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The influence of metabolism on signaling, epigenetic markers, and transcription is highly
complex yet important for understanding cancer physiology. Despite the development of
high-resolution multi-omics technologies, it is difficult to infer metabolic activity from these
indirect measurements. Fortunately, genome-scale metabolic models and constraint-
based modeling provide a systems biology framework to investigate the metabolic states
and define the genotype-phenotype associations by integrations of multi-omics data.
Constraint-Based Reconstruction and Analysis (COBRA) methods are used to build and
simulate metabolic networks using mathematical representations of biochemical
reactions, gene-protein reaction associations, and physiological and biochemical
constraints. These methods have led to advancements in metabolic reconstruction,
network analysis, perturbation studies as well as prediction of metabolic state. Most
computational tools for performing these analyses are written for MATLAB, a proprietary
software. In order to increase accessibility and handle more complex datasets and
models, community efforts have started to develop similar open-source tools in Python.
To date there is a comprehensive set of tools in Python to perform various flux analyses
and visualizations; however, there are still missing algorithms in some key areas. This
review summarizes the availability of Python software for several components of COBRA
methods and their applications in cancer metabolism. These tools are evolving rapidly and
should offer a readily accessible, versatile way to model the intricacies of cancer
metabolism for identifying cancer-specific metabolic features that constitute potential
drug targets.
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omics, python, single-cell analysis
July 2022 | Volume 12 | Article 9145941

https://www.frontiersin.org/articles/10.3389/fonc.2022.914594/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.914594/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.914594/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.914594/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jheath@isbscience.org
mailto:suyapeng.tju@gmail.com
https://doi.org/10.3389/fonc.2022.914594
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.914594
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.914594&domain=pdf&date_stamp=2022-07-07


Ng et al. Open-Source Cancer Metabolic Modeling
INTRODUCTION

Cancer involves a complex set of dysregulations in multiple
biomolecular layers including metabolism. Metabolic changes in
cancer result from and lead to profound changes in the behavior
of cancer cells and their surrounding environment. Although
extensively studied, these metabolic changes are difficult to
accurately measure and model in an unbiased manner due to
the need to consider a heterogeneous tumor environment
encompassing different cell types, many difficult-to-measure
metabolites, and lack of standardization of models (1). While
recent years have yielded a wealth of methods to measure and
analyze biological systems at multiple omics layers (genomic (2,
3), epigenomic (4), proteomic (5–8), and metabolomic (9–11),
often extending to single-cell resolution (12), metabolic systems
are difficult to systematically assess because gene expression or
protein levels may not directly translate into metabolic
activity (1).

Genome-scale metabolic models (GEMs) can provide a
compelling approach towards understanding cellular
metabolism. GEMs are curated computational descriptions of
entire cellular metabolic networks. Derived from genome
annotations and experimental data, GEMs are composed of
mass-balanced metabolic reactions and gene-protein
associations that map the relationship of genes to proteins
involved in each reaction (Figure 1). The accumulation of
high-throughput data has contributed to the reconstruction of
GEMs for hundreds of organisms, from microbes and model
organisms to animals and humans (13). Whole-organism GEMs
can further be reduced into context-specific and cell type-specific
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models for analyzing specific tissue phenotypic states performing
different cellular functions. Metabolic flux analyses of GEMs
have led to various model-guided applications, such as
hypothesis generation, strain design, drug target discovery,
multicellular interactions modeling, and disease etiology (14–
16). With the rapidly increasing availability of high-resolution
multi-omics datasets, there is an increasing need for tools to
interpret data using a mathematical framework that also
integrates existing vast and complex biological knowledge. In
particular, dysregulated metabolic systems in cancer interact
heavily with the surrounding environment, and metabolic flux
analysis may prove especially beneficial to modeling
these systems.

Compared to omics analysis, cancer metabolism may be more
accurately modeled by combination of GEMs and a family of
methods called Constraint-Based Reconstruction and Analysis
(COBRA). COBRA methods perform systems-level analyses on
metabolic networks to uncover how genetic and environmental
factors affect phenotype on a biomolecular basis. COBRA
framework utilizes a stoichiometric matrix that transcribes
mass-balanced metabolic reactions of a cellular system,
including the system’s uptake and secretion rates, into a matrix
that represents the change in levels of reactants and products for
each reaction (Figure 1). While there are many allowable states
of reaction fluxes through a metabolic network, COBRA reduces
this solution space of feasible flux distributions by adding
constraints. Some basic constraints are mass conservation
(stoichiometry of reaction and products in a reaction), steady-
state assumption (input and output fluxes are balanced), and
reaction flux bounds (inequalities of upper and lower bounds).
A CB

FIGURE 1 | Constraint-based metabolic modeling. (A) A genome-scale metabolic model is a compartmentalized network of mass-balanced reactions that convert
products to reactants, and boundary pseudo-reactions that import or export metabolites. Biological objectives, such as biomass production, require activity through
a subset of internal reactions. (B) The metabolic model is converted into a stoichiometric matrix (S) of size m × n, with rows representing m metabolites and columns
n reactions. Reaction flux through all internal reaction (vi) and exchange reactions (ei) is represented by vector v of length n. Objective function Z = cTv is formulated
as a linear combination of desired fluxes, weighted by vector c. (C) At steady state, the rate of production and consumption of a metabolite must be zero, which is
described by the system of equations Sv = 0. There are many solutions to this system of equations, but the solution space can be constrained by imposing flux
bounds (vlb≤ v ≤ vub) and optimization such as maximization of objective function.
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Additional constraints can be determined by metabolite and
enzyme levels, thermodynamics directionality, enzyme
capacities, spatial compartmentalization, and genome
regulatory mechanisms (15, 17). This induces a space of
feasible fluxes which fulfill the used balance equations and
constraints, often called the “flux cone”. Constraint-based
analysis methods then aim to find biologically relevant flux
distributions within the flux cone.

COBRA methods for metabolic network analysis are now
incorporated into many software packages across several
programming languages like MATLAB and Python (15). Of
these, MATLAB packages such as COBRA Toolbox, Raven
Toolbox, and CellNetAnalyzer have been the leading standard
platforms that integrate with many existing COBRA methods
(18–20). However, the reliance on MATLAB, a proprietary and
closed-source software, reduces the accessibility of metabolic flux
analysis, especially for teaching and reproducibility purposes.
Recent open-source community efforts have promoted the
development of a similar ecosystem of COBRA software in
Python, starting with the development of COBRApy (21)
under the openCOBRA Project (22) and PySCeS CBMPy (23).
As an open-source language, Python opens COBRA methods to
greater possibilities by enabling deployment on machines
without a proprietary license, which is especially convenient
for cloud computing. Due to Python being widely adopted for
data science and computation, it provides state-of-the-art
scientific tools for accessing databases, integrating various data
modalities, and interfacing with computational tools like parallel
computing, machine learning, visualizations, and web applications.

This review will summarize the set of packages currently
available in Python for various COBRAmethods. We identify the
advantages and shortcomings of the Python ecosystem to guide
users’ decisions on their choice of a software platform and inspire
future research ideas. We focus on the application of COBRA
methods to cancer metabolism. Finally, we will explore the future
directions of COBRA methods development and their
importance in cancer modeling.
COBRA METHODS IN PYTHON

To make COBRA open-source and accessible, multiple Python
packages have been developed by the scientific community to
perform the different analyses within COBRA. Here we describe
the major components of COBRA and list their associated
packages (Figure 2; Table 1), and assess their strengths and
weaknesses (Table 2). First, we start with the core package
COBRApy, which handles the details of metabolic models and
basic simulations. We then describe methods for determining
metabolic flux, such as flux balance analysis, flux variability
analysis, and in silico perturbation. Next, we summarize
various methods for adding biological constraints like multi-
omics and biophysics. In addition, we review methods for
unbiased pathway analysis and sampling methods. We also
summarize the development of COBRA methods for models at
the single-cell and population level. Finally, we touch upon
packages for visualization and interactive web applications.
Frontiers in Oncology | www.frontiersin.org 3
Modeling Framework
COBRA for Python (COBRApy) uses an object-oriented
programming approach to represent models, metabolites,
reactions, and genes as class objects with accessible attributes.
Using this design, COBRApy recapitulates functions for
standard metabolic flux analyses of its MATLAB counterpart
while being extendible and accessible. First, it has the
capabilities to read and write models in various formats such
as MAT-file (for storing MATLAB variables), JSON, YAML,
and Systems Biology Markup Language (SBML) (93), the
current community-accepted standard for computational
systems biology. SBML incorporates the Flux Balance
Constraints (FBC) version 2 package (94), which supports
constraint-based modeling by encoding objective functions,
flux bounds, model components , and gene-protein
associations, whose usage will be discussed below. COBRApy
can also load SBML models from web databases such as BiGG
and BioModels (95, 96). The quality of such metabolic models
can be assessed using a Python test suite called MEMOTE that
integrates version control of models via GitHub and checks for
correct annotation, model components, and stoichiometry (24).
To use these models for various optimization problems,
COBRApy interfaces with either commercial or open-source
solvers that implement linear programming algorithms. We will
detail additional built-in or integrated functionalities for various
COBRA methods (Figure 2).

