
Constraint-based Pattern Mining in Dynamic Graphs

Céline Robardet

Université de Lyon, INSA-Lyon, CNRS, LIRIS UMR 5205

F-69621 Villeurbanne, France

Email: Celine.Robardet@insa-lyon.fr

Abstract—Dynamic graphs are used to represent relation-
ships between entities that evolve over time. Meaningful pat-
terns in such structured data must capture strong interactions
and their evolution over time. In social networks, such patterns
can be seen as dynamic community structures, i.e., sets of
individuals who strongly and repeatedly interact. In this paper,
we propose a constraint-based mining approach to uncover
evolving patterns. We propose to mine dense and isolated
subgraphs defined by two user-parameterized constraints. The
temporal evolution of such patterns is captured by associating
a temporal event type to each identified subgraph. We consider
five basic temporal events: The formation, dissolution, growth,
diminution and stability of subgraphs from one time stamp to
the next. We propose an algorithm that finds such subgraphs in
a time series of graphs processed incrementally. The extraction
is feasible due to efficient patterns and data pruning strategies.
We demonstrate the applicability of our method on several
real-world dynamic graphs and extract meaningful evolving
communities.

Keywords-dynamic graph; local pattern; evolving pattern

I. INTRODUCTION

Graphs are data models used to represent any kind of

relationship among various entities. Graphs are most widely

used for technological, sociological and scientific applica-

tions. For instance, one can analyze innovation dissemina-

tion, information diffusion and epidemiology. The study of

such graphs has attracted much attention in the last few

years and has proceeded along two main tracks: (a) The

analysis of graph properties, such as degree distribution

and diameter [1], and (b) the definition and the extraction

of more sophisticated properties using the pattern mining

framework [2], [3], [4], [5]. To probe relationships in real-

world systems, it seems more adequate to look for temporal

interactions, since most of the previously mentioned graphs

tend to change dynamically. If these tools are adapted

to static graphs, it seems more adequate, when analyzing

dynamic graphs, to look for temporal interactions. As new

vertices and edges appear while others disappear over time,

it seems decisive to examine deeply the evolution of such

dynamic graphs. Furthermore, there is a crucial need for

incremental methods that enable to find groups of associated

vertices and detect how these structures change over time.

Interesting subgraph patterns are often assumed to be

highly connected within the subgraph [4] and isolated from

the rest of the graph, i.e. having few links with the remaining

vertices of the graph. These properties can be captured by

measures such as modularity [6], used to find disjoint com-

munities forming a partition. The modularity of a partition

of vertices is the number of edges inside the clusters (as

opposed to crossing between clusters), minus the expected

number of such edges if the graph was random conditioned

on its degree distribution. However, this measure has two

main drawbacks: (a) It suffers from an intrinsic resolution

scale that prevents it from detecting small communities

and favors clusters of similar size [7]; (b) Maximizing the

modularity is NP-complete [8].

Instead of directly looking for a global structure of the

graph, such as a partition of the vertices, it can be more

efficient to proceed in two steps. One might first compute

subgraphs that capture locally strong associations between

vertices and then use these local patterns to construct a

global model of the graph’s dynamics. Such a framework

provides more interesting patterns when the analyst can

specify his inclination by means of constraints. Local pat-

terns are characterized by the fact that their validity can

be evaluated independently from other patterns [9]. Many

pattern-mining-under-local-constraints techniques have been

studied extensively during the last decade, highlighting the

crucial role of local constraint properties in tractability

issues. This process results in a possibly large and unstruc-

tured set of patterns. To turn this result into a true nugget

of knowledge that can be readily interpreted, these local

patterns have to be post-processed to form global models

(e.g., classifiers, clusterings), i.e., sets of patterns satisfying

global constraints. Such a mining task is called a Local-to-

Global approach.

