
 Open access Journal Article DOI:10.1177/027836490707809107

Constraint-based Task Specification and Estimation for Sensor-Based Robot
Systems in the Presence of Geometric Uncertainty — Source link

Joris De Schutter, Tinne De Laet, J. Rutgeerts, Wilm Decré ...+4 more authors

Institutions: Katholieke Universiteit Leuven

Published on: 01 May 2007 - The International Journal of Robotics Research (SAGE Publications)

Topics: Robot kinematics, Mobile robot and Robot

Related papers:

 Compliance and Force Control for Computer Controlled Manipulators

 Specification of force-controlled actions in the "task frame formalism"-a synthesis

 A Unified Approach to Integrate Unilateral Constraints in the Stack of Tasks

 A unified approach for motion and force control of robot manipulators: The operational space formulation

 Extending iTaSC to support inequality constraints and non-instantaneous task specification

Share this paper:

View more about this paper here: https://typeset.io/papers/constraint-based-task-specification-and-estimation-for-
3vmssjxedi

https://typeset.io/
https://www.doi.org/10.1177/027836490707809107
https://typeset.io/papers/constraint-based-task-specification-and-estimation-for-3vmssjxedi
https://typeset.io/authors/joris-de-schutter-2lvqoimjm8
https://typeset.io/authors/tinne-de-laet-3sf5vowvt9
https://typeset.io/authors/j-rutgeerts-58t6dj0aw5
https://typeset.io/authors/wilm-decre-3lxmnb7w47
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/journals/the-international-journal-of-robotics-research-3rqyvl4i
https://typeset.io/topics/robot-kinematics-10c6j8eb
https://typeset.io/topics/mobile-robot-1is55hi3
https://typeset.io/topics/robot-2gtn7p2t
https://typeset.io/papers/compliance-and-force-control-for-computer-controlled-wdvtx8zovr
https://typeset.io/papers/specification-of-force-controlled-actions-in-the-task-frame-3nol7ksv0a
https://typeset.io/papers/a-unified-approach-to-integrate-unilateral-constraints-in-25e6yd46r2
https://typeset.io/papers/a-unified-approach-for-motion-and-force-control-of-robot-1a8rqzyth0
https://typeset.io/papers/extending-itasc-to-support-inequality-constraints-and-non-4hk4rolm4g
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/constraint-based-task-specification-and-estimation-for-3vmssjxedi
https://twitter.com/intent/tweet?text=Constraint-based%20Task%20Specification%20and%20Estimation%20for%20Sensor-Based%20Robot%20Systems%20in%20the%20Presence%20of%20Geometric%20Uncertainty&url=https://typeset.io/papers/constraint-based-task-specification-and-estimation-for-3vmssjxedi
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/constraint-based-task-specification-and-estimation-for-3vmssjxedi
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/constraint-based-task-specification-and-estimation-for-3vmssjxedi
https://typeset.io/papers/constraint-based-task-specification-and-estimation-for-3vmssjxedi

Jury:
Prof. dr. ir. A. Haegemans, voorzitter
Prof. dr. ir. J. De Schutter, promotor
Prof. dr. ir. H. Bruyninckx, promotor
Prof. dr. ir. D. De Schreye
Prof. dr. ir. J. Baeten
Prof. dr. ir. J. Duflou
Prof. dr. ir. D. Lefeber
 Vrije Universiteit Brussel

31 mei 2007

KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT WERKTUIGKUNDE
AFDELING PRODUKTIETECHNIEKEN, MACHINEBOUW
EN AUTOMATISERING
Celestijnenlaan 300B, B-3001 Heverlee (Leuven), Belgium

CONSTRAINT-BASEd TASK SpECIfICATION

ANd ESTImATION fOR SENSOR-BASEd ROBOT

TASKS IN THE pRESENCE Of GEOmETRIC

UNCERTAINTy

Proefschrift voorgedragen tot het

bekomen van de graad van Doctor

in de Ingenieurswetenschappen

door

Johan RUTGEERTS

D/2007/7515/19
UDC 681.3*I29

c© Katholieke Universiteit Leuven
Faculteit Toegepaste Wetenschappen
Arenbergkasteel, B-3001 Heverlee (Leuven), Belgium

Alle rechten voorbehouden. Niets uit deze uitgave mag worden verveel-
voudigd en/of openbaar gemaakt worden door middel van druk, fotokopie,
microfilm, elektronisch of op welke andere wijze ook zonder voorafgaandelijke
schriftelijke toestemming van de uitgever.

All rights reserved. No part of this publication may be reproduced in any
form, by print, photoprint, microfilm or any other means without written
permission from the publisher.

D/2007/7515/19
ISBN 978-90-5682-785-4
UDC 681.3*I29

2

Voorwoord

“Zeg Johan, wanneer gaan die robots van jou nu eindelijk eens mijn afwas
komen doen?” Het is onvoorstelbaar hoe vaak je dergelijke –weliswaar ludiek
bedoelde– vragen te horen krijgt, als je doctoreert in de robotica. Blijkbaar
roept de term ‘robot’ bij velen onmiddellijk connotaties op van intelligente,
al dan niet mensachtige machines, die in staat zijn allerhande taken uit te
voeren om het leven van de mens te vergemakkelijken. Deze visie wordt ge-
sterkt door beelden van bijvoorbeeld de trompet spelende robots van Toyota,
of de dansende robots van Sony1. Ik moet U echter teleurstellen: intelligen-
te robots bestaan nog niet. Robottaken bestaan zo goed als altijd uit het
letterlijk afspelen van voorgeprogrammeerde handelingen, binnen een exact
gekende omgeving. De uitvoering van de taak ligt hierbij volledig vast, en
kan niet aangepast worden aan eventuele –a priori ongekende– variaties in de
omgeving van de robot. Met andere woorden: als zo’n dansende robot op een
onvoorziene oneffenheid stapt, dan is de kans groot dat die robot omvalt, om
dan al neerliggend verder te dansen omdat hij helemaal niet kan merken dat
hij gevallen is. U begrijpt dus dat U voorlopig zelf nog zal moeten instaan
voor Uw afwas.

Langs de andere kant vormt de idee van intelligente robotsystemen, die in
staat zijn autonoom taken uit te voeren in hiertoe onaangepaste omgevingen,
inderdaad de voornaamste drijfveer voor onderzoek in de sensorgebaseerde
robotica. Bij sensorgebaseerde robotica worden robots uitgerust met sensoren,
zoals een camera of een krachtsensor, om informatie in te winnen over hun
omgeving. Door deze informatie op een correcte manier te interpreteren en de
uitvoering van de taak aan te passen aan de actuele staat van de omgeving,
kan een robot dan in principe autonoom zijn taak uitvoeren, ook al is de
omgeving a priori niet gekend.

De huidige stand der techniek is nog ver verwijderd van echt intelligente
robots, die taken kunnen uitvoeren in volledig ongestructureerde omgevingen,
zoals een huiskamer. Voor taken in omgevingen met slechts een gedeeltelijke

1Online te vinden op Google of YouTube via de zoektermen ‘trumpet playing robot’ en
‘Sony dancing robot’ (25/04/2007).

I

Voorwoord

geometrische onzekerheid, zoals bijvoorbeeld bij taken waarbij de objecten
wel gekend zijn, maar hun posities en afmetingen slechts bij benadering, wor-
den wel goede resultaten geboekt. In dit onderzoeksdomein is mijn doctoraat
gesitueerd. Het beschrijft iTASC: een methodologie om dergelijke sensorge-
baseerde taken te specificeren, met inbegrip van het schatten van ongekende
geometrische parameters. Hoewel het –zoals zo vaak in onderzoek– slechts
een kleine stap is naar meer intelligente robots, vormt de methodologie de
basis voor de implementatie van verdere ondersteunende software, ter ver-
vanging van COMRADE, de vorige-generatie specificatiesoftware van onze
onderzoeksgroep.

Ik had het geluk te kunnen doctoreren in een hechte en gemotiveerde
onderzoeksgroep, waarin de nadruk ligt op betrokkenheid en samenwerking
tussen de collega’s. Er zijn dan ook verschillende mensen die ik zou willen
bedanken voor hun inbreng. Vooreerst gaat mijn oprechte dank natuurlijk uit
naar Joris en Herman. Dankzij hen kreeg ik de mogelijkheid te doctoreren,
en beiden zijn steeds bereid tijd vrij te maken voor hun doctorandi, om mee
te discussiëren en te brainstormen. Joris en Herman hebben een fantastische
onderzoeksgroep bijeengebracht: van de ‘oude garde’, Klaas, Tine, Peter en
Walter, over ‘mijn eigen generatie’, Wim en Peter, tot de ‘nieuwelingen’, Tin-
ne, Wilm, Ruben, Kasper en Diederik. Ik wil ieder van hen bedanken voor de
vele discussies en de toffe sfeer binnen de groep. Ook Erwin en Brecht wil ik
zeker bedanken voor de veelvuldige samenwerking. Verder zou ik graag Prof.
Baeten en Prof. De Schreye willen bedanken voor hun begeleiding als assessor,
en Prof. Duflou, Prof. Lefeber en Prof. Haegemans, om te zetelen in de jury
voor mijn verdediging. Uiteindelijk wil ik graag mijn ouders bedanken voor
de vele mogelijkheden en de brede opvoeding die zij mij gaven, mijn familie
en vrienden voor alle leuke momenten samen, en natuurlijk ook Annelies, die
mijn doctoraat van dichtbij meebeleefd heeft en mij steeds gesteund heeft
tijdens mijn werk.

Johan Rutgeerts.
Leuven, 27 april 2007.

II

Abstract

Still today, robots in the industry are primarily used as positioning machines.
A robot task in an industrial setting consist of replaying a fixed trajectory,
and performing certain actions on specific positions along these trajectories.
An example is robot spotwelding, in which a robot moves to a certain po-
sition to place a spotweld, then moves to another position to place the next
spotweld, and so on. While executing such positioning tasks, the robot has no
information about its environment. The robot executes its task blindly, and
cannot adapt the task to variations in the position or the geometry of the ob-
jects with which it interacts. This implies that the environment of the robot
must be fully adapted to the task. Currently, robot workcells are structured
environments, specifically built for the robot to realize one single task.

The requirement to create a completely structured environment, adapted
to each robot task, heavily restricts the number of applications in which robots
can be used. Using robots for the automation of small product batches or bat-
ches with a high degree of product customization, is not economically viable.
The relative cost of reprogramming the robot and adapting its environment
to a new setting is too high, for production in small batches. Sensor-based
robotics provides a possible answer to this problem. If a robot is equipped
with extra sensors, such as a camera, force/torque sensor or laser distance
sensor, the robot can measure its environment and adapt the task execution
to the specific setting. During the last decades, sensor-based robotics has
been an active research topic. The recently developed service robots such
as automatic vacuum cleaners or robot lawn-mowers are the first commercial
applications of this research. While nice applications of sensor-based robo-
tics, these service robots have a very limited field of application. In research,
more complex tasks have been realized, but very few applications have been
adopted in industry. The main reason for this is the complexity of the sensor
measurement processing, and the lack of a true task specification formalism
for complex sensor-based tasks.

This thesis presents iTASC (instantaneous Task Specification using Con-
straints), a systematic and generic constraint-based methodology to specify

III

Abstract

sensor-based robot tasks, including support for the estimation of geometric
parameters. By estimating these geometric parameters, the robot task can
be adapted to variations in the geometry or in the pose of the objects in the
robot’s environment. The methodology introduces the concepts of objects and
features of those objects, relevant to the robot task. The objects and featu-
res are represented by frames, and their motion modeled in terms of a set of
coordinates, called feature twist coordinates. A task is then specified by defi-
ning constraints on the feature twist coordinates. Instantaneous optimization
techniques are used to solve these constraints for the motion of the robot.
To estimate geometric parameters, extra uncertainty coordinates are introdu-
ced in a similar way as the feature twist coordinates. In every timestep, the
pose of the object and feature frames must be known. This thesis presents
a systematic way to calculate these poses, based on the information in the
pose closure equations. Finally, multiple example tasks are presented. They
illustrate the practical application of the specification methodology.

IV

Beknopte Samenvatting

De huidige-generatie industriële robots worden voornamelijk gebruikt als po-
sitioneermachines, en realiseren een taak door het afspelen van een vooraf
vastgelegd traject, waarbij op bepaalde plaatsen langs dat traject een actie
wordt uitgevoerd. Een voorbeeld van zo’n robottaak is het gerobotiseerd punt-
lassen. In deze taak beweegt de robot naar een bepaalde positie en plaatst
daar een puntlas, daarna beweegt de robot naar een nieuwe positie voor de
volgende puntlas, en zo verder. Bij het uitvoeren van een dergelijke taak be-
schikt de robot niet over informatie over zijn omgeving. De robot voert zijn
taak blindelings uit en kan dus geen rekening houden met variaties in de pose
of de geometrie van de objecten waarmee hij interageert. Dit impliceert dat
de omgeving van de robot volledig aangepast moet zijn aan de robottaak. Een
robotcel is daarom een gestructureerde omgeving, volledig toegespitst op het
realiseren van één bepaalde taak.

De vereiste om een volledig gestructureerde robotomgeving te creëren be-
perkt de inzetbaarheid van robots sterk. Het gebruik van robots om kleine
productseries of productseries die regelmatig veranderen te automatiseren, is
economisch niet haalbaar. De kost om de robot telkens te herprogrammeren
en zijn omgeving aan te passen aan de nieuwe taak is relatief gezien te hoog, in-
dien geproduceerd wordt in kleine aantallen. Sensorgebaseerde robotica biedt
een mogelijke oplossing voor dit probleem. Door een robot uit te rusten met
sensoren zoals een camera, een krachtsensor of een laser-afstandssensor kan de
robot zijn omgeving waarnemen en de uitvoering van de taak aanpassen aan
de specifieke toestand van de omgeving. Reeds vele jaren vormt de sensorge-
baseerde robotica een belangrijk onderzoeksonderwerp. De recent ontwikkelde
servicerobots voor taken zoals het stofzuigen van een huiskamer of het maaien
van een grasveld, zijn de eerste commercieel beschikbare toepassingen van dit
onderzoek. Het zijn mooie voorbeelden van sensorgebaseerde robotica, maar
telkens toegespitst op –en beperkt tot– een zeer specifieke applicatie. Hoe-
wel complexere robottaken reeds gerealiseerd zijn in onderzoeksomgevingen,
is er slechts een heel geringe doorstroom naar echte industriële toepassing. De
hoofdreden voor deze geringe doorstroom zijn de complexiteit van de inter-

V

Beknopte Samenvatting

pretatie van de sensormetingen en het ontbreken van een ondersteuning voor
de taakspecificatie van complexe sensorgebaseerde taken.

Dit proefschrift bouwt voort op de jarenlange ervaring in sensorgebaseer-
de robotica aan onze onderzoeksgroep en presenteert iTASC (instantaneous
Task Specification using Constraints), een systematische methodologie voor de
ogenblikkelijke specificatie van sensorgebaseerde robottaken met inbegrip van
geometrische schattingsproblemen. Door geometrische parameters te identi-
ficeren kan een robottaak aangepast worden aan variaties in de geometrie of
pose van objecten in de omgeving van de robot. De methodologie maakt een
onderscheid tussen objecten en kenmerken van die objecten, die relevant zijn
voor de uit te voeren taak. De objecten en kenmerken worden voorgesteld
door assenstelsels, en hun bewegingen worden gemodelleerd als een stel van
coördinaten, die kenmerk-twistcoördinaten worden genoemd. Een taak wordt
uiteindelijk gespecificeerd door beperkingen te definiëren op de kenmerk-
twistcoördinaten. Ogenblikkelijke optimalisatietechnieken worden aangewend
om de robotbeweging te bepalen die voldoet aan de beperkingen. Om geo-
metrische parameters te schatten worden extra onzekerheidscoördinaten inge-
voerd, op een gelijkaardige manier als de kenmerk-twistcoördinaten. In elke
tijdstap moeten de poses van de object- en kenmerkassenstelsels gekend zijn.
Dit proefschrift stelt een systematische manier voor om deze poses te bere-
kenen, gebaseerd op de informatie in de pose kringloopvergelijkingen. Verder
worden verschillende voorbeeldtaken uitgewerkt, die het praktische gebruik
van de methodologie illustreren.

VI

Symbols, definitions and
abbreviations

General abbreviations
1D, 3D, 6D : 1-, 3-, or 6-dimensional
DOF : degree of freedom
ACM : Autonomous Compliant Motion
OROCOS : Open RObot COntrol Software
iTASC : instantaneous Task Specification using Constraints
DES : Discrete Event System
TFF : Task Frame Formalism
KF : Kalman Filter
EKF : Extended Kalman Filter
IEKF : Iterated Extended Kalman Filter
NMSKF : Non-Minimal State Kalman Filter

General symbols and definitions
a : scalar (unbold lower case)
a : vector (bold lower case)
A : matrix (bold upper case)
ȧ : time derivative of a
||a|| : Euclidean norm of a
||a||

W
: weighted norm with weighting matrix W

A† : Moore Penrose pseudo-inverse

A# : weighted pseudo-inverse
[p×] : matrix expressing the cross product with p

t : time
z : sensor measurement
Kst : stiffness matrix
JC : camera Jacobian

VII

List of symbols

x̃ : a prediction for x
x̂ : an estimate for x

Rigid body kinematics
db

a : finite displacement of object b with respect to a

T b
a : 4 × 4 homogeneous transformation matrix of frame b with re-

spect to a

Rb
a : 3 × 3 rotation matrix of frame b with respect to a

cp
a,b : position vector from a to b, expressed in frame c

x, y, z : translational coordinates
φ, θ, ψ : rotational coordinates
t : twist
c
dt

b
a : twist of b with respect to a, with reference point c and reference

frame d

fv : translational velocity vector, expressed in frame f

fω : rotational velocity vector, expressed in frame f
f
g P : screw projection matrix from f to g

Ma
b : reference point transformation matrix from a to b

E : 3 × 3 matrix transforming the time rates of an angular repre-
sentation into rotational velocities ω

E : 6× 6 matrix transforming a twist into the time rate of a finite
displacement

iTASC
qR : robot joint positions
q̇R : robot joint velocities
JR : robot jacobian
e(qR, t) : a Task Function
o1 : frame attached to object 1
o2 : frame attached to object 2
f1 : frame attached to feature 1
f2 : frame attached to feature 2
Ja

F : the feature Jacobian for feature a
τ a : the feature twist coordinates for feature a
JFI : the feature Jacobian for submotion I
JFII : the feature Jacobian for submotion II
JFIII : the feature Jacobian for submotion III
τ I : the feature twist coordinates for submotion I
τ II : the feature twist coordinates for submotion II
τ III : the feature twist coordinates for submotion III

VIII

List of symbols

CR : linear coefficient matrix for constraints on qR

CF : linear coefficient matrix for constraints on τ

Js : sensor Jacobian
χU : uncontrolled or unknown degrees of freedom
χ : feature pose coordinates
χI : feature pose coordinates for submotion I
χII : feature pose coordinates for submotion II
χIII : feature pose coordinates for submotion III
HR,HF ,HU : coefficient matrices of a linearized measurement equation
JU : Jacobian for the unknown degrees of freedom

IX

X

Table of contents

Voorwoord I

Abstract III

Beknopte Samenvatting V

Symbols, definitions and abbreviations VII

Table of contents XI

List of figures XIII

1 Introduction 1

1.1 Background . 1

1.2 Research at our group . 3

1.3 Motivation and Contributions 5

1.4 Outline of this thesis . 7

2 Literature Survey 9

2.1 Introduction . 9

2.2 Robot control programs . 9

2.3 Task specification . 12

2.3.1 Sensorless tasks . 13

2.3.2 Sensor-based tasks 16

2.4 Estimation . 20

2.4.1 Estimation of geometric parameters 21

2.4.2 Estimation of dynamical parameters 22

2.4.3 Estimation of human intent 23

2.5 Conclusion . 23

XI

Table of contents

3 Mathematical Preliminaries 25
3.1 Rigid Body Kinematics . 25

3.1.1 Rigid Body Pose . 25
3.1.2 Rigid Body Motion 26
3.1.3 Exponential and Logarithm 29

3.2 Solving a Set of Linear Equations 32
3.2.1 Weighted Pseudo-inverses 32
3.2.2 Nullspace Constraints 34

4 Task Modeling and Specification 35
4.1 Introduction . 35
4.2 An Illustrative Example . 38

4.2.1 Step 1: Choice of the Objects and Features 39
4.2.2 Step 2: Modeling of the Relative Motion 39
4.2.3 Step 3: Definition of Constraints 43
4.2.4 Step 4: Solving for the Instantaneous Motion 44
4.2.5 Experiment . 46
4.2.6 Conclusions . 46

