ
∧n′

tu = ntu

∧stu = ntu − t

netDECB compl/
∧ẋ′ = ẋ
∧ẍ′ = 4
∧0 = ẋ − (n′

tu − t) · 4
∧stu = 0

tu init

time progress scheduler

1
24

1
24

/ x = 1000 − 24 ∧ ⋆

⋆ ≡XsA = x − (nobj − t) · ẋ + 1
2
· (nobj − t)2 · ẍ

t < nobj/
x′ = x − dt · ẋ + 1

2
· dt2 · ẍ

∧n′
obj = nobj ∧ sobj = nobj − t ∧ ¬rsA ∧ ¬rsB

t ≥ nobj/
x′ = x ∧ XsB = x − (n′

obj − t) · ẋ + 1
2
· (n′

obj − t)2 · ẍ
∧sobj = 0 ∧ rsA ∧ ¬rsB

/ x = 1000 − 1 ∧ ⋆
true/
x′ = x
∧n′

obj = Tmax

∧sobj = 0
∧rsA

∧rsB

t ≥ nobj/
x′ = x ∧ n′

obj = Tmax ∧ sobj = 0 ∧ rsA ∧ rsB

t < nobj/
x′ = x − dt · ẋ + 1

2
· dt2 · ẍ

∧n′
obj = nobj ∧ sobj = nobj − t ∧ rsA ∧ ¬rsB

Figure 7: First part of the networked automation system. The first two automata in this
figure represent the behavior of the object that is transported and the transportation unit
which controls the speed of the belt. The third automaton selects the duration of the
current time step dt and performs time progress.

31

0.1

0.9

network transmission of deceleration signal A

nnetDECA
= Tmax

netDECA init
iosDECA

′

/n′
netDECA

= t + 1
∧snetDECA

= 0

/n′
netDECA

= t + 2
∧snetDECA

= 0

netDECA send

t ≥ nnetDECA
/

n′
netDEC

= Tmax

∧snetDECA
= 0

t < nnetDECA
/

n′
netDECA

= nnetDECA

∧snetDECA
= nnetDECA

− t

netDECA compl

true/
n′

netDECA
= Tmax

∧snetDECA
= Smax

¬iosDECA
′/

n′
netDECA

= Tmax

∧snetDECA
= Smax

0.1

0.9

0.1

0.9

nnetsB = Tmax

¬rsB/
n′

netsB
= Tmax

∧snetsB = Smax

∧stablenetsB

netsB init
rsB

/n′
netsB

= t + 1
∧snetsB = 0

∧¬stablenetsB

/n′
netsB

= t + 2
∧snetsB = 0

∧¬stablenetsB

netsB send

t ≥ nnetsB/
n′

netsB
= Tmax

∧snetsB = 0 ∧¬stablenetsB

t < nnetsB/
n′

netsB
= nnetsB

∧snetsB = nnetsB − t
∧stablenetsB

netsB compl

true/
n′

netsB
= Tmax

∧snetsB = Smax

∧stablenetsB

network transmission of sensor B

netsA init netsA send netsA compl

t ≥ nnetsA/
n′

netsA
= Tmax

∧snetsA = 0 ∧¬stablenetsA
nnetsA = Tmax

/n′
netsA

= t + 1
∧snetsA = 0

∧¬stablenetsA

/n′
netsA

= t + 2
∧snetsA = 0

∧¬stablenetsA

0.1

0.9

true/
n′

netsA
= Tmax

∧snetsA = Smax

∧stablenetsA

rsA

t < nnetsA/
n′

netsA
= nnetsA

∧snetsA = nnetsA − t
∧stablenetsA

¬rsA/
n′

netsA
= Tmax

∧snetsA = Smax

∧stablenetsA

network transmission of sensor A

nnetDECB
= Tmax

¬iosDECB
′/

n′
netDECB

= Tmax

∧snetDECB
= Smax

/n′
netDECB

= t + 1
∧snetDECB

= 0

iosDECB
′

/n′
netDECB

= t + 2
∧snetDECB

= 0

netDECB init netDECB send

t ≥ nnetDECB
/

n′
netDEC

= Tmax

∧snetDECB
= 0

netDECB compl

t < nnetDECB
/

n′
netDECB

= nnetDECB

∧snetDECB
= nnetDECB

− t

true/
n′

netDECB
= Tmax

∧snetDECB
= Smax

network transmission of deceleration signal B

Figure 8: Second part of the NAS. The automata represent the network transmissions
(first and second sensor and deceleration signals from the IO card to the transportation
unit).

