
Constraint-Based Dogleg Channel Routing with Via

Minimization

I-Lun Tseng
1
, Huan-Wen Chen

1
, Che-I Lee

1
, and Adam Postula

2

1
Department of Computer Science & Engineering, Yuan Ze University, Taiwan, R.O.C.

2
School of Information Technology & Electrical Engineering, The University of Queensland, Australia

Abstract - In this article, we present an algorithm which is

capable of transforming a gridded dogleg channel routing

problem into a constraint programming (CP) problem. The

transformed CP problem consists of a set of variables and a

list of constraints; it can be solved by JaCoP, a finite-domain

constraint programming solver. For a given dogleg channel

routing problem, our approach is able to minimize the number

of tracks and the number of vias. Although the transformed

CP problems cannot be solved in polynomial time, optimal

results can be found efficiently for small to medium cases.

Moreover, for large cases, suboptimal results can be

generated in exchange for significantly reduced execution

time. As constraint programming technologies advance (e.g.,

parallel constraint programming), the execution time of the

proposed approach can be improved. Additionally, our

approach has the potential to be used in dealing with other

routing problems in VLSI physical design automation.

Keywords: Dogleg Channel Routing, VLSI Physical Design

Automation, Constraint Programming

1 Introduction

Channel routing is a type of problems arising in the

detailed routing phase of VLSI physical design automation [1]

as well as in the design of printed circuit boards (PCBs) [2].

Although channel routing has not been an active research field

in recent years, the use of constraint programming

technologies in solving this type of problems has not been

completely investigated. Moreover, gaining full understanding

of these fundamental problems is essential to the research and

development of other routing algorithms [3].

In order to solve a channel routing problem, many routing

algorithms generate horizontal and/or vertical constraints for

the problem [4, 5]. For a channel routing problem containing

cyclic vertical constraints, doglegs are required in order to

complete the routing [5]. Since dogleg channel routing

problems are NP-complete [6], many heuristic algorithms

have been developed and proposed [5, 7, 8]. Unfortunately,

those heuristic algorithms are not guaranteed to generate

optimal solutions.

Instead of developing heuristic routing algorithms, we

transform a gridded dogleg channel routing problem into a

constraint programming (CP) problem. The transformed CP

problem can then be solved optimally by a constraint

programming solver. As a result, the number of tracks can be

minimized. With this minimum number of tracks, furthermore,

the number of vias can also be minimized.

Constraint programming [9] is a type of declarative

programming paradigm in that it allows users to specify a

problem in terms of variables and constraints over those

variables; a constraint programming solver can then be used

to find the solution(s) to the specified problem. JaCoP (Java

Constraint Programming [10]) is an open-source constraint

programming library which was implemented in Java. The

JaCoP library contains a number of API functions as well as a

built-in constraint programming solver. After users specify a

problem via those API functions, the solver can find the

solution(s) to the problem (if the problem has at least one

solution). JaCoP has been used in solving many difficult

problems (such as optimization problems, scheduling and

resource assignment problems [11, 12], and problems of

partitioning parameterized polygons [13]), although the time

complexity for solving those problems may not be

polynomial.

A channel routing problem can be considered as a multi-

objective optimization problem, as we may need to

simultaneously optimize two or more objectives, such as

minimizing the number of tracks [7], minimizing the number

of vias [14], minimizing the crosstalk [15, 16], and

minimizing the total wire length [17]. Most of heuristic

routing algorithms only consider one or two of those

objectives, and adding other objectives may result in redesign

of those algorithms. Although this article focuses on the

objectives of minimizing the number of tracks and the number

of vias, our approach can be further extended to consider

other objectives (e.g., crosstalk minimization).

The use of constraint programming technologies in

solving channel routing problems is not new. In [18], the

integration of constraint programming and evolution programs

has been used to solve dogleg-free multilayer channel routing

problems. In [19], Phillips proposed the adoption of constraint

logic programming in solving dogleg channel routing

problems. Our approach differs from the one presented in [19]

in that our approach requires different (usually simpler) types

of constraints. In addition, our approach is capable of

minimizing the number of vias.

The rest of this paper is organized as follows. In Section

2, we formulate dogleg channel routing problems that we

intend to solve. Horizontal and vertical constraints are

discussed in Sections 3 and 4, respectively. An optional

function which is capable of minimizing the number of vias is

presented in Section 5. Our algorithm for solving gridded

dogleg channel routing problems is described in Section 6.