4.3 Task Modeling and Specification 48
4.3.1 Step 1: Choice of the Objects and Features 49
4.3.2 Step 2: Modeling of the Relative Motion 53
4.3.3 Step 3: Definition of Constraints 55
4.3.4 Step 4: Solving for the Instantaneous Motion 62

4.4 Conclusions . 65

5 Model Update, Estimation and Discrete Events 67
5.1 Introduction . 67
5.2 Model Update . 68

5.2.1 General Procedure 68
5.2.2 Minimal Coordinates 71
5.2.3 Measurements . 73

5.3 Estimation . 74
5.3.1 Modeling of the Uncertain Degrees of Freedom . . . 74
5.3.2 Integration of Estimation in the Model Update . . . 75
5.3.3 Kalman Filter Estimation 77

5.4 Discrete Event System . 79
5.5 Conclusions . 79

6 Applications 81
6.1 Introduction . 81
6.2 8 DOF Minimally Invasive Surgery 81
6.3 Forming Task . 85
6.4 Inspection Task . 89

XII

Table of contents

6.5 Incompatible Seam Following (Multi-point contact) 94
6.6 Laser Tracing . 100
6.7 Human-Robot Shared Control 108
6.8 Conclusions . 114

7 General Conclusions 115
7.1 Main contributions . 115
7.2 Limitations and future work 118

References 123

Index 135

Curriculum Vitae 137

List of Publications 139

Nederlandse Samenvatting I

1 Inleiding . I

2 Taakmodellering en -specificatie III

2.1 Controle gebaseerd op beperkingen III

2.2 De iTASC-methodologie IV

3 Modelactualisatie . XI

4 Schatting . XIII

4.1 Integratie van schatting in de modelactualisatie . . . XIV

5 Toepassingen . XVI

6 Besluit . XVIII

XIII

Table of contents

XIV

List of Figures

1.1 A fully automated robot station doing adhesive and welding
operations to connect the side frame of a car with its body
shell. Besides the robots, the peripheral equipment can be
seen, which holds the car panels together while they are being
welded or glued. 2

1.2 A robot performing a contour following experiment, in which
both force measurements are used in a feedback loop, as well
as camera images to generate a feedforward signal. 4

2.1 The components constituting a robot application. Central
is the control program. It contains a discrete event system,
which deliberates transitions between different states of the
task, based on operator commands, events from the robot
system and events from the running control components.
According to the state of the task, the discrete event sys-
tem selects a specific set of control components which realize
the desired behavior of the robot during that state. Active
components, this is, which generate data, are denoted by a
rectangular box. Passive components, this is, data contain-
ers holding data from active components as well as possibly
other information, are denoted by a circular box. 11

3.1 An object rotates around a vertical axis. Point a of this
object, on the axis, purely rotates. Point b of this object,
not on the axis, translates as well as rotates. 27

3.2 An object moves with respect to a frame a. Frame b is at-
tached to the object. 30

4.1 The object and feature frames for a minimally invasive surgery
task. 38

XV

Table of contents

4.2 Two consecutive snapshots of the minimally invasive surgery
experiment. One robot moves a box with a hole in it, simu-
lating motions of the patient. The other robot is holding the
laparascopic tool. The specifications are to keep the laparas-
copic tool centered at the hole at all times, and to perform a
translational motion of the tip of the tool along a line inside
the box. The insets show a closeup of the tip of the tool. . . 47

4.3 A robot performs a forming task, in which a plate (not shown)
is placed between two spheres. The robot then rolls one of
the spheres over the other while maintaining a contact force.
This deforms the plate into a curved surface. The objects
in this task are the two spheres, one of which is moved by
the robot. The task relations concerning these objects are
the contact force between them, and the motion on their
surfaces of the contact point. 50

4.4 A maintenance robot enters a pipe through a flange to per-
form a visual check of a seam. In this task, two pairs of
objects are relevant. In both cases, the pipe is one of the
relevant objects. The other objects are the last link of the
robot, to which the camera is attached, and the third link of
the robot, which sits through the flange. The task relations
are the relative orientation of the last link (this is, the cam-
era) and the pipe, and the relative pose of the third link of
the robot and the flange. 51

4.5 A feature is linked to an object. It can be a physical entity
such as a vertex, edge, face or surface (or thus a physical part
of an object), or it can be an abstract geometric property
of a physical entity such as the symmetry axis of a hollow
cylinder, or the reference frame of a sensor connected to the
object (for instance a camera frame). 53

4.6 A robot, pointing a laser distance sensor at a barrel. 59

4.7 Camera projection according to the pinhole camera model. 60

5.1 An example of a state diagram. The arrows denote possible
transitions between states. 79

5.2 An example of linear change of the weighting matrix scale fac-
tors lambda, to ensure smooth transition between two states. 80

6.1 The object and feature frames for a minimally invasive surgery
task, with 8 DOF (6 DOF of the robot, and 2 extra DOF of
the tool). f2b coincides with o2b. 82

XVI

Table of contents

6.2 The object and feature frames for a forming task. In the
task, a plate (not shown) is placed between two spheres, by a
peripheral mechanism in the robot workcell. The robot then
rolls one of the spheres over the other while maintaining a
contact force. This deforms the plate into a curved surface. 86

6.3 The object and feature frames for a maintenance task. . . 89

6.4 The object and feature frames for an incompatible seam fol-
lowing task. 95

6.5 The experimental setup of the incompatible seam following
experiment. 98

6.6 The contact force in contact a. From 50s on, the tool moves
sinusoidally along the seam. The disturbance of friction on
the contact force can be seen. 99

6.7 The contact force in contact b. From 50s on, the tool moves
sinusoidally along the seam. The disturbance of friction on
the contact force is less prominent than in contact a, but can
still be seen. 99

6.8 The object and feature frames for a laser tracing task. The
goal of the task is to trace simultaneously a path on a plane
as well as on a cylindrical barrel using two lasers which are
rigidly attached to the robot end effector. The lasers also
measure the distance to the surface. The position and orien-
tation of the plane and the position of the barrel are uncertain
at the beginning of the task. 101

6.9 Motion of the laser spot on the plane, without model correc-
tion (by courtesy of Wilm Decré). Without model correction,
the iterative application of prediction results in accumulation
of integration errors due to discretization and due to errors
in the geometric model. Therefore the estimates of the fea-
ture frames drift away from their actual positions. While the
estimated position of the laser spot corresponds well to its
desired position, the actual position does not. 104

6.10 Motion of the laser spot on the plane, with model correction
(by courtesy of Wilm Decré). If the correction step is added,
based on the additional information contained in the pose
closure equations, the drift of the estimates is prevented. The
estimated laser spot position corresponds to its actual and
desired position. 105

6.11 Laser tracing on plane (simulation): estimation of plane height
(ha) and plane orientation (θa and ψa). (by courtesy of Tinne
De Laet and Wilm Decré) 108

XVII

LIST OF FIGURES

6.12 Laser tracing on barrel (simulation): estimation of x- and
y-position of the barrel (xb

u and yb
u). (by courtesy of Tinne

De Laet and Wilm Decré) 109
6.13 Laser tracing on barrel (experiment): estimation of X and

Y -position of the barrel. Note that the initial 2σ boundaries
do not fit on the displayed area. (by courtesy of Tinne De
Laet and Wilm Decré) . 110

6.14 The object and feature frames for a human-robot co-manipulation
task. In the experiment, the manipulated object is a plate.
Colored sheets are attached to the plate and the table below
it, to facilitate recognition of the object and the support in
the camera images. 111

6.15 The left plot shows the forces Fx and Fy, exerted by the
operator during the co-manipulation task. The right plot
shows the alignment errors xa and ya as measured by the
camera. 114

1 De object- en kenmerkassenstelsels bij een toepassing voor
een minimaal invasieve chirurgie. IV

XVIII

Chapter 1

Introduction

1.1 Background

Since their introduction in the 1960’s, robots have become widely accepted as
an indispensable means to increase productivity and automation in manufac-
turing environments. While industrial robots are still most commonly used
in the automotive industry (with in Japan, Italy and Germany more than 1
robot per 10 production workers1), new robot technologies are emerging in
other sectors such as the aerospace, chemical and medical industry. During
the last decade, robot manufacturers have seen a worldwide increase in robot
sales, with average annual growth rates of about 7%. The rapid decline of
robot prices, combined with the increase of both their quality and the labor
costs, are the main reasons for this steady growth.

Robots are very flexible machines, and seem ideal to automate parts of
a production process. They can indeed be used for numerous tasks, such as
pick-and-place tasks, spot and arc welding, or spray painting. An example
of such a task is given in Figure 1.1. This figure shows a fully automated
robot station performing adhesive and welding operations to connect the side
frame of a car with its body shell. Robots are ideal for such tasks because
they are fast, accurate, and reliable. Furthermore, robots work around the
clock and withstand harsh or hazardous environments. On the other hand,
robots also have limitations. Robots are capable of a lot of tasks, but they
do their work blindly, without intelligence or knowledge about their environ-
ment. Robots usually have no other sensors than their internal encoders.
Because of this, robots only know how they are positioned, but not what
happens in their environment. For each robot application, specific peripheral
equipment is needed to structure the environment. Only when all workpieces

1Source: United Nations Economic Commission for Europe. http://www.unece.org/

1

1 Introduction

Figure 1.1: A fully automated robot station doing adhesive and welding
operations to connect the side frame of a car with its body shell. Besides
the robots, the peripheral equipment can be seen, which holds the car panels
together while they are being welded or glued.

are at an exactly known position, a robot can realize its task by replaying
a set of actions on preconfigured positions or along preconfigured trajecto-
ries. The need to change the robot environment according to each new task
for the robot, makes the implementation of a robotic application a difficult
challenge. Furthermore, the cost of the peripheral equipment, as well as the
cost of programming a robot, make up for a substantial part of the complete
cost of a robot cell. As each specific application requires custom peripheral
equipment and a custom control program, a robot is not cost effective if fre-
quent changes in the production process are needed. This prevents a lot of
potential robot automation projects from being realized, as these projects are
not economically feasible in companies which produce small and customized
batches.

A possible solution to the high cost of a structured robot environment is

2

1.2 Research at our group

to equip a robot with more sensors than just its internal encoders, such as a
force/torque senor, a camera or a laser distance sensor. These extra sensors
provide information about the robot environment and allow the identifica-
tion of the objects in the environment and their positions. Using the sensor
measurements, the robot can perform the task without knowing its environ-
ment in advance. This opens up possibilities to use robots in less structured
settings, and lowers the prerequisites of the peripheral equipment. However,
while research has been actively focusing on sensor-based robotics for the last
decades, the ultimate goal of intelligent and autonomous robots still remains
an open topic, and few applications of sensor-based robotics have been put to
practice in true industrial settings.

1.2 Research at our group

Previous work at our research group has always had a strong focus on sen-
sor based robotics. Our research aims towards more flexible and intelligent
robots, capable of all sorts of tasks in unstructured or dynamic environments.
Historically, research at our group primarily focused on force controlled au-
tonomous compliant motion (ACM) and task specification for autonomous
compliant motion tasks. More recently, the focus shifted to task specification
for general sensor-based tasks, and estimation of geometric parameters during
task execution.

Autonomous compliant motion

Force controlled compliant motion tasks (De Schutter and Van Brussel 1988a)
are tasks in which a robot makes contact with its environment to realize a
task. Examples of such compliant motion tasks are assembly, manipulation,
deburring and milling. Autonomous compliant motion tasks are compliant
motion tasks in which the robot has a certain degree of autonomy, in that it
can still perform its task when there is geometrical uncertainty in the robot
environment. For instance, when deburring castings, not all castings have ex-
actly the same size, they are not necessarily always placed at the same position
with respect to the robot, and the burrs can be at different places and have
different shapes. To cope with this uncertainty, the robot is equipped with
a force/torque sensor. This sensor measures the contact forces and torques
between the robot (or the robot tool) and the object it makes contact with.
The task execution is continuously adapted according to these measurements,
to adequately perform the task even when the modeled position or geometry
of the object is not the same as the real position or geometry.

Research in ACM at our research group culminated with the development
of COMRADE (Van de Poel et al. 1993), a specification software package to

3

1 Introduction

Figure 1.2: A robot performing a contour following experiment, in which
both force measurements are used in a feedback loop, as well as camera images
to generate a feedforward signal.

specify ACM tasks. Using COMRADE, it is possible to specify ACM tasks in
a script form, by specifying target contact forces or velocities for the robot.
An example of a robot task specified using COMRADE is shown in Figure
1.2. The task shown in this figure is a contour following task, in which both
force measurements are used in a feedback loop, as well as camera images to
generate a feedforward signal (Baeten and De Schutter 2003).

Estimation of geometric parameters

Another important research topic at our group is the estimation of geomet-
ric parameters, such as the position or the geometry of objects in the robot
environment. Instead of using sensor measurements directly in the control
loop, Bayesian techniques are used in an intermediate interpretation step, for
the purpose of model building or model identification. The most commonly
used techniques are the Kalman filter variants (Kalman 1960), such as the ex-
tended Kalman filter (Tanizaki 1996) or the non-minimal state Kalman filter
which was developed in our group (Lefebvre, Bruyninckx, and De Schutter
2005b). More recently, also particle filters (or sequential Monte Carlo meth-
ods) were used (Doucet, Gordon, and Krishnamurthy 2001), as these are more
appropriate for highly non-linear estimation problems. Moreover, particle fil-

4

1.3 Motivation and Contributions

ters can handle estimation problems with hybrid states, that is, states which
consist of both continuous and discrete variables. The drawback of particle
filters is their computational complexity. Particle filters generally have much
higher computational demands than Kalman filters, which makes them less
appropriate for high-dimensional estimation problems.

OROCOS: Open Robot Control Software

In late 2000, the Orocos project (www.orocos.org) was initiated at our research
group. Orocos stands for Open RObot Control Software, and is a modular and
architecture independent software framework for real-time robot and machine
control. Orocos consists of four sub-projects:

• The RealTime Toolkit (RTT) is a library for realtime control ser-
vices. It is a framework providing the building blocks to create robot or
machine control programs.

• The Kinematics and Dynamics Library (KDL) provides modeling
support for robot (or general machine) kinematics and dynamics.

• The Bayesian Filtering Library (BFL) is a framework to implement
Bayesian estimators. The library includes support for different Kalman
filter variants, particle filters and Kalman smoothers, but is easily ex-
tensible to include other Bayesian methods.

• The Orocos Components Library (OCL) contains components which
are built using the Realtime Toolkit, and which can be used as (a part)
of a robot or machine control program.

All the software of the Orocos project is available as open source software,
released under the LGPL license.

1.3 Motivation and Contributions

Widespread application of sensor-based robotics is only possible if sensor-
based tasks can easily be specified. To support the task specification of those
tasks, several specification methodologies were developed in robotics research,
such as the Task Frame Formalism (De Schutter and Leysen 1987), or a num-
ber of methodologies based on the definition of instantaneous twist and wrench
spaces (Aghili 2005; Liu and Li 2002).

While these approaches are very useful for certain kinds of tasks, they have
a number of common disadvantages. Only simple geometric models are used
to support the task specification, such as a single task frame or a single twist
and wrench space. This means that these methodologies are inadequate to

5

1 Introduction

specify tasks which comprise control constraints from different sources, such as
different sensors yielding partial information to realize the task. Indeed, apart
from few exceptions (Baeten and De Schutter 2003; Kröger, Kubus, and Wahl
2006), the approaches focus on tasks in which a single sensor is used. Also
for instance tasks involving partial specifications for different parts of a robot,
cannot be handled. Such tasks require a true constraint-based approach, in
which different motion or sensor constraints can be specified independently.
Furthermore, current specification methodologies provide little to no support
for the estimation of geometric parameters.

This thesis presents iTASC (instantaneous Task Specification based on
Constraints): a methodology to specify sensor-based robot tasks. iTASC
contributes to the state of the art on the following aspects:

• its constraint-based nature: iTASC is a true constraint-based me-
thodolo-gy. As a result, iTASC is suitable to specify tasks which com-
prise control constraints from different sources. In iTASC, tasks are
specified according to the Task Function Approach (Samson, Le Borgne,
and Espiau 1991). To support the expression of the Task Function, the
concepts of objects and features are introduced, and constraints defined
on the relative motion of these objects and features. The methodology
allows tasks to be fully, under or overconstrained.

• its generic nature: iTASC is a generic approach, in that it does not
focus on one particular kind of task, sensor or robot system. iTASC can
be used for general, velocity resolved robot systems consisting of rigid
links and joints. Also, all sensors yielding geometric information can
be used (for instance, cameras or distance sensors, but also dynamical
sensors such as a force sensor, if the task is executed in a quasistatic
way).

• the model update procedure: All task specification methodologies
use a geometric model of the task, which must be kept up to date while
executing the task. While other task specification approaches require
the programmer to implement ad-hoc procedures to this end, iTASC
provides a generic update procedure to automatically track the poses of
the object and feature frames of the model.

• the integration of estimation: Where other methodologies rely on
the intrinsic robustness of sensor-based control to deal with geometric
uncertainty, iTASC provides the means to explicitly model and estimate
uncertain parameters.

To illustrate the effectiveness of the approach, the iTASC methodology is
applied to the following example applications:

6

1.4 Outline of this thesis

• A minimally invasive surgery task is used as an example to introduce
the concepts of iTASC (Section 4.2, page 38). Though it is a pure
positioning task, in which no extra sensors are used, it is still a nice
example of a task which is not easily specified using a single task frame,
as there are two sources of constraints. Section 6.2 (page 81) shows how
this application can easily be extended to a different setting, in which
the laparascopic tool used in the task has two extra degrees of freedom.

• The forming task, discussed in Section 6.3 (page 85), is an example
of a fully constrained task involving a force controlled contact between
curved surfaces.

• The inspection task in Section 6.4 (page 89) has similar constraints
as the minimally invasive surgery task, but is underconstrained and
requires state transitions (that is, transitions between different control
constraints).

• The incompatible seam following task (multi-point contact) is a typical
example of a task which cannot easily be specified according to method-
ologies such as the Task Frame Formalism. Section 6.4 (page 89) shows
that it is straightforward to specify this task according to iTASC.

• The laser engraving task in Section 6.6 (page 100) is an example of
an underconstrained task, involving two different sources of constraints,
and estimation of geometric parameters.

• The final example application deals with human-robot shared control
(Section 6.7, page 108). This task uses multiple sensors to allow a
human operator and a robot to work together to realize a task. The
choice of the weights for the different control constraints defines the
dynamic behavior of the task.

1.4 Outline of this thesis

This thesis is organized as follows:

• Chapter 2 gives an overview of historic and recent research progress in
robotics, with emphasis on task specification for ‘sensorless’ robot tasks,
this is, without additional sensors, as well as ‘sensor-based’ tasks, this
is, with additional sensors, such as a force/torque sensor or a camera.

• Chapter 3 introduces some mathematical concepts and notations, which
are assumed known in the further chapters of this thesis.

7

1 Introduction

• Chapter 4 presents the core of iTASC: a systematic procedure to model
and specify sensor-based tasks. Inspired by (Ambler and Popplestone
1975), objects and features are introduced. The objects and features
are represented by frames, and their motion expressed in terms of a set
of coordinates, called feature twist coordinates. A task is then specified
by defining constraints on the feature twist coordinates.

• In every timestep, the pose of all object and feature frames must be
known. While the programmer can implement an ad-hoc procedure to
calculate these frame poses, generic support is desirable as this lessens
the work involved when specifying a task, and opens up possibilities to
develop task specification support software which automates the task
specification process as much as possible. The model update procedure
of iTASC is presented in Chapter 5.