Fully connected subgraphs, also called cliques, are local

patterns that have been used to construct communities. For

example, Palla et al. [10] put all the cliques of size k that

share k−1 vertices together. Such structures can be explored

systematically with a deterministic algorithm. Although

cliques are a popular way of capturing dense subgraphs, it

often fails with experimental data because of the high level

of noise. In such noisy data, some links may be missing

even in dense substructures. To cope with this problem, a

relaxed definition of cliques has been proposed: Pseudo-

cliques are connected subgraphs with a density (proportion

of connected peer vertices on the total number of peers)

higher than a given threshold. Recent research results show

2009 Ninth IEEE International Conference on Data Mining

1550-4786/09 $26.00 © 2009 IEEE

DOI 10.1109/ICDM.2009.99

950

that the constraint defining pseudo-cliques can be efficiently

used in a mining algorithm [5]. In this paper, we extend

this result and derive a new algorithm that extracts isolated

pseudo-cliques and their evolution in time. We consider

five basic temporal event types: The formation, dissolution,

growth, diminution and stability of pseudo-cliques. Such

evolving patterns allow us to describe the processes by

which communities come together, attract new members, and

develop over time. The use of complete solvers allows us to

answer user constrained queries without uncertainty.

The article is organized as follows. The next section is

dedicated to related work, section 3 presents the constraints

that define the pseudo-cliques that are to be extracted in a

static graph and the algorithm that handles these constraints.

Section 4 introduces the evolving pattern types and the

algorithm EVOLVING-SUBGRAPHS that mines them. Section

5 reports the results of our experimental evaluations and the

last section presents some conclusions and future work.

II. RELATED WORK

In the past few years, many constraint-based graph min-

ing approaches have been proposed. Zhu et al. [2] study

the pruning properties of graph structural constraints such

as density and diameter. They propose a general mining

framework that allows pruning on both patterns and data

spaces. Mining local patterns specific to graphs have also

been considered. Classical graph properties like cliques or

idependent sets can uncover new interesting information

in the data. Efficient computation of maximal cliques is

achieved in [11]. Several papers propose to relax the clique

property by allowing some links to be missing. Hämäläinen

et al. [3] define strongly self-referring subgraphs as a set of

nodes S whose vertices are connected to at least σ nodes of

S. Another way of relaxing this constraint is to use pseudo-

cliques, defined as subgraphs having a density greater than

a user-defined threshold. It was first studied by [4], but the

complete exploitation of the loose anti-monotonicity prop-

erty of the pseudo-clique constraint was only accomplished

in [5] where a polynomial delay algorithm that extracts all

pseudo-cliques is proposed.

There is an increasing interest in mining dynamic graphs.

Borgwardt et al. [12] apply frequent-subgraph mining algo-

rithms to time series of graphs and extract subgraphs that are

frequent within the set of graphs. The extraction of periodic

or near periodic subgraphs was considered in [13] where the

problem is shown to be polynomial. In this paper, we are

interested in finding evolving patterns in dynamic networks.

Our approach starts by the extraction of local patterns in

static graphs, and then combines the obtained patterns to

construct a global model [9] of the graph dynamic.

III. CONSTRAINED SUBGRAPHS IN STATIC GRAPHS

Let us first present the static pattern type we are interested

in. Let G = (V,E) be a simple undirected graph with a

vertex set V and an edge set E ⊆ V ×V . The degree deg(u)
of a vertex u is the number of vertices v adjacent to u, i.e.,

deg(u) = |{v ∈ V | {u, v} ∈ E}|. The subgraph induced by

a subset of vertices S (S ⊆ V) is the graph GS = (S,ES)
where ES = {{u, v} | {u, v} ∈ E ∧ u, v ∈ S}.

Subgraphs of interest are usually those made of vertices

that have a high density of edges. The density of a subgraph

is defined as the number of edges in the subgraph divided

by the maximal number of possible edges. A clique is a

subgraph with a density of 1. To relax this strong property,

we can consider subgraphs of a density at least equal to

a user-defined threshold. Such subgraphs are usually called

pseudo-cliques or quasi-cliques.

