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Abstract - In this article, we present an algorithm which is 

capable of transforming a gridded dogleg channel routing 

problem into a constraint programming (CP) problem. The 

transformed CP problem consists of a set of variables and a 

list of constraints; it can be solved by JaCoP, a finite-domain 

constraint programming solver. For a given dogleg channel 

routing problem, our approach is able to minimize the number 

of tracks and the number of vias. Although the transformed 

CP problems cannot be solved in polynomial time, optimal 

results can be found efficiently for small to medium cases. 

Moreover, for large cases, suboptimal results can be 

generated in exchange for significantly reduced execution 

time. As constraint programming technologies advance (e.g., 

parallel constraint programming), the execution time of the 

proposed approach can be improved. Additionally, our 

approach has the potential to be used in dealing with other 

routing problems in VLSI physical design automation. 

Keywords: Dogleg Channel Routing, VLSI Physical Design 

Automation, Constraint Programming 

 

1 Introduction 

Channel routing is a type of problems arising in the 

detailed routing phase of VLSI physical design automation [1] 

as well as in the design of printed circuit boards (PCBs) [2]. 

Although channel routing has not been an active research field 

in recent years, the use of constraint programming 

technologies in solving this type of problems has not been 

completely investigated. Moreover, gaining full understanding 

of these fundamental problems is essential to the research and 

development of other routing algorithms [3]. 

In order to solve a channel routing problem, many routing 

algorithms generate horizontal and/or vertical constraints for 

the problem [4, 5]. For a channel routing problem containing 

cyclic vertical constraints, doglegs are required in order to 

complete the routing [5]. Since dogleg channel routing 

problems are NP-complete [6], many heuristic algorithms 

have been developed and proposed [5, 7, 8]. Unfortunately, 

those heuristic algorithms are not guaranteed to generate 

optimal solutions. 

Instead of developing heuristic routing algorithms, we 

transform a gridded dogleg channel routing problem into a 

constraint programming (CP) problem. The transformed CP 

problem can then be solved optimally by a constraint 

programming solver. As a result, the number of tracks can be 

minimized. With this minimum number of tracks, furthermore, 

the number of vias can also be minimized. 

Constraint programming [9] is a type of declarative 

programming paradigm in that it allows users to specify a 

problem in terms of variables and constraints over those 

variables; a constraint programming solver can then be used 

to find the solution(s) to the specified problem. JaCoP (Java 

Constraint Programming [10]) is an open-source constraint 

programming library which was implemented in Java. The 

JaCoP library contains a number of API functions as well as a 

built-in constraint programming solver. After users specify a 

problem via those API functions, the solver can find the 

solution(s) to the problem (if the problem has at least one 

solution). JaCoP has been used in solving many difficult 

problems (such as optimization problems, scheduling and 

resource assignment problems [11, 12], and problems of 

partitioning parameterized polygons [13]), although the time 

complexity for solving those problems may not be 

polynomial. 

A channel routing problem can be considered as a multi-

objective optimization problem, as we may need to 

simultaneously optimize two or more objectives, such as 

minimizing the number of tracks [7], minimizing the number 

of vias [14], minimizing the crosstalk [15, 16], and 

minimizing the total wire length [17]. Most of heuristic 

routing algorithms only consider one or two of those 

objectives, and adding other objectives may result in redesign 

of those algorithms. Although this article focuses on the 

objectives of minimizing the number of tracks and the number 

of vias, our approach can be further extended to consider 

other objectives (e.g., crosstalk minimization). 

The use of constraint programming technologies in 

solving channel routing problems is not new. In [18], the 

integration of constraint programming and evolution programs 

has been used to solve dogleg-free multilayer channel routing 

problems. In [19], Phillips proposed the adoption of constraint 

logic programming in solving dogleg channel routing 

problems. Our approach differs from the one presented in [19] 

in that our approach requires different (usually simpler) types 

of constraints. In addition, our approach is capable of 

minimizing the number of vias. 

The rest of this paper is organized as follows. In Section 

2, we formulate dogleg channel routing problems that we 



intend to solve. Horizontal and vertical constraints are 

discussed in Sections 3 and 4, respectively. An optional 

function which is capable of minimizing the number of vias is 

presented in Section 5. Our algorithm for solving gridded 

dogleg channel routing problems is described in Section 6. 

Experimental results are presented in Section 7. Finally, 

conclusions are drawn in Section 8. 