• Whereas most previous work relies on the intrinsic robustness of sensor
based control to deal with geometric uncertainty, the approach presented
in this thesis explicitly models geometric uncertainty. To this end an ad-
ditional set of uncertainty coordinates is introduced. A generic scheme
is proposed to estimate these coordinates and to take them into account
in the control loop, also in Chapter 5.

• Simulation and experimental results of several example applications are
presented in Chapter 6.

• Finally, Chapter 7 gives an overview of the main contributions and con-
clusions of this thesis, an evaluation of the limitations of the formalism
and gives suggestions for future research topics.

8

Chapter 2

Literature Survey

2.1 Introduction

This chapter gives an overview of historic and recent research progress in
robotics, with emphasis on task specification for ‘sensorless’ robot tasks, this
is, without additional sensors, as well as ‘sensor-based’ tasks, this is, with
additional sensors, such as a force/torque sensor or a camera.

First, Section 2.2 gives a conceptual overview of the components which
constitute a robot control program. Section 2.3 then discusses task specifica-
tion support, this is, different approaches which aim to aid the programmer in
specifying a robot task, by providing a functional implementation of (some of)
the components identified in Section 2.2. Using such task specification soft-
ware, specifying a robot task is reduced to filling in task-specific parameters
of the available components. Section 2.4 discusses further relevant research
effort, which however does not focus on the whole of task specification but on
the estimation component individually.

2.2 Robot control programs

In se, a robot is nothing more than a few lumps of iron, interconnected by
gears and actuators, and to some extent equipped with sensors. Only with the
correct robot control program, sending the appropriate control signals to the
actuators, a robot becomes a useful system capable of realizing tasks. So, for
each robot task, a control program is needed. During the last decades, robotics
research has seen an evolution in the complexity of these control programs.
The first robots were programmed manually, and on the robot controller itself.
These controllers provided only simple programming primitives, such as joint
space and Cartesian movements, and hence only allowed for simple tasks.

9

2 Literature Survey

Recent robotics applications are implemented on a lot more complex systems:
more complex types of robotic systems are used, such as humanoid, parallel or
cooperating robots, sensing and estimation is used to adapt the task execution
online to variations of the robot and its environment, and robots are used in
different environments, for which they were not necessarily designed for, such
as a household environment. Hence, the robot control programs have become
a lot more extensive and complex.

Figure 2.1 shows a conceptual scheme of the components needed to realize
a robot task. It is an extended version of the traditional three-layer architec-
ture for intelligent control (Saridis 1979). While only complex robot tasks use
all these components, the general structure is valid for all robot tasks. In the
case of simple tasks, several of the components can be empty.

Central in the scheme is the actual control program, which takes operator
commands and sensor data as an input and generates actuator setpoints as its
output. Each robot task consists of a number of states. While these might be
as simple as ready to start, running and finished, for tasks of little complexity,
more elaborate tasks have a more complex state diagram. Hence, in every
control program a discrete event system (DES) or finite state machine,
reflecting this state diagram, is more or less prominently present. It reacts
to operator commands (such as start or stop) and to events from the robot
system or from the running control components (such as an emergency stop
event). Based on these commands and events, the DES deliberates possible
state transitions and selects an active state. Furthermore, according to this
active state the DES selects a set of control components which realize the
desired behavior of the robot during that state.

The control components are the functional blocks, which process the sensor
data from the robot system, and generate the actuator signals. There are
active and passive control components. The active components, denoted by a
rectangular box in the scheme, have a certain behavior, this is, they generate
data such as setpoints or control outputs. The passive components, denoted
by a rounded box in the scheme, are data containers holding the data from
the active components, as well as possible other, contextual information, as
for instance the kinematic and dynamic models of the task.

Central is the model, which is used by the active components: the path
generator, the estimator and the controller. The model comprises all
information needed for the calculations of the active components, such as
kinematic and dynamic models, or sensor models yielding measurement equa-
tions. In other words, the model provides the necessary context for the active
components.

The content of the model is both used as well as updated by the active
components. This is most clear for the estimation component, which has this
as its sole purpose: it uses model data such as a measurement equation to

10

2.2 Robot control programs

path
generation control

estimation

model

setpoints

input output

path
generation control

estimation

model

setpoints

input output

path
generation control

estimation

model

setpoints

input output

path
generation control

estimation

model

setpoints

input outputcontrol
components

d
is

c
re

te
 e

v
e
n
t

s
y
s
te

m
operator commands

robot +
environment

sensing actuation

c
o
n
tr

o
l
p
ro

g
ra

m

Figure 2.1: The components constituting a robot application. Central is
the control program. It contains a discrete event system, which deliberates
transitions between different states of the task, based on operator commands,
events from the robot system and events from the running control compo-
nents. According to the state of the task, the discrete event system selects
a specific set of control components which realize the desired behavior of the
robot during that state. Active components, this is, which generate data, are
denoted by a rectangular box. Passive components, this is, data containers
holding data from active components as well as possibly other information,
are denoted by a circular box.

11

2 Literature Survey

estimate model parameters from its inputs, the sensor data coming from the
robot system. Hence, it uses, as well as updates the model. To a lesser extent
this is also valid for the other active components, the path generator and the
controller. The path generator generates the setpoints for the controller, and
the controller uses these setpoints to calculate actuator outputs. Although
both the path generator and the controller use model data for this purpose,
they possibly also update the model. For instance, for a specific application,
the controller could update the model with information about the tracking
error, which is then used by the estimator to calculate a better estimate
of certain geometric parameters of the model. This reciprocal data flow is
indicated by the double arrows in the scheme.

A specific robot task is realized by the set of all these components, this
is, the DES and, for each state of the application, a different path generator,
estimator and controller, as well as their own input, output, setpoint and
model data containers.

2.3 Task specification

To specify a robot task, all components of the scheme of Figure 2.1 should be
filled in by the programmer. While the scheme is conceptually very simple,
implementing a complete robot control program, including all the components,
from scratch is a very elaborate task as each of the components can have
extensive inner operations. Hence, several approaches have been presented to
aid the programmer in specifying a task. Each of these approaches provides
ready-to-use implementations for several of the components, hereby relieving
the programmer to some extent by reducing the programming effort to filling
in the remaining components, or even to filling in only a number of parameters
of otherwise fully functional components.

This section gives an overview of such task specification approaches. A
distinction is made between sensorless tasks, for which the robot is used as is,
without extra sensors, and sensor-based tasks, in which extra sensors are used
such as a force sensor or camera. This division is artificial; for instance, task
level programming (discussed in Section 2.3.1) actually focuses on all tasks in
general, without making the distinction between sensor-based and sensorless.
Nevertheless, at least two reasons justify this choice. Firstly, most robots in
industry are still used for purely geometric tasks without extra sensors, in
contrast to research, which extensively has focused on sensor-based robotics
during the last decades. Secondly, general support for task specification is
a lot less common for sensor-based tasks, due to the additional complexity
compared to sensorless tasks.

12

2.3 Task specification

2.3.1 Sensorless tasks

Initially, robot controllers were self-contained systems without external com-
puters or other support hardware, and task specification was hence limited
to the methods these controllers provided. Specifying a task consisted of the
definition of viapoints for the robot motion, the type of motion between those
viapoints (for instance, joint space or Cartesian motion), and possibly an ac-
tion at each viapoint (such as opening or closing a gripper). The viapoints
were specified offline, as a list in a control program, or taught online by mov-
ing the robot to the desired positions. Three ways to do this teaching can be
distinguished:

• walk-through teaching: In walk-through teaching, a teach pendant is
used to move the robot into the viapoint positions (Marcelo, Lin, and
Lim 1999).

• lead-through teaching: In lead-through teaching, viapoints are specified
by physically interacting with the robot to move it into the desired
positions (Todd 1986). For non-backdrivable robots, this requires active
sensing and control of the robot to follow the operator’s input.

• teleoperation: In teleoperation, a master-slave setup is used to lead the
robot along the desired path. The robot (the slave) is controlled to
follow the input of a joystick or haptic device (the master).

Further programming primitives provided by these controllers are simple geo-
metrical primitives such as lines and arcs, similar to what is present in the con-
trollers of computer numerically controlled (CNC) machines, such as milling
machines or lathes.

The control components of Figure 2.1 are easily recognizable for these
kind of applications: controllers, typically PID, are provided for Cartesian
and joint space motion, the model is given by the kinematics of the robot (or,
for joint space tasks, no model is needed), and path generators are present to
interpolate between the viapoints in joint or Cartesian space, and to generate
the setpoints for motion along the provided geometric primitives. The only
inputs to the control program are the joint positions, and, as most industrial
robot controllers have joint velocity controllers in hardware, the outputs are
typically given by voltage setpoints for these controllers, proportional to the
desired joint velocities. There is no estimator, and the DES only contains the
logic to switch generators and controllers according to the desired motion,
and to deal with very few states, such as initialized, running or in error.

While the set of programming primitives provided by these robot con-
trollers is not very extended, it proves adequate for a large number of in-
dustrial tasks, such as positioning tasks, pick-and-place tasks or trajectory
following, in well structured environments. Still today, a large number of

13

2 Literature Survey

robots in use are being programmed that way. On the other hand, especially
in research, the desire is to use robots for more complex tasks and in less
structured environments, such as domestic and service environments. These
kinds of tasks are impossible to program using the programming primitives
of current robot controllers.

Complex Task Kinematics

Tasks involving complex geometries, such as rapid prototyping (Huang and
Lin 2003), or involving complex robot systems, such as cooperating robots
(Montemayor and Wen 2005), cooperating teleoperation systems (Sirouspour
2005) or humanoid robots (Sugihara and Nakamura 2002), cannot be pro-
grammed using the geometric primitives present in first-generation robot con-
trollers. Furthermore, even for tasks which actually can be programmed using
these primitives, the process of hand-coding all paths is a burdensome task
for all but the most simple applications. This, combined with the desire
to simulate complete robot environments with possibly multiple robots and
extensive peripheral equipment, inspired the development of CAD-based sys-
tems to simulate and control robots, such as Delmia V5 Robotics (Delmia
2006). Using such CAD-based software any robot motion can be checked for
collisions, reachability, accuracy of the motion, etc.

While this way of programming robots is a huge step forward with re-
spect to initial robot programming support, research focused on a multitude
of topics which are not covered by current commercially available software.
For instance, there is little to no support for the inclusion of sensor data to
alter the task execution online. Also in the field of kinematic modeling and
path resolution, a lot of research progress has been made compared to what
is currently commercially available. An active research topic is the exploita-
tion of task and robot redundancy to achieve better performance. Owen,
Croft, and Benhabib (2005) present a weighted pseudo-inverse method with
a weighting matrix based on joint torque, to reduce the acceleration for joints
which are near torque saturation. When applied to offline planning, trajecto-
ries that would normally be infeasible due to torques exceeding their limits,
can be made feasible as their method brings the saturated torques below the
torque limits. In (Wu, Cui, and Chen 2000) and (Ahmad and Luo 1989),
redundancy is used to realize a task while avoiding singularities and joint
limits, while in (Jouaneh, Wang, and Dornfeld 1990; Jouaneh, Dornfeld, and
Tomizuka 1990) optimal paths are resolved based on minimum energy and
time criteria. English and Maciejewski (2000) identify that many of these
velocity control techniques can be cast into a particular representation of the
Liégois method (Liegeois 1977; Aksenov, Voronetskaya, and Fomin 1978). In
this method, redundancy is resolved by specifying a set of constraints (the sec-
ondary constraints) which are realized in the null-space of the task constraints

14

2.3 Task specification

(the primary constraints).

Complex Task Dynamics

Also with respect to modeling task and robot dynamics, a lot of progress
has been made in research which is not yet reflected in commercially available
robot controllers or control software. Currently, much focus goes to simulation
and control of humanoid robots. Chang and Khatib (2000) present efficient
algorithms to model and control branching mechanisms, such as humanoid
robots. Combined with collision and contact models (Ruspini and Khatib
1999), these algorithms are used for interactive simulation of humanoid robots
(Khatib et al. 2003). In (Khatib et al. 2004), a framework for whole-body con-
trol of humanoid robots is presented, which decouples the interaction between
the task and postural objectives. To ensure that the secondary (postural) ob-
jectives do not interfere with the primary (task) objectives, the principles of
(Nakamura, Hanafusa, and Yoshikawa 1987) are applied on a dynamic level,
with the operational space inertia matrix as the natural weighting matrix for
the projection used in solving the redundancy problem. In (Bruyninckx and
Khatib 2000) Gauss’ Principle of Least Constraint is used to derive these
‘natural’ dynamic equations for redundant manipulators.

Other research focused on the combination of dynamic systems with kine-
matic constraints. (Bonaventura and Jablokow 2005) present a modular ap-
proach for the dynamic modeling and simulation of complex robot systems,
composed of multiple robots constrained by multiple concurrent contacts (this
is, kinematic constraints). In (Liu, Xu, and Bergerman 1999) modeling and
control of multiple cooperative underactuated manipulators, handling a rigid
object is discussed.

Task Level Programming

A completely different approach to task specification, though primarily as a
research topic, is that of task level programming. In task level programming,
the operator specifies what the goals are for a certain task, but not how these
goals should be accomplished. It is up to the underlying planning system to
come up with a strategy to realize the specification, and to generate motion
commands for the robot. Seminal work in the field of mechanical assembly
has been done by Ambler and Popplestone (1975). Ambler and Popplestone
specify geometric relations (that is, geometric constraints) between features
of two objects (Popplestone, Weiss, and Liu 1988). The goal is to infer the
desired relative pose of these objects from the specified geometric relations
between the features. In turn this desired relative pose is used to determine
the goal pose of a robot who has to assemble both objects. The geometric
relations are based on pose closure equations and they are solved using sym-

15

2 Literature Survey

bolic methods. To support the programmer with the specification, feature
frames and object frames are introduced, as well as suitable local coordinates
to express the relative pose between these frames. In a similar way, motion
planning methods in configuration space (C-space) (Lozano-Pérez 1983) spec-
ify relative pose as the result of applying constraints to objects. Robot path
planning is reduced to path planning of a point in C-space, complying to
the constraints (Chen and Zelinsky 2003). In (Latombe 1991; Latombe 1999;
LaValle 2006), a survey is given of research in planning algorithms. While
task level programming has been an active research topic since long (Taylor
1976; Latombe 1989), it is still not mature enough to allow for widespread
application.

2.3.2 Sensor-based tasks

Sensor feedback is introduced in robotics to overcome model inconsistencies,
that is, differences between what is modeled and what is present in the real
robot environment. The sensor measurements are used in the control loop,
to adapt the task execution to these variations. The most common sensors
in robotics are force/torque sensors and cameras for manipulation tasks, and
cameras, laser range finders and ultrasonic sensors in mobile robotics. This
section gives an overview of sensor-based robotics, with main focus on force
control (Siciliano and Villani 1999; Canudas de Wit, Siciliano, and Bastin
1996) and compliant motion tasks (De Schutter and Van Brussel 1988a), as
these topics are historically the main research topics in sensor-based manipu-
lation at PMA, K.U.Leuven.

Compliant Motion

Compliant motion task are tasks in which objects are moved in contact, such
as assembly, deburring or polishing. A force/torque sensor measures the
contact wrench, and motion is controlled such, that the contact wrench is
regulated to a desired value. The three main approaches to force control
are hybrid force/position control (hereafter called Hybrid control), impedance
control and parallel force/position control (hereafter called Parallel control).
Hybrid control (Raibert and Craig 1981; Fisher and Mujtaba 1992) is based
on a decomposition of the workspace according to the configuration of the con-
tacting objects, into n purely motion controlled directions and 6 − n purely
force controlled directions. This separation into motion and force controlled
subspaces is called the Hybrid Control Paradigm (HCP). In impedance control
(Hogan 1985; Hogan 1987), position and force are controlled in such a way
that a desired mechanical impedance of the end-effector, to external forces
exerted by contact with the environment, is obtained. It is a generalization
of stiffness control (Salisbury 1980) and admittance control (Whitney 1977).

16

2.3 Task specification

Parallel control was proposed in (Chiaverini and Sciavicco 1993) and (Sicil-
iano 1995), and in (De Schutter and Van Brussel 1988c) and (De Schutter
1988), where it was termed feedforward motion in a force controlled direction.
It is an extension to the HCP, combining force and motion control in a single
direction. The force control dominates the motion control in each direction:
in case of conflict, the force setpoint is regulated at the expense of a position
error. In (Anderson and Spong 1988), hybrid impedance control is introduced
as a combination of Hybrid control and Impedance control.

Lipkin and Duffy (1988), Duffy (1990) and Doty, Melchiorri, and Bonivento
(1993) have pointed out the importance of invariant descriptions when dealing
with twists and wrenches to represent 3D velocity of a rigid body and 3D force
interaction, respectively. Non-invariant descriptions result in a different robot
behavior when changing the reference frame in which twists and wrenches are
expressed, when changing the reference point for expressing the translational
velocity or the moment, or when changing units. Such non-invariance is highly
undesirable in practical applications as it compromises the predictability of
the resulting robot behavior. Several ways to deal with this problem have
been proposed, for instance in (Lipkin and Duffy 1988; Doty, Melchiorri, and
Bonivento 1993; Jankowski and ElMaraghy 1996; De Schutter, Torfs, Dutré,
and Bruyninckx 1997). These approaches have in common that a metric is in-
troduced, which defines a physically relevant norm of the wrenches and twists,
and that a weighted pseudo-inverse is used accordingly.

The original formulation of the HCP neglects the dynamics of the manip-
ulator, which can cause unstable response (An and Hollerbach 1989). This
led to more precise formulations of the HCP, taking the arm dynamics into
account. Khatib (1987) developed the operational space formulation and
Yoshikawa, Sugie, and Tanaka (1988) introduced the dynamic hybrid control
approach.

Several review papers on force control have been published (Yoshikawa
2000; De Schutter and Bruyninckx 1996; Whitney 1987; Natale 2003), of
which (De Schutter et al. 1997) and (Caccavale et al. 2005) are of particular
interest. The former paper takes a look at force control from a distance to
put force control into a broader context, and the latter focuses on embedding
force control into industrial robots. Related work was presented in (Ferretti,
Magnani, and Rocco 2004), in which an impedance controller is proposed for
industrial manipulators with specific attention to the industrial aspects of
the manipulator (decentralized PID position control and torsional flexibility
and friction of the joints), and in (Caccavale et al. 2005), which focuses on
impedance and parallel control with respect to implementation on industrial
robots. While force control has been a research topic since the 1970’s, the
implementation of force control on an off-the-shelf industrial manipulator is
still not straightforward, mostly due to the closedness of industrial controllers

17

2 Literature Survey

with respect to interfacing the control loop to integrate sensor measurements
(Miller and Lennox 1990; Van de Poel, De Schutter, and Van Brussel 1994).
Recent controllers, such as the Stäubli CS8C (Stäubli 2006; Garćia et al.
2006) or the ABB IRC5 (ABB 2006; Garćia et al. 2005; Mustapic et al. 2004)
provide more open architectures and are promising with respect to sensor-
based robotics.

Task specification for compliant motion tasks

Several task specification approaches for force controlled tasks have been de-
veloped. The Compliance Frame (Mason 1981) or Task Frame Formalism
(TFF) (De Schutter and Leysen 1987) is such a task specification support
formalism for tasks according to the HCP, in which the force and velocity con-
trolled directions coincide with the axes of a frame (the Task Frame). An ex-
tensive catalog of TFF models and specifications can be found in (Bruyninckx
and De Schutter 1996). COMRADE (Compliant Motion Research and Devel-
opment Environment) is a compliant motion specification language based on
the TFF (Van de Poel et al. 1993; Witvrouw et al. 1995; Witvrouw 1996).
It is an implementation of the general scheme: it provides the controller,
generator,. . . , needed to execute a task according to the TFF. Task speci-
fication using COMRADE is reduced to the initialization of these different
components. The user has to initialize:

1. the model, by specifying the Task Frame and selecting the force and
velocity controlled directions,

2. the generator, by specifying the desired values for each force and veloc-
ity,

3. the DES, by specifying the termination conditions for each force con-
trolled motion.1

COMRADE provides a set of standard controllers, such as velocity or force
controllers2. According to the model, the correct controllers for the task are
selected. The measured force and joint positions are the inputs to the control
program. The outputs are the joint velocities. For tasks with a varying
position of the Task Frame, COMRADE provides two estimators to track the
Task Frame: track-on-force and track-on-velocity (Witvrouw 1996). The DES
monitors the termination conditions and switches states accordingly.