Flux Balance Analysis
The most common COBRA method is flux balance analysis
(FBA), which assumes the system is at steady state, follows
mass-balance described in the stoichiometric matrix, and
restricts reaction fluxes by bounds. Furthermore, FBA
searches for sets of steady-state reaction fluxes that maximize
or minimize an objective function representing a biological
function, such as using biomass production objective to model
cellular growth (29). The objective function is an artificial
reaction formulated by linear combinations of reactions that
would contribute to the desired biological function. For
example, the biomass production can be represented by the
consumption of biomass precursors in different proportions.
Components of the biomass production may include amino
acids, lipids, nucleotides, carbohydrates, cofactors, and other
molecules based stoichiometrically on the macromolecular
composition of a cell measured as weight fractions under
specific experimental conditions, typically during exponential
growth. Although the biomass equation is the de facto choice
for the objective function and macromolecular compositions
are more similar across related species, certain components
such as fatty acids are sensitive to environmental and genetic
conditions (97). Therefore, caution is required when choosing
an appropriate objective function that reflects the system’s
experimental condition. Sensitivity analysis of FBA could be
performed using different objectives (or ensemble of objectives)
accounting for the natural variation in biomass equation across
different conditions (97). Assessment of bias introduced by the
objective function would require experimental validation of
growth dynamics or knockout simulations discussed below.
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FIGURE 2 | Overview of Python software for major components of COBRA methods. Constraint-based metabolic modeling first requires loading a metabolic model
into software that handles the various parts of the modeling framework (grey), such as metabolites, reactions, genes, stoichiometric matrix, and flux solutions. New
metabolic models can be reconstructed from genome sequences and database, quality-checked by model testing software, made consistent using gap-filling tools,
and visualized using web-based packages. Using the metabolic model, FBA (yellow) finds an optimal flux distribution that follows stoichiometry under steady state
and can further be extended to dynamic systems. Since there are alternative optima (blue) to FBA, FVA and geometric FBA can be used to characterize the solution
space. We can perturb (red) the system to predict the effect of knockouts and use such predictions to design an optimal system (‘strain’). To improve FBA
predictions, we can add biophysical (green) constraints based on thermodynamics, proteins, and macromolecular expression. Metabolic modeling can be further
enhanced by integration of multi-omics (purple) data, such as extracting reduced models based on omics data and adding regulatory constraints. Using omics data,
metabolic modeling can become high-dimensional (brown), through single cell modeling and community modeling. Multiple metabolic models can be reduced into
ensemble objects. In contrast to FBA, unbiased (pink) approaches do not require an objective function. These include methods for sampling flux distributions and
pathway analyses. Names of software packages are in bold.
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TABLE 1 | Python tools for constraint-based modeling.

Category Method Software URL Doc.

Modeling framework Object-oriented programming COBRApy (21) https://cobrapy.readthedocs.io
https://github.com/opencobra/cobrapy

✔

Testing MEMOTE (24) https://memote.readthedocs.io
https://github.com/opencobra/memote

✔

Reconstruction Template-based AuReMe (25) https://aureme.readthedocs.io
http://aureme.genouest.org

✔

Template-based, gap-filling CarveMe (26) https://carveme.readthedocs.io
https://github.com/cdanielmachado/carveme

✔

Template-based MetaDraft (27) https://systemsbioinformatics.github.io/cbmpy-metadraft/ ✔

Homology-based, multi-species, gap-
filling

CoReCo (28) https://github.com/esaskar/CoReCo ✔

FBA FBA (29) COBRApy See above ✔

Dynamic metabolic
modeling

Dynamic FBA (30) dfba (31) https://dynamic-fba.readthedocs.io
https://gitlab.com/davidtourigny/dynamic-fba

✔

Michaelis-Menten kinetics DMPy (32) https://gitlab.com/wurssb/DMPy ✔

Alternative optima Geometric FBA (33) COBRApy See above ✔

FVA (34)
VFFVA VFFVA (35) https://vffva.readthedocs.io

https://github.com/marouenbg/VFFVA
✔

Knockout Simulation Single/Double deletions (36) COBRApy See above ✔

MOMA (37)
ROOM (38)
Flux- and graph-based Conquest (39) https://github.com/laniauj/conquests ✔

Strain Design OptGene (40) Cameo (41) https://cameo.bio/
https://github.com/biosustain/cameo

✔

OptKnock (42)
Differential FVA
FSEOF (43)
OptRAM (44) MEWpy (45) https://mewpy.readthedocs.io

https://github.com/BioSystemsUM/mewpy
✔

OptORF (46)
Omics constraints E-flux (47) ReFramed (48) https://reframed.readthedocs.io

https://github.com/cdanielmachado/reframed
✔

CORDA CORDA (49) https://github.com/resendislab/corda ✔

GIM3E GIM3E (50) https://github.com/brianjamesschmidt/gim3e ✔

FASTCORE (51) Troppo (52) https://github.com/BioSystemsUM/troppo ✘

CORDA (49)
GIMME (53)
tINIT (54)
iMAT (55)

Regulatory constraints rFBA (56) MEWpy See above ✔

SR-FBA (57)
PROM PROM (58) https://github.com/jseidel5/Python-Probabilistic-Regulation-of-

Metabolism
✔

GEM-PRO (59) ssbio (60) https://ssbio.readthedocs.io ✔

arFBA arFBA (61) https://github.com/cdanielmachado/arfba ✘

Thermodynamics ll-FBA (62) COBRApy See above ✔

CycleFreeFlux (63)
PTA PTA (64) https://probabilistic-thermodynamic-analysis.readthedocs.io

https://gitlab.com/csb.ethz/pta
✔

TFA, TVA (65) ReFramed See above ✔

TFA, TVA (65) pyTFA (66) https://pytfa.readthedocs.io
https://github.com/EPFL-LCSB/pytfa

✔

Protein constraints pFBA (67) COBRApy See above ✔

GECKO (68) MEWpy See above ✔

sMOMENT AutoPACMEN
(69)

https://github.com/klamt-lab/autopacmen ✔

ECMpy ECMpy (70) https://github.com/tibbdc/ECMpy ✔

ME-modeling COBRAme COBRAme (71) https://cobrame.readthedocs.io ✔

Gap filling MILP COBRApy See above ✔

Ensemble modeling FBA Medusa (72) https://medusa.readthedocs.io/
https://github.com/opencobra/Medusa

✔

FVA
Deletion
ML

(Continued)
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Under the above mathematical constraints, FBA is an
optimization problem involving a system of equations that
can be solved by linear programming, as initially proposed in
1984 (98). Functions for FBA and customization of objective
functions are included in COBRApy. With these basic
constraints, FBA is the foundation from which many forms
of COBRA methods evolved.

Dynamic Metabolic Modeling
Although FBA assumes that a system is unchanging at steady
state, these pseudo-steady states can be coupled to a dynamical
system with changing environmental variables using dynamic
FBA (DFBA) (99). There are several approaches to DFBA: 1)
dynamical optimization approach (DOA) that uses ordinary
differential equations (ODEs) to describe an optimization
problem of entire time profiles of metabolites, 2) statistic
optimization approach (SOA) that divides the time period into
time intervals to perform instantaneous optimization (LP) per
time interval with flux rate-of-change constraints, 3) direct
approach (DA) that resolves the LP of the right-hand side of
ODEs, and 4) reformulation of the ODEs as differential-algebraic
equation (DAE) system (30, 89, 99). The fourth approach via
DAE is implemented in Python package dfba (31), while the
second approach via SOA can be implemented using COBRApy
and SciPy. Alternatively, a very different approach to dynamical
metabolic modeling was proposed by DMPy, which translates a
GEM into a dynamic reaction equation model using Michaelis-
Menten approximations and infers missing kinetic constants
using Bayesian parameter estimation with thermodynamics
constraints (32). However, this method requires extensive
measurements of reaction rates to accurately parameterize a
large-scale model. All these constraint-based methods for
dynamical metabolic modeling enable the utilization of high-
throughput and longitudinal data to interrogate changes
in metabolism.
Frontiers in Oncology | www.frontiersin.org 6
Alternative Optimal Solutions
Flux distributions, even under an optimal objective, are usually
not unique as many alternative fluxes can yield a maximum
biomass production. The most representative solution can be
found using geometric FBA in COBRApy, which looks for a
unique flux distribution that is central to the entire solution
space (33). To better characterize all alternative optima that
satisfy the constraints of FBA, flux variability analysis (FVA)
finds the range of alternative fluxes for a reaction that maintains
optimization of the objective function within a margin of error
(34). The search for alternate optimal solutions is time-intensive,
but COBRApy has addressed this problem in FVA by
implementing parallel computing. For example, Very Fast Flux
Variability Analysis (VFFVA) is available in Python and its
implementation of FVA is much faster and more memory-
efficient than its analog in MATLAB, fastFVA (35).