32

plc compDECB

t < nplc/
n′

plc = nplc

∧splc = nplc − t
∧(plcDECA

′ ⇔ plcDECA)
∧(plcDECB

′ ⇔ plcDECB)
∧(stableplc ⇔ splc > 0)

1
10

/nio in = t + 0

/nio in = t + 9

PLC IO input

1
10

(t < nio in

∨¬stablenetsA ∨¬stablenetsB)/
n′

io in = nio in

∧sio in = nio in − t
∧(io insA ready′ ⇔ io insA ready)
∧(io insB ready′ ⇔ io insB ready)
∧(stableio in ⇔ (sio in > 0))

t ≥ nio in

∧stablenetsA ∧stablenetsB/
n′

io in = t + 10
∧sio in = 0
∧(io insA ready′ ⇔ netsA compl)
∧(io insB ready′ ⇔ netsB compl)
∧(stableio in ⇔ (sio in > 0))

PLC IO output
(t < nio out

∨¬stableplc)/
n′

io out = nio out

∧sio out = nio out − t
∧(iosDECA

′ ⇔ iosDECA)
∧(iosDECB

′ ⇔ iosDECB)

(t ≥ nio out

∧stableplc)/
n′

io out = t + 10
∧sio out = 0
∧(iosDECA

′ ⇔ plcDECA
′)

∧(iosDECB
′ ⇔ plcDECB

′)

/nio out = nio in

PLC

plc init

plcDECA finished

plcDECB finished

plc compDECA

t ≥ nplc

∧stableio in

∧io insB ready′/
n′

plc = t + 7
∧splc = 0

∧(plcDECA
′ ⇔ plcDECA)

∧(plcDECB
′ ⇔ plcDECB)
∧¬stableplc

∧t ≥ nplc

∧stableio in

∧io insB ready′/
n′

plc = t + 7
∧splc = 0

∧(plcDECA
′ ⇔ plcDECA)

∧(plcDECB
′ ⇔ plcDECB)

∧¬stableplc

t ≥ nplc/
n′

plc = Tmax

∧splc = 0
∧(plcDECA

′ ⇔ plcDECA)
∧plcDECB

′

∧¬stableplc

true/
n′

plc = Tmax

∧splc = Smax

∧(plcDECA
′ ⇔ plcDECA)

∧(plcDECB
′ ⇔ plcDECB)

∧stableplc

1
7

1
7

/nplc = t + 6

/nplc = t + 0

(t < nplc

∨¬stableio in)/
n′

plc = nplc

∧splc = nplc − t
∧(plcDECA

′ ⇔ plcDECA)
∧(plcDECB

′ ⇔ plcDECB)
∧(stableplc ⇔ splc > 0)

t ≥ nplc

∧stableio in

∧¬io insA ready′

∧¬io insB ready′/
n′

plc = t + 7
∧splc = 0

∧(plcDECA
′ ⇔ plcDECA)

∧(plcDECB
′ ⇔ plcDECB)
∧¬stableplc

t ≥ nplc

∧stableio in

∧io insA ready′

∧¬io insB ready′/
n′

plc = t + 7
∧splc = 0

∧(plcDECA
′ ⇔ plcDECA)

∧(plcDECB
′ ⇔ plcDECB)

∧¬stableplc

t ≥ nplc

∧stableio in

∧¬io insB ready′/
n′

plc = t + 7
∧splc = 0
∧(plcDECA

′ ⇔ plcDECA)
∧(plcDECB

′ ⇔ plcDECB)
∧¬stableplc

(t < nplc

∨¬stableio in)/
n′

plc = nplc

∧splc = nplc − t
∧(plcDECA

′ ⇔ plcDECA)
∧(plcDECB

′ ⇔ plcDECB)
∧(stableplc ⇔ splc > 0)

t ≥ nplc

∧stableio in

∧¬io insB ready′/
n′

plc = t + 7
∧splc = 0
∧plcDECA

′

∧(plcDECB
′ ⇔ plcDECB)

∧¬stableplc

(t < nplc

∨¬stableio in)/
n′

plc = nplc

∧splc = nplc − t
∧(plcDECA

′ ⇔ plcDECA)
∧(plcDECB

′ ⇔ plcDECB)
∧(stableplc ⇔ splc > 0)

t ≥ nplc

∧stableio in

∧io insB ready′/
n′

plc = t + 7
∧splc = 0
∧plcDECA

′

∧(plcDECB
′ ⇔ plcDECB)

∧¬stableplc

Figure 9: Third part of the NAS. The upper two automata represent the input-output parts
of the PLC IO card. The lower part contains the automaton that models the behavior of
the PLC which decides when to send deceleration signals depending on received messages
from the sensors.

33

6.2.1. Explanation of the model

The global time variable t and the step duration variable dt are governed
by the automaton time progress scheduler from Figure 7. The duration of a
transition step of the overall system is given by the minimum value of the
maximum step duration variables s of each automaton. The maximum step
durations are local to the automata: For instance, sobj is the maximum step
duration variable of automaton object from Figure 7.

The automaton object models the workpiece to be transported on the con-
veyer belt to the drilling position at 0 lu. The automaton updates the position
of the object, represented by variable x, depending on the step duration dt,
the current velocity ẋ, and the current deceleration ẍ. The velocity ẋ and the
deceleration ẍ are just consumed by object as they are computed by automa-
ton transportation unit. Furthermore, object locally determines its maximum
step duration sobj as well as the time point nobj of its next event. Initially,
e.g., the next event of object is reaching sensor SA. Thus, nobj is the non-
negative value satisfying the equation XsA = x−(nobj−t)·ẋ+ 1

2
·(nobj−t)2 ·ẍ,

where XsA is the fixed position of sensor SA and all other variables are as-
signed by their initial values. The automaton consists of the three locations
obj preA, obj betwAB, and obj postB meaning that the workpiece has not
yet reached sensor SA, is in between SA and SB, and passed sensor SB,
respectively. Reaching sensors SA and SB are indicated by setting the cor-
responding Boolean variables rsA and rsB to true. These variables are used
for the communication with the automata modeling the network. The initial
location is obj preA and the initial position is uniformly distributed over the
values 999 to 976, the latter fact is modeled by 24 incoming probabilistic tran-
sition alternatives. The automaton object switches to location obj betwAB
in case the global time t becomes greater than the time of the next event nobj,
i.e. sensor SA was reached. A similar transition to final location obj postB
is taken for passing sensor SB.