Definition 1 (Pseudo-clique): Given a user-defined

threshold σ ∈ [0, 1] and a set of vertices S ⊆ V of

size n, the subgraph GS = (S,ES) induced by S is a

pseudo-clique iff it is connected and
2|ES |

n(n−1) ≥ σ. Let us

denote degS(u) = |{v | {u, v} ∈ ES}|, the constraint can

then be rewritten as follows

Ppc(S, σ) ≡

∑

u∈S degS(u)

n(n − 1)
≥ σ (1)

Constraint-based mining algorithms require to take ad-

vantage of the constraints to prune huge parts of the search

space which can not contain valid patterns. Pruning based

on monotonic or anti-monotonic constraints has been proved

efficient on hard problems: When a candidate does not

satisfy the constraint then neither of its generalizations or

specializations can satisfy it. Let us first remark that pseudo-

clique constraint is not anti-monotonic with respect to the

enumeration of subgraphs based on the set inclusion of their

vertex sets: Expanding a set S of n vertices could make

the density
(

2|ES |
n(n−1)

)

increase or decrease. However, this

constraint is loose anti-monotonic, that is to say, pseudo-

cliques can always be grown from a smaller pseudo-clique

with one vertex less [2].

Property 1 (Loose anti-monotonicity of pseudo-clique):

Pseudo-clique constraint is loose anti-monotonic [14], i.e.,

Ppc(S, σ) ⇒ ∃v ∈ S such that Ppc(S \ {v}, σ).
Proof: Suppose the subgraph S satisfies Ppc(S, σ).

Let v⋆ be a vertex of S having the smallest degree on S

(degS(v⋆) = minu∈S degS(u)), n be the size of S and

S⋆ = S \ {v⋆}. Then, we have
∑

u∈S

degS(u) =
∑

u∈S⋆

degS(u) + degS(v⋆)

=
∑

u∈S⋆

degS⋆(u) + 2 degS(v⋆) ≥ σn(n − 1)

• If degS(v⋆) ≤ σ(n − 1), then
∑

u∈S⋆ degS⋆(u) ≥
σn(n−1)−2σ(n−1) ≥ σ(n−1)(n−2) and Ppc(S

⋆, σ)
is satisfied.

• Otherwise, ∀u ∈ S, degS(u) > σ(n− 1), and we have
∑

u∈S⋆ degS⋆(u) =
∑

u∈S degS(u) − 2 degS(v⋆) ≥
(n− 2) degS(v⋆) ≥ (n− 2)σ(n− 1) and Ppc(S

⋆, σ) is

also satisfied.

951

To be efficient, the enumeration process must tap the

pruning power from the loose anti-monotonicity of pseudo-

cliques. It is clear, from the proof of Property 1, that adding

the vertex v ∈ V that satisfies Equation (2) to a current

pseudo-clique S, leads to a pseudo-clique unless none of

the supersets of S is a pseudo-clique.

degS∪{v}(v) = min
u∈S∪{v}

degS∪{v}(u) (2)

Thus, an efficient algorithm enumerates vertices recursively

by finding at each iteration the vertex1 v that satisfies

Equation (2) and stop the enumeration if Ppc(S ∪ {v}, σ)
is not satisfied. This leads to a polynomial delay time

algorithm, that is to say the time needed to generate each

single pseudo-clique is bounded by a polynomial in the

size of the input graph. The efficiency of the algorithm

relies on the loose anti-monotonic property of the pseudo-

clique constraint that guarantees that each pseudo-clique is

generated at most once and that no invalid pseudo-cliques

are generated.

Uno proposes in [5] a method to solve Equations (1)

(on S ∪ {v}) and (2) efficiently. As
∑

u∈S∪{v} degS(u) =
∑

u∈S degS(u) + 2 degS(v), Ppc(S ∪{v}, σ) is satisfied iff

degS(v) ≥
σ|S|(|S|+1)−

P

u∈S
deg

S
(u)

2 . Equation (1) is thus

checked in constant time if
∑

u∈S degS(v) is stored and

updated during the enumeration process. Equation (2) can

trivially be checked in (O(|V |), but Uno shows in [5] how

to do it in time O(degS(v)).
Pseudo-cliques are local patterns of interest to capture

strong (but not necessarily perfect) associations in a graph.

