
Constraint-based Generalization

Learning Game-Playing Plans from Single Examples

Steven Minton

Computer Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

Constraint-based Generalization is a technique for deducing
generalizations from a single example. We show how this
technique can be used for learning tactical combinations in
games and discuss an implementation which learns forced wins
in tic-tat-toe, go-moku, and chess.’

1 Introduction
During the last decade “learning by examples”, or concept

acquisition, has been intensively studied by researchers in
machine learning [l]. In this paradigm, the learner induces a
description of a concept after being shown positive (and often
negative) instances of the concept.

A limitation of many existing concept acquisition systems is that
numerous examples may be required to teach a concept. People,
on the other hand, can make accurate generalizations on the
basis of just one example. For instance, a novice chess player
who is shown just one example of a “skewer” (Figure 1) will later
be able to recognize various forms of the skewer principle in
different situations. Understanding how and why a particular
example works allows him to arrive ai a generalized concept
description. However, most existing concept acquisition systems
are completely data-driven; They operate in relative isolation
without the benefit of any domain knowledge.

Constraint-based Generalization is a technique for reasoning
from single examples in which generalizations are deduced from
an analysis of why a training instance is classified as positive. A
program has been implemented that uses this technique to learn
forced wins in tic-tat-toe, go-moku and chess. In each case,
learning occurs after the program loses a game. The program
traces out the causal chain responsible for its loss, and by
analyzing the constraints inherent in the causal chain, find a
description of the general conditions under which this same
sequence of events wiil occur. This description is then
incorporated into a new rule which can be used in later games to
force a win or to block an opponent’s threat. Following a
discussion of this implementation, a domain-independent
formulation of Constraint-based Generalization will be
introduced.

2 Learning Plans for Game-playing’
In game-playing terminology, a tactical combination is a plan for

a achieving a goal where each of the opponent’s moves is forced.
Figure 1 illustrates a simple chess combination, called a
“skewer”. The black bishop has the white king in check. After
the king moves out of check, as it must, the bishop can take the
queen.

Figure 1: A Skewer

A student who has had this particular instance demonstrated to
him can find an appropriate generalization by analyzing why the
instance worked. Such an analysis can establish that while the
pawns are irrelevant in this situation, the queen must be “behind”
the king for the plan to succeed. Ultimately, a generalized set of
preconditions for applying this combination can be found. In
future games this knowledge can be used to the student’s
advantage. Presumably, he will be less likely to fall into such a
trap, and may be able to apply it against his opponent.

The learning aigorithm we propose models this reasoning
process. There are three stages:

1. Recognize that the opponent achieved a specific goal.

2. Trace out the chain of events which was responsible for
realization of the goal.

3. Derive a general set of preconditions for achieving this goal
on the basis of the constraints present in the causal chain,

3 The Game Playing System
This section describes a game-playing system that has learned

winning combinations in tic-tat-toe, go-moku and chess. A
forcing state is a configuration for which there exists a winning
combination - an an offensive line of play that is guaranteed to
win. Figure 2 illustrates a winning combination in go-moku, a
game played on a 19x19 board. The rules are similar to tic-tac-
toe except that the object of the game is to get 5 in a row, either
vertically, horizontally or diagonally. If, in state A, player X takes
the square labeled 2, then player 0 can block at 1 or 6, but either
way X will win. If 0 had realized this prior to X’s move, he could
have pre-empted the threat by taking either square 2 or 6. The
game-playing system learns descriptions of forcing states and the
the appropriate offensive move to make in each such state by
analyzing games that it has lost.

1
Th1.s research was supported in part by the Defense Advanced Projects

Agency (DOD) Arpa Order No. 3597, monitored by the Air Force Avionics

Laboratory under Contract F3361578-C-1551. and in part by a Bell Laboratories

Ph.D Scholarship.

251

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

’ 2 3)(4)(5)(6 + ’ 2x3x4x5x6 -+ ’ *x3x4x5x60 J$++j#

State A X to move State B 0 to move State C X to move

Figure 2: A Winning Combination in Go-moku

The game-playing system is organized into several modules,
including a Top-Level module that interacts with the human
player and a Decision module that chooses the computer’s
moves. A set of features which describes the current board
configuration is kept in a data structure called Game-State. Most
of the system’s game-specific knowledge is partitioned into two
sets of rules:

l A set of State-Update Rules provided by the programmer for
adding and deleting features from Game-State after each
turn.

l A set Recognifion rules employed by the Decision module to
detect forcing states. Initially this set is empty. The Learning
module produces more recognition rules whenever the
program loses.