The automaton transportation unit is responsible for computing the cur-
rent velocity ẋ. It furthermore sets the current deceleration ẍ by scanning
the current locations of the automata network transmission of deceleration sig-

nal A and network transmission of deceleration signal B. Whenever, one of the
latter automata has reached its location netDECA compl or netDECB compl,
it switches to the corresponding location tu decA or tu decB and setting the
deceleration ẍ to 2 or 4 lu/ts2, respectively. In case the signal to deceler-
ate to 4 lu/ts2 has not yet been transmitted by the network but the slow

34

speed of 4 lu/ts is reached, the automaton enters location tu slowspeed and
temporarily stops braking by setting the deceleration to zero. When switch-
ing to location tu decB, in which braking is performed with 4 lu/ts2, the
next event n′

tu is determined as the time the velocity ẋ will become zero,
i.e. the workpiece will be stopped. This can be computed by the equation
0 = ẋ − (n′

tu − t) · 4 for a fixed velocity ẋ at time point t. Once the object
comes to a standstill, detected by global time t is greater than or equal to
the time of the standstill ntu, transportation unit enters final location tu stop.

The network of the system is modeled by four automata. The compo-
nents network transmission of sensor A and network transmission of sensor B

are responsible for the transmission of the sensor signals to the IO card of
the programmable logic controller. To do so, they first sample the signals
rsA and rsB that indicate reaching sensors SA and SB, respectively, by rising
edges. If a rising edge occurs, the automata switch to their sending locations
netsA send and netsB send. As specified in Section 6.1, the network routing
time is determined stochastically, namely 1 ts with probability 0.9 and 2 ts
with probability 0.1. This fact is modeled by two corresponding probabilis-
tic transition alternatives which set the time of the next event n′

netsA
(resp.

n′
netsB

) to the current time t plus 1 or plus 2. If this next event is reached
then the automata go to their final locations netsA compl and netsB compl.
We remark here that the Boolean variables stablenetsA and stablenetsB indi-
cate location switches in case they are set to false. Such location switches
are of duration 0. (Observe that for a location switch the maximum step
duration variable is set to 0.) Thus, several location switches may occur at
the same physical time t. In order to not overlook any transmitted signal of
the network, the model of the PLC IO card samples its inputs at time t not
before both network automata have performed potential location switches
at time t, i.e. not before both stablenetsA and stablenetsB are true. The au-
tomata network transmission of deceleration signal A and network transmission

of deceleration signal B are responsible for forwarding the new decelerations
to transportation unit, and work very similar to the previous ones. Reaching
a final location immediately triggers a location switch in transportation unit

as mentioned above.
The IO card of the PLC is divided into two components, where PLC IO

input transmits the signals from the network to the PLC, and PLC IO output

delivers the new deceleration values from the PLC to the network. Each
automaton consists of only one location and two transitions, one of which
is taken every 10 time steps when the corresponding signals are sampled.

35

Sampling points are detected by comparing the current time t with the time
of the next event. The meaning of the Boolean variables stablenetsA and
stablenetsB was discussed above. The same idea holds for variable stableplc

that indicates a location switch in PLC. Two important parameters of the
overall system are the initial phase shifts of the cycles of the PLC and PLC

IO. A pragmatic, yet idealized, way to handle these phase shifts, e.g., is to
synchronize the initial cycles of both the PLC and PLC IO. However, we
will see in Section 6.4 that these phase shifts have a fundamental and non-
negligible impact on the overall system behavior. To model each possible
situation of the initial phase shifts, we randomly reduce the first cycle times
of the PLC and PLC IO, where each random choice has equal probability. This
yields seven possible initial cycle times for the PLC and ten for the PLC IO,
respectively, which is modeled by initial probabilistic transition alternatives
(cf. Figure 9).

Finally, the automaton PLC computes the decelerations of the object
depending on the signals from sensors SA and SB. Initially, PLC resides in
location plc init and polls every 7 time steps for new inputs. A new input is
detected by accessing the Boolean variables io insA ready’ and io insB ready’
that are set to true by the PLC IO input if signals from SA and SB were
sampled, respectively. In case only io insA ready’ is true the PLC enters
location plc compDECA for computing the deceleration for sensor SA. When
the computation is finished after 7 time steps, this is indicated by leaving
the location and setting the Boolean variable plc′DECA to true. If variable
io insB ready’ is not yet true then location plcDECA finished is visited in order
to wait for this signal. If the PLC is in location plc init, plc compDECA, or
plcDECA finished and io insB ready’ is true, the automaton goes directly to
location plc compDECB to compute the deceleration for sensor SB. That is,
in case both signals from SA and SB arrive at the same time, the signal from
SB is prioritized. After deceleration for SB was calculated the PLC enters its
final location plcDECB finished.

