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Abstract 

Constraint-based Generalization is a technique for deducing 
generalizations from a single example. We show how this 
technique can be used for learning tactical combinations in 
games and discuss an implementation which learns forced wins 
in tic-tat-toe, go-moku, and chess.’ 

1 Introduction 
During the last decade “learning by examples”, or concept 

acquisition, has been intensively studied by researchers in 
machine learning [l]. In this paradigm, the learner induces a 
description of a concept after being shown positive (and often 
negative) instances of the concept. 

A limitation of many existing concept acquisition systems is that 
numerous examples may be required to teach a concept. People, 
on the other hand, can make accurate generalizations on the 
basis of just one example. For instance, a novice chess player 
who is shown just one example of a “skewer” (Figure 1) will later 
be able to recognize various forms of the skewer principle in 
different situations. Understanding how and why a particular 
example works allows him to arrive ai a generalized concept 
description. However, most existing concept acquisition systems 
are completely data-driven; They operate in relative isolation 
without the benefit of any domain knowledge. 

Constraint-based Generalization is a technique for reasoning 
from single examples in which generalizations are deduced from 
an analysis of why a training instance is classified as positive. A 
program has been implemented that uses this technique to learn 
forced wins in tic-tat-toe, go-moku and chess. In each case, 
learning occurs after the program loses a game. The program 
traces out the causal chain responsible for its loss, and by 
analyzing the constraints inherent in the causal chain, find a 
description of the general conditions under which this same 
sequence of events wiil occur. This description is then 
incorporated into a new rule which can be used in later games to 
force a win or to block an opponent’s threat. Following a 
discussion of this implementation, a domain-independent 
formulation of Constraint-based Generalization will be 
introduced. 

2 Learning Plans for Game-playing’ 
In game-playing terminology, a tactical combination is a plan for 

a achieving a goal where each of the opponent’s moves is forced. 
Figure 1 illustrates a simple chess combination, called a 
“skewer”. The black bishop has the white king in check. After 
the king moves out of check, as it must, the bishop can take the 
queen. 

Figure 1: A Skewer 

A student who has had this particular instance demonstrated to 
him can find an appropriate generalization by analyzing why the 
instance worked. Such an analysis can establish that while the 
pawns are irrelevant in this situation, the queen must be “behind” 
the king for the plan to succeed. Ultimately, a generalized set of 
preconditions for applying this combination can be found. In 
future games this knowledge can be used to the student’s 
advantage. Presumably, he will be less likely to fall into such a 
trap, and may be able to apply it against his opponent. 

The learning aigorithm we propose models this reasoning 
process. There are three stages: 

1. Recognize that the opponent achieved a specific goal. 

2. Trace out the chain of events which was responsible for 
realization of the goal. 

3. Derive a general set of preconditions for achieving this goal 
on the basis of the constraints present in the causal chain, 

3 The Game Playing System 
This section describes a game-playing system that has learned 

winning combinations in tic-tat-toe, go-moku and chess. A 
forcing state is a configuration for which there exists a winning 
combination - an an offensive line of play that is guaranteed to 
win. Figure 2 illustrates a winning combination in go-moku, a 
game played on a 19x19 board. The rules are similar to tic-tac- 
toe except that the object of the game is to get 5 in a row, either 
vertically, horizontally or diagonally. If, in state A, player X takes 
the square labeled 2, then player 0 can block at 1 or 6, but either 
way X will win. If 0 had realized this prior to X’s move, he could 
have pre-empted the threat by taking either square 2 or 6. The 
game-playing system learns descriptions of forcing states and the 
the appropriate offensive move to make in each such state by 
analyzing games that it has lost. 
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’ 2 3)(4)(5)(6 + ’ 2x3x4x5x6 -+ ’ *x3x4x5x60 J$++j# 

State A X to move State B 0 to move State C X to move 

Figure 2: A Winning Combination in Go-moku 

The game-playing system is organized into several modules, 
including a Top-Level module that interacts with the human 
player and a Decision module that chooses the computer’s 
moves. A set of features which describes the current board 
configuration is kept in a data structure called Game-State. Most 
of the system’s game-specific knowledge is partitioned into two 
sets of rules: 

l A set of State-Update Rules provided by the programmer for 
adding and deleting features from Game-State after each 
turn. 

l A set Recognifion rules employed by the Decision module to 
detect forcing states. Initially this set is empty. The Learning 
module produces more recognition rules whenever the 
program loses. 