Experimental results are presented in Section 7. Finally,

conclusions are drawn in Section 8.

2 Problem Formulation

In a channel routing problem, a channel is a rectangular

region bounded by two parallel rows (the top row and the

bottom row). The two parallel rows have terminals and each

terminal has a number, which represents the name of a net.

Terminals having the same number must be connected

together, except that terminals with the number zero require

no connection.

In this paper, it is assumed that a channel routing problem

has only two routing layers, one layer for horizontal wire

segments and the other for vertical wire segments. Endpoints

of wire segments must be located within the channel (the

rectangular region). For the wire segments that reside on

different layers, in addition, they can be connected by vias. In

the figures in this paper, vias are denoted by small black

squares.

Figure 1 shows an example of a channel routing problem

and one of its solutions. The problem has six columns and

each terminal lies at the intersection of a row and a column.

Moreover, horizontal wire segments, which are used for

routing purposes, must lie on the tracks. As can be seen in this

example, the routing solution uses three tracks. The columns,

rows, and tracks form an array of (virtual) grids. Therefore,

the channel routing problem shown in Figure 1 is a gridded

channel routing problem if all the endpoints of (horizontal and

vertical) wire segments are restricted to lie on the grids.

In a channel routing problem, since the width of the

channel is fixed, minimizing the routing area is equivalent to

minimizing the number of tracks (the height of the channel).

By introducing doglegs [20] in solving the problem shown in

Figure 1, it is possible to complete the routing with only two

tracks, as shown in Figure 2. The use of doglegs in solving

channel routing problems is a technique of great importance.

In the cases where cyclic vertical constraints exist [5], doglegs

must be used in order to complete the routing.

In our model of a gridded dogleg channel routing

problem, each net is composed of a number of horizontal and

vertical wire segments. In addition, these horizontal wire

segments must be placed between the net’s leftmost column

and rightmost column. For the channel routing problem given

in Figure 1, the horizontal span of each net is shown in Figure

3. Based on the horizontal spans, a number of horizontal wire

fragments (or smaller horizontal wire segments), as shown in

Figure 4, can be generated by cutting the horizontal spans into

pieces. Each of these horizontal wire fragments spans between

two adjacent columns. In addition, the union of all the

horizontal wire fragments of one net must cover the total

horizontal span of the net. The name of each horizontal wire

fragment is coded as follows (as the example shown in Figure

4):

<net name>@<left column no.>_<right column no.>

In our model of a channel routing problem, each

horizontal wire fragment is associated with a numerical value;

the value represents the track on which the wire fragment is

Figure 1. A (gridded) channel routing problem and one of its

solutions without using doglegs

Figure 3. Horizontal span of each net

Figure 2. A solution to the channel routing problem (shown in

Figure 1) with the use of doglegs

Figure 4. Horizontal wire fragments and their representations

located. In our algorithm, moreover, vertical wire segments

are not cut into fragments; positions of vertical wire segments

can be decided easily after all the horizontal wire fragments

have been placed. For instance, the routing result shown in

Fig . 2 can be represented by the following code:

[1@2_3=1, 1@3_4=2, 1@4_5=2, 1@5_6=2, 2@1_2=2,

3@4_5=1, 3@5_6=1]

3 Horizontal Constraints

Since two horizontal wire fragments belonging to

different nets cannot overlap, these two fragments must be

assigned different track numbers if they belong to the same

column interval. We can thus use the following inequality to

specify this type of constraints in a channel routing problem:

netA@Ci_Ci+1  netB@Ci_Ci+1

where netA and netB are the names of two different nets, and

columns Ci and Ci+1 denote two adjacent columns. For the

example shown in Figure 4, therefore, the following

horizontal constraints must be generated:

3@4_5  1@4_5

3@5_6  1@5_6

If there are many different horizontal wire fragments between

columns Ci and Ci+1, generating unequal constraints for all

pairs of these fragments might be cumbersome. Therefore, the

JaCoP function Alldifferent(list-of-nets) is used in

order to reduce the number of constraints.

4 Vertical Constraints

In our algorithm, the process of generating vertical

constraints for a channel routing problem involves looping

through all the columns from left to right. Also, vertical

constraints are generated according to different cases at each

column.

We define a number of terms before detailing each case

of generating vertical constraints. When a column (i) is

encountered, the terminal at the intersection of the top

(bottom) row and column i is called the upper (lower)

terminal of column i. Furthermore, if the upper (lower)

terminal belongs to net A, then net A can be referred to as the

upper (lower) net of column i.