System Perturbations, In Silico Knockout,
and Strain Design
Quantitative flux predictions are useful to experimentalists
because of their potential to explain or even predict the effect
of environmental and genetic changes. For investigating the
relationship between the external environment and
the modeled system, COBRApy provides tools for specifying
the growth medium and exchange rates of a model. Instead of
extracellular conditions, intracellular changes such as genetic
mutations and gene modulation can be interrogated as well. To
identify essential genes and reactions for biological functions,
FBA is performed with gene knockout simulations to assess the
effects of the knockouts on objective functions (36). Similar to
COBRA Toolbox, COBRApy includes functions for knocking
out single or double genes and reactions by restricting the flux
through associated reactions. Another algorithm for assessing
the effect of a perturbation is minimization of metabolic
adjustment (MOMA), which determines the post-perturbation
TABLE 1 | Continued

Category Method Software URL Doc.

Single cell modeling Compass Compass (73) https://yoseflab.github.io/Compass/
https://github.com/YosefLab/Compass

✔

scFEA scFEA (74) https://github.com/changwn/scFEA ✔

Community modeling MICOM MICOM (75) https://micom-dev.github.io/micom/
https://github.com/micom-dev/micom

✔

Dynamic FBA surfin_fba (76) https://github.com/jdbrunner/surfin_fba ✔

Sampling ACHR (77) COBRApy See above ✔

OPTPG (78)
Pathway analysis EFM EFMlrs (79) https://github.com/BeeAnka/EFMlrs ✔

EFM (80) CoBAMP (81) https://cobamp.readthedocs.io
https://github.com/BioSystemsUM/cobamp

✔

Minimal cut sets (82)
Elementary flux patterns (83)

Visualization and web apps Plug-in, website Escher (84) https://escher.readthedocs.io
https://escher.github.io

✔

Plug-in, website SAMMIpy (85) https://sammipy.readthedocs.io
www.SammiTool.com

✔

Plug-in d3flux (86) https://pstjohn.github.io/d3flux/
https://github.com/pstjohn/d3flux

✔
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TABLE 2 | Pros and cons of COBRA methods.

Category Method/Tool Pros Cons

Reconstruction AuReMe - Support for eukaryotes model
- Good traceability
- Automatic integration of experimental data

- Some manual refinement assistance
- Not FBA-ready

CarveMe - GEMs ready for FBA
- Fast
- Customizable for large number of genomes

- No manual refinement assistance
- Some support for eukaryotes model

MetaDraft -Support for eukaryotes model
- Fast

- No manual refinement assistance
- Not FBA-ready

CoReCo - Support for eukaryotes model
- GEMs nearly ready for FBA
- Simultaneous reconstruction for multiple species (parallelizable)

- Requires KEGG license
- No manual refinement assistance

FBA FBA - Does not require kinetic parameters - Requires objective function
- Requires reaction bounds (especially exchange flux)

Dynamic
modeling

Dynamic FBA
(SOA and DAE)

- Couples pseudo-steady states to dynamical systems
- Does not require kinetic parameters

- SOA requires small steps and thus more computation

DMPy - Infers missing kinetic parameters using thermodynamics constraints - Requires >80% of kinetic parameters for accuracy
Alternative
optima

Geometric FBA - Gives single representative solution – Reproducible typical solution
(avoids randomly picking one solution from flux cone)

- Weak correlation with protein levels (without omics
constraint)

FVA/VFFVA - Determines min and max flux for a reaction would achieve optimal
objective state
- (VFFVA) Increased speed and reduced memory usage

- Varies one reaction at a time

Sampling - Estimates probability distribution of feasible fluxes
- Can be unbiased (not using an objective function)

- Computationally intensive

Omics
constraints

E-flux - Constraints reaction bounds only
- No discretization of data

- May over-constrain model based on noisy data
- Poor growth rate prediction

GIMME - LP problem (fast)
- Ensures operability of required metabolic function
- Predicts growth rate, uptake/secretion rates, essential genes, and
oncogenes

- Discretizes data
- Models have high fractions of blocked reactions,
moderate resolution power, poor robustness to missing
data/noise

GIM3E - Ensures operability of required metabolic function
- Integrates metabolomics data

- Discretizes data
- MILP problem (slow)

(t)INIT - Ensures operability of required metabolic functions
- (INIT) predicts oncogenes and tumor suppressor genes, consistent
model, good resolution power, robust to noise/missing data

- MILP problem (slow)
- (INIT) Poor predictions of growth rate, uptake/
secretion rates, and essential genes

iMAT - No objective required
- Consistent model, good resolution power, robust to noise/missing
data
- Predicts oncogenes

- Discretizes data
- MILP problem (slow)
- Weak predictions of growth rate, uptake/secretion
rates, and essential genes

FASTCORE - LP problem (fast)
- Obtains minimal consistent model
- Predicts oncogenes and loss of function mutations
- Moderately consistent model, good resolution power, robust to noise

- Requires specification of core reactions
- Poor predictions of growth rate, uptake/secretion
rates, and essential genes

CORDA - LP problem (fast)
- Non-parsimonious pruning
- Predicts oncogenes and loss of function mutations

- Requires specification of core reactions
- Weak predictions of growth rate and essential genes
- Poor predictions of uptake/secretion rates

Regulatory
constraints

rFBA - Predicts flux over time intervals
- Models transcriptional regulation

- Uses boolean TRN
- Stepwise calculation of metabolic and regulatory
states
- Chooses only one solution per time interval

SR-FBA - Combined calculation using metabolic and regulatory constraints
- Models transcriptional regulation

- Uses boolean TRN
- Calculates flux for one time step (steady-state)
- Does not account for metabolic transitions and
feedback loops

PROM - Uses continuous TRN
- Models transcriptional regulation

- Requires TF-target gene relationships

GEM-PRO - Models protein instability - Requires protein structures
arFBA - Models allosteric regulation - Requires regulation matrix defining effector-reaction

relationship
- Small-scale applications

Thermodynamics ll-FBA - Does not require metabolite concentrations or free energies - MILP problem (slow)
CycleFreeFlux - Post-process using LP problem (fast)

- Can be applied to any flux distribution including sampled solutions
- Does not require metabolite concentrations or free energies

- Biased towards solutions with small total flux and
those with same direction as their overlapping internal
cycles

(Continued)
Frontiers in Oncology
 | www.frontiersin
.org 7
 July 2022 | Volume 12 | Article 914594

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ng et al. Open-Source Cancer Metabolic Modeling
flux vector that is closest to a reference flux vector (e.g., FBA
solution before change) (37). Currently , COBRApy
implementation of MOMA is the only one that does not
require a commercial quadratic programming solver but
instead uses OSQP, which is an open-source solver (100).
Another method, called Regulatory-on-off minimization
(ROOM), finds the new flux distribution with minimal
reaction changes compared to a reference state (38). Available
in COBRApy, these methods characterize the effects of gene
deletion relative to a wild-type reference. Adding to flux-based
determination of essentiality, a new metabolite essentiality
analysis combining graph-based and flux-based analysis was
proposed by Conquests (Crossroad in metabOlic Networks
from Stoichiometric and Topologic Studies) (39).