2 Problem Formulation 

In a channel routing problem, a channel is a rectangular 

region bounded by two parallel rows (the top row and the 

bottom row). The two parallel rows have terminals and each 

terminal has a number, which represents the name of a net. 

Terminals having the same number must be connected 

together, except that terminals with the number zero require 

no connection. 

In this paper, it is assumed that a channel routing problem 

has only two routing layers, one layer for horizontal wire 

segments and the other for vertical wire segments. Endpoints 

of wire segments must be located within the channel (the 

rectangular region). For the wire segments that reside on 

different layers, in addition, they can be connected by vias. In 

the figures in this paper, vias are denoted by small black 

squares. 

Figure 1 shows an example of a channel routing problem 

and one of its solutions. The problem has six columns and 

each terminal lies at the intersection of a row and a column. 

Moreover, horizontal wire segments, which are used for 

routing purposes, must lie on the tracks. As can be seen in this 

example, the routing solution uses three tracks. The columns, 

rows, and tracks form an array of (virtual) grids. Therefore, 

the channel routing problem shown in Figure 1 is a gridded 

channel routing problem if all the endpoints of (horizontal and 

vertical) wire segments are restricted to lie on the grids. 

In a channel routing problem, since the width of the 

channel is fixed, minimizing the routing area is equivalent to 

minimizing the number of tracks (the height of the channel). 

By introducing doglegs [20] in solving the problem shown in 

Figure 1, it is possible to complete the routing with only two 

tracks, as shown in Figure 2. The use of doglegs in solving 

channel routing problems is a technique of great importance. 

In the cases where cyclic vertical constraints exist [5], doglegs 

must be used in order to complete the routing. 

In our model of a gridded dogleg channel routing 

problem, each net is composed of a number of horizontal and 

vertical wire segments. In addition, these horizontal wire 

segments must be placed between the net’s leftmost column 

and rightmost column. For the channel routing problem given 

in Figure 1, the horizontal span of each net is shown in Figure 

3. Based on the horizontal spans, a number of horizontal wire 

fragments (or smaller horizontal wire segments), as shown in 

Figure 4, can be generated by cutting the horizontal spans into 

pieces. Each of these horizontal wire fragments spans between 

two adjacent columns. In addition, the union of all the 

horizontal wire fragments of one net must cover the total 

horizontal span of the net. The name of each horizontal wire 

fragment is coded as follows (as the example shown in Figure 

4): 

<net name>@<left column no.>_<right column no.> 

In our model of a channel routing problem, each 

horizontal wire fragment is associated with a numerical value; 

the value represents the track on which the wire fragment is 

 

Figure 1. A (gridded) channel routing problem and one of its 

solutions without using doglegs 

 

 

Figure 3. Horizontal span of each net 

 

Figure 2. A solution to the channel routing problem (shown in 

Figure 1) with the use of doglegs 

 

 

Figure 4. Horizontal wire fragments and their representations 

 



located. In our algorithm, moreover, vertical wire segments 

are not cut into fragments; positions of vertical wire segments 

can be decided easily after all the horizontal wire fragments 

have been placed. For instance, the routing result shown in 

Fig . 2 can be represented by the following code: 

[1@2_3=1, 1@3_4=2, 1@4_5=2, 1@5_6=2, 2@1_2=2, 

3@4_5=1, 3@5_6=1] 

3 Horizontal Constraints 

Since two horizontal wire fragments belonging to 

different nets cannot overlap, these two fragments must be 

assigned different track numbers if they belong to the same 

column interval. We can thus use the following inequality to 

specify this type of constraints in a channel routing problem: 

netA@Ci_Ci+1   netB@Ci_Ci+1 

where netA and netB are the names of two different nets, and 

columns Ci and Ci+1 denote two adjacent columns. For the 

example shown in Figure 4, therefore, the following 

horizontal constraints must be generated: 

3@4_5   1@4_5 

3@5_6   1@5_6 

If there are many different horizontal wire fragments between 

columns Ci and Ci+1, generating unequal constraints for all 

pairs of these fragments might be cumbersome. Therefore, the 

JaCoP function Alldifferent(list-of-nets) is used in 

order to reduce the number of constraints. 

4 Vertical Constraints 

In our algorithm, the process of generating vertical 

constraints for a channel routing problem involves looping 

through all the columns from left to right. Also, vertical 

constraints are generated according to different cases at each 

column. 