4.1 Case 1

Case 1 of generating vertical constraints arises at a

column where each of the top and bottom row contains a

terminal, and the two terminals belong to different nets. As

the example shown in Figure 5, when column i is encountered,

horizontal fragments of net A (which are touching column i)

must be located higher than horizontal fragments of net B

(which are also touching column i). Otherwise, the two nets (A

and B) will overlap at the vertical column and result in a short

circuit. In other words, the following constraints must be

generated and satisfied:

A@Ci-1_Ci  B@Ci-1_Ci

A@Ci-1_Ci  B@Ci_Ci+1
A@Ci_Ci+1  B@Ci-1_Ci

A@Ci_Ci+1  B@Ci_Ci+1

At column i, however, if there is only one horizontal wire

fragment belonging to the upper net or only one horizontal

wire fragment belong to the lower net, only the constraints

that contain valid horizontal wire fragments need to be

generated.

For the example shown in Figure 4, when column 2 is

encountered, the vertical constraint “1@2_3 2@1_2” will

be generated. Also, the constraint “3@5_6 1@5_6” will be

generated when column 6 is encountered.

4.2 Case 2

In the process of generating vertical constraints, case 2

occurs when the same upper and lower net can be found at a

column (i). As the example shown in Figure 6, in order to

connect terminals of net A, there will be a vertical wire

segment which directly connects the upper and lower

terminals of column i. As a result, all other nets (nets E and F

in this example) passing through column i must not have

doglegs at the column. In this example, therefore, the

following constraints need to be generated:

E@Ci-1_Ci  E@Ci_Ci+1

F@Ci-1_Ci  F@Ci_Ci+1

Figure 5. An example illustrating case 1 in the process of

generating vertical constraints

Figure 6. An example illustrating case 2 in the process of

generating vertical constraints

Please note that case 1 and case 2 of generating vertical

constraints are mutually exclusive.

4.3 Case 3

Case 3 focuses on generating constraints for the situation

when the upper or lower net of a column (i) interacts with all

of other nets passing through the column. Figure 7 illustrates

an example of this case. At column i, net A is the upper net

and it is assumed that the horizontal fragment “A@Ci_Ci+1”

exists. In addition, nets E and F are assumed to be the nets

passing through column i. Please note that we do not need to

consider whether the lower net exists or not at the moment. As

a result, the following two lines of constraints should be

generated for the example shown in Figure 7:

 ((A@Ci_Ci+1  E@Ci-1_Ci) AND (A@Ci_Ci+1 

E@Ci_Ci+1)) OR (E@Ci-1_Ci  E@Ci_Ci+1)

 ((A@Ci_Ci+1  F@Ci-1_Ci) AND (A@Ci_Ci+1 

F@Ci_Ci+1)) OR (F@Ci-1_Ci  F@Ci_Ci+1)

In the above constraints, net E (or F) is allowed to have a

dogleg at column i only when its two horizontal wire

fragments are located lower than the horizontal wire fragment

of net A; otherwise, the dogleg will overlap with the vertical

wire segment of net A.

In Figure 7, if net A had both the horizontal fragments to

the left and to the right of column i, there would be more lines

of constraints. Also, more lines of constraints would be

required if there were more nets passing through the column.

In this case (case 3) of generating vertical constraints, please

note that similar forms of constraints must be generated if the

lower net of column i exists.

4.4 Case 4

In Figure 6 or 7, net E or F can have a dogleg at column

i; it is also possible that both of the nets have doglegs at the

column. Case 4 of generating vertical constraints considers

these conditions in order to make sure that doglegs do not

overlap at each column. In other words, for each pair of nets

passing through a column (and those nets are not the upper or

lower nets), their doglegs cannot overlap at the column. For

the example shown in Figure 6 or 7, therefore, the following

constraints must be generated.