Features in Game-State are represented by predicates. For
example, in tic-tat-toe is-empty(square1) might be used to
indicate that square1 is free. The State-Update-Rules form a
production system that updates the Game-State as the game
progresses. The IF-part or left-hand side of each rule is a
description: a conjunction of features possibly containing
variables. (Angle bracke?s are used to denote variables, eg. <x>).
The right-hand side of a rule consists of an add-hst and a delete-
ltst specifying features to be added and deleted from Game-State
when the rule is activated. Figure 3 shows some State-Update
rules that were used for go-moku.2

In the present implementation, only one State-Update rule can
be applicable at any time, so no conflict resolution mechanism is
necessary. Whenever a rule fires, it leaves behind a State-Update-
Trace, indicating the features it matched in Game-State.

RULE Create-win1 RULE Create-four-in-a-row
IF input-move(<square>, <p>) IF input-move(<square>,<p>)

Is-empty(<square>) is-empty(<square>)
four-in-a-row(<4position>,<p>) three-in-a-row(<3position>, <p>)
extends(<4position>, <square>) extends(<3position>, <square>)

THEN composes(<newposition>,
ADD won(<p>)

THEN
<square>,<3position>)

DELETE
three-in-a-row(<3position>,<p>)
Input-move(<square>,<p>)

ADD
four-in-a-row(<newposition>,<p>)

Figure 3: Some State-Update rules for Go-rnoku

An INPUT-MOVE feature is added to Game-State after each
player moves (see Figure 3). The State-Update system is then
allowed to run until no rules can fire, at which point Game-State
should accurately reflect the new board configuration. When a
player <p> wins, the State-Update system adds a feature
WON(<p>) to Game-State.

The Decision module relies on the set of Recognition rules to
identify forcing states. (See Figure 4 for some representative
recognition rules). The right-hand side of each recognition rule
indicates the appropriate move to initiate the combination3.
When a recognition rule indicates that the opponent is
threatening to win, then the computer blocks the threat (unless it
can win before the opponent). The blocking move is classified as

2 Extends(<positionX>,<squareV>) is true when <squareY> is adjacent to,
and in the same line as, the sequence of squares at <positionX).
Composes(<positionX>,<squareV>,<posltionZ>) is true when <squareY) and
<positionZ> can be joined to form <positionX).

State D X wins

forced, and the name of the recognition rule and the features it
matched are recorded in a data-structure called DECISION-
TRACE. The Decision module also contains a simple procedure
for deciding on the best move if no recognition rule is applicable;
For example, in go-moku the program merely picks the move
which extends its longest row.

RECOG-RULE Recog-Four RECOG-RULE Recog-Open-Three
IF tour-in-row(<position>,<player>) IF three-in-row(<3position>,<player>)

Is-empty(<square>)
extends(<position>, <square>)

is-empty(tsquareC>)

RECOMMENDED-MOVE
extends(<3position>,<squareC>)

input-move(<square>,<player>)
composes(<4position>,<squareC),

<3position>)
is-empty(<squareB>)
extends(<4position>,<squareB>)
is-empty(<squareA>)
extends(<4position>,(squareA>)

RECOMMENDED-MOVE
Input-move(<squareC>,<player>)

Figure 4: Recognition Rules Learned in Go-moku

Initially, the system has no recognition rules. Whenever it loses
a game the learning module analyzes why the loss occurred; A
new recognition rule can be introduced if the state occurring
after the computer’s last non-forced move - the critical state - can
be shown to be a forcing state. If this analysis is successful, a
new rule will be built so that this state. and others like it, can be
recognized as forcing states in future games.

The learning module must identify the features in the critical
state that allowed the opponent !o win. It accomplishes this by
examining the sequence of state-update rules and recognition
rules which fired between each of the opponents moves and
which eventually added the the feature WON(opponent to
Game-State. Assuming that the threats recognized by the
computer were independent4 then the critical state must have
been a forcing state. indeed, any state in which this same
sequence of rules will fire, resulting in a wtn, must be a forcing
state. To build the new recognition rule, the learning module
finds a generalized description of the critical state such that the
constraints defined by the sequence of rules are satisfied.