The iterative testing of gene or reaction deletions was initially
developed for in silico strain design, which determines optimal
genetic changes that would maximize production of desired
metabolites. Straight maximization of only the desired reaction
is problematic, since it ignores the drainage of cellular resources
Frontiers in Oncology | www.frontiersin.org 8
needed for cellular growth. Therefore, strain design methods
couple product yields with cellular objectives to optimize for fast-
growing cells that have high productivity. Such metabolic
engineering tools are available in a COBRApy-derived package
called cameo (41). It provides efficient, parallelized
implementations of standard in silico strain design methods for
predicting gene knockout strategies (OptGene [evolutionary
algorithm] (40), OptKnock [linear programming] (42) and for
predicting gene expression modulation targets (Differential FVA,
Flux Scanning based on Enforced Objective Flux [FSEOF] (43).
Instead of modulating genes, there are algorithms that optimize
at the regulatory level by changing transcription factors, such as
OptRAM (44) and OptORF (46) in MEWpy (Metabolic
Engineering Workbench in python) (45). These simulation
tools for strain design and in silico knockouts/perturbations
can be easily adapted to study metabolism in the context of
physiology and disease, especially cancer. For example, we will
later discuss studies that use in silico knockout to screen for
cancer drug targets. Other studies integrated genetic variants by
TABLE 2 | Continued

Category Method/Tool Pros Cons

TFA, TVA - Explicitly models thermodynamics - Requires metabolite concentrations and free energies
- Over-approximates uncertainty

PTA - Explicitly models thermodynamics for optimization and sampling
- Models uncertainty of free energies and metabolite concentrations

- Requires metabolite concentrations and free energies
- Computationally intensive

Protein
constraints

pFBA - Predicts growth rate, uptake/secretion rates, and essential genes - Assumes that flux distribution with smallest magnitude
minimizes protein costs

Enzymatic
constraints
(GECKO,
sMOMENT,
ECMpy)

- Model proteome limitation at enzyme resolution
- (sMOMENT) Automates enzyme database query
- (ECMpy) Automates enzyme parameters calibration
- (ECMpy) Does not increase model size

- Requires experimentally measured enzyme turnover
numbers
- (GECKO) Increases model size
- (sMOMENT) Moderately increases model size
- (ECMpy) Manually obtains protein subunit composition
data

ME-modeling COBRAme - Modeling proteome composition improves predictive accuracy
- Framework for building ME-models for new organisms

- Large model size and complexity
- No standardized SBML format for ME-models
- Only applied to bacteria so far

Ensemble
modeling

Medusa - Compresses multiple models into compact ensemble objects
- Reduces memory usage of storing ensembles
- Interfaces with machine learning

- No standardized SBML format for ensemble objects

Single cell
modeling

Compass - Genome-scale modeling
- Maximizes agreement with gene expression
- Handles sparsity by sharing information across neighbors
- Uses multiple objective functions

- Map gene expression to reaction expression using
boolean relationships (GPR)

scFEA - Minimizes flux imbalance of all cells to simulate exchange of
metabolites
- Less stringent flux balance and steady-state assumption
- Uses neural net to model nonlinear relationship between gene
expression and reaction rates

- Not easily scalable due to large memory usage
- Applied to small-scale models

Community
modeling

MICOM - Models exchanges and interactions between communities and
environment
- Automates building community models from a model database
- Predicts replication rates in human gut microbiome

- Assumes trade-offs between individual and
community growth rate (gut microbiome specific)
- Metabolic models may not be accurate (labratory vs.
gut conditions, species differences)

Dynamic FBA
(surfin_fba)

- Reduces optimizations problems (and parameter space) required for
dynamic FBA for communities

- Non-biological approach to choosing between non-
unique optima

Pathway
Analysis

EFM - Unbiased characterization of models (no objective function required)
- (EFMlrs) Pre- and post-process models for EFM calculations

- (EFMlrs) EFM calculation performed by other tools not
included in program
- EFM calculations are memory intensive and not
scalable
Some method comparisons extracted from literature for reconstruction (87, 88), dynamic modeling (89), omics constraints (90, 91), and regulatory constraints (92). Growth rate, uptake/
secretion rates, and cancer essential gene prediction performances from Jamialahmadi et al. are based on humanmetabolic models and available only for GIMME, INIT, iMAT, FASTCORE,
CORDA, and pFBA (91).
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simulating knock out of enzymes with loss of function mutations
(101–103).

Integrating Multi-Omics Data With GEMs
Integration of omics data into metabolic models is now critical to
standard analysis of GEMs to improve flux predictions and
interpret multi-omics data. Prior to applying constraints, gene-
level data must first be processed to reflect reaction-level data.
This involves calculating a reaction expression matrix that
evaluates gene-protein-associations (GPR, nested logic rules
representing gene essentiality and redundancy). For example,
we take the minimum expression of required subunits, but take
the sum of isozyme expression. This calculation can be
performed in Python packages l ike CORDA (Cost
Optimization Reaction Dependency Assessment) (49) and
MEWpy (45). Marıń de Mas et al. further improved GPR
evaluation in their Python implementation of stoichiometric
GPR (S-GPR) that considers the stoichiometry of protein
subunits (104).

The resulting reaction expression levels are used subsequently
to extract a context-specific metabolic model of active reactions
from the whole-organism GEM to reflect a phenotypic state
specific to cell type and condition, such as disease state or
nutrient level. The simplest transcriptome constraints can be
applied by setting associated expression levels as the reaction
upper bound, as demonstrated in E-flux and other studies (47,
105, 106). Instead of constraining all genes, PRIME is method
that adjusts reaction upper bounds of phenotype-associated
genes that are correlated with phenotypic data such as growth
rate (90). Additional methods for extraction of context-specific
models from transcriptome, metabolome, and proteome have
been reviewed previously and can be summarized into three
main families of approaches (107): 1) GIMME-like (GIMME
(53), GIM3E (50), tINIT (54)), which aims to maximize the
correspondence of flux phenotype to data while maintaining
required metabolic functions; 2) iMAT-like (iMAT (55), INIT
(108), Lee-12 (109), which only maximizes similarity of flux
phenotype to data; and 3) MBA-like (MBA (110), mCADRE
(111), FASTCORE (51), FASTCORMICS (112), CORDA (49),
which removes non-core reactions while ensuring consistency of
the model. Currently, integration of these methods with
COBRApy is still in development within the DRIVEN project
(113). Fortunately, some of these reconstruction methods have
been reimplemented in other Python packages (Table 1). For
example, ReFramed implemented E-flux (48), CORDA and
GIM3E have standalone Python packages, and Troppo
implemented FASTCORE, CORDA, GIMME, tINIT, and
iMAT (52). Nonetheless, the Python ecosystem has
shortcomings in reconstruction methods, such as the
unavailability of some methods (INIT, MBA, mCADRE,
FASTCORMICS, and PRIME), and the lack of documentation
and usage examples for the Troppo package.

Reconstruction methods could result in incomplete and
infeasible networks, partly due to errors in experimental data
and curated knowledge, and partly due to parsimonious
approaches when pruning reactions. To make reconstructed
models feasible, one can use the gap-filling functionality in
Frontiers in Oncology | www.frontiersin.org 9
COBRApy to infer missing pathways using mixed-integer
linear program (MILP). However, due to stochasticity and
existence of alternative optima, GEM reconstruction and gap-
filling of the same network can give rise to multiple GEMs that
could yield different flux predictions. To account for the
uncertainty in network structure, ensemble modeling
compresses such a set of alternative models into an ensemble
object to reduce redundancy while capturing variation. Ensemble
modeling can be performed through Medusa, a Python package
for generating ensembles, performing ensemble simulations, and
coupling ensembles with machine learning (ML) (72).

Despite reconstruction of context-specific GEMs, GEMs are
still flawed in flux prediction due to their inability to account for
cellular mechanisms that regulate metabolic activity. A recent
review has outlined the major methods for integrating regulatory
mechanisms into metabolic models as the following:
transcriptional regulatory networks (TRNs), post-translational
modifications, epigenetics, protein–protein interactions and
protein stability, allostery, and signaling networks (92). Several
methods using TRNs have been translated from MATLAB to
Python (Table 1), including boolean TRN methods like
regulatory FBA (rFBA) (56) and steady-state regulatory FBA
(SR-FBA) (57) available via MEWpy, and a continuous TRN
method called probabilistic regulation of metabolism (PROM)
(58, 114). Other regulatory mechanisms are also available: 1)
GEM-PRO (59) integrates protein structure information, and 2)
arFBA (61) integrates allosteric interactions respectively.
However, methods for integrating post-translational
modifications, epigenetics, and signaling networks are not yet
available in Python. Future development is needed to account for
the complex cellular regulatory activity.

Extraction of context-specific GEMs requires a reference
GEM that is often manually curated. To automate the
laborious process of GEM reconstruction, several tools were
developed to reconstruct microbial GEMs from genome
sequences (87). Several examples of Python-based software are
AuReMe (25), CarveMe (26), MetaDraft (27), and CoReCo (28).
Among these, Mendoza et al. (87) reviewed the first three and
found them all to generate GEMs that have high reaction sets
similarity to manually curated models, but only CarveMe
generates GEMs ready-to-use for FBA (Table 2). A more
recent tool called gapseq (88) was shown to outperform
CarveMe, but it is written in shell-script and R.