But, not all the pseudo-cliques of a graph are of importance:

Some of them have many links to external vertices and others

are redundant. To identify the most useful pseudo-cliques,

we consider two other constraints that coerce the patterns

to be isolated and maximal. The isolation constraint (see

Definition 2) imposes a maximum to the average number of

external links per vertex.

Definition 2 (Isolated constraint): Given a user defined

threshold γ ∈ R, a subgraph S is isolated iff

Pi(S, γ) ≡

∑

u∈S (deg(u) − degS(u))

|S|
≤ γ.

Pi(S, γ) is loose anti-monotonic (proof is omitted due to

space constraint).

However, the combination of two loose anti-monotonic

constraints (Definitions 1 and 2) is not necessarily a

loose anti-monotonic constraint. To enumerate isolated

pseudo-cliques in a single process, the algorithm should

find the vertex v that satisfies both Equation (2) and

v = arg maxu∈S∪{v}

(

deg(u) − degS∪{v}(u)
)

. The con-

junction of these equations characterizes the vertex leading

1Note that if several vertices satisfy Equation (2), the one of smallest
index is taken.

to an isolated pseudo-clique. Such a vertex does not neces-

sarily exist and thus Ppc ∧ Pi is not loose anti-monotonic.

The two constraints cannot be ensured at the same time by

an algorithm that uses both loose anti-monotonic constraints.

Hence, we propose to use Pi in a post-processing of the

previously computed pseudo-cliques.

Extracting maximal patterns is even more difficult, since

this constraint is global and requires to enumerate supersets

of each candidate to check whether it is maximal. A practical

approach consists in extracting locally maximal isolated

pseudo-cliques as defined below.

Definition 3 (Pattern locally maximal): A subgraph S of

size n is a local maximal isolated pseudo-clique if

Ppc(S, σ) ∧ Pi(S, γ) is satisfied and no superset of S of

size n+1 satisfies these properties. This property is denoted

Pmax−ipc(S, σ, γ) and will henceforth be referred to as valid

pseudo-cliques.

Thanks to this locally maximal constraint, the very large

majority of non-maximal isolated pseudo-cliques are re-

moved, while the time complexity of the extraction remains

unchanged.

IV. MINING EVOLVING SUBGRAPHS

The method explained in the previous section to com-

pute valid pseudo-cliques gives unstructured and numerous

patterns. These results are hence difficult (if not impossi-

ble) to interpret [9]. We propose to complement this first

step, during which valid pseudo-cliques in static graphs

are mined, with a second step that constructs a global

model of the dynamic graph. We consider a dynamic graph

G = (G1, . . . , GT) which is a time-series of graphs, where

Gt = (V t, Et) is the graph of vertices V t and edges Et

observed at time t.

The typical questions we want to consider are:

• Do the strong interactions observed at time t grow,

diminish or remain stable over time?

• When do the changes occur?

The objective here is to identify the temporal relationships

that may occur between valid pseudo-cliques. We denote by

Ct the set of subgraphs of Gt that satisfy Pmax−ipc. We

consider five basic temporal relationships between couples

of subgraphs from consecutive time stamps:

Stability: S is said to be stable at time t if it is a valid

pseudo-clique at both times t and t − 1: S ∈ Ct and S ∈
Ct−1.

Growth: A subgraph S enlarges at time t if S is a valid

pseudo-clique at time t and if a subpart of S was a

valid pseudo-clique at time t − 1: S ∈ Ct and ∃R, R ⊂
S such that R ∈ Ct−1.

Diminution: A subgraph S shrinks at time t if S is a valid

pseudo-clique at time t and if it is a subpart of a larger

valid pseudo-clique of time t − 1: S ∈ Ct and ∃R, S ⊂
R such that R ∈ Ct−1.