Features in Game-State are represented by predicates. For 
example, in tic-tat-toe is-empty(square1) might be used to 
indicate that square1 is free. The State-Update-Rules form a 
production system that updates the Game-State as the game 
progresses. The IF-part or left-hand side of each rule is a 
description: a conjunction of features possibly containing 
variables. (Angle bracke?s are used to denote variables, eg. <x>). 
The right-hand side of a rule consists of an add-hst and a delete- 
ltst specifying features to be added and deleted from Game-State 
when the rule is activated. Figure 3 shows some State-Update 
rules that were used for go-moku.2 

In the present implementation, only one State-Update rule can 
be applicable at any time, so no conflict resolution mechanism is 
necessary. Whenever a rule fires, it leaves behind a State-Update- 
Trace, indicating the features it matched in Game-State. 

RULE Create-win1 RULE Create-four-in-a-row 
IF input-move(<square>, <p>) IF input-move(<square>,<p>) 

Is-empty(<square>) is-empty(<square>) 
four-in-a-row(<4position>,<p>) three-in-a-row(<3position>, <p>) 
extends(<4position>, <square>) extends(<3position>, <square>) 

THEN composes(<newposition>, 
ADD won(<p>) 

THEN 
<square>,<3position>) 

DELETE 
three-in-a-row(<3position>,<p>) 
Input-move(<square>,<p>) 

ADD 
four-in-a-row(<newposition>,<p>) 

Figure 3: Some State-Update rules for Go-rnoku 

An INPUT-MOVE feature is added to Game-State after each 
player moves (see Figure 3). The State-Update system is then 
allowed to run until no rules can fire, at which point Game-State 
should accurately reflect the new board configuration. When a 
player <p> wins, the State-Update system adds a feature 
WON(<p>) to Game-State. 

The Decision module relies on the set of Recognition rules to 
identify forcing states. (See Figure 4 for some representative 
recognition rules). The right-hand side of each recognition rule 
indicates the appropriate move to initiate the combination3. 
When a recognition rule indicates that the opponent is 
threatening to win, then the computer blocks the threat (unless it 
can win before the opponent). The blocking move is classified as 

2 Extends(<positionX>,<squareV>) is true when <squareY> is adjacent to, 
and in the same line as, the sequence of squares at <positionX). 
Composes(<positionX>,<squareV>,<posltionZ>) is true when <squareY) and 
<positionZ> can be joined to form <positionX). 

State D X wins 

forced, and the name of the recognition rule and the features it 
matched are recorded in a data-structure called DECISION- 
TRACE. The Decision module also contains a simple procedure 
for deciding on the best move if no recognition rule is applicable; 
For example, in go-moku the program merely picks the move 
which extends its longest row. 

RECOG-RULE Recog-Four RECOG-RULE Recog-Open-Three 
IF tour-in-row(<position>,<player>) IF three-in-row(<3position>,<player>) 

Is-empty(<square>) 
extends(<position>, <square>) 

is-empty(tsquareC>) 

RECOMMENDED-MOVE 
extends(<3position>,<squareC>) 

input-move(<square>,<player>) 
composes(<4position>,<squareC), 

<3position>) 
is-empty(<squareB>) 
extends(<4position>,<squareB>) 
is-empty(<squareA>) 
extends(<4position>,(squareA>) 

RECOMMENDED-MOVE 
Input-move(<squareC>,<player>) 

Figure 4: Recognition Rules Learned in Go-moku 

Initially, the system has no recognition rules. Whenever it loses 
a game the learning module analyzes why the loss occurred; A 
new recognition rule can be introduced if the state occurring 
after the computer’s last non-forced move - the critical state - can 
be shown to be a forcing state. If this analysis is successful, a 
new rule will be built so that this state. and others like it, can be 
recognized as forcing states in future games. 

The learning module must identify the features in the critical 
state that allowed the opponent !o win. It accomplishes this by 
examining the sequence of state-update rules and recognition 
rules which fired between each of the opponents moves and 
which eventually added the the feature WON(opponent to 
Game-State. Assuming that the threats recognized by the 
computer were independent4 then the critical state must have 
been a forcing state. indeed, any state in which this same 
sequence of rules will fire, resulting in a wtn, must be a forcing 
state. To build the new recognition rule, the learning module 
finds a generalized description of the critical state such that the 
constraints defined by the sequence of rules are satisfied. 