6.2.2. Sample system run of the model

We exemplify the behavior of the model by means of a sample system
run depicted in Figure 10. Each automaton is in its initial location, and
the initial object position was probabilistically determined to be 976. Af-
ter 12 ts, the object reaches sensor SA causing automaton object to enter
location obj betwAB. By this discrete state change the Boolean variable rsA

(meaning that SA is reached) is set to true, which triggers a synchronization

36

obj betwAB

obj sA reached

obj next event now

time

time

time

time

time

time

time

time

time

time

time

time

obj preA

obj postB

obj sB reached

0 10 20 30 40 50

1000
800
600
400
200

0
0 10 20 30 40 50

tu decA

tu decB
tu stop

tu slowspeed

tu init

0 10 20 30 40 50

tu next event now

tu speed

(slowspeed) 4

24

0 10 20 30 40 50

tu dec 4

2

0

0 10 20 30 40 50

50403020100

net sA init

net sA compl

net sA stable
net sA next event now

net sA send

net sB stable

net sB compl

net sB init

0 10 20 30 40 50

net DECA init

net DECA compl

0 10 20 30 40 50

50

50

5040

40

403020100

0 10 3020

20 30100

net DECB init

net DECB compl

io in sA ready

io in next event now

io out next event now

plc init

plc comp DECB

plc DECB finished

plc send DECB

plc stable

0 10 20 30 40 50

net sB send

net sB next event now

net DECA send

net DECA next event now

net DECB send

net DECB next event now

io in sB ready

io in stable

io out send DECA
io out send DECB

plc comp DECA

plc DECA finished

plc send DECA

plc next event now

obj pos

Figure 10: Sample run of the system model.

37

with automaton network transmission of sensor A. The latter proceeds to loca-
tion netsA send, thereby probabilistically setting the network routing time to
1 ts. Thus, after 1 ts the network transmission of sensor A leaves the sending
location and enters netsA compl indicating that the signal was successfully
transmitted to the PLC-IO card at time point 13. The next cycle time of
PLC IO input is at time point 19, i.e. at t = 19 the signal from sensor SA
is provided for the PLC. The PLC processes this signal in its cycle from 20
to 27, and PLC IO output starts to send the new deceleration of 2 lu/ts2 at
time point 29 over the network. The network routing time for sending this
packet, i.e. the time automaton network transmission of deceleration signal A

resides in location netDECA send, is probabilistically determined to be 2 ts.
Therefore, at time point 31 the transportation unit enters location tu decA
and sets the value of the deceleration to 2 lu/ts2. The speed of the object
is now decreasing accordingly until the slow speed of 4 lu/ts is reached at
t = 41. The transportation unit then enters location tu slowspeed to keep
the speed constant, i.e. the deceleration is set to 0. It is kept at this value
until sensor B provides a signal, resulting in setting the deceleration to the
respective value of 4 lu/ts2 at time point 51. Consequently, the object comes
to a standstill at time point 52 with its final position 50 lu.

6.3. SSMT encoding of the case study

To enable the automatic analysis with the probabilistic bounded model
checker SiSAT, we need to encode the NAS model presented in Section 6.2
into the SiSAT modeling language stated in Section 5.1. To do so, we employ
the translation scheme introduced in Section 4. As an example of the result
of this translation, the SSMT encoding of automaton network transmission of

sensor A is depicted in Figure 11.
We would like to remark here again that this SSMT encoding facilitates

a linearly sized system description. An explicit construction of the product
automaton for this NAS model would result in more than 24 million discrete
states, since the discrete state space is spanned by 6075 locations and 12
Boolean variables (i.e. 212 = 4096 valuations) used for synchronization.

6.4. Analysis of the case study

As mentioned in Section 6.1, the aim of the NAS application is that the
workpiece stops very close to the drilling position. To quantitatively assess
the analysis goal, we proceed in two phases, where all experiments were

38

1 DECL -- Declaration of observable system

2 -- variables.

3 -- Global system time.

4 float [0, MAX_TIME] time;

5 ...

6 -- Network sA.

7 -- Locations.

8 boole net_sA_init;

9 boole net_sA_send;

10 boole net_sA_compl;

11 -- Variable to fix next event.

12 float [0, MAX_TIME] net_sA_next_event;

13 -- Variable to set duration of transition step.

14 float [-1, MAX_TIME_STEP] net_sA_step;

15 -- Indicating whether an event happens now.

16 boole net_sA_next_event_now ;

17 -- Indicating that network is in stable state.

18 boole net_sA_stable;

19 ...

20 INIT -- Initial condition block.

21 -- Time variable initialized to 0.

22 time = 0;

23 ...

24 -- Network sA.

25 -- Initial location is net_sA_init.

26 net_sA_init;

27 !net_sA_send;

28 !net_sA_compl;

29 -- Next event is not known so far.

30 net_sA_next_event = MAX_TIME;

31 ...

32 DISTR -- Declaration of variables bound by

33 -- quantifiers.

34 ...

35 -- Randomized quantification of a variable ,

36 -- encoding network routing time.

37 R. net_sA_delay p = [

38 1 -> 0.9,

39 2 -> 0.1

40]:

41 ...