952

Extinction: A subgraph S disappears at time t if it was a

valid pseudo-clique at time t − 1 and if it is not involved

in any previously defined temporal relationship at time t:

S ∈ Ct−1 and ∀R, R ⊆ S, R 6∈ Ct and ∀R, S ⊆ R, R 6∈ Ct.

Emergence: A subgraph S emerges at time t if it is a valid

pseudo-clique in Gt and if none of its subsets or supersets

are valid pseudo-cliques in Gt−1: S ∈ Ct and ∀R, R ⊆
S, R 6∈ Ct−1 and ∀R, S ⊆ R, R 6∈ Ct−1.

Those temporal relationships correspond to global con-

straints used to identify the dynamics of strong associations

in graphs. We now present an incremental algorithm that

processes each static graph sequentially. Inspired by the Trie-

based Apriori implementation [15], we propose to use a

trie data structure (prefix tree) to store valid pseudo-cliques.

Indeed, finding evolving patterns requires the evaluation of

subset queries over valid pseudo-cliques of Gt−1 and Gt.

Such queries are computationally consuming and require

special attention. Trie is appropriate for storing and retriev-

ing any finite set. We use it here to retrieve the vertex sets

defining valid pseudo-cliques.

Suppose that pseudo-cliques of Ct−1 are stored in a trie

T . Each node of T consists of the set S of all the vertices of

the pseudo-clique, a list of temporal states, a list of pointers

to other trie nodes and a list of time stamps. When a new

valid pseudo-clique of Gt is computed, its vertex set S is

inserted in T recursively. Starting from the root node, we

first go to the child corresponding to the first vertex of S

and process the remainder of S recursively for that child.

The recursion stops on a node whose vertex set is either S,

or a prefix of S:

• In the first case, the temporal label “Stability” is pushed

back in the temporal label list of the node and its time

stamp is set to t.

• In the latter case, the node gets a new son with vertex

set S, time stamp t and temporal label “Emergent”.

Then we look whether S is involved in a growing

evolving pattern. To do so, we have to retrieve all the

subsets of S from T by means of the following doubly

recursive procedure: We first go to the child correspond-

ing to the first vertex of S and process the remainder of

S recursively for that child and second discard the first

vertex of S and process it recursively for the node itself.

If there exists subsets of S that belongs to T with time

stamp label t − 1, then the temporal state associated

to S is changed into “Growth” and pointers to the

corresponding subsets are stored in the list associated

to the node. Those nodes are also tagged to avoid their

consideration in the following step.

Now that “Stability” and “Growth” patterns have been

dealt with, we need to check whether the remaining nodes

(those associated to pseudo-cliques of Ct−1) have shrunk

(“Diminution”) or completely disappeared (“Extinction”).

As tries are more effective to find subsets than to find

supersets, a second traversal of the trie is performed when all

pseudo cliques of Ct have been processed. For all the nodes

with time stamp t− 1 that are not involved in a “Stability”

or “Growth” pattern, the function that searches subsets is

triggered. If there exists a subset that belongs to Ct, the state

of the first node is set to “Diminution” and pointers to the

corresponding subsets are stored in the node list, otherwise

the state is set to “Extinction”, the pattern is output and the

node is removed from the trie.

V. EXPERIMENTAL RESULTS

We evaluate the added-value of our method EVOLVING-

SUBGRAPHS and the general characteristics of evolving pat-

terns subgraphs on three real-world dynamic networks: two

dynamic sensor networks, IMOTE and MIT, and a dynamic

mobility network Vélo’v, the shared bicycle system of Lyon.

The main characteristics of these datasets are presented on

Table I. All experiments were done on a Pentium 3 with 2

gigabytes of memory running on Linux.