A procedure named Back-Up accomplishes this by reasoning 
backward through the rule sequence. In order to traverse rules in 
the backward direction, Back-Up takes a description of a set of 
post-features, and finds the most general set of pre-features such 
that if the pre-features are true before the rules fire, the’ post- 
features will be true afterwards. This operation is an instance of 
“constraint back-propagation” [12]: Dijkstra formalizes this 
method ot reasoning backwards in his discussion of weakest 
preconditions for proving program correctness [3]. 

in order to illustrate how Back-Up operates, we will consider 
how Hecog-Open-Three (Figure 4) is acquired after the computer 
loses the position shown in Figure 2. Recog-Open-Three 
recognizes an “open three”, which consists of a “three-in-a-row” 
with two free squares on one side and one free square on the 
other. In order for Recog-Open-Three to be learned, the 
computer must have previously learned Recog-Four which states 
that a four-in-a-row with an adjacent open square constitutes a 
forcing state. After the opponent (player X) takes square 2, the 
computer (player 0) finds two instanttations of Recog-Four in 
state 8 (one for each way for X to win). Since only one of these 

3 Instead of listing all the subsequent moves in the combination, a separate 
recognition rule exists for each step. 

4 Threats are independent if there is no way to block them simultaneously. 
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can be blocked, the computer arbitrarily moves to square 6, 
recording that the move was forced by the particular instantiation 
of Recog-Four. Then the opponent proceeds to win by taking the 
fifth adjacent square on the other side. 

The learning module is then invoked to build a new recognition 
rule. By examining the State-Update-Trace, the program finds 
that an instantiation of Rule Create-Win1 (Figure 3) was 
responsible for adding Won(opponent) to Game-State after the 
opponent made his last move. Back-propagation identifies the 
pre-features necessary for this rule to produce a post-feature 
matching Won(<player>): 

input-move(<squareA>, <player>) 
8f four-in-row(<4position>, <player>) 
& is-empty{ <squareA>) 
& extends(<4position>, <squareA>) 

Deleting the input-move feature gives a generalized 
description of state C, the forcing state existing prior to the 
opponent’s last move. Since the computer’s move previous to 
this (from State B to State C) was in response to the independent 
threat identified by Recog-Four, the system continues backing- 
up. The left-hand side of Recog-Four is combined with the 
preconditions above to arrive at a generalized description of state 
6. This is a state with two independent threats: 

four-in-row(<4position>, <player>) 
& is-empty(<squareA>). 
& is-empty(<squareB>) 
& extends(<4position>, <squareA>) 
& extends(<4position>, <squareB>) 

Continuing, Back-Up finds that the opponent’s move (into 
square X) caused rule Create-four-in-a-row to fire, producing the 
four-in-a-row feature in this description. Back-propagating 
across this rule allows us to restate the pre-conditions as show in 
Recog-Open-Three (Figure 4). The Recommended-Move is the 
input-move precondition corresponding to X’s move from state A 
to State B. The left-hand side of Recog-Open-Three describes the 
relevant features in state A which allowed X to force a win. 
4 Discussion 

Murray and Elcock [9] present a go-moku program that learned 
patterns for forcing states by analyzing games that it had lost. A 
similar program by Koffman 161 learned forcing states for a class 
of games. Pitrat [lOJ describes a program that learned chess 
combinations by analyzing single examples. In each of these 
programs, generalizations were produced either by explicit 
instruction, or through the use of a representation that only 
captured specific information. The approach outlined in this 
paper is similar m spirit to these earlier programs, but more 
powerful, since generalizations are deduced from a declarative 
set of domain-specific rules. 

After being taught approximately 15 examples, the system plays 
go-moku at a level that is better than novice, but not expert. 
Based the performance of Elcock and Murray’s go-moku learning 
program, it seems likely that the system could be brought to 
expert level by teaching it perhaps 15 more examples. However, 
as more complex rules are learned the system slows down 
dramatically, despite the use of a fast pattern matcher (a version 
of the rete algorithm [5]). The problem is that the complexity of 
each new rule, in terms of the number of features in its left-hand 
side, grows rapidly as the depth of the analysis is extended. In 
order to overcome this, the complex left-hand side descriptions 
should be converted into domain-specific patterns that can be 
efficiently matched. This has not been implemented. 

In addition to learning combinations for winning tic-tat-toe and 
go-moku, the system (with modifications to the decision module) 
has learned patterns for forced matings in chess. While we 
believe that this implementation demonstrates the generality of 
the learning technique, it does not provide a practical means for 

actually playing chess. The patterns learned are inefficient and 
represent only a fraction of the knowledge required to play 
chess [13]. 