In (Wang 1999), a human demonstration approach was presented to specify
tasks according to the TFF. Other extensions of the TFF have been presented

1For instance, if a force, substantially larger than the friction force, is felt in a velocity
controlled direction, a transition has occurred to a different contact formation.

2Of course, different controllers can be implemented, and the parameters of those con-
trollers can be altered by the user.

18

2.3 Task specification

in (Baeten and De Schutter 2003; Baeten, Bruyninckx, and De Schutter 2003),
in which vision and force are combined for robotic servoing using the TFF, and
in (Kröger, Finkemeyer, and Wahl 2004), in which the Task-Net is introduced.
The Task-Net is an extensive implementation of the TFF, with emphasis on
the DES component of the control program. It offers a programming language
to define a state diagram, in which state transitions are triggered by sensor
measurements (Kröger et al. 2004).

The TFF is conceptually simple, and can be applied to a multitude of con-
tact tasks. However, it cannot model every contact formation, for instance
with multiple point contacts at different faces (Bruyninckx and De Schutter
1997). For these applications, the environment poses geometric constraints
on the motion of the contacting object, which cannot be modeled by the Task
Frame. Several approaches have been presented which go further than the
TFF in this respect, and explicitly take a more elaborate geometric model of
the constraints into account. Usually, these are based on the dynamical formu-
lation of the HCP (Khatib 1987). In (Featherstone, Sonck, and Khatib 1999)
a first-order kinematic model of the rigid-body contact is considered. (Liu and
Li 2002) is a generalization of this work, based on work by Blajer (1997), who
proposed a geometric treatment of constrained mechanical systems. Their
approach considers general constraint systems, and defines two orthogonal
subspaces: the subspace of constraint forces (this is the wrench space) and
the tangent space of the constraint manifold for holonomic constraints (this is
the twist space complying to the geometric constraints). The system dynam-
ics are then projected into two orthogonal components, for which geometrical
interpretation is given. Based on these projections, a hybrid position/force
control algorithm is proposed. A similar approach is followed in (Featherstone
2004), which deals with contacts between bodies which are subject to addi-
tional kinematic constraints from some other source, and in (Aghili 2005), in
which a control scheme is proposed based on projection of the inverse dynam-
ics, minimizing the weighted Euclidean norm of the actuation force.

Constraint-based programming

More general than the TFF or the formalisms based on the definition of
wrench and twist subspaces according to the contact configuration, is to assign
control modes and corresponding constraints to arbitrary directions in the six
dimensional manipulation space. This approach, known as constraint-based
programming , opens up new applications involving a much more complex
geometry (for example compliant motion with two- or three-point contacts)
and/or involving multiple sensors that control different directions in space
simultaneously (De Schutter et al. 2005). In a sense, the Task Frame is
replaced by and extended to multiple feature frames.

Samson and coworkers (Samson, Le Borgne, and Espiau 1991) have put

19

2 Literature Survey

a major step forward in the area of constraint-based programming. They
introduce the task function approach. The basic idea behind the approach
is that many robot tasks may be reduced to a problem of positioning, and
that the control problem boils down to regulating a vector function, known
as the task function, which characterizes the task. The variables of this func-
tion are the joint positions and time. Their work already contains the most
important and relevant aspects of constraint-based programming. Based on
the task function they propose a general non-linear proportional and deriva-
tive control scheme of which the main robotic control schemes are special
cases. In addition they analyze the stability and the robustness of this control
scheme. They also consider task functions involving feedback from exterocep-
tive sensors, they recognize the analogy with the kinematics of contact and
they treat redundancy in the task specification as a problem of constrained
minimization. Finally, they derive the task function for a variety of exam-
ple applications using a systematic approach. Espiau and coworkers (Espiau,
Chaumette, and Rives 1992) apply this approach to visual servoing and show
how this task can be extended to a hybrid task consisting of visual servoing
in combination with, for example, trajectory tracking. Very recent work by
Samson (Fruchard, Morin, and Samson 2006) presents a framework for sys-
tematic and integrated control of mobile manipulation, for both holonomic
and non-holonomic robots; the scope of that framework is much more focused
on only feedback control, while this thesis also integrates the instantaneous
specification and the estimation of sensor-based tasks.

In addition to constraints on position level, constraints on velocity and
acceleration level have traditionally been coped with, for example in mobile
robotics and multibody simulation. These constraints are expressed using
velocity and acceleration closure equations, and they are solved for the robot
position, velocity or acceleration using numerical methods that are standard
in multibody dynamics. Basically, these numerical methods are of either the
reduction type (identifying and eliminating the dependent coordinates, see
(Critchley and Anderson 2003) for an overview and further reference) or the
projection type (doing model updates in a non-minimal set of coordinates and
then projecting the result on the allowable motion manifold, see (de Jalón and
Bayo 1993) for an overview). The latter approach is better known in robotics
as (weighted) pseudo-inverse control of redundant robots, (Doty, Melchiorri,
and Bonivento 1993; Klein and Huang 1983; Nakamura 1991).

2.4 Estimation

Sensor feedback is introduced in robotics to overcome model inconsistencies.
As the structure of the model is usually straightforward to define, these in-
consistencies are mostly due to incorrectly assessed parameters of the model.

20

2.4 Estimation

For instance, a table top is often modeled accurately enough by a plane, but
it is not necessarily straightforward to accurately identify the actual height of
the table with respect to the robot base. While these model inconsistencies
can be overcome to some extent by adapting the task execution to the sen-
sor measurements, they also provide information about the parameters of the
model, and estimation techniques can be used to adapt the model accordingly.

Most approaches to the estimation of model parameters only use instan-
taneous sensor measurements, and apply ad-hoc, non-stochastic algorithms.
More recent work is based on stochastic methods, and takes uncertainty on
the sensor measurements into account. The uncertainty consists of sensor
noise and modeling uncertainty such as for instance inaccuracy of the wrench
measurements due to contact friction. A typical example of such a stochastic
method is the Kalman filter (Kalman 1960; Sorenson 1985; Sorenson 1970),
and its variants: the extended (EKF) and iterated extended Kalman filter
(IEKF) (Tanizaki 1996), and, more recently, the non-minimal state Kalman
filter (NMSKF) (Lefebvre, Bruyninckx, and De Schutter 2005b). Particle fil-
ters (sequential Monte Carlo methods) (Doucet, Gordon, and Krishnamurthy
2001) are computationally more expensive estimation methods, but can cope
with highly non-linear and multi-modal estimation problems, possibly with
hybrid states, that is, consisting of continuous and discrete variables.

The rest of this section briefly discusses applications of estimation in
robotics. Three topics are covered: the estimation of geometric parameters,
the estimation of dynamic parameters, and, less common but gaining impor-
tance as research focuses on human-robot cooperation tasks, the estimation
of human intention.

2.4.1 Estimation of geometric parameters

As many robot tasks are purely geometric, the estimation of geometric pa-
rameters is of particular importance in robotics. Most approaches use only
instantaneous sensor measurements and apply ad-hoc, non-stochastic algo-
rithms. For instance, Mason and Salisbury (1985) estimate the contact situa-
tion from force measurements, by calculating the line of force that corresponds
to the measured force and torque, and De Schutter and Van Brussel (1988b)
use a deterministic velocity-based observer to determine the contact geometry.

The Kalman filter (Kalman 1960) is a well accepted recursive estimation
technique in sensor-based robotics in general, especially in mobile robotics
(Leonard and Durrant-Whyte 1992) and computer vision (Soatto, Frezza,
and Perona 1996). More recently, the gain in computer processing power led
to a wider acceptance of sequential Monte Carlo or particle filter approaches
(Doucet, Gordon, and Krishnamurthy 2001), which can handle large uncer-
tainties, even with highly non-linear systems.

21

2 Literature Survey

In mobile robotics, simultaneous localization and mapping (SLAM) is one
of the main geometrical estimation problems, dealing with the identification
of the position of one or more robots with respect to a map, which is si-
multaneously being built up (Leonard and Durrant-Whyte 1991). Recently,
hierarchical methods are presented in which a large environmental map is built
up from independent local stochastic maps (Estrada, Neira, and Tardós 2005).
Similar problems are present in computer vision, for instance to estimate the
pose of a camera while concurrently tracking image features (Davison 2003).

Somewhat later than in mobile robotics, Kalman filters were also intro-
duced for manipulation and compliant motion tasks. In (De Schutter et al.
1999), a general contact model and a measurement equation based on reci-
procity is presented to estimate the first-order geometric parameters of a point
face contact (this is, the orientation of contact normals and location of contact
points) and their time-variance that occur in force controlled compliant mo-
tions, and to monitor transitions between contact situations. Cortesão, Park,
and Khatib (2003a) present an adaptive approach to haptic manipulation
using Kalman observers to estimate the contact force online. In (Cortesão,
Park, and Khatib 2003b), an extension to this approach is presented to also
estimate the contact stiffness, while in (Park and Khatib 2005) their ap-
proach is extended to multiple contacts, possibly on different links of the
robot. In (Slaets et al. 2007), a 3D geometrical model is constructed us-
ing a non-minimal state Kalman filter (NMSKF) (Lefebvre, Bruyninckx, and
De Schutter 2005a). Sminchisescu, Metaxas, and Dickinson (2005) cover a
similar problem in computer vision: adaptive object shape estimation and
tracking in camera images.

2.4.2 Estimation of dynamical parameters

The dynamical parameters of the robot and its load are usually difficult to
measure or obtain, especially for robots which are not developed in-house,
such as industrial robots. As these parameters are needed for control ap-
proaches which explicitly take into account the dynamics of the robot, such
as the operational space formalism (Khatib 1987), they are often the subject
of estimation.

The different approaches to the estimation of dynamical parameters can be
divided into two categories. In the most widely used identification approach,
the parameters are estimated from ‘internal’ data of the robot (Gautier 1986;
Swevers et al. 1996). Motion data is obtained from the built-in encoders
of the robot, and actuator data is obtained in the form of actuator current
measurements. The dynamical model resulting from these measurements is
called the internal model. In the other approach, an external sensor is used
to measure the reaction forces and torques at the base plate of the robot.
The resulting dynamical model is called the reaction or external model (Liu,

22

2.5 Conclusion

Dubowsky, and Morel 1998). In (Verdonck, Swevers, and Samin 2001), the
internal and external measurements are combined into one model.

2.4.3 Estimation of human intent

A complete other research area involving estimation is that of assessing the
intention of the human operator during task execution, for instance in human-
robot cooperation or in teleoperation tasks. An interesting example is that
of (Glover, Thrun, and Matthews 2004), in which hierarchical semi-Markov
Models are used to estimate human intent based on topological data and
time-of-day distributions. Numerous other approaches and applications have
been presented, such as fuzzy inference on physiological signals (Kulić and
Croft 2003), Bayesian techniques (Demeester et al. 2003), or spectral pattern
recognition in force signals (Fernandez et al. 2001). Bruemmer et al. (2005)
go a step further, in that they study representations which allow the human
and robot to predict behavior and communicate intent in human-robot collab-
oration tasks. Bredereke and Lankenau (2005) discuss the problem of mode
confusions in shared-control systems, which occur when the observed behavior
of the system is out of sync with the user’s mental model of its behavior.

2.5 Conclusion

This chapter gives an overview of the literature on task specification for and
estimation in robot tasks. For a limited set of sensor-based tasks, such as
those which comply to the TFF, extensive programming support is available.
For more complex tasks however, for instance using redundant robotic sys-
tems such as mobile manipulator arms, cooperating robots, robotic hands or
humanoid robots, or using multiple sensors such as vision, force/torque and
distance sensors, little to no programming support exists. As a result, the
task programmer has to rely on extensive knowledge in multiple fields such as
spatial kinematics, 3D modeling of objects, geometric uncertainty and sensor
systems, dynamics and control, estimation, as well as resolution of redundancy
and of conflicting constraints.

The goal of our research is to fill this gap. We want to develop program-
ming support for the implementation of complex, sensor-based robotic tasks in
the presence of geometric uncertainty. The foundation for this programming
support, presented in this thesis, is iTASC (instantaneous Task Specification
using Constraints): a generic and systematic approach to specify and con-
trol a task while dealing properly with geometric uncertainty. Inspired by
Ambler and Popplestone (1975), feature frames and object frames are intro-
duced. A set of auxiliary coordinates, denoted as feature twist coordinates,
is introduced to model the motion of the object and feature frames. By spec-

23

2 Literature Survey

ifying constraints on the feature twist coordinates, the first order expression
of the Task Function (Samson, Le Borgne, and Espiau 1991) is obtained, as
needed for velocity resolved robots. The approach considers both redundant
and overconstrained task specifications, and uses well-known approaches to
deal with these situations (Doty, Melchiorri, and Bonivento 1993; Nakamura
1991).

Whereas most previous work relies on the intrinsic robustness of sensor
based control to deal with geometric uncertainty, in iTASC geometric un-
certainty is explicitly modeled. To this end an additional set of uncertainty
coordinates is introduced. These coordinates are then estimated using tech-
niques such as the Kalman filter (Kalman 1960).

24

Chapter 3

Mathematical
Preliminaries

This chapter introduces some mathematical concepts and notation, which are
assumed known in the further chapters of this thesis.

3.1 Rigid Body Kinematics

3.1.1 Rigid Body Pose

The pose of an object with respect to some reference is its relative position and
orientation. At least six parameters are needed to fully describe an object’s
pose. Different choices for these parameters are possible, such as Cartesian or
spherical coordinates to describe the position, and Euler or Roll-Pitch-Yaw
angles for the orientation.

A finite displacement db
a is a six-vector expressing the pose of object b

with respect to object a, or rather, the relative pose of reference frames a and
b on these objects:

db
a =

[
x y z φ θ ψ

]T
.

In this, (x, y, z) is a representation for the position and (φ, θ, ψ) a represen-
tation for the orientation. Without loss of generality, this text assumes Carte-
sian coordinates for the position and ZY X−Euler angles for the orientation,
unless stated otherwise. In general, the composition of finite displacements
is not commutative, as no set of three angles to represent an orientation is
a vector: contrary to vector addition, the addition of two sets of Euler an-
gles (for instance) does not give the set of Euler angles that corresponds to

25

3 Mathematical Preliminaries

the composed orientation. Furthermore, the order of rotations matters: the
composition of rotations is not commutative.

A set of six coordinates to describe a pose is said to be minimal. Often non-
minimal representations, that is, with more than six parameters, are used to
describe a pose. Such non-minimal representations have improved properties
with respect to numerical stability and unambiguity in the representation
(as every orientation representation with only three parameters inevitably
has coordinate singularities at a number of orientations), but require extra
computational cost because of the need to carry along a number of constraints
between the numbers in the non-minimal representation.

A common non-minimal representation of the relative pose of a frame b
with respect to a frame a is the homogeneous transformation matrix T b

a :

T b
a =

[
Rb

a apa,b

0 1×3 1

]
,

where apa,b represents the position vector from the origin of a to the origin
of b, expressed in frame a, and Rb

a represents the orientation matrix of b with
respect to a. The homogeneous transformation of a composition of relative
poses is found by multiplying the individual transformation matrices:

T n
a = T b

a T c
b . . . T n

m .

3.1.2 Rigid Body Motion

The twist t of an object is a six-vector [v
ω], containing the object’s transla-

tional and rotational velocities v and ω (both 3 × 1 vectors).
At each time instant, an object has a unique translational and rotational

velocity (possibly zero). Hence, the twist is unique and unambiguously de-
fined. In other words, it is a kinematic property of the object. However, the
mathematical representation of a twist (that is, the numerical values for the
coordinates of v and ω) depends on the choice of a reference point and refer-
ence frame. Because of this, leading sub- and superscripts are added to the
notation of a twist: c

dt
b
a expresses the twist of b with respect to a, with refer-

ence point c and reference frame d. These sub- and superscripts are omitted
when it is clear from the context which twist is considered.

Figure 3.1 shows an example. An object rotates around an axis, which is
oriented along the Z-axis of a reference frame f . Two points are defined on
the object: point a resides on the rotation axis, contrary to point b. Both
points are fixed to the object. As point a resides on the rotation axis, the
twist of the object, expressed in a, only has a rotational component:

a
f t =

[
0 3×1

fω

]
,

26

3.1 Rigid Body Kinematics

a b

f

v
ωω

Figure 3.1: An object rotates around a vertical axis. Point a of this object,
on the axis, purely rotates. Point b of this object, not on the axis, translates
as well as rotates.

with fω the rotational velocity vector of the object: fω = [0 0 ω]
T
.

As point b does not reside on the rotation axis, the twist of the object, ex-
pressed in b, has both a translational and rotational component:

b
f t =

[
fv

fω

]
.

In this, fv = fpa,b × fω, with fpa,b the vector from a to b, expressed in f .
Both a

f t and b
f t express the same motion of the object and as such the twist

of the object. However, the values of their coordinates differ as different
reference points are considered. Similarly, a change in reference frame changes
the coordinates of v and ω.

The twist of a composition of relative motions is found by adding the
individual twists:

t
n
a = t

b
a + t

c
b + · · · + t

n
m. (3.1)

In contrary to the addition of finite displacements, the addition of twists is
commutative, as twists are vectors. Equation (3.1) is valid irrespective of

27

3 Mathematical Preliminaries

the choice of reference points and frames for each of the twist. However,
to mathematically evaluate (3.1), all twists should be referred to the same
reference point and frame. The 6 × 6 screw projection matrix f

g P transforms
the coordinate representation of a twist a

f t from its current reference frame f
to a new reference frame g, without changing the reference point:

a
gt = f

g P a
f t, with f

g P =

[
Rf

g 0 3×3

0 3×3 Rf
g

]
.

The 6 × 6 reference point transformation matrix Ma
b transforms the coordi-

nate representation of a twist a
f t from its current reference point a to a new

reference point b, without changing the reference frame:

b
f t =Ma

b
a
f t, with Ma

b =

[
I 3×3

[
fpb,a×

]

0 3×3 I 3×3

]
.

In this, [p×] is the 3×3 skew-symmetric matrix representing the cross product
with a 3 × 1 vector p:

[p×] =

0 −pz py

pz 0 −px

−py px 0

 . (3.2)

The time derivative of a finite displacement ḋ is another way to describe
an object’s motion. The relation between this time derivative and the corre-
sponding twist is given by:

ḋb
a =

[
I 3×3 0 3×3

0 3×3 E−1

]
b
at

b
a,

≡ E
b
at

b
a,

in which E is the integrating factor : a 3 × 3 matrix which converts the time
rates (φ̇, θ̇, ψ̇) of the chosen representation for the orientation, to an angular
velocity ω. For ZY X−Euler angles, E is given by:

E =

0 − sinφ cos θ cosφ
0 cosφ cos θ sinφ
1 0 − sinφ

 ,

and

E−1 =

cosφ sin θ

cos θ

sinφ sin θ

cos θ
1

− sinφ cosφ 0
cosφ

cos θ

sinφ

cos θ
0

 .

Note that this inverse relation becomes singular for θ = π or −π. A possible
solution is to choose another angular representation in the neighborhood of
these singularities.

28

3.1 Rigid Body Kinematics

3.1.3 Exponential and Logarithm

In this section, the relation between a twist and the rate of the transformation
matrix is derived. First, the case of a pure rotation is considered. Then, a
similar reasoning is made for a twist with both a translational and a rotational
component.