Dataset ♯ Edges ♯ Timesteps Avg. density

IMOTE 11785 282 0.025
MIT 107770 11763 0.001

Vélo’v 279208 930 0.003

Table I
DATASET CHARACTERISTICS

A. Dynamic sensor networks

Both studied mobility networks are based on sensor

measurements. The IMOTE [16] data set has been collected

during the Infocom 2005 conference. Bluetooth sensors were

distributed to a set of participants who were asked to keep

the sensors with them continuously. These sensors were able

to detect and record the presence of other Bluetooth devices

inside their radio-range neighborhood. The available data

concerns 41 sensors over a period of 3 days. The MIT

or Reality Mining [17] experimental data set is constituted

of records from Bluetooth contacts for a group of cell-

phones distributed to 100 MIT students during 9 months.

Each cellular phone recorded the identities of all the devices

present in its neighborhood. Note that the sensors have no

localization capability, therefore we do not have information

on the actual movements of individuals carrying the sensors.

Since it may happen that a given sensor misses another one,

we admit the existence of an undirected link between the

two sensors as soon as one sensor sees the other. We study

the IMOTE dataset over a typical day and the MIT data

over a typical week. The number of edges of those graphs

are reported in Figure 1. Both IMOTE and MIT graphs are

sparse (the number of edges is low) and the number of edges

exhibits large variations over time.

To densify the graphs and cope with the flickering edge

problem that may occur with experimental data, we aggre-

gate the graphs over a period of 15 minutes for IMOTE and

1 hour for MIT: in both dynamic graphs, an edge exists if

953

0 1 2 3 4

x 10
4

0

20

40

60

80

Time (seconds)

E
d
g
e
s

0 1 2 3 4 5 6

x 10
5

0

50

100

150

Time (seconds)

E
d
g
e
s

Figure 1. Number of edges, displayed as a function of time (IMOTE on
the left and MIT on the right).

it appears at least once during the considered period. The

resulting dynamic graphs have a maximum degrees of 25

for IMOTE and 22 for MIT.

We extract evolving subgraphs with several density values

σ, the average number of out-of-subgraph edges per vertex

being set to 4.5 (γ = 4.5) and the minimal size of the

extracted valid pseudo-cliques set to 4 for IMOTE and to

3 for MIT. The total runtimes and number of computed

patterns are shown on Figure 2 (left). These figures show that

EVOLVING-SUBGRAPHS is tractable in terms of execution

time since it succeeds to extract the patterns in less than

20 minutes for different σ values varying between 1 and

0.6. The computational time is proportional to the number

of output patterns; that was expected according to the

theoretical study of the time complexity of the pseudo-clique

mining algorithm discussed in Section 3. The time required

to compute evolving patterns generally decreases with σ as

well as the number of extracted patterns.

Runtime Pattern types

 10

 100

 1000

 10000

 0.6 0.7 0.8 0.9 1
 0.1

 1

 10

 100

 1000

 10000

[N
B

 P
a

tt
e

rn
s
]

[T
im

e
 s

e
c
.]

Minimum density value (sigma)

Nb patterns
Time (s)

 1

 10

 100

 1000

 0.6 0.7 0.8 0.9 1
 10

 100

 1000

 10000

[N
B

 P
a

tt
e

rn
s
]

[N
B

 E
m

e
rg

e
n

t
p

a
tt

e
rn

s
]

Minimum density value (sigma)

Growth
Stability

Diminution
Emergent

 100

 1000

 10000

 100000

 0.6 0.7 0.8 0.9 1
 0.1

 1

 10

 100

 1000

 10000

[N
B

 P
a

tt
e

rn
s
]

[T
im

e
 s

e
c
.]

Minimum density value (sigma)

Nb patterns
Time (s)

 10

 100

 1000

 10000

 0.6 0.7 0.8 0.9 1
 100

 1000

 10000

[N
B

 P
a

tt
e

rn
s
]

[N
B

 E
m

e
rg

e
n

t
P

a
tt

e
rn

s
]

Minimum density value (sigma)

Growth
Stability

Diminution
Emergent

Figure 2. Runtime and number of extracted patterns (logarithmic scales)
(left) and number of patterns of each type (right) for IMOTE (top) and MIT

(bottom) dynamic graphs for different density threshold σ.