 IF (E@Ci-1_Ci  E@Ci_Ci+1) THEN (F@Ci-1_Ci 

F@Ci_Ci+1) OR (F@Ci-1_Ci  E@Ci-1_Ci AND

F@Ci_Ci+1  E@Ci-1_Ci) OR (E@Ci_Ci+1  F@Ci-

1_Ci AND E@Ci_Ci+1  F@Ci_Ci+1)

 IF (E@Ci_Ci+1  E@Ci-1_Ci) THEN (F@Ci-1_Ci 

F@Ci_Ci+1) OR (F@Ci-1_Ci  E@Ci_Ci+1 AND

F@Ci_Ci+1  E@Ci_Ci+1) OR (E@Ci-1_Ci  F@Ci-

1_Ci AND E@Ci-1_Ci  F@Ci_Ci+1)

 IF (F@Ci-1_Ci  F@Ci_Ci+1) THEN (E@Ci-1_Ci 

E@Ci_Ci+1) OR (E@Ci-1_Ci  F@Ci-1_Ci AND

E@Ci_Ci+1  F@Ci-1_Ci) OR (F@Ci_Ci+1  E@Ci-

1_Ci AND F@Ci_Ci+1  E@Ci_Ci+1)

 IF (F@Ci_Ci+1  F@Ci-1_Ci) THEN (E@Ci-1_Ci 

E@Ci_Ci+1) OR (E@Ci-1_Ci  F@Ci_Ci+1 AND

E@Ci_Ci+1  F@Ci_Ci+1) OR (F@Ci-1_Ci  E@Ci-

1_Ci AND F@Ci-1_Ci  E@Ci_Ci+1)

5 Minimizing the Number of Vias

In VLSI physical design, minimizing the number of vias

can improve circuit performance and yield. Also, since our

approach allows the use of doglegs in solving gridded channel

routing problems, a number of extra vias may be induced in

final routing results. It is thus desirable to reduce the number

of vias in our approach. We have implemented the via

minimization function by using constraint programming; it is

an optional function and users can turn it on or off. The via

minimization function is capable of minimizing the number of

vias without increasing the number of tracks.

To calculate the number of vias for each net, additional

variables are used. For a net whose leftmost column is l and

rightmost column is r, we use a variable for each column

between l and r to denote the number of vias at the column.

The following type of variable names is used to represent the

number of vias at a column:

<net name>@<column no.>

For the example shown in Figure 8, net A’s leftmost

column is 4 and its rightmost column is 9. Variable names

Figure 7. An example illustrating case 3 in the process of

generating vertical constraints

Figure 8. An example illustrating how to calculate the number of

vias for a net

A@4, A@5, …, and A@9 are used to represent the number of

vias at the corresponding column. Therefore, the total number

of vias for net A is:

A@V = A@4 + A@5 + A@6 + A@7 + A@8 + A@9

where the variable name “A@V” denotes the total number of

vias for net A. Also, it is trivial that A@4 = 1 and A@9 = 1

since columns 4 and 9 are the endpoints of net A.

In Figure 8, the following constraint will be generated by

our algorithm when column 5 is encountered:

 IF (A@4_5  A@5_6) THEN (A@5 = 2) ELSE (

A@5 = 0)

That is because net A will have two vias at column 5 if there is

a dogleg at the column. On the contrary, net A will not have

any via at column 5 if there is no dogleg at the column. With

this concept, we can generate the following constraints when

column i is encountered, where i = 6, 7, or 8:

 IF (A@Ci-1_Ci  A@Ci_Ci+1) THEN (A@Ci = 2)

ELSE (A@Ci = 1)

Finally, our algorithm generates the constraint below in

order to calculate the total number of vias for a channel

routing problem:

 Total_Num_of_Vias = net1@V + net2@V + ….

where “Total_Num_of_Vias” is a variable. JaCoP provides an

API function which is capable of minimizing the value of the

variable while other constraints are satisfied.

6 The Algorithm

In our algorithm, a gridded dogleg channel routing

problem is transformed into a constraint programming (CP)

problem and then solved by JaCoP’s solver. However, due to

the fact that positions of horizontal wire fragments are treated

as variables, the number of available tracks must be

determined before the transformed CP problem can be solved.

Since channel density is the minimum number of tracks

required in order to solve a two-layer channel routing problem

[8], our algorithm uses it as the initial value for the number of

available tracks. Therefore, the domain for the position of

each horizontal wire fragment is set to [1, channel_density].

The channel routing algorithm is detailed in Figure 9.

Algorithm CONSTRAINTBASEDCHANNELROUTER(TR, BR, VM)

Input. The description to a gridded dogleg channel routing

problem, which includes (1) TR, which is the list of

terminals at the top row, (2) BR, which is the list of

terminals at the bottom row. Also, a Boolean variable VM

is used in order to control the activation of the via

minimization function.

Output. A permutation of horizontal wire fragments, from which a

solution to the input channel routing problem can be

constructed.