A procedure named Back-Up accomplishes this by reasoning
backward through the rule sequence. In order to traverse rules in
the backward direction, Back-Up takes a description of a set of
post-features, and finds the most general set of pre-features such
that if the pre-features are true before the rules fire, the’ post-
features will be true afterwards. This operation is an instance of
“constraint back-propagation” [12]: Dijkstra formalizes this
method ot reasoning backwards in his discussion of weakest
preconditions for proving program correctness [3].

in order to illustrate how Back-Up operates, we will consider
how Hecog-Open-Three (Figure 4) is acquired after the computer
loses the position shown in Figure 2. Recog-Open-Three
recognizes an “open three”, which consists of a “three-in-a-row”
with two free squares on one side and one free square on the
other. In order for Recog-Open-Three to be learned, the
computer must have previously learned Recog-Four which states
that a four-in-a-row with an adjacent open square constitutes a
forcing state. After the opponent (player X) takes square 2, the
computer (player 0) finds two instanttations of Recog-Four in
state 8 (one for each way for X to win). Since only one of these

3 Instead of listing all the subsequent moves in the combination, a separate
recognition rule exists for each step.

4 Threats are independent if there is no way to block them simultaneously.

252

can be blocked, the computer arbitrarily moves to square 6,
recording that the move was forced by the particular instantiation
of Recog-Four. Then the opponent proceeds to win by taking the
fifth adjacent square on the other side.

The learning module is then invoked to build a new recognition
rule. By examining the State-Update-Trace, the program finds
that an instantiation of Rule Create-Win1 (Figure 3) was
responsible for adding Won(opponent) to Game-State after the
opponent made his last move. Back-propagation identifies the
pre-features necessary for this rule to produce a post-feature
matching Won(<player>):

input-move(<squareA>, <player>)
8f four-in-row(<4position>, <player>)
& is-empty{ <squareA>)
& extends(<4position>, <squareA>)

Deleting the input-move feature gives a generalized
description of state C, the forcing state existing prior to the
opponent’s last move. Since the computer’s move previous to
this (from State B to State C) was in response to the independent
threat identified by Recog-Four, the system continues backing-
up. The left-hand side of Recog-Four is combined with the
preconditions above to arrive at a generalized description of state
6. This is a state with two independent threats:

four-in-row(<4position>, <player>)
& is-empty(<squareA>).
& is-empty(<squareB>)
& extends(<4position>, <squareA>)
& extends(<4position>, <squareB>)

Continuing, Back-Up finds that the opponent’s move (into
square X) caused rule Create-four-in-a-row to fire, producing the
four-in-a-row feature in this description. Back-propagating
across this rule allows us to restate the pre-conditions as show in
Recog-Open-Three (Figure 4). The Recommended-Move is the
input-move precondition corresponding to X’s move from state A
to State B. The left-hand side of Recog-Open-Three describes the
relevant features in state A which allowed X to force a win.
4 Discussion

Murray and Elcock [9] present a go-moku program that learned
patterns for forcing states by analyzing games that it had lost. A
similar program by Koffman 161 learned forcing states for a class
of games. Pitrat [lOJ describes a program that learned chess
combinations by analyzing single examples. In each of these
programs, generalizations were produced either by explicit
instruction, or through the use of a representation that only
captured specific information. The approach outlined in this
paper is similar m spirit to these earlier programs, but more
powerful, since generalizations are deduced from a declarative
set of domain-specific rules.

After being taught approximately 15 examples, the system plays
go-moku at a level that is better than novice, but not expert.
Based the performance of Elcock and Murray’s go-moku learning
program, it seems likely that the system could be brought to
expert level by teaching it perhaps 15 more examples. However,
as more complex rules are learned the system slows down
dramatically, despite the use of a fast pattern matcher (a version
of the rete algorithm [5]). The problem is that the complexity of
each new rule, in terms of the number of features in its left-hand
side, grows rapidly as the depth of the analysis is extended. In
order to overcome this, the complex left-hand side descriptions
should be converted into domain-specific patterns that can be
efficiently matched. This has not been implemented.

In addition to learning combinations for winning tic-tat-toe and
go-moku, the system (with modifications to the decision module)
has learned patterns for forced matings in chess. While we
believe that this implementation demonstrates the generality of
the learning technique, it does not provide a practical means for

actually playing chess. The patterns learned are inefficient and
represent only a fraction of the knowledge required to play
chess [13].