Exponential of a rotational velocity

Consider two frames a and b, with initial pose:

T b
a =

[
Rb

a,init 0
0 1

]
. (3.3)

Frame b rotates with respect to frame a, with a constant rotational velocity

aω. The coordinates in a, of a point p fixed to b, are:

ap = Rb
a bp, (3.4)

with bp constant. The time derivative of (3.4) gives the instantaneous trans-
lational velocity of the point p:

aṗ = Ṙ
b

a bp, (3.5)

= Ṙ
b

aRb
a

T
ap. (3.6)

Alternatively, the translational velocity of p is given by:

aṗ = [aω×] ap, (3.7)

in which [aω×] denotes the matrix form of the cross product with aω, as
defined in (3.2). Hence, from (3.6) and (3.7):

Ṙ
b

aRb
a

T = [aω×] , (3.8)

or:

Ṙ
b

a = [aω×]Rb
a. (3.9)

The solution to this equation relates the rotation matrix at a time t to the
initial rotation matrix, for a constant rotational velocity aω:

Rb
a(t) = exp ([aω×] t) Rb

a,init, (3.10)

with exp the matrix exponential.

29

3 Mathematical Preliminaries

a

b

p

q

r

Figure 3.2: An object moves with respect to a frame a. Frame b is attached
to the object.

Exponential of a twist

A similar reasoning can be made for motion consisting of both translation
and rotation. Figure 3.2 shows a body which moves with respect to a frame
a. Frame b is attached to the body. Consider a point of the object, with
constant coordinates br with respect to b. Its coordinates with respect to a
are given by:

ap = Rb
a br + aq. (3.11)

The time derivative of (3.11) gives the translational velocity of the point:

aṗ = Ṙ
b

a br + aq̇, (3.12)

= Ṙ
b

a

(
Rb

a
T (ap − aq)

)
+ aq̇, (3.13)

= Ṙ
b

aRb
a

T
ap − Ṙ

b

aRb
a

T
aq + aq̇. (3.14)

In matrix notation, this can be written as:
[

aṗ

0

]
= Ṫ b

a

(
T b
a

)−1
[

ap

1

]
, (3.15)

30

3.1 Rigid Body Kinematics

with

Ṫ b
a =

[
Ṙ

b

a aq̇

0 0

]
. (3.16)

Alternatively, with aω the rotational velocity of the object, the velocity of the
point can be expressed as:

aṗ = aq̇ + [aω×] ar, (3.17)

= aq̇ + [aω×] (ap − aq) , (3.18)

= [aω×] ap + av, (3.19)

with:

av = aq̇ − [aω×] aq. (3.20)

av corresponds to the velocity of that –possibly imaginary– point of the object,
which instantaneously coincides with the origin of a. In matrix notation,
(3.19) is written as:

[
aṗ

0

]
=

[
[aω×] av

0 0

] [
ap

1

]
. (3.21)

Hence, from (3.15) and (3.21):

Ṫ b
a

(
T b
a

)−1
=

[
[aω×] av

0 0

]
, (3.22)

or:

Ṫ b
a =

[
[aω×] av

0 0

]
T b
a . (3.23)

The solution to this equation relates the pose of the object at a time t to the
initial pose, for a constant twist of the object t

object
a = [av

aω]:

T b
a (t) = exp

([
[aω×] av

0 0

]
t

)
T b
a,init . (3.24)

A more compact notation for (3.24) is obtained by writing the twist in the
exponential instead of the corresponding matrix:

T b
a (t) = exp

(
t
object
a t

)
T b
a,init . (3.25)

Logarithm of a finite displacement

The logarithm of a finite displacement is also a well-defined operation (Murray,
Li, and Sastry 1994, p. 414). The result of the logarithm operation on a finite
displacement is the screw twist that generates this displacement in one unit of
time. When using a homogeneous transformation matrix for the displacement,
the logarithm of this matrix gives the screw twist in the form of the argument
of the exponential function in 3.24.

31

3 Mathematical Preliminaries

3.2 Solving a Set of Linear Equations

Consider a set of linear equations Ax = b, with A an m× n matrix,

x =
[
x1 x2 . . . xn

]T
and b =

[
b1 b2 . . . bm

]T
. This set of m

linear equations express linear constraints in n variables. Four distinct cases
are possible:

• rankA = rank
[

A b
]

= n.
In this case, the linear set is exactly constrained. There is a unique
solution xs = A−1b which complies to all constraints.

• rankA = rank
[

A b
]
< n.

In this case, the set is underconstrained. An infinite number of solutions
xs comply to all constraints. For one of these solutions, the norm ||xs||
is minimal.

• rankA = n and rankA 6= rank
[

A b
]
.

This is the overconstrained case: there is no solution which complies
fully to all constraints. However, one value for x minimizes the norm of
the error ||Ax − b||.

• rankA < n and rankA 6= rank
[

A b
]
< n.

In this case, the set is both over- and underconstrained. There is no
solution which fully complies to all constraints. However, there is an
infinite number of vectors x for which ||Ax − b|| is minimal. Again,
only one vector x minimizes both ||x|| and ||Ax − b||.

The Moore Penrose pseudo-inverse A† yields the minimum norm solution xs,
minimizing ||x|| and ||Ax − b|| (Penrose 1955):

xs = A†b.

3.2.1 Weighted Pseudo-inverses

Such sets of linear equations are of interest in robotics. Often however, the
use of the pseudo-inverse to solve these sets of linear equations leads to non-
invariant results, as the vector spaces of x and b are not necessarily Euclidean-
normed. One particular example is the linear relation between the end effector
twist t and the joint velocities q̇R, given by the robot Jacobian JR:

t = JRq̇R.

Often the desired value for the robot twist is given and the corresponding
joint velocities are to be calculated. Depending on the topology and the joint
positions of the robot, the four cases above are present in this example:

32

3.2 Solving a Set of Linear Equations

• Exactly constrained: a 6D twist, performed by a 6 degree of freedom
(DOF) robot in a non-singular position (a position for which JR is not
singular, this is, for which JR has full rank),

• Underconstrained: a 6D twist, performed by a redundant robot (with
more than 6 DOF) in a non-singular position,

• Overconstrained: a 6D twist, to be performed by a robot with less than
6 DOF, or by a 6 DOF robot in a singular position,

• Under- and overconstrained: a 6D twist, to be performed by a redundant
robot in a singular position.

In the non-exactly constrained cases, it is a common requirement to min-
imize the joint velocities q̇R and the error on the desired twist: terr =
t − JRq̇R. However, the pseudo-inverse solution minimizes the Euclidean
norms ||q̇R|| and ||terr||. As the components of a twist have units of transla-
tional and rotational velocity (such as m/s and rad/s), the Euclidean norm of
a twist clearly has no physical meaning. Furthermore, the norm is not invari-
ant with respect to the choice of units. For the joint velocities similar remarks
are valid, for instance in the case of a robot with rotational and translational
joints.

A solution to this problem is to choose weighting matrices W x and W b

which invariantly define the weighted norms ||x||
W x

and ||b||
W b

:

||x||
W x

= xT W xx,

||b||
W b

= bT W bb.

In the case of the robotics example above, a possible choice for these weighting
matrices is the mass matrix of the robot in jointspace M q and in Cartesian
space M t. With these matrices as weighting matrices, the norms ||q̇R||

Mq

and ||terr||Mt
have a physical meaning: they express the kinetic energy of

the robot and the kinetic energy in the error on the desired twist.
The weighted pseudo-inverse A# yields the minimum norm solution xs,

minimizing ||xs||W x
and ||b − Axs||W b

(Doty, Melchiorri, and Bonivento
1993):

A# = L−1
x (LbAL−1

x)
†
Lt,

with Lx and Lb matrices complying to:

W x = LT
x Lx,

W b = LT
b Lb.

33

3 Mathematical Preliminaries

3.2.2 Nullspace Constraints

In the underconstrained case, extra degrees of freedom remain available to
realize subtasks. Next to the control constraints of the task, the primary con-
straints, the programmer can specify a number of extra, secondary constraints,
which are not critical to the task, but which nevertheless are desirable. When
the sets of primary and secondary constraints are not conflicting, both sets of
constraints are completely realized. When they are conflicting however, the
set of primary constraints is fully realized, while the secondary constraints
are only realized to such an extent that they don’t conflict with the primary
constraints (Ben-Israel and Greville 1980).

Consider a set of primary constraints Ax = b. All solutions realizing the
primary constraints are given by:

x = A#b +
(
I − A#A

)
xsec, (3.26)

with xsec an arbitrary vector of the dimension of x. As
(
I − A#A

)
is a

projection matrix which projects xsec onto the nullspace of A, xsec will not
conflict with the primary constraints.

Now consider a set of secondary constraints Cx = d. Specific values for
xsec, realizing these secondary constraints, are obtained by solving xsec from
this set of constraints and (3.26):

C
(
A#b +

(
I − A#A

)
xsec

)
= d

⇔
(
C − CA#A

)
xsec = d − CA#b

⇒ xsec =
(
C − CA#A

)† (
d − CA#b

)
.

The corresponding values for x are then given by:

x = A#b +
(
I − A#A

) (
C − CA#A

)† (
d − CA#b

)
. (3.27)

In this, the dagger symbol also denotes weighted pseudo-inverse. A differ-
ent symbol is used here, as both pseudo-inverses in above formulas do not
necessarily use the same weighting matrices.

34

Chapter 4

Task Modeling and
Specification

This chapter presents a methodology to specify constraint-based robot tasks.
Section 4.1 gives an introduction on constraint-based control. In Section 4.2,
an example application is discussed to introduce the main concepts of the
methodology, without paying too much attention to the details. A more
extensive discussion of the methodology is then given in Section 4.3.

4.1 Introduction

This thesis presents iTASC (instantaneous Task Specification using Con-
straints), a task specification methodology: 1) for sensor-based robot tasks;
2) which can deal with more complex tasks than the current state of the art
(for instance, than the TFF or the approaches based on the definition of
wrench and twist bases); 3) which is general, in that it does not focus on one
particular kind of task, sensor or robot system; and 4) which can deal with ge-
ometric uncertainty, this is, which provides explicit support for estimation of
geometric parameters. iTASC is a constraint-based methodology, and uses an
instantaneous optimization technique in the under- or overconstrained case.

In the context of this thesis, complex tasks are those tasks consisting
of multiple concurrent subtasks. Such concurrent subtasks are for instance
motion specifications for multiple cooperating robots or for different parts
of a single robot, or sensor specifications concerning different sensors which
concurrently provide information needed to realize the task. Consider for
instance a task where a humanoid robot is standing next to a table, holding
an object in its hands. The goal is to place the object at a specific location on
the table. Cameras are installed inside the robot’s head to identify the desired

35

4 Task Modeling and Specification

position for the object, and wrist-mounted force sensors provide information
about the contact force when placing down the object. The task consists
(mainly) of the following subtasks:

• Point the cameras (or thus the head) at the table so the desired location
for the object can be identified,

• Align the object with its desired location, based on the camera mea-
surements,

• Place down the object using force control,

• While doing above specifications, keep the center of gravity above the
robot base, to prevent the robot from falling over.

Such a task involves concurrent motion and sensor specifications, for different
parts of the robot and for different sensors. These specifications cannot be
expressed in a single task frame (this is, according to the TFF) or in terms of
a twist and wrench base. They require a true constraint-based approach, in
which a task is specified by general constraints on the robot motion, possibly
in different frames or bases, or concerning different parts of the robot or
different sensors.

Constraint-based control

Samson, Le Borgne, and Espiau (1991) have put a major step forward in the
area of constraint-based programming. They introduce the Task Function
Approach. The basic idea behind the approach is that a robot control problem
boils down to regulating a –possibly multidimensional– function, known as the
Task Function, which characterizes the task. Hence, a task is specified by the
Task Function e(qR, t) and the desired values edes for this function:

e(qR, t) = edes. (4.1)

As (4.1) expresses a set of (possibly nonlinear) constraints on qR, the name
constraint-based programming is used.

The Task Function Approach explicitly limits the state of the task to the
joint positions qR and the time t. This approach is appropriate for many
tasks, as robot tasks can often be analyzed as positioning problems and in
that case only depend on qR and t. For purely geometrical tasks dealing with
relative positioning of objects, such as pick-and-place tasks, laser engraving
or spray painting, this is clearly the case. Often however, more complex tasks
are also solely defined by qR and t. This is for instance the case for all tasks
involving motion based on data from geometrical sensors, such as a camera
or a laser distance sensor. And also tasks involving dynamical processes such

36

4.1 Introduction

as force/torque interaction can be described in terms of qR and t, if these
processes happen slowly enough so the assumption of quasistatic behavior is
valid (and hence the dependence of the Task Function on q̇R and q̈R can be
neglected).

For a velocity resolved robot, the control program generates the joint ve-
locities which are applied to the robot to realize the task. The first order
derivative of (4.1) expresses the relation, this is the constraints, to which
these joint velocities should comply:

∂e

∂qR

q̇R +
∂e

∂t
= ėdes. (4.2)

As (4.2) is linear in q̇R, the techniques described in Section 3.2 can be used
to calculate q̇R.

The concept of describing a task in terms of a linear set of constraints (4.2)
is simple, but it is not necessarily straightforward to actually specify the con-
straints. The most generic procedure is to infer (4.1) and its derivative (4.2)
analytically. However, this is only practical for simple tasks. To specify more
complex tasks (this is, more complex constraints), task specification support
is needed. This chapter describes a task specification approach for constraint-
based tasks. Extensions such as the estimation of geometrical parameters are
discussed in Chapter 5.

Central in the approach is a model of the task. The task model pro-
vides the necessary context to make the definition of the constraints (more)
straightforward. Also in other task specification approaches a task model is
present, though not always explicitly emphasized. For instance, in the TFF
the model is given by the Task Frame and the velocity and force controlled
directions in that frame. Once these are defined, task specification becomes
straightforward: the user only has to specify the desired force or velocity in
each direction, to which the actual force or velocity are then regulated. These
specifications are in fact also constraints, defined in the context of the Task
Frame. To support the specification of more complex constraints, not limited
to a single Task Frame or base, this chapter introduces a more extensive task
model. To this purpose, the concepts of objects and features are introduced.
Their relative motion is then modeled in terms of relative twist bases or feature
Jacobians. Finally, constraints are specified in terms of this relative motion.

The objects, features and feature Jacobians are rather abstract concepts
when no specific application is considered. Furthermore, the different steps in
the methodology are to some extent interwoven. For instance, the choice of
the feature Jacobians influences the definition of the constraints. So to fully
understand all steps, a complete application must be considered. Therefore,
as an introduction to the formalism, Section 4.2 first discusses an example
application. The example aims to clarify the main concepts and to give an

37

4 Task Modeling and Specification

o2

o1

f1a

f2a

f1b

f2b

Figure 4.1: The object and feature frames for a minimally invasive surgery
task.

overview of all steps of the procedure, without paying too much attention to
the details. A more extensive discussion of the methodology follows in Section
4.3.

4.2 An Illustrative Example

This section describes an example task to introduce the concepts of the iTASC
methodology. The methodology consists of four steps:

1. Choice of the object and features,

2. Modeling of the relative motion of the objects and features,

3. Definition of the constraints,

4. Solving for the instantaneous motion.

The example application is a minimally invasive surgery task (Figure 4.1).
A six DOF robot holds a laparascopic tool, which has a gripper as its end

38

4.2 An Illustrative Example

effector. The tool is inserted into a patient’s body through a hole, called the
trocar. Hence, the robot’s motion is to be controlled such that the trocar
point, this is, the intersection point of the tool and the patient, stays at its
desired position. Furthermore, the robot’s motion should be such that the
endpoint of the tool moves along a specified trajectory to reach an organ in
the patient’s body. This suggests two motion constraints: one regarding the
position of the trocar point, and one regarding the motion of the endpoint of
the tool.

4.2.1 Step 1: Choice of the Objects and Features

The first step of the task specification methodology concerns the choice of the
objects and features relevant to the task. As the minimally invasive surgery
task deals with motion of the laparascopic tool with respect to the patient,
the two relevant objects are the patient’s body (object 1), and the tool (object
2). The tool is attached to the robot mounting plate. The features are those
parts of both objects which are associated to a motion constraint. In the
surgery task, there are two constraints and hence two features: the trocar
point (feature a) and the endpoint of the tool (feature b). Note that each of
the features is related to both of the objects:

a: The trocar point is the intersection point of the tool and the patient’s
body. Hence, at every timestep one specific point of the tool coincides
with the trocar point, as well as one specific point on the patient’s body.
Furthermore, in every timestep the desired location of the trocar is at
one specific point of the patient’s body.

b: The endpoint of the tool is a fixed point on the tool, and should move
along a specified trajectory with respect to the patient’s body, to reach
an organ.

4.2.2 Step 2: Modeling of the Relative Motion

Next, reference frames are introduced which define the pose of the objects and
features. Figure 4.1 shows these frames. Two frames o1 and o2 are attached
to object 1 and object 2 respectively, and for each feature x two feature frames
f1x and f2x are defined, reflecting that each feature is related to both objects.
The frames are chosen as follows:

• Frame o1 is fixed at a reference position on the patient’s body.

• Frame o2 is fixed to the mounting plate of the robot. It has its origin
at the attachment point of the laparascopic tool, and it is oriented with
its Z-axis along the tool.

39

4 Task Modeling and Specification

• Frame f1a is rigidly attached to o1, with its origin at the desired position
for the trocar point, and its Z-axis normal to the patient’s body.

• Frame f2a is located on the laparascopic tool, with its origin at the
actual trocar point, while its orientation is the same as that of o2.

• Both frames f1b and f2b have their origin at the endpoint of the tool.
The orientation of f1b is the same as that of o1, while the orientation
of f2b is the same as that of o2.

This is just one particular choice of frames, and it is not the only possible
choice. It is however not random either: the frames are chosen such that, for
each of the features, the sequence of frames o1→f1→f2→o2 forms a kinematic
chain. This is, for each feature x the six degrees of freedom between the two
object frames are divided over three submotions:

• Submotion I: of f1x with respect to o1,

• Submotion II: of f2x with respect to f1x,

• Submotion III: of o2 with respect to f2x.

For each of these submotions, a base JFi, with i = I, II or III, is defined,
which spans the corresponding twist space. These bases are called the feature
Jacobians. The coordinates of the twist in such a base are denoted by column
vectors τ i, called the feature twist coordinates:

t
f1
o1 = JFIτ I , t

f2
f1 = JFIIτ II , t

o2
f2 = JFIIIτ III . (4.3)

JFI , JFII and JFIII are 6 × ni matrices, where ni is the number of degrees of
freedom of submotion i. Any base can be used for JFi, as long as it spans
the motion space of the submotion i. However, every specific choice for a
base gives the corresponding feature twist coordinates a certain meaning. For
instance, when a twist base vector corresponds to a unit twist along theX-axis
of a frame, the corresponding feature twist coordinate reflects the x-velocity
with respect to that frame. When an appropriate choice is made for the
feature Jacobians, the constraints are easily expressed in terms of the feature
coordinates (Section 4.2.3). Furthermore, an adequate choice for the reference
frame and reference point of the base leads to easy expressions of the base
vectors in the feature Jacobians. In the minimally invasive surgery task, the
following feature Jacobians are chosen for feature a:

• There is no motion between f1a and o1:

t
f1a
o1 = Ja

FIτ I
a,

= 0. (4.4)

40

4.2 An Illustrative Example

• The curvature of the patient’s skin around the trocar point is moderate,
and only small deviations in the position of the actual and the desired
trocar point are possible. Furthermore, for these small deviations, the
deflection normal to the patients skin will be negligible. Because of this,
the motion of the trocar point (this is, of f2a) can be modeled as taking
place in a plane which is tangential to the patient’s body, through the
desired trocar point. As f1a is oriented with its Z-axis perpendicular to
the patient’s body, this plane is given by the XY -plane of f1a. Hence
f2a has translational degrees of freedom along the X and Y -axes of
f1a. The first two columns of Ja

FII express these degrees of freedom.
Furthermore, three rotational degrees of freedom are present between
f2a and f1a. These are expressed by the last three columns of Ja

FII :

f2a
f1at

f2a
f1a = Ja

FIIτ II
a,

=

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

τa
1

τa
2

τa
3

τa
4

τa
5

. (4.5)

Note that Ja
FII effectively reflects that the motion of f2a is modeled as

taking place in the XY -plane of f1a: the third row of Ja
FII consists of

zeros.