Biophysical Constraints
To ensure that reaction directionalities in computational results
agree with biological findings, COBRAmethods include addition
o f t h e rmod yn am i c c o n s t r a i n t s v i a r emov a l o f
thermodynamically infeasible pathways or calculations of
Gibbs free energy. The vastness of solution space can also be
attributed to thermodynamically infeasible loops where
metabolites are cycled infinitely. COBRApy includes two
implementations for removing such loops: one method ll-FBA
(add_loopless) utilizes mixed-integer linear programming (62),
and another faster method CycleFreeFlux (loopless_solution)
uses postprocessing of solutions (63). Additionally, there are
other Python packages that interface with COBRApy to
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implement thermodynamics analysis. For example, probabilistic
thermodynamics analysis (PTA) models use joint probability
distributions of free energies and concentrations for stream
optimization and sampling flux analysis (64). Earlier methods
such as thermodynamic flux analysis (TFA) and thermodynamic
variability analysis (TVA) (65) were implemented in ReFramed
(48). Another Python package for thermodynamic-based flux
analysis (pyTFA) couples thermodynamics feasibility into FBA
calculations (66). Thermodynamics constraints ensure
physiological flux predictions and help to reduce the
solution space.

Another theme of biophysical constraints involves modeling
the proteome limitation of a cell due to molecular crowding in a
cell. A simple method within this theme is parsimonious FBA
(pFBA), which assumes that minimizing overall total flux
approximately finds efficient pathways that minimizes the total
enzyme mass (67). Available in COBRApy, pFBA first
determines the maximum value of the objective function, then
adds it as a model constraint and solves for the flux distribution
with the smallest magnitude, minimizing protein costs (67).
However, this assumption may not always hold for all
conditions and complex cellular networks. Another way to
limit proteins is to add constraints based on enzyme
parameters such as turnover number (kcat) and molecular
weight. These protein allocation constraints are applied by
Python package MEWpy using a method called GECKO
(Genome-scale model enhancement with Enzymatic
Constraints accounting for Kinetic and Omics data), which
adds many pseudo-metabolites and pseudo-reactions to
represent enzymes (68). Another package for protein allocation
constraints is AutoPACMEN (Automatic integration of Protein
Allocation Constraints in MEtabolic Networks) (69).
AutoPACMEN can automate database query and creation of
models using sMOMENT (short metabolic modeling with
enzyme kinetics), which introduces only one pseudo-reaction
and pseudo-metabolite. Further improving upon these methods,
ECMpy adds enzyme constraints without increasing model size
(70). Studies have shown that adding protein constraints
improves the accuracy of flux predictions by explaining
suboptimal overflow metabolism and metabolic switches (69,
70). Instead of high-level protein constraints, the machinery cost
of protein expression can be explicitly modeled using genome-
scale models of metabolism and macromolecular expression
(ME-models). ME-models extend GEMs by computing optimal
composition of macromolecules like proteins, nucleotides, and
cofactors, to model the entire process from transcription and
translation, to complex formation and metabolic reaction.
Software for building and simulating ME-models is currently
only available in Python via COBRAme (71) and was extended to
dynamic systems via dynamicME (115). All packages for protein
constraints mentioned above are compatible with COBRApy.

Unbiased Characterization of
Solution Space
There are unbiased methods for analyzing distribution of steady-
state flux through a metabolic model. One set of unbiased
Frontiers in Oncology | www.frontiersin.org 10
methods performs network-based pathway analysis without
knowledge of traditional pathway annotations: elementary flux
mode (EFM) analysis finds the minimum reaction sets (i.e.,
pathways) that can maintain steady state. Different variations
of EFM have been implemented in Python. For example, EFMlrs
is a Python package that performs EFM enumeration via
lexicographic reverse search, an implementation that
significantly improves performance and memory usage (79). In
addition, CoBAMP is another package that has implemented
EFM (80), minimal cut sets (82), and elementary flux patterns
(81, 116). Extreme pathway (ExPa) analysis is another method
for identifying reaction sets but it is not currently available in
Python (83).

Another set of unbiased methods is Markov chain Monte
Carlo (MCMC) sampling methods, which can characterize the
solution space by estimating the probability distribution of
feasible fluxes. This could be performed with or without
constraining by an objective function. Currently, COBRApy
integrated MCMC methods such as artificial centering hit-and-
run (ACHR) (77) and optimized general parallel (OPTPG) (78)
samplers, but not coordinate hit-and-run with round (CHRR)
(117) that was found to be the best performing (118).

Single-Cell Metabolic Modeling
Our ability to interrogate the heterogeneity of cell populations
has grown rapidly due to advances in single-cell technologies that
can measure the transcriptome, proteome, epigenome, and even
metabolome at the single-cell level (2–7, 11, 12, 119–126). While
single cell multi-omics data can be analyzed by pathway
enrichment, clustering, and correlation methods (16, 122, 123),
recent studies have developed algorithms in Python to calculate
metabolic flux from single-cell transcriptome (119, 127). Zhang
et al. demonstrated the usage of CORDA for the reconstruction
of cell type-specific metabolic models from murine single-cell
transcriptome and their subsequent FBA simulations of NAD+

biosynthesis using COBRApy (128). Instead of optimizing for a
specified objective function, Compass is an FBA-based method
that scores the ability of cell transcriptome to maintain high flux
through each reaction (73). Rather than using linear
programming to solve for flux distribution, scFEA first
reconstructs a metabolic model into a directed factor graph,
then trains a deep neural network to learn metabolic flux
distributions by minimizing flux imbalance across all cells and
maximizing correspondence with gene expression (74). Due to
drop-outs in single-cell RNA-seq, these algorithms took different
approaches to handle the sparsity of expression data: 1) Zhang et
al. calculated mean expression profiles per tissue and cell
ontology class, 2) Compass allows information sharing
between cells that are similar in transcriptional space, and 3)
scFEA trains the model on all cells and removes metabolic
modules only if they are entirely composed of significantly
unexpressed genes. These methods allow metabolic flux
interpretation of single-cell transcriptome at the single-cell
resolution; however, not all flux estimation methods account
for the interaction of cells via uptake and secretion of metabolites
into the environment.
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Multicellular Metabolic Modeling
To account for metabolic interactions, multicellular modeling
was devised to model interplay between multiple metabolic
networks coming from different species or tissues, with
applications from microbiology to human physiology (129).
Community modeling of the human gut microbiome reveals
community-level function and cross-feeding interactions, as
demonstrated by Python package MICOM (75). Community
models are further extended using dynamic FBA of microbial
communities, which can be efficiently calculated using Python
package called surfin_fba that reduces the number of
optimization timesteps when modeling communities (76).
Early attempts to model human cell populations were explored
using MATLAB, beginning with popFBA that simulated clones
of cancer cells with identical stoichiometry and capacity
constraints while allowing extracellular fluxes (130). PopFBA
searched for combinations of individual metabolic flux
distributions that would maximize a population object, e.g.,
total biomass, to explore metabolic heterogeneity and
cooperation between single cells. However, this method gives
many possible solutions and ignores the differences in metabolic
requirements, functions, and proliferation rates of heterogeneous
populations. To address both issues, single-cell FBA (scFBA) in
MATLAB optimizes individual objective functions within a
multi-scale model constrained by single-cell transcriptome and
bulk extracellular fluxes to reduce the solution space (131).
Overall, the added complexity of multicellular modeling can
improve our interpretation of omics data and provide insights
into cell-cell interactions important to many biological systems.

Visualization and Web Application
While algorithm development for COBRA is important, the
utility of COBRA methods also depends on the usability and
dissemination of scientific results. Python libraries have enabled
the development of more interactive, user-friendly applications
for analysis and visualization of metabolic networks. For
example, Escher is a web application for visualizing metabolic
models and also a Python package with interactive widgets for
Jupyter Notebooks that can visualize COBRApy models (84).
Escher has been integrated into other Python COBRA packages
such as cameo to visualize flux analysis results. Additional
interactive visualization packages include SAMMI for semi-
automated visualization and d3flux for d3.js based plots (85,
86). Due to open-source nature of Python packages, future
COBRA web applications can be deployed for public use
without licensing limitations.
GENOME-SCALE MODELING OF CANCER
METABOLISM WITH COBRA TOOLS

Cancer cells undergo metabolic reprogramming to promote
proliferation and invasion, and in turn alter the nutrient-levels
and cell types within the tumor microenvironment (TME). We
here summarize these metabolic changes and provide the
Frontiers in Oncology | www.frontiersin.org 11
rationale for using COBRA methods to analyze cancer
metabolism and TME. Indeed, COBRA methods have been
utilized for various applications in cancer research in the past
decades. We describe how the analyses begin with building
cancer-specific metabolic models, from which one can infer
metabolic dysregulation through pathway and network
analyses. Next, we showed how these models were used for
quantitative prediction of cancer metabolic activity and drug
targets. Finally, we highlight the frontiers of modeling the TME
using multicellular or single-cell COBRA methods.