5 Requirements for Learning 
With many learning systems, it is necessary to find some 

“good” set of features before learning can occur. An important 
aspect of this system is that we can specify exactly what is 
necessary for the system to be able to learn. In particular, if a 
State-Update system can be written that satisfies the following 
requirements, it can be shown that correct recognition rules will 
be acquired for tic-tat-toe, go-moku, or any other game in which 
the concept of a forcing state can be appropriately formalized [7]. 

1. FORMAT REQUIREMENT: the State-Update rules must 
conform to the format specified in section 3. 

2. APPLICABILITY REQUIREMENT: The State-Update rules 
must indicate when the game has been lost by adding a Won 
feature to Game-State. 

3. LEGALITY REQUIREMENT: The Update-System must only 
accept legal moves. 

Informally speaking, the FORMAT requirement guarantees that 
back-propagation can be used to find the preconditions of a 
sequence of rules; The APPLICABILITY requirement guarantees 
that the system can identify when to begin backing up; The 
LEGALITY requirement guarantees that only legal 
Recommended-moves will be found. 

While there will exist many Update-Systems that meet these 
requirements for any particular game, with any such system the 
learning algorithm can learn patterns describing forcing states. 
However, the particular choice of features and rules will influence 
the generaiity of the learned patterns. The more general the 
State-Update rules are, the more general the learned patterns will 
be. In the previous section a recognition rule for Go-moku was 
learned; The generality of this rule was directly attributable to the 
level of generality in the State-Update rules. If instead, a large set 
of very specific State-Update rules was provided (eg. listing all 
1020 ways to win) a much less general recognition rule would be 
learned from the exact same example. 

It is possible to extend the system so that preconditions for 
other events besides forced wins can be learned, provided that 
such events are describable given the features used by the State- 
Update system. For example, learning to capture pieces in 
checkers is only possible it one is able to describe a capture in 
the description language. In order to [earn recognition rules for 
arbitrary events, the definition of a forcing state must be modified. 
We define a state S to be a forcing state for player P with respect 
to event ,5 iff P can make a move in S that is guaranteed to 
produce an event at least as good as E. Unfortunately, 
recognition rules for arbitrary events may cause more harm than 
good if they are used indiscriminately. A player may be able to 
force E, but then find himself in a situation where he is worse off 
in other respects. 

6 Comparing Constraint-based Generalization systems 
Within the past 2 years, a considerable amount of research has 

been presented on systems that learn from single 
examples 18, 14, 11, 21. In addition, there exists an older body of 
related work [4,6, 91. Each of these systems is tailored to a 
particular domain: game playing [6, 91. natural language 
understanding [2], visual recognition of objects [14], 
mathematical problem solving [8, 1 l] and planning [4]. In order 
to characterize what these systems have in common, we present 
the following domain-independent description of Constraint- 
based Generalization: 
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Input: A set of rules which can be used to classify an 
instance as either positive or negative AND a positive 
instance. 

Generalization Procedure: Identify a sequence of rut& that 
can be used to classify the instance as positive. Employ 
backward reasoning to find the weakest preconditions of 
this sequence of rules such that a positive classification will 
result. Restate the preconditions in the description 
language. 

Each of the systems alluded to earlier can be viewed as using a 
form of Constraint-based Generalization although they differ in 
their description languages, formats for expressing the rules and 
examples, and criteria for how far to back-propagate the 
preconditions. In order to substantiate this claim, we will show 
how two well-known systems fit into this view. 

Winston, Binford, Katz and Lowry [14] describe a system that 
takes a functional description of an object and a physical 
example and finds a physical description of the object. In their 
system, the rules are embedded in precedents. Figure 5 shows 
some precedents, a functional description of a cup, and a 
description of a particular physical cup. (The system converts 
natural language and visual input into semantic nets.) The 
physical example is used to identify the relevant rules 
(precedents), from which a set of preconditions is established. 
The system uses the preconditions to build a new rule as shown 
in Fin. 6. 

A cup is a stable liftable Functional Descriotion a a CUD: 
open-vessel. 

Phvsrcal Examole of a CUD: E is a red object. The objects 
body IS small. Its bottom IS flat. The object has a handle 
and an upward-pointing concavity. 

l A Brick: The brick is stable because i!s bottom is flat. 
The brick is hard. 

l A Suitcase: The suitcase is liftable because it is 
graspable and because it is Irght. The suitcase is 
useful because it is a portable container for clothes. 

l A bowl: The bowl is an open-vessel because it has-an 
upward pointing concavity. The bowl contains 
tomato soup. 