42 TRANS -- Transition relation (pre -post states).

43 ...

44 -- Network sA.

45 -- Exactly in one location after next

46 -- transition.

47 net_sA_init ’ + net_sA_send ’ +

48 net_sA_compl ’ = 1;

49 -- Do we have an event now?

50 net_sA_next_event_now <->

51 (time >= net_sA_next_event);

52 -- Network is stable if its step is

53 -- not 0, i.e. no location change.

54 net_sA_stable <-> (net_sA_step > 0);

55 -- Remain in net_sA_init.

56 (net_sA_init

57 and !obj_sA_reached)

58 -> (net_sA_init ’

59 and net_sA_next_event ’ = MAX_TIME

60 and net_sA_step = MAX_TIME_STEP);

61

62 -- Go to net_sA_send.

63 (net_sA_init

64 and obj_sA_reached)

65 -> (net_sA_send ’

66 and net_sA_next_event ’ = time +

67 net_sA_delay

68 and net_sA_step = 0);

69

70 -- Remain in net_sA_send.

71 (net_sA_send

72 and !net_sA_next_event_now)

73 -> (net_sA_send ’

74 and net_sA_next_event ’ =

75 net_sA_next_event

76 and net_sA_step =

77 net_sA_next_event - time);

78

79 -- Go to net_sA_compl.

80 (net_sA_send

81 and net_sA_next_event_now)

82 -> (net_sA_compl ’

83 and net_sA_next_event ’ = MAX_TIME

84 and net_sA_step = 0);

85

86 -- Remain in net_sA_compl.

87 net_sA_compl

88 -> (net_sA_compl ’

89 and net_sA_next_event ’ = MAX_TIME

90 and net_sA_step = MAX_TIME_STEP);

91 ...

92 TARGET -- Target states.

93 ...

Figure 11: The automaton network transmission of sensor A described in the SiSAT mod-
eling language.

39

performed on a 2.4 GHz AMD Opteron machine with 128 GByte physical
memory running Linux.

In the first phase, we determine the PBRC unwinding depth k such that
the workpiece has stopped in all system runs of length k. The workpiece stops
in run r if and only if the run r reaches location tu stop in the automaton
transportation unit. Taking the system description in the SiSAT modeling
language from Section 6.3 with tu stop as the target states, we call the SiSAT
tool in order to successively solve the corresponding probabilistic bounded
reachability formulae PBRC S,Target(0),PBRC S,Target(1), . . . ,PBRC S,Target(k)
until the PBMC problem Pr(PBRC S,Target(k)) = 1 is decided to be true,
where the latter fact means that all system runs (of length k) have reached
location tu stop, i.e. the object has been stopped on all paths. SiSAT found
out that the desired property holds for unwinding depth k = 44 with a total
runtime of 134 min.

Then, in the second phase we are able to compute the probability of stop-
ping within some target region. This can be done by using the Target for-
mula L >= obj pos and obj pos >= R with constants L and R defining the
region. Assume that the target region of interest is given by L = 100 and R =
0 (i.e. stopping with 100 lu and 0 lu). Calling SiSAT on the PBRC S,Target(44)
formula with the corresponding target states, the tool computes the hit prob-
ability ≈ 0.397345 for this region within 71 min. Oftentimes, an engineer
is just interested in whether the probability is below or above some given
threshold θ. In such cases, the computation problem can be restated as a
PBMC decision problem, and runtimes improve due to pruning by threshold-
ing (cf. Section 5.2): The resulting computation times are 11 min CPU time
for deciding wrt. threshold θ = 0.05, 20 min for θ = 0.1, 13 min for θ = 0.9,
and 11 min for θ = 0.95.

As mentioned in Section 6.2, the initial phase shifts of the cycles of the
PLC and PLC IO automata play an important role for the distribution of the
final object position. Although this is not the intended use case of SiSAT, we
are able to calculate the distribution of the final position by solving a set of
formulae PBRC S,Target(44) with target states L > obj pos and obj pos >=

L-1; for L = 300, . . . ,−300. For each such formula we get the probability
of stopping within a target region of length 1, from which we can obtain the
distribution. In Figure 12, four possible scenarios with fixed initial PLC and
PLC IO phase shifts are depicted. From the case where the first cycles of
the PLC and of the PLC IO are at time point 2, one may wrongly conclude
that the model works as desired since the workpiece always stops in a very

40

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

-300-200-1000100200300

distribution (PLC: 2 IO: 2)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

-300-200-1000100200300

distribution (PLC: 2, IO: 3)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

-300-200-1000100200300

distribution (PLC: 5, IO: 1)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

-300-200-1000100200300

distribution (PLC: 6, IO: 3)

Figure 12: Different distributions of the final position for fixed initial phase shifts of the
cycles of the PLC and PLC IO automata. The final object position is given on the x-axis
and the probability of reaching a position within a 1 length unit strip from that position
is given on the y-axis. The x-axis is reversed to reflect the movement of the object from
positive to negative values of obj pos.

small region around the drilling position. However, if the PLC and PLC IO

phase shifts are 6 and 3, respectively, there is a large region around position
0 in which the object does never halt. Thus, to get an authentic picture
about the distribution of the final position, one has to incorporate the initial
phase shifts in a realistic way. Since there are no semantic conditions on
the PLC and its IO card, like periodic resets or other synchronizations, we
realistically assume that any combination of the phase shifts may arise when
the object enters. In the model, the possible initial phase shifts are therefore
uniformly distributed, as explained in Section 6.2. For this more authentic
NAS model, we have obtained the distribution of the final object position
shown in Figure 13 and roughly resembling like a normal distribution.