Metabolism of Cancer and the
Tumor Microenvironment
The dramatic functional and environmental changes that occur
during cancer formation and progression are accompanied by
accordingly dramatic metabolic reprogramming in cancer cells
(Figure 3). These changes canonically include theWarburg effect
(132, 133), the switch from predominantly mitochondrial
oxidative phosphorylation to aerobic glycolysis, potentially
done to increase biomass production critical to maintain high
proliferation (133); this leads to increased glucose uptake and
lactate secretion by cancer cells. Increased energy and biomass
production in cancer cells is also associated with increased
uptake and synthesis of amino acids (134), fatty acids (135),
and nucleotides (136). The TME is also quite distinct from
normal physiology as it espouses a different set of spatial
structures, nutrient/metabolite compositions, and cellular
heterogeneities, and thus the metabolism of cancer cells is
further perturbed just as the cancer cells metabolically
influence the TME in turn (137). In the TME, tumor cells also
inhibit immune cells by outcompeting them for critical nutrients
with finite supply, such as glucose and amino acids, thereby
limiting immune anti-tumor activity. The manifold metabolic
changes that occur in cancer pose a challenging question to
faithfully model. However, overcoming this challenge to establish
an accurate model of this complicated metabolic reprogramming
may prove useful for identifying potential targets, such as cell-cell
metabolic interactions between tumor and immune cells, for
cancer therapy.

COBRA methods offer a way to computationally achieve this
goal, such as inferring metabolic state via FBA which requires an
objective function. While designing an objective function for
tissue-specific eukaryotic cells is usually challenging, cancer cells
can be reasonably modeled by biomass objective function,
because cancer is mainly characterized by cellular growth
(138). This makes flux predictions better suited for modeling
cancer than healthy tissues, which do not actively proliferate. To
simulate flux through cancer GEMs, studies have used objective
functions representing growth as consumption of biomass
precursors (139), or individual required metabolic tasks such
as energy and redox, internal conversions, substrate utilization,
biosynthesis, and biomass growth (54, 108). Some studies found
gene-essentiality predictions from GEMs to be robust to
definition of biomass composition (139) and capable of
predicting growth kinetics in small-scale model (140),
suggesting that the biomass equation is not significantly biased.
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However, another small-scale model claimed that elemental
mode flux predictions using lactate objective is better than
biomass objective at predicting experimental fluxes (141).
These differences emphasize the importance of experimental
validation to look for bias and sensitivity analysis to see if our
biological insights are heavily affected by objective function
definition and other system assumptions. Furthermore, the
assumption that cancer cells optimize for cell growth may not
always hold as tumors adapt, especially under selective pressure
from therapies and immune system to adopt a quiescent state
(138). Even if a proper objective is used, there are many optimal
FBA solutions, and some may not be biologically viable due to
inaccurate reaction bounds, violation of steady-state assumption,
regulatory processes, and other limitations to our biological
knowledge. Despite these limitations, past cancer applications
of COBRA methods strived to improve our understanding of the
disease and identify drug targets via comparative analysis,
network analyses, quantitative flux simulations, and TME
modeling. These studies have been reviewed multiple times
(13, 14, 138, 142–144), and we have compiled the collection of
these studies in Table 3 and summarized their applications
below (Figure 4).
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Reconstruction of Cancer
Metabolic Models
To date, numerous efforts have iteratively improved
reconstruction of the human metabolic network within the
Recon series (Recon 1, 2, 3D) (103, 183, 184), the Human
Metabolic Reaction (HMR) series (HMR 1 and 2) (185, 186),
and their derived unified model Human1 (187) (Table 4). From
these generic human GEMs, cancer-specific metabolic models
were generated by integrating multi-omics data to reduce the
number of reactions to reflect cancer-specific activity. To extract
multiple healthy and cancerous tissue-specific GEMs, studies
utilized protein levels from Human Protein Atlas along with
INIT algorithm (108) or CORDA algorithm (170). Other studies
constructed cancer GEMs using transcriptomic data from 1)
cancer cell lines in combination with different integration
algorithms such as MBA (139), tINIT (150), a likelihood-based
method (156), PRIME (90), and FASTCORMICS (112), or 2)
transcriptomic data from tissue samples in combination with
mCADRE algorithm (111). While transcriptome measurements
can capture more genes, its data is noisy and does not correlate
well with protein levels (190). In contrast, proteomic data more
directly corresponds to enzymatic activity, but was previously
FIGURE 3 | Overview of metabolic interactions within the tumor microenvironment. The TME is composed of cancer cells, immune cells, and stromal cells
embedded in extracellular matrix (ECM). Limited nutrients and oxygen lead to metabolic competition between cancer and various lymphocytes, especially hampering
anti-tumor activity of effector T cells (TEFF). Cancer cells adapts via upregulating nutrient transport and altering cancer-associated fibroblasts (CAF) to replenish
metabolites. T cell immunity is further suppressed by cancer cells’ release of lactate produced by glycolysis and by recruitment of immune-suppressive cells due to
Indoleamine 2,3-dioxygenase (IDO) activity. TMEM, memory T cell; NK, natural killer cell; Treg, regulatory T cell; TAM, tumor-associated macrophage.
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TABLE 3 | List of cancer metabolic modeling studies.
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Integration Model Analysis Constraints Objective

(145) Breast x x Lee-12 HMR 1 FBA, Comparative,
Topological

Transcriptome, Fluxomic Data
Correlation

(146) Colorectal x x tINIT Human1 TFA, TFVA, pTFVA Thermodynamic,
Transcriptome, Biomass

Biomass

(147) Eye x x iMAT Recon 2 Gap filling, FBA,
FVA, Knockout

Transcriptome Biomass,
Tasks

(148) Head and Neck x x Upper bound Recon 2 FBA, Sampling,
Knockout

Thermodynamics, Enzyme
kinetics, Transcriptome,
Metabolome

ATP, NADPH

(149) Liver x x iMAT-like Recon 1 Comparative, FBA,
Sampling

Transcriptome Data
Similarity

(150) Multiple x x tINIT HMR 2 Comparative,
Knockout

Transcriptome Tasks

(151) Multiple x x tINIT HMR 2 FBA, Knockout Transcriptome Biomass,
Tasks

(140) Generic x x Small-scale FBA, DFBA, FVA,
Knockout, Sampling

Biomass

(152) Kidney x x tINIT iCancer-
Core

FBA, Knockout Transcriptome Biomass

(153) Brain x tINIT HMR 2 Comparative, FBA,
Knockout

Transcriptome Biomass,
Tasks

(105) Breast, Lung, Multiple x Upper bound HMR 1 FBA, Sampling,
Knockout

Transcriptome Biomass

(139) Generic x MBA Recon 1 FBA, Knockout Transcriptome Biomass
(154) Kidney x MBA Recon 1 FBA, Knockout Transcriptome Biomass
(54) Liver x tINIT HMR 2 Comparative, FBA,

Knockout
Proteome Biomass,

Tasks
(155) Liver x tINIT HMR 2 FBA, Knockout,

Topological
Transcriptome Biomass,

Tasks
(156) Multiple x iMAT Recon 1 FBA, ML,

Topological
Transcriptome Data

Similarity
(102) Multiple x GIMME Recon 2 FBA, Sampling,

Knockout
Mutations, Transcriptome Biomass

(157) Prostate x tINIT iCancer-
Core

FBA, Knockout,
Sampling

Transcriptome, Proteome Biomass,
Tasks

(158) Breast, Kidney, Liver,
Prostate

x x KEGG Network
Propagation,
Knockout, ML

Transcriptome

(159) Colorectal x x tINIT HMR 2 Comparative Transcriptome
(160) Multiple x x Recon 2 Regulatory,

Topological, ML
Transcriptome, Metabolome

(111) Multiple x x mCADRE Recon 1 Comparative Transcriptome Tasks,
Biomass

(103) Multiple, Brain, Lung,
Breast, Leukemia,
Prostate

x x tINIT Recon 3D Comparative,
Knockout, ML

Mutations, Protein Structures Biomass

(161) Prostate x x iMAT Recon 2 FBA, FVA Transcriptome Data
Similarity

(162) Kidney, Prostate x INIT HMR 1 Knockout Proteome, Fluxomic Biomass
(108) Multiple x INIT HMR 1 Comparative Proteome
(163) Multiple x Topological
(164) Generic x x C2M2N FBA Biosynthesis,

Biomass

(Continued)
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limited by antibody or spectrometry methods that are low-
throughput and less quantitative. Emerging evidence shows
that newly developed quantitative proteome may better explain
genetic disease and metabolism (191), emphasizing the
advantage of using proteome evidence for metabolic model
reconstruction. However, accuracy of proteome-based
reconstructions is still limited due to various regulatory
mechanisms such as protein modifications that have yet to be
integrated into cancer metabolic models.