5 Requirements for Learning
With many learning systems, it is necessary to find some

“good” set of features before learning can occur. An important
aspect of this system is that we can specify exactly what is
necessary for the system to be able to learn. In particular, if a
State-Update system can be written that satisfies the following
requirements, it can be shown that correct recognition rules will
be acquired for tic-tat-toe, go-moku, or any other game in which
the concept of a forcing state can be appropriately formalized [7].

1. FORMAT REQUIREMENT: the State-Update rules must
conform to the format specified in section 3.

2. APPLICABILITY REQUIREMENT: The State-Update rules
must indicate when the game has been lost by adding a Won
feature to Game-State.

3. LEGALITY REQUIREMENT: The Update-System must only
accept legal moves.

Informally speaking, the FORMAT requirement guarantees that
back-propagation can be used to find the preconditions of a
sequence of rules; The APPLICABILITY requirement guarantees
that the system can identify when to begin backing up; The
LEGALITY requirement guarantees that only legal
Recommended-moves will be found.

While there will exist many Update-Systems that meet these
requirements for any particular game, with any such system the
learning algorithm can learn patterns describing forcing states.
However, the particular choice of features and rules will influence
the generaiity of the learned patterns. The more general the
State-Update rules are, the more general the learned patterns will
be. In the previous section a recognition rule for Go-moku was
learned; The generality of this rule was directly attributable to the
level of generality in the State-Update rules. If instead, a large set
of very specific State-Update rules was provided (eg. listing all
1020 ways to win) a much less general recognition rule would be
learned from the exact same example.

It is possible to extend the system so that preconditions for
other events besides forced wins can be learned, provided that
such events are describable given the features used by the State-
Update system. For example, learning to capture pieces in
checkers is only possible it one is able to describe a capture in
the description language. In order to [earn recognition rules for
arbitrary events, the definition of a forcing state must be modified.
We define a state S to be a forcing state for player P with respect
to event ,5 iff P can make a move in S that is guaranteed to
produce an event at least as good as E. Unfortunately,
recognition rules for arbitrary events may cause more harm than
good if they are used indiscriminately. A player may be able to
force E, but then find himself in a situation where he is worse off
in other respects.

6 Comparing Constraint-based Generalization systems
Within the past 2 years, a considerable amount of research has

been presented on systems that learn from single
examples 18, 14, 11, 21. In addition, there exists an older body of
related work [4,6, 91. Each of these systems is tailored to a
particular domain: game playing [6, 91. natural language
understanding [2], visual recognition of objects [14],
mathematical problem solving [8, 1 l] and planning [4]. In order
to characterize what these systems have in common, we present
the following domain-independent description of Constraint-
based Generalization:

253

Input: A set of rules which can be used to classify an
instance as either positive or negative AND a positive
instance.

Generalization Procedure: Identify a sequence of rut& that
can be used to classify the instance as positive. Employ
backward reasoning to find the weakest preconditions of
this sequence of rules such that a positive classification will
result. Restate the preconditions in the description
language.

Each of the systems alluded to earlier can be viewed as using a
form of Constraint-based Generalization although they differ in
their description languages, formats for expressing the rules and
examples, and criteria for how far to back-propagate the
preconditions. In order to substantiate this claim, we will show
how two well-known systems fit into this view.

Winston, Binford, Katz and Lowry [14] describe a system that
takes a functional description of an object and a physical
example and finds a physical description of the object. In their
system, the rules are embedded in precedents. Figure 5 shows
some precedents, a functional description of a cup, and a
description of a particular physical cup. (The system converts
natural language and visual input into semantic nets.) The
physical example is used to identify the relevant rules
(precedents), from which a set of preconditions is established.
The system uses the preconditions to build a new rule as shown
in Fin. 6.

A cup is a stable liftable Functional Descriotion a a CUD:
open-vessel.

Phvsrcal Examole of a CUD: E is a red object. The objects
body IS small. Its bottom IS flat. The object has a handle
and an upward-pointing concavity.

l A Brick: The brick is stable because i!s bottom is flat.
The brick is hard.

l A Suitcase: The suitcase is liftable because it is
graspable and because it is Irght. The suitcase is
useful because it is a portable container for clothes.

l A bowl: The bowl is an open-vessel because it has-an
upward pointing concavity. The bowl contains
tomato soup.