1. D ← the channel density of the input channel routing

problem

2. Max ← D

3. Do {

4. Generate variables for horizontal wire fragments; the

domain of each variable is set to [1, Max].

5. Generate horizontal constraints for each column interval

(Section 3).

6. Generate vertical constraints for each column (Section 4).

7. if VM equals TRUE then

8. Generate variables and constraints for minimizing the

number of vias (Section 5).

9. Specify generated variables and constraints via JaCoP’s

API functions.

10. Invoke JaCoP’s solver to solve the specified constraint

programming (CP) problem. When a solution has been

found, report the solution and then exit the algorithm.

11. Max ← Max + 1

12. } while (JaCoP has not found a solution)

Figure 9. The Gridded Dogleg Channel Routing Algorithm

In the above algorithm, if the transformed CP problem

cannot be solved by using the specified number of available

tracks, the algorithm will increase the number of available

tracks by 1 and then solve the transformed problem again. In

our implementation of the algorithm, the value of Max can

also be set manually. The algorithm stops when a solution has

been found. Please note that all types of constraints (including

IF-THEN and IF-THEN-ELSE constraints) mentioned in

Sections 3, 4, and 5 can be specified by using JaCoP’s API

functions.

7 Experimental Results

A number of testcases have been used to test the

correctness and to measure the performance of our program;

some of the experimental results are shown in Table 1. Note

that the table shows the results of our program with the via

minimization function turned on. Testcases and routing results

of “Figure 2” and “Figure 11” can be seen from Figure 2 and

Figure 11, respectively. Testcases “Deutsch-1” and “Deutsch-

2” were modified from the Deutsch’s difficult example [3,

20]. All of the testcases were run on a PC with an Intel Q9550

CPU and 8 GB of RAM. For the routing result shown in

Figure 2, our program generates the following code:

[1@2_3=1, 1@3_4=2, 1@4_5=2, 1@5_6=2, 2@1_2=2,

3@4_5=1, 3@5_6=1, 1@2=1, 1@3=2, 1@4=0, 1@5=0,

1@6=1, 1@V=4, 2@1=1, 2@2=1, 2@V=2, 3@4=1,

3@5=0, 3@6=1, 3@V=2, Total_Num_of_Vias=8]

Figures 10 and 11 illustrate the same routing problem with

different routing results; one is with the via minimization

function turned off and the other turned on.

Although our approach is capable of finding optimal

solutions, the execution time can be very long. That is because

dogleg channel routing problems are NP-complete. However,

as can be seen in the Deutsch-2 case in Table 1, suboptimal

results can be generated in exchange for significantly reduced

execution time.

8 Conclusion

We proposed an algorithm which is capable of

transforming a gridded dogleg channel routing problem with

via minimization into a constraint programming problem, and

the transformed problem can be solved by a constraint

programming solver. Our approach can be further extended to

consider crosstalk and total wire length. Although the

experimental results show that the running time of our

approach cannot compete with many existing channel routers,

optimal results can be generated for small to medium cases. In

addition, for large cases, suboptimal results can be generated

in exchange for significantly reduced running time. We

believe that the performance of our approach can be improved

with the advance of constraint programming technologies (eg,

parallel constraint programming) and multi-core processors.

References

[1] Naveed A. Sherwani, Algorithms for VLSI Physical Design

Automation, Kluwer Academic Publishers, 1999.

[2] Akihiro Hashimoto and James Stevens, “Wire Routing by

Optimizing Channel Assignment within Large Apertures,”

In Proceedings of Design Automation Conference, pp. 155-

169, 1971.

[3] Rajat K. Pal, Multi-Layer Channel Routing: Complexity

and Algorithms, Narosa Publishing House, 2000.

[4] Jia-Shung Wang and R. C. T. Lee, “An Efficient Channel

Routing Algorithm to Yield an Optimal Solution,” IEEE

Transactions on Computers, Vol. 39, No. 7, pp. 957-962,

Jul. 1990.

[5] Takeshi Yoshimura and Ernest S. Kuh, “Efficient

Algorithms for Channel Routing,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, Vol. CAD-1, No. 1, pp. 25-35, Jan. 1982.

[6] Thomas G. Szymanski, “Dogleg Channel Routing is NP-

Complete,” IEEE Transactions on Computer-Aided

Design, Vol. CAD-4, No. 1, pp. 31-41, Jan. 1985.