In the past decade, many more cancer-specific models have
been reconstructed for liver (106, 149, 155, 166, 173, 181), kidney
(152, 154, 162, 172, 172), breast (103, 105, 131, 145, 168),
Frontiers in Oncology | www.frontiersin.org 14
prostate (103, 104, 157, 161, 162, 175), brain (103, 153, 167),
colorectal (159, 170, 192), head and neck (148), eye (147), and
lung (103, 105, 131, 175) cancer to generate cancer-specific
hypotheses. To compare these various methods for
reconstruction of cancer metabolic models, a study
benchmarked their predictive performance and consistency
(91), with relevant findings summarized in Table 2. In pursuit
of personalized medicine to find optimal treatment based on
patient’ genetic factors, researchers have also built personalized
cancer GEMs from patient sample data to identify metabolic
features that are commonly-shared or patient-specific (54).
Furthermore, patient genetic variants were integrated in the
TABLE 3 | Continued
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Integration Model Analysis Constraints Objective

(165) Breast, Colorectal x x Recon 2 FVA, ML Metabolome Metabolite
Change

(166) Liver x x tINIT HMR 2 Comparative Transcriptome, Proteome Biomass,
Tasks

(167) Brain x GIMME, MADE iMS570 pFBA, Sampling Transcriptome Biomass
(168) Breast x E-Flux Recon2 FBA Proteome Biomass
(169) Colorectal x Recon 2.2 Comparative Transcriptome
(170) Colorectal x CORDA Recon 2.2 FBA, FVA,

Topological
Proteome Biomass,

ATP
(130) Generic x HMRcore popFBA, Sampling Loopless Biomass
(171) Kidney x Recon 1 pFBA Flux measurements Biomass
(172) Kidney x INIT HMR 1 Comparative Proteome
(173) Liver x tINIT HMR 2 Comparative, Gap

filling, Regulatory,
FBA

Transcriptome, Metabolome Biomass

(174) Lung x 13C flux analysis Flux measurements, Labeling
measurements

(141) Lung x Central
Carbon,
Recon 2

Elementary modes,
Structural fluxes,
pFBA

Protein efficiency Biomass,
Biosynthesis

(131) Lung, Breast x E-Flux HMRcore scFBA scRNA-seq, metabolomics Biomass
(175) Lung, Prostate x E-Flux Recon 1 FVA Transcriptome Biomass
(176) Multiple x tINIT HMR 2 Comparative Transcriptome
(104) Prostate x IMAT, GIMME,

Gonçalves,
MADE

HMR 2 FBA Transcriptome Data
Similarity

(177) Generic x Recon 1 FBA, FVA, Sampling Protein efficiency, Enzyme
kinetics

Biomass

(178) Generic x ATP FBA Protein efficiency ATP
(179) Generic x ATP, BiGG FBA Protein efficiency ATP, Nutrient

cost
(180) Liver x MADE Recon 2 Comparative Transcriptome Data

Similarity
(106) Liver x Upper bound Recon 3D FBA, FVA Transcriptome, Nutrient

availability
Biomass

(181) Liver x Bounds Recon 2 FBA Protein efficiency,
Transcriptome

ATP

(182) Multiple x E-Flux Recon 1 FBA Transcriptome Biomass
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Recon3D model with protein structures to look for cancer
mutation hotspots in glioblastoma patients (103). Nam et al.
modeled loss of function mutations via knockouts and analyzed
potential gain of function mutations by adding promiscuous
reactions predicted by chemoinformatics (102). Overall, these
various reconstructions of cancer metabolic models aim to
capture the heterogeneity of cancer.

Pathway and Network Analyses of
Cancer GEM
To find metabolic differences between cancer and healthy cell
types and between patients, these reconstructed metabolic
Frontiers in Oncology | www.frontiersin.org 15
networks are analyzed for enrichment of biological features,
generating biologically relevant hypotheses that can guide
mechanistic interpretation, biomarker discovery, and drug
development. Comparative analysis involves statistical testing
for the enrichment of reactions, genes, and metabolites to
identify differentially activated pathways. Comparing networks
of healthy and cancer cell types using hypergeometric test
identified enrichment of not only well-known drug targets
(polyamines, isoprenoid biosynthesis, prostaglandins and
leukotrienes), but also new drug targets explained by
protection against oxidative stress and methylglyoxal toxicity
(108). Another study that used Wilcoxon rank sum test to
FIGURE 4 | Applications of COBRA methods to cancer research. Workflow diagram of using various COBRA methods (colored) in combination to achieve different
objectives (grey).
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compare tumor and normal metabolic models also found
enrichment of leukotriene synthesis in addition to other tumor
supporting pathways such as folate metabolism, eicosanoid
metabolism, fatty acid synthesis, and nucleotide metabolism
(111). Of note, these pathways were not statistically significant
from pathway analysis of gene expression data alone,
emphasizing the importance of systems-level network analysis
to extract biological signal. In addition, the presence and absence
of active genes, metabolites, and reactions can be characterized
by clustering to validate similarity of related cell types (108), and
calculating Hamming distance or pairwise comparisons to find
the most different cancer GEMs (150). Comparing cancer-
specific GEMs can reveal cancer types with more severe
metabolic dysfunction. For example, clear cell renal cell
carcinoma (ccRCC) GEM showed loss of redundant genes in
key metabolic pathways (162, 172), suggesting that ccRCC might
be more responsive to metabolic anticancer drugs due to reduced
capacity to evade drug inhibition via alterative enzymes
and pathways.

While the presence of pathways is indicative of activity,
analyzing the pattern of how these pathways connect could
provide additional insights. For this purpose, topological
analysis is a network-based analysis that characterizes
metabolic models based on network properties that describes
the degree and patterns of connection between metabolites,
genes, and reactions. The same models from Agren et al. (108)
were converted to enzyme-enzyme networks and re-analyzed
using topological analysis, which revealed that most approved
cancer drugs do not correlate with centrality (measure of
importance) of individual enzymes, but do belong to a specific
cluster in a cancer enzyme-centric networks (163). Furthermore,
the analysis found that certain network motifs, such as feed-
forward loop, are enriched in cancer networks compared to
healthy cell type. Utilized in several other cancer studies
(Table 3), topological analyses reveal insights about cancer
based on the structure of cancer-specific metabolic networks
without using flux simulations. Topological analyses emphasize
the importance of system-oriented cancer drug design to find
therapy that change the entire metabolic state instead of a single
Frontiers in Oncology | www.frontiersin.org 16
drug t a r g e t t h a t c an be ea s i l y compensa t ed by
alternative pathways.

Quantitative Prediction of Cancer Behavior
To better understand metabolic reprogramming within cancer
cells, cancer-specific metabolic models were used to simulate flux
distributions to illustrate their metabolic state. Initial efforts built
generic small-scale cancer models that only included the major
pathways in cancer such as ATP and biomass production (140,
178) to demonstrate the usefulness of standard COBRA methods
as such FBA, FVA, and in silico knockouts (140). Performing
dynamical FBA on such model was able to predict the growth
rates of HeLa cells, validating the use of biomass objective with
FBA for cancer predictions (140). While constraints on glucose
uptake and solvent capacity initially predicted theWarburg effect
(178), later implementations of protein constraints in these
small-scale (179) and genome-scale (177) cancer models
explained the Warburg effect as a result of maximizing enzyme
efficiency. Another protein efficiency constraint, flux
minimization with FBA, predicted the Warburg effect in liver-
specific GEMs and agreed with metabolic profiling of Mir122a
knockout mice (181). Another cancer metabolic adaptation that
bypass mutation of enzymes from the TCA cycle was
recapitulated by adding upper flux bounds during flux
simulations (154). In addition to these methods for modeling
intracellular constraints, it is also important to account for cell-
extrinsic factors imposed by the tumor microenvironment.
Approaches to impose nutrient constraints include
constraining exchange reaction bounds by experimentally
measured flux (145, 162), transporter expression (105),
concentration and membrane potential-dependent free energy
calculations (148), and concentration gradient over time (106).
These quantitat ive predict ions of cancer metabolic
reprogramming further demonstrate the applicability of
COBRA methods to model cancer metabolic programs.

In Silico Drug Discovery
Furthermore, quantitative flux predictions can guide drug
therapy design by simulating the effect of enzyme inhibition on
TABLE 4 | Human metabolic generic models and cancer models.