We define a number of terms before detailing each case 

of generating vertical constraints. When a column (i) is 

encountered, the terminal at the intersection of the top 

(bottom) row and column i is called the upper (lower) 

terminal of column i. Furthermore, if the upper (lower) 

terminal belongs to net A, then net A can be referred to as the 

upper (lower) net of column i. 

4.1 Case 1 

Case 1 of generating vertical constraints arises at a 

column where each of the top and bottom row contains a 

terminal, and the two terminals belong to different nets. As 

the example shown in Figure 5, when column i is encountered, 

horizontal fragments of net A (which are touching column i) 

must be located higher than horizontal fragments of net B 

(which are also touching column i). Otherwise, the two nets (A 

and B) will overlap at the vertical column and result in a short 

circuit. In other words, the following constraints must be 

generated and satisfied: 

A@Ci-1_Ci   B@Ci-1_Ci 

A@Ci-1_Ci   B@Ci_Ci+1 
A@Ci_Ci+1   B@Ci-1_Ci 

A@Ci_Ci+1   B@Ci_Ci+1 

At column i, however, if there is only one horizontal wire 

fragment belonging to the upper net or only one horizontal 

wire fragment belong to the lower net, only the constraints 

that contain valid horizontal wire fragments need to be 

generated. 

For the example shown in Figure 4, when column 2 is 

encountered, the vertical constraint “1@2_3 2@1_2” will 

be generated. Also, the constraint “3@5_6 1@5_6” will be 

generated when column 6 is encountered. 

4.2 Case 2 

In the process of generating vertical constraints, case 2 

occurs when the same upper and lower net can be found at a 

column (i). As the example shown in Figure 6, in order to 

connect terminals of net A, there will be a vertical wire 

segment which directly connects the upper and lower 

terminals of column i. As a result, all other nets (nets E and F 

in this example) passing through column i must not have 

doglegs at the column. In this example, therefore, the 

following constraints need to be generated: 

E@Ci-1_Ci   E@Ci_Ci+1 

F@Ci-1_Ci   F@Ci_Ci+1 

 

 

 

Figure 5. An example illustrating case 1 in the process of 

generating vertical constraints 

 
Figure 6. An example illustrating case 2 in the process of 

generating vertical constraints 

 



Please note that case 1 and case 2 of generating vertical 

constraints are mutually exclusive. 

4.3 Case 3 

Case 3 focuses on generating constraints for the situation 

when the upper or lower net of a column (i) interacts with all 

of other nets passing through the column. Figure 7 illustrates 

an example of this case. At column i, net A is the upper net 

and it is assumed that the horizontal fragment “A@Ci_Ci+1” 

exists. In addition, nets E and F are assumed to be the nets 

passing through column i. Please note that we do not need to 

consider whether the lower net exists or not at the moment. As 

a result, the following two lines of constraints should be 

generated for the example shown in Figure 7: 

 ( ( A@Ci_Ci+1   E@Ci-1_Ci ) AND ( A@Ci_Ci+1   

E@Ci_Ci+1 ) ) OR ( E@Ci-1_Ci   E@Ci_Ci+1 ) 

 ( ( A@Ci_Ci+1   F@Ci-1_Ci ) AND ( A@Ci_Ci+1   

F@Ci_Ci+1 ) ) OR ( F@Ci-1_Ci   F@Ci_Ci+1 ) 

In the above constraints, net E (or F) is allowed to have a 

dogleg at column i only when its two horizontal wire 

fragments are located lower than the horizontal wire fragment 

of net A; otherwise, the dogleg will overlap with the vertical 

wire segment of net A. 

In Figure 7, if net A had both the horizontal fragments to 

the left and to the right of column i, there would be more lines 

of constraints. Also, more lines of constraints would be 

required if there were more nets passing through the column. 

In this case (case 3) of generating vertical constraints, please 

note that similar forms of constraints must be generated if the 

lower net of column i exists. 

4.4 Case 4 

In Figure 6 or 7, net E or F can have a dogleg at column 

i; it is also possible that both of the nets have doglegs at the 

column. Case 4 of generating vertical constraints considers 

these conditions in order to make sure that doglegs do not 

overlap at each column. In other words, for each pair of nets 

passing through a column (and those nets are not the upper or 

lower nets), their doglegs cannot overlap at the column. For 

the example shown in Figure 6 or 7, therefore, the following 

constraints must be generated. 