The numbers of evolving patterns of each type are shown

on Figure 2 (right). As the number of “Emergent” patterns

scales differently from other pattern types, their quantity

is shown on the right ordinate axe, whereas the number

of “Growth”, “Stability” and “Diminution” patterns are

plotted using the left ordinate axe. Even though the number

of patterns decreases with the density threshold, we can

observe that the number of each type of patterns varies

differently from one another.

 7 9 31 34 37

 9 15 31 34 37

 0 1 33 35

 0 4 29 35

 0 4 33 35 0 29 33 35

 2 14 19 25

 2 14 19 25

 71 (Stability)

 2 19 21 25

 0 4 29 35

 72 (Stability)

 9 15 31 34 37

 71 (Stability)

 9 15 31 34 37

 72 (Stability)

 9 15 31 34

 73 (Diminution)

 9 15 31 37

 5 9 15 31 34 37

74 (Growth)

Figure 3. Display of the evolving patterns for IMOTE with σ = 0.8,
γ = 3 and the minimum subgraph size equals 4 that occur in the morning.

Figure 3 shows the output of our method: nodes represent

valid pseudo-cliques and the numbers they contain are

vertices identifiers, solid arrows show evolving patterns and

dashed arrows are drawn between following subgraphs that

intersect. We can identify three main groups of people. The

first one is composed of individuals 9, 15, 31, 34 and 37.

This group appears at time stamp 71, splits around time

stamp 73 into two groups that then merge and integrate

an additional vertex 5. The second group is made up of

individuals 0, 4, 29 and 35. Individuals 1 and 33 are nearby.

This group is stable since it remains unchanged during

two consecutive time stamps. The third group contains

individuals 2, 14, 19 and 25 and is also stable.

B. Shared bicycle system Vélo’v

We analyze Lyon’s shared bicycle system Vélo’v on the

basis of the data provided by JCDecaux, promotor and

operator of the program. The dataset contains all the bicycle

trips that occurred between the 25th of May 2005 and the

12th of December 2007. During this period, there were

more than 13 million hired bicycle trips. Each record is

anonymized and presents the date and time as well as the

station’s ID for both the beginning and the end of the trip

(their geographical location being known).

To analyse the Vélo’v dataset, we first aggregate the

number of rentals for every days of the week and every

hours over the two and a half years period of observation.

We thus obtain 168 time stamps. Then, to leverage the most

important links, we remove the edges that had less than 50

rentals over this period.

We compute the total number of extracted evolving pat-

terns and EVOLVING-SUBGRAPHS runtime for several σ

values, γ being set to 5 and the minimum subgraph size

to 3. The results are similar to those on Figure 2 but are not

shown due to space constraint.

Figure 4 displays the output of EVOLVING-SUBGRAPHS

for the Vélo’v data set for time stamps between Monday 6

954

 71 90 187

 71 90 187

 48 (Stable)

 55 84 92 99

 55 84 92 99

 49 (Stable)

 55 84 92 99

 50 (Stable)

 58 78 115

 58 78 115 123

 48 (Growth)

Figure 4. Display of the evolving patterns for Vélo’v with σ = 0.9, γ = 5

and the minimum subgraph size equals 3.

PM and Tuesday 7 AM. The analysis of this outcome carries

interesting pieces of information: For example, at time stamp

48 (Tuesday 0 AM to 1 AM) the identified patterns give rise

to the group of stations 58, 78, 115 that are located on the

largest campus of Lyon. This pattern grows between 1 AM

and 2 AM with the addition of the neighboring station 123.

At the same time another subgraph appears, that contains

stations 187, 71 and 90, that surround the main park of Lyon.

Another important group is the one made of stations 55, 84,

92 and 99 that are all located in the 7th district of the city

where the second largest campus is located. Those stations

are located on the map of Lyon on Figure 5.