The CPU times for computing the distributions are 342 min for phase
shifts 2 (PLC) and 2 (PLC IO), 449 min for 2 (PLC) and 3 (PLC IO), 303 min
for 5 (PLC) and 1 (PLC IO), and 412 min for 6 (PLC) and 3 (PLC IO).
For the distribution where the initial phase shifts are uniformly distributed,

41

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

-300-200-1000100200300

distribution

obj pos

probability

Figure 13: Distribution of the final position: probability for obj pos to reach a position
(stripes of 1 lu width were set as target and the probability of satisfaction to reach that
target calculated).

the runtime is much higher due to the enormous growth of the probabilistic
system behavior: the computation needs almost 32 days7.

As mentioned above, computing such distributions is (so far) not the in-
tended use case of SiSAT. Rather, SiSAT is designed for efficiently answering
queries of the form “does the workpiece stop in a given vicinity of the tar-
get with a probability exceeding a given target value?” When deciding such
decision problems, the pruning rules apply, giving tremendous speed-ups.

6.5. Empirical results of solution caching

In Section 5.3, we proposed the PBRC/PBMC-related enhancement of so-
lution caching, which memorizes solutions in a tree-like data-structure when
solving the formulae PBRC S,Target(k) in order to reuse these solutions when
solving larger formulae PBRC S,Target(k+k′). We empirically evaluate this al-
gorithmic optimization on the NAS model from the first phase in Section 6.4,
i.e. with reachability target location tu stop, for depths 0 to 70. We investi-
gate four settings of the solver: 1) default, 2) with solution caching, 3) with
a threshold of 1, 4) with both solution caching and a threshold of 1. The

7Due to the possibility of running multiple SiSAT calls in parallel, the distribution was
actually calculated in roughly a day on two 16 core machines.

42

a)

default settings
with solution caching

with thresholding
solution caching, thresholding

706050403020100
0

5000

10000

15000

20000

25000

30000

BMC depth

found
solutions

b)

default settings

with thresholding
with solution caching

solution caching, thresholding

706050403020100
0.01

0.1

1

10

100

1000

10000

100000
runtime [s]

BMC depth

c)

default settings

with thresholding
with solution caching

solution caching, thresholding

706050403020100
0.01

0.1

1

10

100

1000

10000

100000

1e+06
runtime [s]

BMC depth

Figure 14: a) Number of solutions found in each BMC unwinding depth. b) Runtimes for
solving each unwinding depth. c) Cumulative runtimes for solving the unwinding depths
up to the current depth. All graphs refer to the target of reaching tu stop which is satisfied
for all system runs in BMC depth 44 (and thus also in all subsequent unwindings).

43

results for all these settings are shown in Figure 14. Recall that at unwind-
ing depth 44 all system runs reach tu stop, resulting in probability 1 for the
PBRC problem of this (and larger) depth(s).

The first observation is that solving with thresholding enabled clearly
outperforms its counterparts on the first 40 unwindings. This is due to the
fact that upon identifying some system runs not reaching the target states,
thresholding can start to prune quantifiers. This fact is documented by the
number of solutions found in Figure 14 a). However, from unwinding depth
40 onward, the runtimes of the thresholding-enabled solvers grow heavily
since more and more runs reach the target states.

The second and most important observation proves the benefit of solu-
tion caching. The additional overhead of maintaining the data-structure for
caching solutions does not result in runtime penalty: both solver settings
with solution caching never show a worse performance than the correspond-
ing settings without solution caching. In particular, this also holds for the
first unwindings for which no solutions were found. In total, the solution
caching enabled solver was two times faster than the default setting, on un-
winding depth 44, even a speed-up factor of 31 was obtained. As shown
in Figure 14 b), each PBRC formula of depth greater 44 is solved by the
solution caching solvers in fractions of a second. The reason is that by mem-
orization from the run of depth 44, SiSAT is enabled to immediately deduce
satisfaction probability 1 for the whole formula without probing any variable
assignment (cf. Figure 14 a)).

Summarizing the findings above, we may conclude that solution caching
is a powerful mechanism for accelerating the proof search of the SiSAT tool
for probabilistic bounded reachability problems. An important advantage is
that solution caching applies always and does not depend on user-specified
parameters like thresholds.

7. Conclusion

In this paper, we proposed a symbolic technique for the bounded reacha-
bility analysis of concurrent probabilistic hybrid systems using the probabilis-
tic bounded model checker SiSAT. We established a linearly sized predicative
encoding of such concurrent probabilistic systems, alleviating the state ex-
plosion arising from explicit construction of the product automaton, and thus
enhancing the scalability of the automated analysis procedure. We proved the

44

concept of this approach by an application to a realistic networked automa-
tion system. We furthermore introduced a novel algorithmic enhancement to
SSMT solving in the context of probabilistic bounded reachability analysis,
namely solution caching. The idea of this optimization is to store solutions
when solving probabilistic bounded reachability formulae and then to reuse
that information for formulae of greater unwinding depths. We empirically
showed that solution caching can yield significant performance gains.