• The only possible motion of f2a with respect to o2 is translation along
the tool, this is, along the Z-axis of o2:

f2a
o2 to2 = Ja

FIIIτ III
a,

=

0
0
1
0
0
0

[
τa
6

]
. (4.6)

Note that in (4.5) – (4.6) one of the object or feature frames is chosen as
reference frame, and one of the origins of these frames as reference point. This,
combined with the particular choice for these frames as made previously, leads
to easy expressions for these bases: all base vectors are unit vectors along one
of the axes of the base frame.

The number of degrees of freedom spanned by the submotions of feature a,
this is, the sum of the number of linearly independent columns of the matrices

41

4 Task Modeling and Specification

Ja
Fi is equal to six1. This is a logical consequence of the sequence of frames
o1→f1→f2→o2 being a kinematic chain, which models the six degrees of
freedom between o1 and o2. The same is true for the feature Jacobians for
feature b, which are chosen as follows:

• f1b has three translational degrees of freedom with respect to o1:

f1b
o1 t

f1b
o1 = Jb

FIτ I
b,

=

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

τ b
1

τ b
2

τ b
3

 . (4.7)

• f2b has three rotational degrees of freedom with respect to f1b:

f2b
f1bt

f2b
f1b = Jb

FIIτ II
b,

=

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

τ b
4

τ b
5

τ b
6

 . (4.8)

• There is no relative motion of f2b with respect to o2:

t
f2b
o2 = Jb

FIIIτ III
b,

= 0. (4.9)

Note that also for feature b the reference frames and reference points were
chosen such, that the feature Jacobians are easily expressed mathematically:
also for feature b, the base vectors are unit vectors along one of the frame
axes. This is a general rule of thumb when choosing the frames. As much
as possible, the frames are aligned so that their axes correspond to a motion
degree of freedom of the features.

As o2 is attached to the robot mounting plate, its twist t
o2
w can be ex-

pressed in terms of the robot Jacobian JR and joint velocities q̇R:

wt
o2
w = JRq̇R. (4.10)

1As the feature Jacobians are twist bases, their columns are twists. Hence, to check the
linear independence, the twists should be transformed to a common reference frame and
reference point.

42

4.2 An Illustrative Example

In this, w is the world frame, an inertial reference frame with respect to which
the robot Jacobian is expressed. The twist of o1 depends on the movements
of the patient and is not controllable by the robot. In a real setup, sensor
measurements of the patient’s movements are needed to obtain values for
t
o1
w . Possibly, also a motion model is available. For instance, the respiratory

motion of the upper body is quite repetitive so this motion can be modeled.
Estimation techniques such as the Kalman Filter use such models to generate
predictions, which are corrected using the measurements. This yields a better
estimate of the real motion than the use of the raw measurements. In the
context of this example however, it is not relevant how the values for t

o1
w are

obtained.

The definition of the feature Jacobians and the description of the motion
of o1 and o2 conclude the second step of the task specification methodology.

4.2.3 Step 3: Definition of Constraints

In the third step, constraints are defined to impose the desired motion. Two
sets of constraints are needed: one regarding the position of the trocar point,
and one regarding the motion of the endpoint of the tool:

• τa
1 and τa

2 express the translationalX and Y -velocity of f2a with respect
to f1a, or thus of the actual trocar point with respect to its desired
position. To realize the desired position of the trocar two constraints
are expressed, imposing the values of τa

1 and τa
2 to the outcome of a

position controller:

τa
1 = kfb(x

a
desired − xa

actual), (4.11)

τa
2 = kfb(y

a
desired − ya

actual). (4.12)

In this, kfb is a feedback constant, xa
actual and ya

actual are the coordinates
of the origin of f2a, expressed in f1a, and xa

desired and ya
desired the

desired values for these coordinates. As no motion of the trocar is
desired, xa

desired and ya
desired are constants. It is of course possible to

use different feedback constants for the x and y-direction, or a different
type of controller. This is however not relevant in the scope of this
example.

• Three other position constraints are needed to impose the translational
motion of the endpoint of the tool. These are similar to the previous
constraints, but now concern τ b

1 , τ b
2 and τ b

3 , as these coordinates ex-
press the X, Y and Z-velocity of f1b with respect to o1, or thus of the

43

4 Task Modeling and Specification

endpoint of the tool with respect to the patient’s body:

τ b
1 = kfb(x

b
desired − xb

actual), (4.13)

τ b
2 = kfb(y

b
desired − yb

actual), (4.14)

τ b
3 = kfb(z

b
desired − zb

actual). (4.15)

In this, xb
actual, y

b
actual and zb

actual correspond to the x, y and z-coordi-
nates of f1b, expressed in o1. The desired values for these coordinates,
xb

desired, y
b
desired and zb

desired, are variable. Typically, these values are
generated by a path planner, which calculates a path from the initial
position to a desired final position.

Similarly to those of the feature Jacobians, the mathematical expressions
for the constraints are influenced by the choice of the object and feature
frames. In this example, the particular choice for the frames yields simple
expressions for the constraints: each constraint is expressed in terms of a
single feature twist coordinate τ . This is another rule of thumb to choose the
frames: the frames are chosen such that the constraints are easily expressed
mathematically (for instance related to a single coordinate τ).

4.2.4 Step 4: Solving for the Instantaneous Motion

In this last step the set of constraints (4.11)–(4.15) is combined with the
equations of the relative motion (4.4)–(4.10) to obtain a set of constraints
(4.2). Finally, this set is solved for the joint velocities q̇R, which are then
applied to the robot.

Define Ja
F and τ a as:

Ja
F =

[
wJa

FI wJa
FII wJa

FIII

]
, (4.16)

τ a =
[
τa
1 τa

2 . . . τa
6

]T
. (4.17)

In this, wJa
Fi denotes the twist base Ja

Fi, but with w as reference frame and
the origin of w as reference point. For instance, Ja

FII was defined in (4.5) with
f1a as reference frame and the origin of f2a as reference point. Hence:

wJa
FII = f1a

w PMf2a
w Ja

FII . (4.18)

Jb
F and τ b are defined in a similar way.

For both features, t
o2
o1 = t

f1
o1 + t

f2
f1 + t

o2
f2. With (4.3), (4.16) and (4.17),

this leads to:

wt
o2
o1 = Ja

Fτ a, (4.19)

and also to a similar expression for feature b:

wt
o2
o1 = Jb

Fτ b. (4.20)

44

4.2 An Illustrative Example

Consider now the closed kinematic loop w→o1→f1→f2→o2→w. The twist
closure equation for this loop is given by:

t
o1
w + t

f1
o1 + t

f2
f1 + t

o2
f2 + t

w
o2 = 0,

or:
t
o1
w + t

o2
o1 + t

w
o2 = 0.

Combined with (4.10), (4.19) and (4.20), this yields:

wt
o1
w + Ja

Fτ a − JRq̇R = 0,

wt
o1
w + Jb

Fτ b − JRq̇R = 0.

In matrix notation, this is written as:

[
Ja

F 0

0 Jb
F

] [
τ a

τ b

]
−

[
JR

JR

]
q̇R = −

[
wt

o1
w

wt
o1
w

]
,

or, with obvious definitions of J̄F , τ̄ , J̄R and T̄ u:

J̄F τ̄ − J̄Rq̇R = T̄ u. (4.21)

Since J̄F is always of full rank, as it is composed of Ja
F and Jb

F which are full
rank bases, (4.21) leads to an expression for τ̄ :

τ̄ = J̄−1
F

(
T̄ u + J̄Rq̇R

)
. (4.22)

Defining ū and C̄F as:

ū =

kfb(x
a
desired − xa

actual)
kfb(y

a
desired − ya

actual)

kfb(x
b
desired − xb

actual)

kfb(y
b
desired − yb

actual)

kfb(z
b
desired − zb

actual)

,

C̄F =

[
I 2×2 0 2×4 0 2×3 0 2×3

0 3×2 0 3×4 I 3×3 0 3×3

]
,

the set of constraints (4.11)–(4.15) is rewritten as:

C̄F τ̄ = ū. (4.23)

In this case, C̄F is a selection matrix, selecting coordinates τi for each con-
straint, from the complete coordinate vector τ̄ . Combined with (4.22), this
yields the linear set in q̇R:

C̄FJ̄−1
F

(
T̄ u + J̄Rq̇R

)
= ū,

45

4 Task Modeling and Specification

or: (
C̄FJ̄−1

F
J̄R

)
q̇R =

(
ū − C̄FJ̄−1

F
T̄ u

)
. (4.24)

In each timestep, the robot joint velocities are solved from this set of equa-
tions using the pseudo-inverse technique described in Section 3.2, and applied
to the robot. As in this example only five constraints are defined, the set is
underconstrained and weights in joint space are needed. For a 6DOF indus-
trial robot with revolute joints, as considered in the example, it is common
that the first three axes, at the base of the robot, have a much higher inertia
than the last three axes. A possible choice for the weighting matrix reflecting
this is for instance Wq = diag(10, 10, 10, 1, 1, 1). These weights express a 10
times higher cost for velocities of the first three axes of the robot, than for
those of the last three axes. Hence, motion of the last three axes is preferred
over motion of the first three axes. Note that these proposed weights have
no units and are hence not generally applicable, for instance for a robot with
both rotational and translational joints. Another, more general choice for the
weighting matrix is the real mass matrix of the robot. If the mass matrix is
chosen as weighting matrix, the obtained values of q̇R correspond to those
values which realize the task constraints, while minimizing the instantaneous
kinetic energy of the robot.

4.2.5 Experiment

An experiment of the minimally invasive surgery task was performed, though
in a more extended setting than explained in the example. Figure 4.2 shows
two screenshots of the experiment. One robot is holding a box with a hole in
it, simulating the patient. The other robot is holding the laparascopic tool.
The first robot is moved around by interacting with a 6D joystick, to simulate
motion of the patient. This motion is measured by a Krypton K600 measure-
ment system (Metris 2007), and fed back to the second robot’s controller in
realtime (more formally: wt

o1
w is measured by the K600 measurement system).

The specifications were to keep the laparascopic tool centered at the trocar
(this is, the hole) at all times, and to perform a translational motion of the
tip of the tool, along a line inside the box.

4.2.6 Conclusions

An example application was discussed in this section as an introduction to
the task specification formalism. While the example provides only a limited
overview of the methodology (for instance, no sensor integration is discussed),
all different steps of the methodology are present, and the example shows the
relations between the different steps. For instance, by choosing appropriate
object and feature frames, it becomes easy to specify the feature Jacobians.

46

4.2 An Illustrative Example

Figure 4.2: Two consecutive snapshots of the minimally invasive surgery
experiment. One robot moves a box with a hole in it, simulating motions of the
patient. The other robot is holding the laparascopic tool. The specifications
are to keep the laparascopic tool centered at the hole at all times, and to
perform a translational motion of the tip of the tool along a line inside the
box. The insets show a closeup of the tip of the tool. 47

4 Task Modeling and Specification

Furthermore, the chosen example shows the application of the method-
ology to specify a task which is not easily specified using other specification
approaches. For instance, as the example application has two sources of con-
straints (the motion of the trocar point and the motion of the endpoint of
the tool), both the TFF and the approaches based on the definition of an
instantaneous twist base are shortcoming.

4.3 Task Modeling and Specification

After the example application, this section now follows with a more in-depth
description of the iTASC methodology.

As introduced in Section 4.1, iTASC is a constraint-based approach to task
specification, based on the Task Function Approach (Samson, Le Borgne, and
Espiau 1991). Recall that according to the Task Function Approach, a robot
task is described as a general vector function e(qR, t) and the desired values
edes for this function:

e(qR, t) = edes. (4.25)

For velocity resolved robots, the first order derivative of the task function is
needed, as this derivative expresses the constraints to which the joint velocities
have to comply in order to realize the Task Function:

∂e

∂qR

q̇R +
∂e

∂t
= ėdes, (4.26)

As it is for most tasks not straightforward to infer (4.25) and its derivative
(4.26) analytically, this chapter introduces the iTASC methodology to support
the specification of a set of constraints (4.26).

The methodology consists of building up a task model, and then specifying
the constraints in terms of this model. The goal of the task model is to support
(or simplify) the specification of the constraints. This is similar to for instance
the TFF: once a good task frame is chosen for a certain task, the task is easily
specified in terms of desired forces or velocities along the axes of that frame.
However, in an ill-chosen task frame the specification is less straightforward.

As previously stated, the Task Function Approach primarily deals with
geometrical tasks, although dynamical tasks such as force/torque interaction
are also possible, if these happen quasistatically. For each set of specifications,
this is, each set of constraints, the relevant objects are considered. Then, fea-
tures are introduced, which closer reflect those parts of the objects which are
involved by the constraints. Consequently, the 6 DOFs between the objects
are divided over three submotions: two of the features with respect to the
objects, and one of the features with respect to each other. The task model

48

4.3 Task Modeling and Specification

describes these motions in terms of feature Jacobians and feature twist coor-
dinates. Finally, the constraints are specified in terms of these feature twist
coordinates.

The methodology consists of the following four steps, which are clarified
in the rest of this section:

1. Choice of the objects and features,

2. Modeling of the relative motion of the objects and features,

3. Definition of the constraints,

4. Solving for the instantaneous motion.

4.3.1 Step 1: Choice of the Objects and Features

Task relations and relevant objects

In general, the Task Function (4.25), or its first-order expression (4.26), de-
scribes a number of concurrent subtasks, in each of which a certain relation
between objects in the robot environment is to be controlled by moving the
robot. Such a relation is called a task relation. Consider for instance the pre-
viously mentioned example of a humanoid robot with head-mounted cameras,
which should place a box on a table using force control and visual servoing
(Section 4.1). Besides others (such as keeping balanced) two subtasks are
present in the application:

1. The relative orientation of the head of the robot and the table should
be regulated such that the table is centered in the camera images,

2. The robot should move the box such that it is placed at its desired
location on the table.

In the first subtask, the two relevant objects are the robot’s head and the
table, and the task relation is given by their relative orientation. In the
second subtask, the relevant objects are the box and the table, and the task
relation is their relative pose and the contact force.

Figures 4.3 and 4.4 show two other examples. The first example task
(Figure 4.3) involves a forming process: a plate is placed between two spheres,
by a peripheral mechanism in a robot workcell. The robot then rolls one of
the spheres over the other while maintaining a contact force. This deforms the
plate into a curved surface. The objects in this task are the two spheres, one
of which is moved by the robot2. The task relations concerning these objects

2The plate is not a relevant object here, as, concerning the specification of the robot
motion, it does not matter whether there is a plate between the spheres or not.

49

4 Task Modeling and Specification

o1

o2

Figure 4.3: A robot performs a forming task, in which a plate (not shown)
is placed between two spheres. The robot then rolls one of the spheres over
the other while maintaining a contact force. This deforms the plate into a
curved surface. The objects in this task are the two spheres, one of which
is moved by the robot. The task relations concerning these objects are the
contact force between them, and the motion on their surfaces of the contact
point.

are the contact force between them, and the motion on their surfaces of the
contact point. In the second example task (Figure 4.4), a maintenance robot
enters a pipeline through an uncovered flange and points a camera at a seam
to perform a visual check. In this task, there are two relevant pairs of objects:
one for the relative positioning of the camera and the seam, and another one
related to the link which sits through the flange. Possibly however, other
objects can be defined, for instance for collision avoidance purpose. In all
cases, the pipe is clearly one of the relevant objects, as the task deal with
relative positioning of the robot and the pipe. Concerning the positioning of
camera relative to the seam, the last link of the robot is the other object, as
the camera is attached to this link. The task relation is the relative pose of
the camera and the seam. Considering the link which sits through the flange,

50

4.3 Task Modeling and Specification

Flange

Seam

3rd link

Camera

Figure 4.4: A maintenance robot enters a pipe through a flange to perform
a visual check of a seam. In this task, two pairs of objects are relevant. In
both cases, the pipe is one of the relevant objects. The other objects are the
last link of the robot, to which the camera is attached, and the third link of
the robot, which sits through the flange. The task relations are the relative
orientation of the last link (this is, the camera) and the pipe, and the relative
pose of the third link of the robot and the flange.

the link itself is the second object. In this case, the task relation is the pose
of the link with respect to the flange3.

So, to specify a task, first the task relations are identified, as well as the
corresponding objects. Note that, for each task relation, at least one of both
objects is moved by the robot, as otherwise the task relation is uncontrollable.
However, it is possible that the object’s motion is only partially controlled by
the robot, for instance in the case of an object connected to the robot by
means of a passive joint.

3Note that, for the depicted configuration, the last link of the robot had to pass through
the flange first, then the one but last link, and so on. Each of these phases has the same
task relation, but a different link as relevant object.

51

4 Task Modeling and Specification

Features of objects

Now, features are chosen. A feature is that part of the object which is relevant
to the task relation. It can be a physical entity, this is, a physical part of an
object such as a vertex, edge, or surface, or it can be an abstract geometric
property of a physical entity such as the symmetry axis of a hollow cylinder
or the reference frame of a sensor connected to the object.

Figure 4.5 shows two example cases. The first example case is a compliant
motion task between two polyhedral objects. The goal (this is, the task
relation) is to maintain a vertex-face contact between the objects, and to
move the objects such that the contact point follows a desired trajectory in
the contacting face. In this case the relevant features are the contacting vertex
of the first object and the contact point on the second object. The second
example case is a peg-in-hole problem. In this case, the relevant features
are for instance the symmetry axes of the peg and hole (which are aligned
when the peg is in the hole), or their respective surfaces (which make contact
in the assembled state). Note that: 1) a task relation inducts a feature on
each of both objects, and 2) the peg-in-hole example shows that there is not
necessarily a unique choice of features.

The task relation can be expressed in terms of submotions, of the features
with respect to the objects, and of the features with respect to each other. For
instance, in the polyhedral compliant motion task above, the 6 DOF between
both objects are divided over:

• the motion of the contact point in the contacting face (2 DOF),

• the relative rotation of the objects around the contact point (3 DOF),
and

• motion along the contacting normal to make/break the contact (1 DOF).

The constraints to realize the task relation (maintaining the contact and to
moving the objects such that the contact point follows a desired trajectory)
are directly related to these submotions:

• to regulate the contact force, the motion along the contacting normal
should be controlled (1 constraint), and

• the motion of the contact point in the contact face should also be con-
trolled (2 constraints).

This illustrates the actual reason why the features are introduced: features
divide the relative motion of the objects in submotions, and, for well-chosen
features, the task relation is directly expressible in terms of constraints on
these submotions. The remainder of the methodology deals with the modeling
of the submotions, and with the expression of the constraints on these motions.

52

4.3 Task Modeling and Specification

Figure 4.5: A feature is linked to an object. It can be a physical entity such
as a vertex, edge, face or surface (or thus a physical part of an object), or it can
be an abstract geometric property of a physical entity such as the symmetry
axis of a hollow cylinder, or the reference frame of a sensor connected to the
object (for instance a camera frame).

4.3.2 Step 2: Modeling of the Relative Motion

In the second step of the task specification methodology, frames are introduced
as a representation for the objects and features, and the relative motions of
the objects and features are modeled in terms of twist bases and coordinates
in these bases.

Definition of frames

Each task relation accounts for two objects and two features, so for each task
relation four frames are introduced: two object frames o1 and o2, each at-
tached to one of the objects, and two feature frames f1 and f2, each attached
to one of the corresponding features of the objects. The rules for assigning
these frames are:

53

4 Task Modeling and Specification

1. o1 and o2 are rigidly attached to the corresponding objects,

2. f1 and f2 are linked, but not necessarily rigidly attached to o1 and o2
respectively,

3. the connection o1→f1→f2→o2 forms a kinematic chain; the six degrees
of freedom between o1 and o2 are distributed over three submotions:
submotion I of f1 with respect to o1, submotion II of f2 with respect
to f1, and submotion III of o2 with respect to f2.

Furthermore, the frames are chosen such, that the mathematical representa-
tion of the submotions is simplified.