Figure 5: Functional Description, Example, Precedents 

IF [object9 is light] & [object9 has concavily7] 
8 [object9 has handle41 8 [object9 has bottom71 
& [concavity7 is upwardpointing] & [bottom7 is flat] 

THEN [object9 isa Cup] 
UNLESS [[object9 isa openvessel] is FALSE] 

or [[object9 is liftable] is FALSE] 
or [[objects is graspable] is FALSE] 
or [[object9 is stable] is FALSE] 

Figure 6: New Physical Description, in Rule Format 

The LEX system learns heuristics for solving symbolic 
integration problems. Mitchell, Utgoff and Banerji [8] describe a 
technique that allows LEX to generalize a solution after being 
shown a single example. A solution is a sequence of problem- 
solving operators that is applied to the initial problem state. (Fig. 
1). In this system, the example serves to identify a sequence of 
operators that can be used to solve a particular problem. The 
system then back-propagates the constraints through the 
operator sequence to arrive at a generalized description of the 
problerns that can be solved by applying this operator sequence. 
Below is a problem and a solution sequence provided to LEX: 

OPl OP3 
j-7(x2) dx ====> 7(x2 ====> 7 x3/3 

Back-propa 
% 

$on establishes that the initial expression must 
match la(x ) in order for this sequence of operators to be 
applicable. 

0~1: Jr f(x) dx ==> rl f(x) dx 

OP2: -f sin(x) dx ==> -cos(x) + c 

OP3 : I xrZ1 dx =3> x r+l/(r+l) + C 

Table 1: Some Operators Used by LEX 

7 Conclusions 
Constraint-based generalization is a form of meta-reasoning in 

which generalizations are deduced from a single example. The 
example serves to isolate a sequence of rules that identify 
positive instances. By finding the weakest preconditions of these 
rules that produce a positive classification, a generalization can 
be made. The power of this technique stems from the focus that 
the example provides for the analysis process. 

8 Acknowledgements 
Tom Mitchell and his colleagues’ research on LEX suggested 

many of the ideas presented here. I thank Murray Campbell, 
Jaime Carbonell, Hans Berliner and Pat Langley for their 
suggestions. 

References 

1. Carbonell, J., Michalski, R. and Mitchell, T. An Overview of 
Machine Learning. In Machine Learning, Carbonell, J., Michalski, 
R. and Mitchell, T., Ed.,Tioga Publishing Co., 1983. 
2. DeJong,G. An Approach to Learning by Observation. 
Proceedings, International Machine Learning Workshop, , 1983. 
3. Dijkstra, E.. A Discipline of Programming. Prentice Hall, 1976. 
4. Fikes, R., Hart, P. and Nilsson, N. “Learning and Executing 
Generalized Robot Plans.” Artificia! Intelligence 3, 4 (1972). 
5. Forgy, C. “Rete: A Fast Algorithm ior the Many Pattern/Many 
Object Pattern Matching Problem.” Artificial Intelligence 79, 1 
(1982). 
6. Koffman, E. “Learning Through Pattern Recognition Applied 
to a Class of Games.” IEEE Trans. Sys. Sciences and 
Cybernetics SSC-4, 1 (1968). 
7. Minton, S. A Game-Playing Program that Learns by Analyzing 
Examples. Tech Report, Computer Science Dept., Carnegie 
Mellon University, forthcoming 
8. Mitchell, T., Utgoff, P. and Banerji, R. Learning by 
Experimentation: Acquiring and Refining Problem-Solving 
Heuristics. In Machine Learning, Carbonell, J., Michalski, R. and 
Mitchell, T., Ed.,Tioga Publishing Co., 1983. 
9. Murray, A. and Elcock, E. Automatic Description and 
Recognition of Board Patterns in Go-Moku. In Machine 
intelligence 2, Dale, E. and Michie, D., Ed.,Elsevier, 1968: 
10. Pitrat, J. Realization of a Program Learning to Find 
Combinations at Chess. In Computer Oriented Learning 
Processes, Simon, J., Ed.,Noordhoff, 1976. 
11. Silver, B. Learning Equation Solving Methods from Worked 
Examples. Proceedings of the International Machine Learning 
Workshop, , 1983. 
12. Utgoff, P. Adjusting Bias in Concept Learning. Proceedings 
International Machine Learning Workshop,, 1983. 
13. Wilkins, D. “Using Patterns and Plans in Chess.” Artificial 
intelligence 74 (1980). 
14. Winston, P., Binford, T., Katz, B. and Lowry, M. Learning 
Physical Descriptions from Functional Definitions, Examples and 
Precedents. Proceedings of the National Conference on Artificial 
Intelligence, AAAI, 1983. 