In future work, we will follow diverse research directions. One essential
item is to further improve performance of the SiSAT tool in order to effi-
ciently handle large-scale real-world applications. As for solution caching, a
promissing issue is to exploit system-dependent properties to speed-up the
proof search of the SSMT solver. Another idea is suggested by trends in
hardware design towards multi-core and multiprocessor systems, namely the
development of parallelized SSMT algorithms. In recent work in the related
area of parallel solving of quantified Boolean formula (QBF) problems8, some-
times super-linear speed-ups were obtained due to knowledge sharing between
the parallel solving processes [32]. In parallel SSMT solving, various forms of
knowledge sharing based on the algorithmic enhancements from Sections 5.2
and 5.3 are conceivable.

Within the analysis of the NAS case study we applied a naive approach
to calculate distributions of the final object position. As already mentioned,
this is so far not the intended use case of SiSAT. However, enhancing the
SiSAT tool to more efficiently generate such distributions without solving
a large set of single SSMT formulae would be a nice feature, in particular
if non-determinism is present. Equally relevant for a convenient analysis
process is the generation of optimal control strategies to reach the desired goal
states, or dually the generation of counter-examples that lead to fatal system
errors. In the probabilistic setting such strategies or counter-examples are in
general not just assignments but assignment trees. Actually, SiSAT already
constructs such assignment trees implicitly when traversing the quantifier
tree. The main challenge here is to develop suitable data-structures that are
capable of handling and manipulating such assignment trees of potentially
huge size.

Another research direction goes beyond computing pure reachability prob-
abilities. Since several industrial applications ask for more expressive quanti-

8QBF allows existential and universal quantification.

45

tative measures like expected values, we will focus our future work on various
expected values, among them mean-times to failure in probabilistic hybrid
systems.

Acknowledgements. We would like to express our gratitude to our colleagues
in the Transregional Research Center “AVACS” (Automatic Verification and
Analysis of Complex Systems) for many valuable discussions on the various
topics presented herein and for jointly developing and implementing the iSAT
algorithm. Additionally, we would like to thank Jürgen Greifeneder and
Georg Frey for supplying detailed information on the original model of the
case study and the anonymous reviewers for their advice on how to enhance
readability of the article.

References

[1] J. F. Groote, J. W. C. Koorn, S. F. M. van Vlijmen, The Safety Guar-
anteeing System at Station Hoorn-Kersenboogerd, in: Conference on
Computer Assurance, National Institute of Standards and Technology,
1995, pp. 57–68.

[2] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu, Symbolic model checking
without BDDs, in: R. Cleaveland (Ed.), TACAS, Vol. 1579 of Lecture
Notes in Computer Science, Springer, 1999, pp. 193–207.

[3] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, P. van Rossum,
S. Schulz, R. Sebastiani, The MathSAT 3 system, in: Conf. on Au-
tomated Deduction, Vol. 3632 of Lecture Notes in Computer Science,
Springer Verlag, 2005, pp. 315–321.

[4] B. Dutertre, L. de Moura, A Fast Linear-Arithmetic Solver for
DPLL(T), in: Proceedings of the 18th Computer-Aided Verification
Conference, Vol. 4144 of Lecture Notes in Computer Science, Springer-
Verlag, 2006, pp. 81–94.

[5] A. Bauer, M. Pister, M. Tautschnig, Tool-support for the analysis of
hybrid systems and models, in: DATE ’07: Proceedings of the Confer-
ence on Design, Automation and Test in Europe, EDA Consortium, San
Jose, CA, USA, 2007, pp. 924–929.

46

[6] M. Fränzle, C. Herde, T. Teige, S. Ratschan, T. Schubert, Efficient
Solving of Large Non-linear Arithmetic Constraint Systems with Com-
plex Boolean Structure, Journal on Satisfiability, Boolean Modeling and
Computation – Special Issue on SAT/CP Integration 1 (2007) 209–236.

[7] G. Audemard, M. Bozzano, A. Cimatti, R. Sebastiani, Verifying indus-
trial hybrid systems with mathsat, Electr. Notes Theor. Comput. Sci.
119 (2) (2005) 17–32.

[8] M. Fränzle, C. Herde, HySAT: An efficient proof engine for bounded
model checking of hybrid systems, Formal Methods in System Design
30 (2007) 179–198.

[9] E. Ábrahám, B. Becker, F. Klaedke, M. Steffen, Optimizing bounded
model checking for linear hybrid systems, in: Proceedings of VMCAI’05
(Verification, Model Checking, and Abstraction), Vol. 3385 of Lecture
Notes in Computer Science, Springer-Verlag, Paris, 2005, pp. 396–412,
an extended version of this paper appeared as ATR 4.