 IF ( E@Ci-1_Ci   E@Ci_Ci+1 ) THEN ( F@Ci-1_Ci   

F@Ci_Ci+1 ) OR ( F@Ci-1_Ci   E@Ci-1_Ci AND 

F@Ci_Ci+1   E@Ci-1_Ci ) OR ( E@Ci_Ci+1   F@Ci-

1_Ci AND E@Ci_Ci+1   F@Ci_Ci+1 ) 

 IF ( E@Ci_Ci+1   E@Ci-1_Ci ) THEN ( F@Ci-1_Ci   

F@Ci_Ci+1 ) OR ( F@Ci-1_Ci   E@Ci_Ci+1 AND 

F@Ci_Ci+1   E@Ci_Ci+1 ) OR ( E@Ci-1_Ci   F@Ci-

1_Ci AND E@Ci-1_Ci   F@Ci_Ci+1 ) 

 IF ( F@Ci-1_Ci   F@Ci_Ci+1 ) THEN ( E@Ci-1_Ci   

E@Ci_Ci+1 ) OR ( E@Ci-1_Ci   F@Ci-1_Ci AND 

E@Ci_Ci+1   F@Ci-1_Ci ) OR ( F@Ci_Ci+1   E@Ci-

1_Ci AND F@Ci_Ci+1   E@Ci_Ci+1 ) 

 IF ( F@Ci_Ci+1   F@Ci-1_Ci ) THEN ( E@Ci-1_Ci   

E@Ci_Ci+1 ) OR ( E@Ci-1_Ci   F@Ci_Ci+1 AND 

E@Ci_Ci+1   F@Ci_Ci+1 ) OR ( F@Ci-1_Ci   E@Ci-

1_Ci AND F@Ci-1_Ci   E@Ci_Ci+1 ) 

5 Minimizing the Number of Vias 

In VLSI physical design, minimizing the number of vias 

can improve circuit performance and yield. Also, since our 

approach allows the use of doglegs in solving gridded channel 

routing problems, a number of extra vias may be induced in 

final routing results. It is thus desirable to reduce the number 

of vias in our approach. We have implemented the via 

minimization function by using constraint programming; it is 

an optional function and users can turn it on or off. The via 

minimization function is capable of minimizing the number of 

vias without increasing the number of tracks. 

To calculate the number of vias for each net, additional 

variables are used. For a net whose leftmost column is l and 

rightmost column is r, we use a variable for each column 

between l and r to denote the number of vias at the column. 

The following type of variable names is used to represent the 

number of vias at a column: 

<net name>@<column no.> 

For the example shown in Figure 8, net A’s leftmost 

column is 4 and its rightmost column is 9. Variable names 

 

Figure 7. An example illustrating case 3 in the process of 

generating vertical constraints 

 

 

Figure 8. An example illustrating how to calculate the number of 

vias for a net 

 

 



A@4, A@5, …, and A@9 are used to represent the number of 

vias at the corresponding column. Therefore, the total number 

of vias for net A is: 

A@V = A@4 + A@5 + A@6 + A@7 + A@8 + A@9 

where the variable name “A@V” denotes the total number of 

vias for net A. Also, it is trivial that A@4 = 1 and A@9 = 1 

since columns 4 and 9 are the endpoints of net A. 

In Figure 8, the following constraint will be generated by 

our algorithm when column 5 is encountered: 

 IF ( A@4_5   A@5_6 ) THEN ( A@5 = 2 ) ELSE ( 

A@5 = 0 ) 

That is because net A will have two vias at column 5 if there is 

a dogleg at the column. On the contrary, net A will not have 

any via at column 5 if there is no dogleg at the column. With 

this concept, we can generate the following constraints when 

column i is encountered, where i = 6, 7, or 8: 

 IF ( A@Ci-1_Ci   A@Ci_Ci+1 ) THEN ( A@Ci = 2 ) 

ELSE ( A@Ci = 1) 

Finally, our algorithm generates the constraint below in 

order to calculate the total number of vias for a channel 

routing problem: 

 Total_Num_of_Vias = net1@V + net2@V + …. 

where “Total_Num_of_Vias” is a variable. JaCoP provides an 

API function which is capable of minimizing the value of the 

variable while other constraints are satisfied. 