Figure 5: Functional Description, Example, Precedents

IF [object9 is light] & [object9 has concavily7]
8 [object9 has handle41 8 [object9 has bottom71
& [concavity7 is upwardpointing] & [bottom7 is flat]

THEN [object9 isa Cup]
UNLESS [[object9 isa openvessel] is FALSE]

or [[object9 is liftable] is FALSE]
or [[objects is graspable] is FALSE]
or [[object9 is stable] is FALSE]

Figure 6: New Physical Description, in Rule Format

The LEX system learns heuristics for solving symbolic
integration problems. Mitchell, Utgoff and Banerji [8] describe a
technique that allows LEX to generalize a solution after being
shown a single example. A solution is a sequence of problem-
solving operators that is applied to the initial problem state. (Fig.
1). In this system, the example serves to identify a sequence of
operators that can be used to solve a particular problem. The
system then back-propagates the constraints through the
operator sequence to arrive at a generalized description of the
problerns that can be solved by applying this operator sequence.
Below is a problem and a solution sequence provided to LEX:

OPl OP3
j-7(x2) dx ====> 7(x2 ====> 7 x3/3

Back-propa
%

$on establishes that the initial expression must
match la(x) in order for this sequence of operators to be
applicable.

0~1: Jr f(x) dx ==> rl f(x) dx

OP2: -f sin(x) dx ==> -cos(x) + c

OP3 : I xrZ1 dx =3> x r+l/(r+l) + C

Table 1: Some Operators Used by LEX

7 Conclusions
Constraint-based generalization is a form of meta-reasoning in

which generalizations are deduced from a single example. The
example serves to isolate a sequence of rules that identify
positive instances. By finding the weakest preconditions of these
rules that produce a positive classification, a generalization can
be made. The power of this technique stems from the focus that
the example provides for the analysis process.

8 Acknowledgements
Tom Mitchell and his colleagues’ research on LEX suggested

many of the ideas presented here. I thank Murray Campbell,
Jaime Carbonell, Hans Berliner and Pat Langley for their
suggestions.

References

1. Carbonell, J., Michalski, R. and Mitchell, T. An Overview of
Machine Learning. In Machine Learning, Carbonell, J., Michalski,
R. and Mitchell, T., Ed.,Tioga Publishing Co., 1983.
2. DeJong,G. An Approach to Learning by Observation.
Proceedings, International Machine Learning Workshop, , 1983.
3. Dijkstra, E.. A Discipline of Programming. Prentice Hall, 1976.
4. Fikes, R., Hart, P. and Nilsson, N. “Learning and Executing
Generalized Robot Plans.” Artificia! Intelligence 3, 4 (1972).
5. Forgy, C. “Rete: A Fast Algorithm ior the Many Pattern/Many
Object Pattern Matching Problem.” Artificial Intelligence 79, 1
(1982).
6. Koffman, E. “Learning Through Pattern Recognition Applied
to a Class of Games.” IEEE Trans. Sys. Sciences and
Cybernetics SSC-4, 1 (1968).
7. Minton, S. A Game-Playing Program that Learns by Analyzing
Examples. Tech Report, Computer Science Dept., Carnegie
Mellon University, forthcoming
8. Mitchell, T., Utgoff, P. and Banerji, R. Learning by
Experimentation: Acquiring and Refining Problem-Solving
Heuristics. In Machine Learning, Carbonell, J., Michalski, R. and
Mitchell, T., Ed.,Tioga Publishing Co., 1983.
9. Murray, A. and Elcock, E. Automatic Description and
Recognition of Board Patterns in Go-Moku. In Machine
intelligence 2, Dale, E. and Michie, D., Ed.,Elsevier, 1968:
10. Pitrat, J. Realization of a Program Learning to Find
Combinations at Chess. In Computer Oriented Learning
Processes, Simon, J., Ed.,Noordhoff, 1976.
11. Silver, B. Learning Equation Solving Methods from Worked
Examples. Proceedings of the International Machine Learning
Workshop, , 1983.
12. Utgoff, P. Adjusting Bias in Concept Learning. Proceedings
International Machine Learning Workshop,, 1983.
13. Wilkins, D. “Using Patterns and Plans in Chess.” Artificial
intelligence 74 (1980).
14. Winston, P., Binford, T., Katz, B. and Lowry, M. Learning
Physical Descriptions from Functional Definitions, Examples and
Precedents. Proceedings of the National Conference on Artificial
Intelligence, AAAI, 1983.