[10] E. Ábrahám, T. Schubert, B. Becker, M. Fränzle, C. Herde, Parallel SAT
solving in bounded model checking, Journal of Logic and Computation,
doi:10.1093/logcom/exp002.
URL http://dx.doi.org/10.1093/logcom/exp002

[11] A. Eggers, M. Fränzle, C. Herde, SAT modulo ODE: A direct SAT
approach to hybrid systems, in: S. S. Cha, J.-Y. Choi, M. Kim,
I. Lee, M. Viswanathan (Eds.), Proceedings of the 6th International
Symposium on Automated Technology for Verification and Analysis
(ATVA’08), Vol. 5311 of Lecture Notes in Computer Science, Springer,
2008, pp. 171–185.

[12] M. Fränzle, H. Hermanns, T. Teige, Stochastic Satisfiability Modulo
Theory: A Novel Technique for the Analysis of Probabilistic Hybrid
Systems, in: M. Egerstedt, B. Mishra (Eds.), Proceedings of the 11th
International Conference on Hybrid Systems: Computation and Control
(HSCC’08), Vol. 4981 of LNCS, Springer, 2008, pp. 172–186.

[13] T. Teige, M. Fränzle, Stochastic Satisfiability modulo Theories for Non-
linear Arithmetic, in: L. Perron, M. A. Trick (Eds.), Integration of
AI and OR Techniques in Constraint Programming for Combinatorial

47

Optimization Problems, 5th International Conference, CPAIOR 2008,
Vol. 5015 of LNCS, Springer, 2008, pp. 248–262.

[14] C. H. Papadimitriou, Games against nature, J. Comput. Syst. Sci. 31 (2)
(1985) 288–301.

[15] M. L. Littman, S. M. Majercik, T. Pitassi, Stochastic Boolean Satisfia-
bility, Journal of Automated Reasoning 27 (3) (2001) 251–296.

[16] S. Majercik, Nonchronological backtracking in stochastic Boolean satis-
fiability, in: Tools with Artificial Intelligence, 2004. ICTAI 2004. 16th
IEEE International Conference on, IEEE Computer Society, 2004, pp.
498–507. doi:10.1109/ICTAI.2004.94.

[17] S. M. Majercik, APPSSAT: Approximate probabilistic planning using
stochastic satisfiability, Int. J. Approx. Reasoning 45 (2) (2007) 402–419.

[18] M. Fränzle, T. Teige, A. Eggers, Engineering Constraint Solvers for
Automatic Analysis of Probabilistic Hybrid Automata, The Journal of
Logic and Algebraic Programming, to appear 2010.

[19] J. Sproston, Model checking of probabilistic timed and hybrid systems,
Ph.D. thesis, University of Birmingham (2000).

[20] A. Bemporad, S. D. Cairano, Optimal control of discrete hybrid stochas-
tic automata, in: Hybrid Systems: Computation and Control, Vol. 3414
of Lecture Notes in Computer Science, Springer, 2005, pp. 151–167.

[21] M. Davis, Markov Models and Optimization, Chapman & Hall, London,
1993.

[22] L. Arnold, Stochastic Differential Equations: Theory and Applications,
Wiley - Interscience, 1974.

[23] J. Hu, J. Lygeros, S. Sastry, Towards a theory of stochastic hybrid sys-
tems, in: Hybrid Systems: Computation and Control, Vol. 1790 of Lec-
ture Notes in Computer Science, Springer-Verlag, 2000, pp. 160–173.

[24] M. L. Bujorianu, J. Lygeros, Toward a general theory of stochastic hy-
brid systems, in: Stochastic Hybrid Systems: Theory and Safety Critical
Applications, Vol. 337 of Lecture Notes in Control and Information Sci-
ences, Springer-Verlag, 2006, pp. 3–30.

48

[25] C. Barrett, R. Sebastiani, S. A. Seshia, C. Tinelli, Satisfiability modulo
theories, in: Biere et al. [27], Ch. 26, pp. 825–885.

[26] C. A. R. Hoare, Communicating Sequential Processes, Series in Com-
puter Science, Prentice-Hall Intl., 1985.

[27] A. Biere, M. J. H. Heule, H. van Maaren, T. Walsh (Eds.), Handbook
of Satisfiability, Vol. 185 of Frontiers in Artificial Intelligence and Ap-
plications, IOS Press, 2009.

[28] F. Benhamou, L. Granvilliers, Continuous and interval constraints, in:
F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Pro-
gramming, Foundations of Artificial Intelligence, Elsevier, Amsterdam,
2006, Ch. 16, pp. 571–603.

[29] S. M. Majercik, Stochastic Boolean satisfiability, in: Biere et al. [27],
Ch. 27, pp. 887–925.

[30] S. M. Majercik, M. L. Littman, MAXPLAN: A New Approach to Prob-
abilistic Planning, in: Artificial Intelligence Planning Systems, 1998, pp.
86–93.

[31] J. Greifeneder, G. Frey, Probabilistic hybrid automata with variable step
width applied to the analysis of networked automation systems, in: Proc.
3rd IFAC Workshop on Discrete Event System Design (DESDes’06),
IFAC, 2006, pp. 283–288.

[32] M. D. T. Lewis, P. Marin, T. Schubert, M. Narizzano, B. Becker,
E. Giunchiglia, PaQuBE: Distributed QBF solving with advanced
knowledge sharing, in: O. Kullmann (Ed.), SAT, Vol. 5584 of Lecture
Notes in Computer Science, Springer, 2009, pp. 509–523.

49