For every feature, each of the submotions between o1 and o2 is represented
by an instantaneous twist vector: t

f1
o1 , t

f2
f1 and t

o2
f2 respectively. As the six

degrees of freedom between o1 and o2 are distributed over the submotions,
each of these twists belongs to a vector space of dimension ni (i = I, II or
III), with ni less than or equal to six and nI + nII + nIII = 6. To incorporate
this into the model of the relative motion, each twist is parametrized as a set
of feature twist coordinates τ i in a corresponding twist base JFi, called the
feature Jacobian:

t
f1
o1 = JFIτ I , t

f2
f1 = JFIIτ II , t

o2
f2 = JFIIIτ III . (4.27)

The feature Jacobians JFi are 6 × ni matrices. As with the choice of the
object and feature frames, there are no strict rules to choose a particular base.
Moreover, in principle any base which spans the corresponding submotion can
be used for JFi. However, the columns of each feature Jacobian express the
submotion twist in the case of a unit value for the corresponding coordinate τ
and a zero value for the other coordinates. In other words, the chosen feature
Jacobian assigns a specific meaning to the coordinates τ . For well chosen
feature Jacobians, the coordinates are closely related to the constraints, so the
constraints are easily definable in terms of those coordinates. For instance,
consider the following feature Jacobian:

f1
o1 t

f1
o1 = JFIτ I

=

1 0
0 1
0 0
0 0
0 0
0 0

[
τ1
τ2

]
. (4.28)

This feature Jacobian relates the coordinate τ1 to the translational velocity of
f1 (as the origin of f1 is the reference point), along the X-axis of o1 (as o1 is

54

4.3 Task Modeling and Specification

the reference frame). Similarly, τ2 expresses the translational velocity of f1,
along the Y -axis of o1. Hence, imposing specific values for the coordinates τ1
yields a certain motion along the X-axis, while constraints on τ2 yield motion
along the Y -axis. In other words, by imposing constraints on the coordinates
τ , motion specifications are defined.

The notation wJFi is used if a feature Jacobian JFi is expressed with
reference point and reference frame w. Define JF and τ as:

JF =
[

wJFI wJFII wJFIII

]
,

τ =
[

τ I τ II τ III

]T
.

Since t
o2
o1 = t

f1
o1 + t

f2
f1 + t

o2
f2, the following statement holds:

wt
o2
o1 = JFτ . (4.29)

At least one of the objects is manipulated by the robot. Furthermore, un-
controlled motion of the objects is possible, for instance if an object is placed
on a conveyor belt which is not part of the robot system, or in the case an
object is pushed by the robot and the object slips sideways with respect to
the pushing direction. Hence, a general description of the object motion is
given by:

t
o1
w = JR1q̇R + tu1

,

t
o2
w = JR2q̇R + tu2

,

in which JR1 and JR2 express the robot Jacobians for the motion of o1 and o2
respectively, and tu1

and tu2
their uncontrolled twist. Since t

o1
o2 = t

o1
w − t

o2
w ,

and with introduction of JR and tu, the notation is reduced to:

t
o1
o2 = (JR1 − JR2) q̇R +

(
tu1

− tu2

)

≡ JRq̇R + tu. (4.30)

Combined with (4.29), for each feature the following velocity closure equation
holds:

JRq̇R + JFτ + tu = 0. (4.31)

4.3.3 Step 3: Definition of Constraints

The constraints are now formulated in terms of the robot joint velocities q̇R

and the feature twist coordinates τ . As the first order expression of the
Task Function is considered, as needed for velocity resolved robots, these
constraints are linear. In general, the set of constraints is expressed as:

[
CR CF

] [
q̇R

τ

]
= u, (4.32)

55

4 Task Modeling and Specification

with CR and CF the linear coefficient matrices of respectively q̇R and τ .
Generally, CR and CF can be any matrix. The following paragraphs discuss
the values of CR and CF for three common kinds of constraints:

• Constraints on robot joint velocities or feature frame twists,

• Constraints on robot joint positions or feature frame poses, and

• Constraints on sensor outputs.

Robot joint velocity and feature frame twist constraints

For some applications, it is necessary to directly specify some of the robot
joint velocities. For instance, consider a redundant robot with a blocked joint,
caused by a hardware failure. The robot can still be used if the velocity of the
corresponding joint is set to zero, independently of the other joint velocities.
Such cases require explicit constraints on q̇R, as for instance:

q̇1 = u1,

q̇2 = u2,

q̇5 = u3.

These three constraints impose desired values u1, u2 and u3 to the joint veloc-
ities of axis 1, axis 2 and axis 5 respectively. u1, u2 and u3 are given constants
or time functions, specified by the programmer or coming from a path plan-
ner. For example, for a 7 DOF robot this yields in the matrix notation of
(4.32):

1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 3×6

0 0 0 0 1 0 0

[
q̇R

τ

]
=

u1

u2

u3

 . (4.33)

The three constraints on q̇R for the 7 DOF robot lead to a 3×7 matrix CR. As
(4.33) shows, CR is a selection matrix for joint velocity constraints: each row
contains only zeros, except for one element which is ‘1’ and hence selects the
corresponding joint velocity. CF is a zero matrix as there are no constraints
on τ .

In a similar way, constraints on feature frame twists are defined by spec-
ifying desired values for feature twist coordinates τ . In this case, CR is the
zero matrix and CF the selection matrix. For instance, for an n DOF robot,

[
0 2×n 1 0 0 0 0 0

0 1 0 0 0 0

] [
q̇R

τ

]
=

[
u4

u5

]

expresses desired values u4 and u5 for the feature twist coordinates τ1 and
τ2. For the example feature Jacobian (4.28), these constraints specify desired

56

4.3 Task Modeling and Specification

values u4 and u5 for the X and Y -velocity respectively, of f1 with respect to
o1.

Robot joint position and feature frame pose constraints

On a velocity resolved system, positions are realized by a position controller.
For instance, for a 1DOF system and a proportional control law, the following
constraint realizes a desired position xdes:

ẋ = kfb(xdes − xmeas).

In this, kfb is the feedback constant, xmeas the measured position and ẋ the
commanded velocity.

Similarly, robot joint positions and feature frame poses are realized by
imposing the desired values u to correspond to the outcome of a position
controller. For joint positions and for feature coordinates which correspond
to translational motion, CR and CF are again selection matrices. For instance,
for the example feature Jacobian (4.28), the following constraints:

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0

[
q̇R

τ

]
=

u1

u2

u3

 ,

with

u1

u2

u3

 =

kfb1(q1des − q1meas)
kfb2(q2des − q2meas)
kfb3(xdes − xmeas)

 ,

realize desired positions q1des and q2des for the first two joints, and a desired
X-coordinate xdes of f1 with respect to o14

To specify a relative orientation, slightly different constraints are needed.
Consider for instance the following feature Jacobian:

f1
o1 t

f1
o1 = JFIτ I

=

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

τ1
τ2
τ3

 . (4.34)

According to this feature Jacobian, the feature twist coordinates τ1, τ2 and τ3
correspond to rotational velocities. Such rotational velocities do not integrate

4Of course, the choice of controller dictates to what extent the desired positions are
actually realized.

57

4 Task Modeling and Specification

into a set of orientation coordinates without integrating factors. Hence, the
constraints to specify relative orientations contain integrating factors E (Sec-
tion 3.1.2, page 26). For instance, for the example feature Jacobian (4.34),
the following constraints:

[
0 1×n E−1

] [
q̇R

τ

]
=

u1

u2

u3

 ,

with

u1

u2

u3

 =

kfb1(φdes − φmeas)
kfb2(θdes − θmeas)
kfb3(ψdes − ψmeas)

 ,

realize a desired orientation (φdes, θdes, ψdes) of f1 with respect to o1.

Sensor output constraints

For geometrical sensors, such as cameras or laser distance sensors, the mea-
surement z is function of the relative pose of the objects related to the mea-
surement:

z = g(do2
o1).

The same kind of measurement equation is valid for dynamical sensors, such
as a force/torque sensor, if the assumption of quasistatic behavior is valid.
For a velocity resolved system, the first order expression of this equation is
considered, which relates the rate of the measurement, ż, to the motion of
the objects:

ż =
dg

ddo2
o1

ḋo2
o1

=
dg

ddo2
o1

EJFτ

≡ Jsτ . (4.35)

Equation (4.35) defines the sensor Jacobian Js. The control constraint to
control a sensor measurement z to its desired value zdes is then given by:

[
0 1×n Js

] [
q̇R

τ

]
=

[
u

]
,

with u the outcome of a control law, such as, in the case of a proportional
controller, u = kfb (zdes − z).

The most general way to obtain Js is to analytically derive
dg

dτ
. For several

practical applications however, Js is found by inspection. Below, the sensor

58

4.3 Task Modeling and Specification

o2

f2

Figure 4.6: A robot, pointing a laser distance sensor at a barrel.

Jacobian is derived for three particular examples: a laser distance sensor, a
force/torque sensor and a camera, used for 2D visual servoing.

• Laser distance sensor: A laser distance sensor measures the distance
to an object along a straight line. If one of the feature or object frame
axes is aligned with this line, an easy mathematical representation is
obtained for the sensor Jacobian. For instance, in the setup shown in
Figure 4.6 the o2 frame is aligned with its Z-axis along the laser beam.
f2 is parallel to o2, but has its origin at the laser point. The model of
motion between those frames is given by:

o2t
o2
f2 = JFIIIτ III

=

0
0
1
0
0
0

[
τ6

]
.

As the sensor measurements correspond to the Z−coordinate of the

59

4 Task Modeling and Specification

Camera Image

Plane

f

z

φ

X
Y

Z

X′

Y ′

Xc

Yc

Figure 4.7: Camera projection according to the pinhole camera model.

origin of f2 with respect to o2, the sensor Jacobian is given by selecting
the corresponding row of JFIII :

Js =
[

0 0 1 0 0 0
]
JFIII .

• Force/torque sensor: A force/torque sensor measures the forces and
torques between contacting objects. A common model for quasistatic
force interactions is that of a pure contact stiffness:

z = Kstt∆.

In this, z is the measured wrench, t∆ the finite displacement between
the objects and Kst the contact stiffness. For small displacements t∆,
Kst is constant, which yields:

ż = Kstt
o2
o1,

= KstJFτ .

Hence, in this case the sensor Jacobian is given by KstJF .

60

4.3 Task Modeling and Specification

• Camera: Consider a visual servoing application, in which a camera is
moved parallel to a plane. Hence, the camera has 4 DOF with respect
to the plane (see figure 4.7): translation in three directions, with coor-
dinates x, y and z, and rotation along the plane normal, this is, along
the Z-axis, with coordinate φ. The measurements are the coordinates
in the camera image of a point in the plane:

z =

[
xc

yc

]
.

The focal distance f relates these to the coordinates in the plane:

xc =
x′

z
f,

yc =
y′

z
f,

with:

x′ = x cosφ− y sinφ,

y′ = x sinφ+ y cosφ.

Hence:

[
ẋc

ẏc

]
= JC

ẋ
ẏ
ż
0
0
ωz

,

with JC the camera Jacobian:

JC =
f

z

cosφ − sinφ
x cosφ− y sinφ

z
0 0 −

x sinφ+ y cosφ

z

sinφ cosφ −
x sinφ+ y cosφ

z
0 0

x cosφ− y sinφ

z

 .

Since:

ẋ
ẏ
ż
0
0
ωz

= JFτ ,

this yields the sensor Jacobian:

Js = JCJF .

The expression for the complete 6 DOF camera Jacobian can be found in
(Espiau, Chaumette, and Rives 1992).

61

4 Task Modeling and Specification

4.3.4 Step 4: Solving for the Instantaneous Motion

For each feature, the model of the relative motion (4.31) is now combined
with the constraints (4.32) to obtain a set of linear equations in q̇R. This
set is then solved in each timestep, yielding the instantaneous motion of the
robot.

For each feature, an expression (4.31) holds. In matrix notation and com-
bined for all features, this yields:

Ja
R Ja

F 0 · · ·

Jb
R 0 Jb

F · · ·
...

...
...

. . .

q̇R

τ a

τ b

...

 =

−(tu)a

−(tu)b

...

 . (4.36)

Formally, this is further reduced by defining matrices J̄R, J̄F , T̄ u and coordi-
nate vector τ̄ :

[
J̄R J̄F

] [
q̇R

τ̄

]
= T̄ u, (4.37)

with

J̄R =

Ja
R

Jb
R

...

 , J̄F =

Ja
F 0 · · ·

0 Jb
F · · ·

...
...

. . .

 ,

T̄ u =

−(tu)a

−(tu)b

...

 , τ̄ =

τ a

τ b

...

 .

Since J̄F is always of full rank, as it is composed of Ja
F , Jb

F ,. . . which are full
rank bases, (4.37) leads to an expression for τ̄ :

τ̄ = J̄−1
F

(
T̄ u − J̄Rq̇R

)
. (4.38)

For each of the features, a set of constraints (4.32) is defined. In matrix
notation, this yields:

Ca
R Ca

F 0 · · ·

Cb
R 0 Cb

F · · ·
...

...
...

. . .

q̇R

τ a

τ b

...

 =

ua

ub

...

 . (4.39)

With the following definitions:

C̄R =

Ca
R

Cb
R

...

 , C̄F =

Ca
F 0 · · ·

0 Cb
F · · ·

...
...

. . .

 , ū =

ua

ub

...

 ,

62

4.3 Task Modeling and Specification

(4.39) is reduced to
[

C̄R C̄F

] [
q̇R

τ̄

]
= ū. (4.40)

Combined with (4.38), this yields the linear set in q̇R:

C̄Rq̇R + C̄FJ̄−1
F

(
T̄ u − J̄Rq̇R

)
= ū

⇔
(
C̄R − C̄FJ̄−1

F
J̄R

)
q̇R =

(
ū − C̄FJ̄−1

F
T̄ u

)
, (4.41)

or, with A = C̄R − C̄FJ̄−1
F

J̄R and U = ū − C̄FJ̄−1
F

T̄ u:

Aq̇R = U . (4.42)

According to the rank of A, this set of constraints on q̇R can be exactly
constrained, under- or overconstrained. Each of these cases requires a different
approach to solve the set for q̇R.

Exactly constrained case

If (4.42) is exactly constrained, the task specification is concluded. There is
only one solution q̇R, corresponding to:

q̇R = A−1U .

In every timestep, q̇R is calculated and applied to the robot.

Underconstrained case

In the underconstrained case, an infinite number of solutions q̇R exists, which
realize all constraints. A specific choice needs to be made, to obtain values for
q̇R to apply to the robot. One possibility is to define a norm and to choose
the corresponding minimum norm solution (Doty, Melchiorri, and Bonivento
1993; Klein and Huang 1983; Nakamura 1991). Another possibility is to define
extra constraints in the nullspace of A (Liegeois 1977; Aksenov, Voronetskaya,
and Fomin 1978). Both cases are briefly discussed below:

(1) Joint space weighting The particular solution, minimizing the weigh-
ted joint space norm

||q̇R||
Wq

= q̇R
T Wqq̇R,

is given by the weighted pseudo-inverse:

q̇R = A#U .

63

4 Task Modeling and Specification

In the underconstrained case, A is of full row rank and a closed-form expres-
sion exists for this pseudo-inverse:

A# = WqA
T

[
AWq

−1AT
]−1

.

In this, the weighting matrix Wq expresses the relative weights of the joint
velocities. If the mass matrix of the robot is used as weighting matrix, ||q̇R||

Wq

is proportional to the kinetic energy of the robot. Hence, for that choice the
corresponding solution q̇R minimizes the instantaneous kinetic energy of the
robot.

(2) Nullspace constraints When the robot task is not fully determined,
extra degrees of freedom remain available to realize subtasks. Besides the
control constraints of the task, the primary constraints, the programmer can
specify a number of extra, secondary constraints, which are not critical to
the task, but which nevertheless are desirable. When the sets of primary
and secondary constraints are not conflicting, both sets of constraints are
completely realized. When they are conflicting however, the set of primary
constraints is fully realized, while the secondary constraints are only realized
to such an extent that they don’t conflict with the primary constraints.

Consider a set of primary constraints Aq̇R = U . All solutions realizing
the primary constraints are given by:

q̇R = A#U +
(
I − A#A

)
q̇sec, (4.43)

with q̇sec a set of joint velocities. As
(
I − A#A

)
is a projecting matrix,

projecting a vector of joint velocities onto the nullspace of A, any vector of
joint velocities can be chosen as q̇sec.

Now consider a set of secondary constraints Bq̇R = V . Specific values for
q̇sec, realizing these secondary constraints, are obtained by solving q̇sec from
this set of constraints and (4.43):

B
(
A#U +

(
I − A#A

)
q̇sec

)
= V

⇔
(
B − BA#A

)
q̇sec = V − BA#U

⇒ q̇sec =
(
B − BA#A

)† (
V − BA#U

)
.

The corresponding values for q̇R are then given by:

q̇R = A#U +
(
I − A#A

)(
B − BA#A

)† (
V − BA#U

)
. (4.44)

In this, the dagger symbol also denotes weighted pseudo-inverse. A differ-
ent symbol is used here, as both pseudo-inverses in above formulas do not
necessarily use the same weighting matrices.

64

4.4 Conclusions

Overconstrained case

In the overconstrained case, the task cannot fully be performed as some of
the constraints are conflicting. In this case, the weighted pseudo-inverse yields
that solution which minimizes the norm of the constraint violation:

||Aq̇R − U ||
Wc

= (Aq̇R − U)
T

Wc (Aq̇R − U) .

In the overconstrained case, A is of full column rank and a closed-form ex-
pression exists for this pseudo-inverse:

A# =
[
AT WcA

]−1

AT Wc.

In this, the weighting matrix Wc expresses the relative weights of errors on
the corresponding constraints.

4.4 Conclusions

This chapter presents iTASC, a constraint-based task specification procedure
for sensor-based robot tasks, which can deal with more complex tasks than
the state of the art (multiple concurrent constraints from different sources
and in different frames can be handled), and which can be generally applied
to velocity resolved robots with rigid links and joints, and sensor yielding
geometric information. The presented specification methodology is a gen-
eral way to specify tasks according to the Task Function Approach, without
explicitly expressing the Task Function and calculating its derivative. To sup-
port the task specification, objects and features are introduced and frames are
assigned to them. The motion of these frames is then modeled in terms of
feature Jacobians and feature twist coordinates. The goal is to choose the
frames and feature Jacobians such, that the constraints realizing the task are
easily expressible in terms of the feature twist coordinates.

A good choice for the object and feature frames is important, as it allows
for easy mathematical expressions for the feature Jacobians. Also the choice
for these feature Jacobians is important, as they define the feature twist co-
ordinates, in terms of which the constraints are formulated. A possible point
of criticism is that there are no strict rules to choose the object and feature
frames, nor to choose the feature Jacobians. Only guidelines are available.
This is indeed a disadvantage, as it means that the programmer still needs
some insight or experience to specify a task. However, this same disadvan-
tage is also present in other task specification methodologies, notwithstanding
their successful application for multiple tasks. For instance, also in the TFF
it is difficult to specify a task if the task frame is ill-chosen. This inspired the
publication of reference papers such as (Bruyninckx and De Schutter 1996),

65

4 Task Modeling and Specification

in which multiple examples are given of tasks, specified according to the TFF.
Similarly, this thesis gives multiple examples of tasks specified according to
the constraint-based methodology, in Chapter 6. Moreover, the description of
the task in terms of a kinematic chain allows to automate part of the method-
ology. Software tools can generate feature Jacobians from a description of the
kinematic chain (for instance, described in a script or modeled in CAD soft-
ware). In that case, the specific frames in which the Jacobians are expressed
is internal to the software, and hence hidden from the person specifying the
task. Such specification software is the subject of ongoing research.

A further remark concerning the task specification procedure as described
in this chapter, is that all feature Jacobians need to be referred to a common
reference point and reference frame in every timestep, to deduce a linear set
(4.42). Hence, in every timestep the poses of all object and feature frames
need to be known. For simple cases, for example with feature frames which
are fixed with respect to their object frames, this involves only straightforward
calculations based on the forward position kinematics of the robot. For the
minimally invasive surgery example, calculation of these frame poses is more
elaborate, as it involves determining the position of the intersection point of
the tool (in this case modeled by a line) and the patient (modeled by the
tangent plane through the trocar point). As in general these ad hoc methods
can become arbitrarily complex, a general way to update the model is needed
to render the task specification procedure completely generic. Such a model
update procedure is proposed in Section 5.2.