6 The Algorithm 

In our algorithm, a gridded dogleg channel routing 

problem is transformed into a constraint programming (CP) 

problem and then solved by JaCoP’s solver. However, due to 

the fact that positions of horizontal wire fragments are treated 

as variables, the number of available tracks must be 

determined before the transformed CP problem can be solved. 

Since channel density is the minimum number of tracks 

required in order to solve a two-layer channel routing problem 

[8], our algorithm uses it as the initial value for the number of 

available tracks. Therefore, the domain for the position of 

each horizontal wire fragment is set to [1, channel_density]. 

The channel routing algorithm is detailed in Figure 9. 

Algorithm CONSTRAINTBASEDCHANNELROUTER(TR, BR, VM) 

Input. The description to a gridded dogleg channel routing 

problem, which includes (1) TR, which is the list of 

terminals at the top row, (2) BR, which is the list of 

terminals at the bottom row. Also, a Boolean variable VM 

is used in order to control the activation of the via 

minimization function. 

Output. A permutation of horizontal wire fragments, from which a 

solution to the input channel routing problem can be 

constructed. 

1. D ← the channel density of the input channel routing 

problem 

2. Max ← D 

3. Do { 

4. Generate variables for horizontal wire fragments; the 

domain of each variable is set to [1, Max]. 

5. Generate horizontal constraints for each column interval 

(Section 3). 

6. Generate vertical constraints for each column (Section 4). 

7. if VM equals TRUE then 

8. Generate variables and constraints for minimizing the 

number of vias (Section 5). 

9. Specify generated variables and constraints via JaCoP’s 

API functions. 

10. Invoke JaCoP’s solver to solve the specified constraint 

programming (CP) problem. When a solution has been 

found, report the solution and then exit the algorithm. 

11. Max ← Max + 1 

12. } while (JaCoP has not found a solution) 

Figure 9. The Gridded Dogleg Channel Routing Algorithm 

In the above algorithm, if the transformed CP problem 

cannot be solved by using the specified number of available 

tracks, the algorithm will increase the number of available 

tracks by 1 and then solve the transformed problem again. In 

our implementation of the algorithm, the value of Max can 

also be set manually. The algorithm stops when a solution has 

been found. Please note that all types of constraints (including 

IF-THEN and IF-THEN-ELSE constraints) mentioned in 

Sections 3, 4, and 5 can be specified by using JaCoP’s API 

functions. 

7 Experimental Results 

A number of testcases have been used to test the 

correctness and to measure the performance of our program; 

some of the experimental results are shown in Table 1. Note 

that the table shows the results of our program with the via 

minimization function turned on. Testcases and routing results 

of “Figure 2” and “Figure 11” can be seen from Figure 2 and 

Figure 11, respectively. Testcases “Deutsch-1” and “Deutsch-

2” were modified from the Deutsch’s difficult example [3, 

20]. All of the testcases were run on a PC with an Intel Q9550 

CPU and 8 GB of RAM. For the routing result shown in 

Figure 2, our program generates the following code: 

[1@2_3=1, 1@3_4=2, 1@4_5=2, 1@5_6=2, 2@1_2=2, 

3@4_5=1, 3@5_6=1, 1@2=1, 1@3=2, 1@4=0, 1@5=0, 

1@6=1, 1@V=4, 2@1=1, 2@2=1, 2@V=2, 3@4=1, 

3@5=0, 3@6=1, 3@V=2, Total_Num_of_Vias=8] 

Figures 10 and 11 illustrate the same routing problem with 

different routing results; one is with the via minimization 

function turned off and the other turned on. 

Although our approach is capable of finding optimal 

solutions, the execution time can be very long. That is because 

dogleg channel routing problems are NP-complete. However, 

as can be seen in the Deutsch-2 case in Table 1, suboptimal 

results can be generated in exchange for significantly reduced 

execution time. 



8 Conclusion 

We proposed an algorithm which is capable of 

transforming a gridded dogleg channel routing problem with 

via minimization into a constraint programming problem, and 

the transformed problem can be solved by a constraint 

programming solver. Our approach can be further extended to 

consider crosstalk and total wire length. Although the 

experimental results show that the running time of our 

approach cannot compete with many existing channel routers, 

optimal results can be generated for small to medium cases. In 

addition, for large cases, suboptimal results can be generated 

in exchange for significantly reduced running time. We 

believe that the performance of our approach can be improved 

with the advance of constraint programming technologies (eg, 

parallel constraint programming) and multi-core processors. 
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