[7] James Reed, Alberto Sangiovanni-Vincentelli, and Mauro

Santomauro, “A New Symbolic Channel Router: YACR2,”

IEEE Transactions on Computer-Aided Design, Vol. CAD-

4, No. 3, pp. 208-219, Jul. 1985.

[8] Uzi Yoeli, “A Robust Channel Router,” IEEE Transactions

on Computer-Aided Design, Vol. 10, No. 2, pp. 212-219,

Feb. 1991.

[9] Kim Marriott and Peter J. Stuckey, Programming with

Constraints: An Introduction, The MIT Press, 1998.

[10] http://www.jacop.eu

[11] Krzysztof Kuchcinski, “Constraints-Driven Scheduling

and Resource Assignment,” ACM Transactions on Design

Automation of Electronic Systems, Vol. 8, No. 3, pp. 355-

383, Jul. 2003.

[12] Krzysztof Kuchcinski and Christophe Wolinski, “Global

Approach to Assignment and Scheduling of Complex

Table 1. Experimental Results of Constraint-Based Dogleg Channel Routing with Via Minimization

Testcase # nets # columns C. Density min. # tracks # tracks Tran. Time Tot. Time # vars # c. lines

Figure 2 3 6 2 2 2 0.09 sec. 0.14 sec. 20 17

Figure 11 5 9 5 6 6 0.14 sec. 0.34 sec. 64 175

Deutsch-1 27 57 16 16 16 0.25 sec. 11.01 sec. 1,221 11,891

Deutsch-2 52 156 19 19

25 0.53 sec. 4.18 sec.

3,985 47,871 24 0.53 sec. 5.10 sec.

23 0.53 sec. > 40 hrs.

nets: the number of nets in the testcase; # columns: the number of columns in the testcase; C. Density: the channel density of the

testcase; min. # tracks: the minimum number of tracks required for solving the channel routing (CR) problem; # tracks: the number of

tracks used by our program for solving the problem (the value was assigned by setting the Max manually); Tran. Time: the CPU time for

transforming the input CR problem into a CP problem; Tot. Time: the total CPU time for solving the CR problem (including Tran.

Time); # vars: the number of variables in the transformed CP problem; # c. lines: the number of constraint lines in the transformed CP

problem.

Figure 10. A minimum-track solution to a dogleg channel

routing problem without via minimization (total number of

vias = 17)

Figure 11. A minimum-track solution to the dogleg channel

routing problem (shown in Figure 10) with the via minimization

function turned on (total number of vias = 15)

http://www.jacop.eu/

Behaviors Based on HCDG and Constraint Programming,”

Journal of Systems Architecture, Vol. 49, pp. 489-503,

Dec. 2003.

[13] I-Lun Tseng and Adam Postula, “Partitioning

Parameterized 45-Degree Polygons with Constraint

Programming,” ACM Transactions on Design Automation

of Electronic Systems, Vol. 13, No. 3, pp. 52:1-52:29, Jul.

2008.

[14] Chung-Kuan Cheng and David N. Deutsch, “Improved

Channel Routing by Via Minimization and Shifting,” In

Proceedings of Design Automation Conference, pp. 677-

680, 1988.

[15] Tong Gao and C. L. Liu, “Minimum Crosstalk Channel

Routing,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, Vol. 15, No. 5, pp.

465-474, May 1996.

[16] Kuo-Chih Hsu, Yu-Chung Lin, Po-Xun Chiu, and Tsai-

Ming Hsieh, “Minimum Crosstalk Channel Routing with

Dogleg,” In Proceedings of IEEE International Symposium

on Circuits and Systems, pp. 73-76, 2000.

[17] Pralay Mitra, Nabin Ghoshal, and Rajat K. Pal, “A Graph

Theoretic Approach to Minimize Total Wire Length in

Channel Routing,” In Proceedings of IEEE TENCON -

Conference on Convergent Technologies for Asia-Pacific

Region, pp. 414-418, 2003.

[18] Alvaro Ruiz-Andino and Jose J. Ruz, “Integration of

Constraint Programming and Evolution Programs:

Application to Channel Routing,” Methodology and Tools

in Knowledge-Based Systems (Lecture Notes in Computer

Science), Springer, pp. 448-459, 1998.

[19] Nicholas C. Phillips, “Channel Routing by Constraint

Logic,” In Proceedings of ACM Symposium on Applied

Computing, pp. 536-540, 1992.

[20] David N. Deutsch, “A 'Dogleg' Channel Router,” In

Proceedings of Design Automation Conference, pp. 425-

433, 1976.