Figure 5. Location of Vélo’v stations in Lyon. Patterns from Figure 4 are
shadowed on the map.

VI. CONCLUSION

In this paper, we considered the evolving-pattern mining

problem in dynamic graph. We introduced five new pattern

types which rely on the extraction of dense subgraphs and

the identification of their evolution. We formalized this task

into a local-to-global framework: Local patterns are first

mined in a static graphs; then they are combined with the one

extracted in the previous graph to form evolving patterns.

These patterns are defined by means of constraints that are

used by the proposed algorithm EVOLVING-SUBGRAPHS.

It efficiently mines all evolving patterns that satisfy the

constraints. Our experiments on real life datasets show that

our approach produces high quality patterns that are useful

to understand the graph dynamics.

REFERENCES

[1] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over
time: densification laws, shrinking diameters and possible
explanations,” in Proc. KDD. ACM, 2005, pp. 177–187.

[2] F. Zhu, X. Yan, J. Han, and P. S. Yu, “GPrune: A con-
straint pushing framework for graph pattern mining,” in Proc.
PAKDD, ser. LNCS, vol. 4426. Springer, 2007, pp. 388–400.

[3] W. Hämäläinen, H. Toivonen, and V. Poroshin, “Mining
relaxed graph properties in internet,” in Proc. ICWI. IADIS,
2004, pp. 152–159.

[4] J. Pei, D. Jiang, and A. Zhang, “On mining cross-graph quasi-
cliques,” in Proc. KDD. ACM, 2005, pp. 228–238.

[5] T. Uno, “An efficient algorithm for enumerating pseudo
cliques,” in Proc. ISAAC, ser. LNCS, vol. 4835. Springer,
2007, pp. 402–414.

[6] M. E. J. Newman, “Fast algorithm for detecting community
structure in networks,” Phys. Rev. E, vol. 69, no. 6, p. 66133,
2004.

[7] S. Fortunato and M. Barthelemy, “Resolution limit in com-
munity detection,” PNAS, vol. 104, no. 1, pp. 36–41, 2007.

[8] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer,
Z. Nikoloski, and D. Wagner, “On modularity clustering,”
IEEE TKDE, vol. 20, no. 2, pp. 172–188, 2008.

[9] L. De Raedt and A. Zimmermann, “Constraint-based pattern
set mining,” in Proc. SDM. SIAM, 2007, pp. 237–248.

[10] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering
the overlapping community structure of complex networks in
nature and society,” Nature, vol. 435, no. 7043, pp. 814–818,
2005.

[11] K. Makino and T. Uno, “New algorithms for enumerating
all maximal cliques,” in Proc. SWAT, ser. LNCS, vol. 3111.
Springer, 2004, pp. 260–272.

[12] K. M. Borgwardt, H.-P. Kriegel, and P. Wackersreuther,
“Pattern mining in frequent dynamic subgraphs,” in Proc.
ICDM. IEEE Computer Society, 2006, pp. 818–822.

[13] M. Lahiri and T. Y. Berger-Wolf, “Mining periodic behavior
in dynamic social networks,” in Proc. ICDM. IEEE Com-
puter Society, 2008, pp. 373–382.

[14] F. Bonchi and C. Lucchese, “Extending the state-of-the-art
of constraint-based pattern discovery,” Data Knowl. Eng.,
vol. 60, no. 2, pp. 377–399, 2007.

[15] F. Bodon, “A trie-based Apriori implementation for mining
frequent item sequences,” in Proc. OSDM. ACM, 2005, pp.
56–65.

[16] A. Chaintreau, J. Crowcroft, C. Diot, R. Gass, P. Hui, and
J. Scott, “Pocket switched networks and the consequences of
human mobility in conference environments,” in Proc. WDTN.
ACM, 2005, pp. 244–251.

[17] N. Eagle and A. Pentland, “Reality mining: Sensing complex
social systems,” Journal of Personal and Ubiquitous Comput-
ing, vol. 10, no. 4, pp. 255–268, 2006.

955