Model Scale No. of
Reactions

No. of
Metabolite

No. of Genes Web link

HMR 1 (185) Genome 8174 6006 3674 https://metabolicatlas.org/gems/repository/366
HMR 2 (186) Genome 8181 6007 3765 https://metabolicatlas.org/gems/repository/367
Recon 1 (183) Genome 3741 2766 1905 http://bigg.ucsd.edu/models/RECON1
Recon 2 (184) Genome 7440 5063 2194 https://www.ebi.ac.uk/biomodels/MODEL1109130000
Recon 3D (103) Genome 10600 5835 2248 https://www.vmh.life/#downloadview

http://bigg.ucsd.edu/models/Recon3D
Human1 (187) Genome 13069 8366 3067 https://github.com/SysBioChalmers/Human-GEM
Cancer central metabolism (140) Small 80 66 46 https://doi.org/10.1371/journal.pone.0012383
iCancer-Core (iHCC2578) (151, 166) Genome 7762 5566 2892 https://github.com/sysmedicine/phd2020/tree/master/GEM/data
C2M2N (164) Small 77 54 – https://doi.org/10.3390/metabo9050081
HMRcore (131, 188) Intermediate 315 256 418 https://github.com/BIMIB-DISCo/scFBA
Central Carbon (141) Small 114 120 – https://doi.org/10.1042/bst20150149
iMS570 (brain) (189) Genome 630 524 570 http://dx.doi.org/10.1016/j.fob.2014.05.006
This table describes various human reconstructions that are used as the starting reference models in various cancer applications listed in Table 3. The most updated online links to these
models may be different than previously described in their original manuscripts.
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cellular metabolic function in both cancer and healthy GEMs to
maximize therapeutic effect while minimizing toxicity. In silico
knockouts are performed by constraining one or more reactions’
flux to zero, setting an objective function that represents growth
or other metabolic tasks, and finally performing FBA to calculate
the change in maximum objective. One approach aims to find
drug targets based on gene essentiality–knock out of enzymes
that inhibit cancer growth. In silico gene knockout simulations of
genome-scale cancer model identified drug targets and
combination drug strategies (double gene knockout) that could
reduce cancer growth (139). These candidates include known
drugs and are validated via shRNA gene silencing data and
cancer somatic mutations. Another study found that gene
essentiality by FBA using biomass objective is better than
chance but has limited accuracy depending on cancer type,
especially after adding exchange flux constraints (162). A
second approach based on metabolite essentiality screens for
antimetabolites (metabolite analogs), which would compete with
endogenous metabolites to inhibit their associated enzymes. By
simulating in silico knockout of all enzymes acting on each
metabolite, studies have identified antimetabolite drug
candidates that could selectively disable critical metabolic task
in cancer cell line-specific GEMs (150) and personalized
hepatocellular carcinoma (HCC) patient GEMs (54). Out of
101 antimetabolite candidates, many were already used (22%)
or proposed as anticancer drug targets (60%), and some targets
were shown to be highly patient-specific, supporting the use of
flux predictions of cancer GEMs for both general and
personalized drug discovery (54). Many more studies applying
in silico knockouts are listed in Table 3. While using FBA for in
silico drug design is well established, the predictions maybe
inaccurate due to bias introduced by the choice of objective
function and reaction bounds, such as those for cell-specific
exchange fluxes that are not always experimentally determined
(91, 162). Furthermore, simulations based on cell line
measurements and culturing conditions cannot faithfully
reflect multi-cellular tissues and physiological environments
in vivo.

Multicellular and Single-Cell
Modeling of TME
To analyze cell-heterogeneous systems like the TME, it is
important to investigate metabolic programs within a multi-
scale population model and at the single-cell level. To model
interactions between multiple cells, multicellular modeling
accounts for metabolite exchange between single cells within
the environment. This was attempted by popFBA (130), which
simulated a spatial model of identical cancer cells that adapted
heterogeneously and cooperatively to maximize growth of the
entire tumor mass. To account for tumor heterogeneity, a
population model can be constrained by single-cell RNA-seq
(scRNA-seq) data containing different tissue subpopulations in
the scFBA method (131). When applied to lung adenocarcinoma
and breast cancer cells, scFBA reveals metabolically defined
subpopulations, some of which have coordinated metabolic
fluxes (e.g., uptake or secretion of opposite sets of metabolites)
Frontiers in Oncology | www.frontiersin.org 17
suggesting potential cell-cell metabolic interactions. Other
methods, such as scFEA or Compass, calculates cell-wise
metabolic flux from scRNA-seq data to interpret cellular
metabolic activity. Compass revealed metabolic states
associated with functional states of T helper 17 (Th17) cells, in
particular an increase in arginine and polyamine metabolism
that resulted in a regulatory T cell (Treg)-like, dysfunctional cell
state (73). The other single-cell method, scFEA, applied to
patient-derived pancreatic cancer cells with metabolic
perturbations (gene knockout, hypoxia), predicted flux
variation that correlates with measured metabolomics. These
methods could be applied to infer metabolic states of tumor and
immune cells from existing scRNA-seq datasets of tumor
samples. In future studies, algorithms for microbial
community-modeling can be repurposed to investigate the
interactions of cancer and immune cells in the TME (MICOM)
and model the dynamics of immunosurveillance and tumor
resistance (surfin_fba).
DISCUSSION

COBRA methods have proved useful for systems-level inference
of metabolic activity under a mathematical framework built
upon biomolecular knowledge. The accessibility and algorithms
of COBRA methods have been improved with the development
of open-source COBRA Python packages. We have identified
Python packages available to handle the major areas of COBRA
methods: FBA, FVA, gene knockout, strain design, omics
integration, regulatory constraints, reconstruction, gap filling,
ensemble modeling, thermodynamics, enzymatic constraints,
EFM, sampling, single-cell modeling, multicellular modeling,
and visualization. However, the Python COBRA ecosystem is
currently missing some methods for constraining models by
regulatory mechanisms and reconstruction of context-specific
GEMs. However, these gaps are only due to limitations of time
and effort, not limitations of the Python programming language.
In fact, many features involving complex models, parallelization,
and efficient memory management are available in Python
instead of MATLAB. For example, ME-models, a set of multi-
scale problems describing multiple biological processes across
different space and time scales such as transcription, translation,
and protein interactions, are handled by Python packages only
for now. Integration of protein structure into the Recon3D
human GEM was facilitated by Python packages ssbio and
GEM-PRO (103). GEMs interface with machine learning in
Medusa and scFEA. Likewise, upcoming COBRA packages will
likely integrate with existing Python tools for statistical learning
and analysis of single-cell multi-omics data. As models and
omics datasets increase in complexity, COBRA methods will
thrive in the open-source Python environment. While we
improve our modeling techniques, it is also important to
validate flux predictions using experimental techniques such as
metabolomics profile and label tracing experiments. To interpret
isotope tracing data, 13C-Metabolic Flux Analysis was developed
to infer intracellular fluxes. While 13C-MFA allows direct
July 2022 | Volume 12 | Article 914594
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measurement of metabolic flux, the method is limited to small-
scale models (central metabolism) and requires more expertise
than the typical omics measurements for constraining COBRA
methods. Python packages for modeling label tracing data are
available via FluxPyt and mfapy (193, 194). While these
experimental techniques are outside the scope of this review,
they have been reviewed previously for bulk, single-cell, and
cancer applications (119, 195, 196). Another alternative
computational metabolic modeling approach is parametric
kinetic modeling, which mathematically describes enzyme
activity involving regulatory mechanisms (17). While this
paradigm may offer accurate prediction of perturbation
outcomes, systems emergent properties (e.g., switches,
oscillations, bistability), and non-steady state concentrations,
scaling kinetic models to genome-scale metabolic models is a
challenge due to the requirement for intracellular concentrations,
kinetic parameters, and rate laws. DMPy attempts to overcome
the challenge by incorporating thermodynamics constraints to
infer missing kinetic parameters. Hybrid approaches combining
kinetic modeling with constraints-based models may bring
kinetic modeling closer to genome-scale.

Applications of GEMs and COBRA methods to cancer
research have improved our understanding of how molecular
mechanisms translate to cancer phenotype, aiding interpretation
of multi-omics data and guiding drug designs that target cell
metabolism at the systems-level. Metabolic models of cancer
have evolved from small-scale models of essential pathways to
genome-scale cancer-specific models, and they are now
expanding to the realm of single-cell modeling. The
computational resources required for numerous single-cell
reconstructions and optimizations can be costly. Single-cell
methods reduce complexity by pooling of reactions and similar
cells and could benefit from ensemble modeling techniques that
reduce a large number of models into ensemble objects. As
demonstrated by bulk-level modeling, future single-cell
modeling can improve prediction accuracy by incorporating
constraints determined by multi-omics, thermodynamics,
protein crowding and kinetics, genotype, and regulatory
mechanisms. Furthermore, single-cell methods that estimate
the metabolic flux of individual cells can be improved by
Frontiers in Oncology | www.frontiersin.org 18
integration of spatial information and inter-cell metabolic
exchange to model crosstalk between cancer, immune, and
stromal cells within the TME. By understanding the cancer-
immune metabolic competition, we can design drugs that disrupt
pathophysiologic interactions to enhance antitumor immune
response and prevent evasion of immunosurveillance.
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