Also, this chapter did not focus on the estimation of geometrical parame-
ters, nor on the DES component. These subjects are discussed in Section 5.2
and Section 5.4, respectively.

66

Chapter 5

Model Update, Estimation
and Discrete Events

5.1 Introduction

Using the basic concepts of the constraint-based task specification methodol-
ogy as described in the previous chapter, a multitude of tasks can be specified
in a generic way. However, the previous chapter does not focus on the follow-
ing aspects:

• Model update: In every timestep, the pose of all object and feature
frames must be known. While the programmer can implement an ad-hoc
procedure to calculate these frame poses, generic support is desirable as
this lessens the work involved when specifying a task. Furthermore, a
long term goal is to develop task specification support software which
automates as much as possible the task specification process. Model
update procedures are a fundamental part of such software.

• Estimation: As robots are more and more used in unstructured envi-
ronments with geometrical uncertainty, sensing and estimation becomes
important during the task execution. Sensors gather measurements of
the environment, and the differences between the modeled and actual
environment are estimated from these measurements. Modeling support
to derive the measurement model is desirable.

• Discrete Event System: Complex robot tasks usually consist of
multiple phases or states with different control constraints needed in
every state. A discrete event system is needed to deliberate the need for

67

5 Model Update, Estimation and Discrete Events

transitions between different states, with a mechanism which ensures
(gradual) transition between those states.

This chapter extends the task specification methodology to cover these
three aspects. Section 5.2 discusses the model update procedure. This section
assumes that the robot joint positions qR and the uncontrolled degrees of
freedom χU are known. Two procedures are considered: a general procedure,
and a procedure which is numerically more stable but which can only be used
if the poses of the feature frames can be expressed in terms of a minimal set
of coordinates. Section 5.3 discusses how the uncontrolled degrees of freedom
χU can be estimated, if these are unknown. Finally, Section 5.2 presents a
way to realize smooth crossovers between different states.

5.2 Model Update

To keep the model of the task, that is, the pose of the feature frames, up to
date with the actual state of the real world, a model update step is necessary.
The model update is concerned with finding the modeled poses of the object
and feature frames at time instant k + 1, given the respective poses at time
instant k and the instantaneous motion of the robot. A procedure is proposed
here which consists of two steps: a prediction step and a correction step.

5.2.1 General Procedure

The model of the task consists of the object and feature frames for each
feature. As the motion of the object frames is determined by the robot motion
and possibly also by uncontrolled motion, the poses of these object frames
depend on the joint positions and a set of coordinates for the uncontrolled
degrees of freedom, χU :

T o1
w = T o1

w (qR,χU),
T o2
w = T o2

w (qR,χU).

The joint positions are known from the robot encoders. The coordinates χU

are also assumed to be known, for instance from measurements or from an
estimation process (see Section 5.3). Hence, the pose of the object frames is
known.

The following procedure, consisting of a prediction and a correction step,
now determines the pose of the feature frames. The procedure is based on
the first order model of the motion of the feature frames, as expressed by the
feature Jacobians.

68

5.2 Model Update

Prediction

In every timestep, the feature twist coordinates for the motion of each of the
feature frames are calculated from the instantaneous joint velocities (equation
(4.22)):

τ̄ = J̄−1
F

(
T̄ u + J̄Rq̇R

)
.

For each of the feature frames of feature i, the corresponding twist is found by
multiplication of the subvector τ I

i, τ II
i or τ III

i from τ̄ , with the corresponding
feature Jacobian J i

FI , J i
FII or J i

FIII . For instance, for t
f1
o1 :

t
f1
o1 = JFIτ I .

Similar expressions hold for the other feature twists. A prediction for the
pose of the feature frames at timestep k + 1 is then obtained from the pose
at timestep k, by integration of the corresponding twist:

T̃
f1

o1 k+1 = exp
(
t
f1
o1Ts

)
T̂

f1
o1 k, (5.1)

T̃
f2

f1 k+1 = exp
(
t
f2
f1Ts

)
T̂

f2
f1 k, (5.2)

T̃ o2
f2 k+1 = exp

(
t
o2
f2Ts

)
T̂ o2
f2 k. (5.3)

In this, ˜ denotes a prediction, and ˆ denotes an estimate. Ts is the timestep.
The exponential yields a transformation matrix, as described in Section 3.1.3,
page 29.

Correction

Iterative application of (5.1) – (5.3) is prone to accumulation of integration er-
rors due to discretization and due to errors in the geometric model. Therefore
the predicted poses of the feature frames need to be corrected. The correc-
tion step is based on additional information, contained in the pose closure
equations:

T o1
w (qR,χU) T

f1
o1 T

f2
f1 T o2

f2 T w
o2 (qR,χU) = I 4×4. (5.4)

Errors in the prediction result in imperfect closure of these pose closure equa-
tions for each of the features:

T o1
w (qR,χU) T̃

f1
o1 T̃

f2
f1 T̃ o2

f2 T w
o2 (qR,χU) = ∆. (5.5)

In this, ∆ is a homogeneous transformation matrix which deviates from I 4×4.
Linearizing (5.5) and collecting the linearized equations for all features,

results in:
J̄F τ̄∆ + J̄R ∆qR + T̄ u∆ = t̄∆, (5.6)

69

5 Model Update, Estimation and Discrete Events

where

T̄ u∆ =

(tu)a
∆

(tu)b
∆

...

 (5.7)

is a matrix of finite displacements corresponding to deviations of the uncon-
trolled coordinates χU , and t̄∆ is a matrix containing finite displacements
corresponding to the homogeneous transformation matrices ∆:

t̄∆ =

t
a
∆

t
b
∆

. . .

 . (5.8)

For every feature i = a, b, . . . , t
i
∆ results from conversion of ∆i to an equiva-

lent finite displacement:

t
i
∆ =

[
∆p

∆θ

]
,

where ∆p and ∆θ follow from:

[
[∆θ×] ∆p

0 1×3 1

]
= log (∆) .

The linearization (5.6) corresponds to the twist closure equation (4.31), but
with finite displacements τ̄∆,∆qR and T̄ u∆ instead of time rates τ̄ , q̇R and
T̄ u. τ̄∆ corresponds to an error on the feature frame poses, ∆qR to an error on
the robot joint positions and T̄ u∆ to an error on the uncontrolled degrees of
freedom. Together, these errors cause the deviation t̄∆, or thus the equivalent
matrices ∆.

As there is no physical motion of the robot nor of the uncontrolled degrees
of freedom during the correction step, ∆qR and T̄ u∆ are zero matrices, and
(5.6) reduces to:

J̄F τ̄∆ = t̄∆,

⇔ τ̄∆ = J̄−1
F

t̄∆. (5.9)

For each feature, the feature frame poses are now corrected by updating the
estimate with the corresponding subvector from τ̄∆:

T̂
f1

o1 k+1 = exp (JFI τ I∆) T̃
f1

o1 k+1, (5.10)

T̂
f2

f1 k+1 = exp (JFII τ II∆) T̃
f2

f1 k+1, (5.11)

T̂ o2
f2 k+1 = exp (JFIII τ III∆) T̃ o2

f2 k+1. (5.12)

This yields the feature frame poses at timestep k + 1.

70

5.2 Model Update

5.2.2 Minimal Coordinates

In Section 5.2.1, homogeneous transformation matrices are used as a rep-
resentation for the frame poses. Whereas each homogeneous transformation
matrix contains 12 entries, at most six degrees of freedom are present between
the feature and object frames. Hence, the representation is non-minimal : it
has more entries than the number of degrees of freedom it represents. This
implies that the entries of the transformation matrices are not independent:
mathematical relations exist to which the entries have to comply. However,
the integration errors introduced in the model prediction step generally act
on all entries of the transformation matrix, hereby possibly disturbing those
relations. As the correction step only allows alteration of the feature frames
along their respective modeled directions of motion, as given by the feature
frame Jacobians JF , this kind of integration errors is not corrected.

This problem does not always occur. For instance, measurements yield
information which not necessarily is restricted to the directions of motion
allowed in the correction step. Hence, when using such measurements in the
model update (Section 5.2.3), more elaborate error correction is possible and
the model update becomes more robust. In the case it does occur, the most
general solution is to use an ad hoc procedure to calculate the position of
the object and feature frames. However, in the case the relative poses of the
feature frames can be described by a minimal set of coordinates, a better
procedure exists. These coordinates are called the feature pose coordinates χ:

χ =

χI

χII

χIII

 ,

with

T
f1

o1 = T
f1

o1 (χI),

T
f2

f1 = T
f2

f1 (χII),

T o2
f2 = T o2

f2 (χIII).

A possible choice for the feature twist coordinates is then given by the
time derivatives of these feature pose coordinates. For instance, consider a
task with five degrees of freedom between f1 and o1:

• f1 translates along the X and Y -axis of o1, represented by feature pose
coordinates χ1 and χ2 respectively,

• f1 rotates with respect to o1, represented by ZY X-Euler angles χ3, χ4

and χ5.

71

5 Model Update, Estimation and Discrete Events

The choice of the time derivatives χ̇1, χ̇2, . . . , χ̇5 as feature twist coordinates
τ I yields the following feature Jacobian:

t
f1
o1 = JFIτ I

=

1 0
0 1 0 3×3

0 0
0 0
0 0 E

0 0

χ̇1

χ̇2

χ̇3

χ̇4

χ̇5

.

The prediction-correction steps are now expressed at the level of the fea-
ture pose coordinates. The prediction is given by:

χ̃k+1 = χ̂k + χ̇kTs, (5.13)

which yields predicted feature frame poses T
f1

o1 (χ̃I), T
f2

f1 (χ̃II) and T o2
f2 (χ̃III).

The errors on these predicted frames lead to non-closure of the pose closure
equations:

T o1
w (qR,χU) T

f1
o1 (χ̃I) T

f2
f1 (χ̃II) T o2

f2 (χ̃III) T w
o2 (qR,χU) = ∆.

In linearized form, this results in:

J̄F ∆χ + J̄R ∆qR + T̄ u∆ = t̄∆. (5.14)

Again, the deviations t̄∆ are assumed to be completely caused by an inac-
curate position of the predicted feature frame poses. Hence (5.14) reduces
to:

J̄F ∆χ̄ = t̄∆,

⇔ ∆χ̄ = J̄−1
F

t̄∆. (5.15)

For each feature, the feature frame poses are now corrected by updating the
prediction with the corresponding subvector from ∆χ̄:

χ̂k+1 = χ̃k+1 + ∆χ,

yielding the estimate χ̂k+1. From this estimate, the frame poses are recalcu-
lated: T

f1
o1 (χ̂I), T

f2
f1 (χ̂II) and T o2

f2 (χ̂III). As these poses are always calcu-
lated from the minimal set of coordinates, consistency of the pose represen-
tation is guaranteed.

72

5.2 Model Update

5.2.3 Measurements

In sensor-based robot tasks, sensor measurements are mostly used in the con-
trol loop. However, measurements can also provide geometrical information
about the robot and its environment, and hence are useful in the model up-
date.

As described in Section 4.3.3, for geometrical sensors such as a camera or
laser distance sensor, the measurements are function of the relative pose of
the objects. Hence, in general, the measurement equation is given by:

z = g(do2
o1). (5.16)

The measurement equation for dynamical sensors such as a force/torque sen-
sor is also given by (5.16), if the assumption of quasistatic behavior is valid.
Time derivation of (5.16) yields:

ż =
dg

ddo2
o1

ḋo2
o1

=
dg

ddo2
o1

E−1
t
o2
o1. (5.17)

Using the twist closure equations (4.31), t
o2
o1 can always be written as a linear

combination of q̇R, τ and tu. Introducing this result in (5.17) reveals that ż
can always be written as a linear combination of q̇R, τ and tu:

ż =
[

HR HF HU

]

q̇R

τ

tu

 . (5.18)

The matrices HR,HF and HU express the rate of the sensor measurement for
respectively a unit joint velocity, feature frame twist and uncontrolled twist.
Collecting all the measurements in a vector z leads to the general expression:

ż =
[

H̄R H̄F H̄U

]

q̇R

τ̄

T̄ u

 . (5.19)

According to (5.16), a prediction for z is calculated, based on the modeled
frame positions:

z̃ = g(d̃o2
o1). (5.20)

In this, d̃o2
o1 is the predicted finite displacement between o1 and o2, equivalent

to the homogeneous transformation matrix

T̃ o2
o1 = T̃

f1
o1 T̃

f2
f1 T̃ o2

f2 .

73

5 Model Update, Estimation and Discrete Events

(5.19) corresponds to the linearization of (5.16), and relates small deviations
∆z = (z̃ − z) to variations ∆qR, τ̄∆ and T̄ u∆:

∆z =
[

H̄R H̄F H̄U

]

∆qR

τ̄∆

T̄ u∆

 . (5.21)

Assuming again that only the feature frame poses cause inaccuracies, yields:

∆z = H̄F τ̄∆,

⇒ τ̄∆ = H̄F

#
∆z. (5.22)

The information of the pose closure and the measurements can be com-
bined in a single correction step:

τ̄∆ =

[
JF

H̄F

]#

W

[
t̄∆

∆z

]
. (5.23)

In this, the weights W express the deliberation between the information in
the pose closure equations on the one hand, and in the sensor measurements
on the other hand. Usually, high weights are chosen for the pose closure
equations and lower weights for the measurements, reflecting the intrinsic
correctness of the pose closure equations, and the noise on the measurements.

5.3 Estimation

One of the major reasons to incorporate sensors in a robotic setup, is to gain
information about geometrical uncertainty in the robot environment. One
possibility is to use the sensor measurements directly in the control loop.
This is for instance the case in compliant motion tasks, where a force control
loop ensures a desired contact force between objects. Another possibility is
to use estimation techniques to update a geometric model of the robot and
its environment according to the measurements.

This section extends the model update procedure to include estimation of
uncertain coordinates, which represent uncontrolled degrees of freedom and
affect the pose of the object frames.

5.3.1 Modeling of the Uncertain Degrees of Freedom

In the previous section, coordinates χU were introduced, to model uncon-
trolled degrees of freedom. Also unknown parameters can be represented by

74

5.3 Estimation

these coordinates, to estimate them based on sensor measurements. The pose
of the object frames is given by:

T o1
w = T o1

w (qR,χU), (5.24)

T o2
w = T o2

w (qR,χU). (5.25)

For reasons of notational simplicity, the discussion here is limited to the es-
timation of integrable coordinates χ and χU . However, estimation based on
differential coordinates τ and τU is equally possible. The extra coordinates
represent extra degrees of freedom in the model. These allow for adaption of
the model along other directions than those defined by JF in the model of
motion of the feature frames. The motion of the object frames according to
variations of these coordinates χU is also described:

t
o1
o2 = JRq̇R + JU χ̇U . (5.26)

Describing this motion is similar to the modeling of the motion of the feature
frames. Consider for instance the following task. A robot needs to locate a
barrel, in order to take a sample of its contents. The drum stands on the
floor, so its height is known. However, the position in on the floor, described
by two coordinates x and y, as well as the rotation of the drum around the
vertical axis, φ, are unknown. Hence:

T o2
o1 = T w

o1 (qR) T o2
w (χU),

with

χU =

x
y
φ

 .

The motion of the object frame according to changes of the uncertain coordi-
nates is given by:

wt
o2
w = JU χ̇U

=

1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1

ẋ
ẏ

φ̇

 .

5.3.2 Integration of Estimation in the Model Update

The prediction and correction steps of the model update are now extended to
include estimation of the uncertain coordinates.

75

5 Model Update, Estimation and Discrete Events

Prediction

In general, the system model, relating the values for χU at timestep k + 1 to
those at timestep k, is given by:

χU k+1 = f(χU k). (5.27)

For instance, for the previous example, in which a barrel stands on a floor at
an unknown position, the coordinates χU are constant, or:

χU k+1 = χU k.

In another setting, where the barrels are supplied on a conveyor belt, a con-
stant velocity model is more appropriate:

χU k+1 = χU k + χ̇UTs.

The system model yields a prediction for χU :

χ̃U k+1 = f(χ̂U k).

This prediction can be combined with (5.13) into one prediction vector:
[

χ̃

χ̃U

]

k+1

.

A prediction of the feature frame poses then follows from χ̃, as explained in
Section 5.2.2. On the other hand, a prediction of the poses of o1 and o2 with
respect to the world reference frame follows by substituting χ̃U k+1 in (5.24)
and (5.25). Geometrical errors in these predicted frames result in non-closure
of the pose closure equations for each feature:

T̃ o1
w (qR, χ̃U) T̃

f1
o1 T̃

f2
f1 T̃ o2

f2 T̃ w
o2 (qR, χ̃U) = ∆. (5.28)

Correction

The twist closure equation is given by:

t
o1
w + t

f1
o1 + t

f2
f1 + t

o2
f2 + t

w
o2 = 0.

Using t
o1
o2 = JRq̇R + JU χ̇U and t

o2
o1 = JFχ̇, this results in:

JRq̇R + JFχ̇ + JU χ̇U = 0.

Similar to (5.6), this twist closure equation corresponds to the first order
linearization of the pose closure equation, and hence:

JR∆qR + JF∆χ + JU∆χU = t∆,

⇔
[

JR JF JU

]

∆qR

∆χ

∆χU

 = t∆. (5.29)

76

5.3 Estimation

The time rate of the measurement equation is also expressed in terms of the
coordinates χU :

ż =
[

HR HF HU

]

q̇R

χ̇

χ̇U

 . (5.30)

For small deviations ∆z = (z̃ − z), (5.30) expresses the first order lineariza-
tion:

∆z =
[

HR HF HU

]

∆qR

∆χ

∆χU

 . (5.31)

Combined with (41), and assuming no error on the robot joint positions, or
∆qR = 0, (5.31) yields:

[
JF JU

HF HU

] [
∆χ

∆χU

]
=

[
t∆

∆z

]
. (5.32)

From this, the predictions are corrected:

[
χ̂

χ̂U

]

k+1

=

[
χ̃

χ̃U

]

k+1

+

[
JF JU

HF HU

]#

W

[
t∆

∆z

]
. (5.33)

W is again a weighting matrix which determines the relative importance of
the pose closure equation and the measurements in the correction.

5.3.3 Kalman Filter Estimation

Another approach to the model update and estimation procedure, using a
Kalman Filter, is described in this section. The parameters defining the pose
of the robot, the object and the feature frames, are qR,χ and χU . As no
uncertainty is assumed on qR, the state x of the Kalman Filter is given by:

x =

[
χ

χU

]
.

The Kalman Filter approach also consist of a prediction and a correction step.

Prediction

The Kalman prediction step is based on the general model update procedure.
Based on the system equations (5.13) and (5.27), a prediction for χ and χU is
calculated. Then, the values of χ are corrected as described in Section 5.2.1,
so the pose loop closure equations hold. The linearized system matrix for
this step is obtained from the system equations, and the state covariance P

adapted according to the Kalman Filter equations.

77

5 Model Update, Estimation and Discrete Events

Correction

In the Kalman correction step, the predictions are corrected according to
sensor measurement. The measurement equation, relating the state to the
measurements, is given by:

z = h(x) = h(χ,χU). (5.34)

According to (5.31), the linearized form of this measurement equation is given
by:

∆z =
[

HF HU

] [
∆χ

∆χU

]
, (5.35)

if no error on the joint positions is assumed (∆qR = 0). The predicted
measurement z̃ is given by:

z̃ = h(χ̃, χ̃U), (5.36)

while the real measurement is obtained from the sensor.

After the Kalman correction, the pose closure equations should still hold.
To this end, the pose closure equations are used as extra measurement equa-
tions. The none-closure of the pose loops is not a real measurement, in the
sense that they do not provide external information to the estimator. The
pose closure equations are constraints between the state variables χ and χU .
The linearization of the pose loops is given, according to (41), by:

z =
[

JF JU

] [
∆χ

∆χU

]
, (5.37)

with predicted measurement −t∆ = log(∆) and as real measurement 0, which
expresses closure of the loop.

Combined with (5.35), this yields the linearized Kalman Filter measure-
ment equation z = Hx, with:

H =

[
JF JU

HF HU

]
. (5.38)

The measurement covariance R expresses the uncertainty on every mea-
surement. Often, the measurements are independent, and a diagonal covari-
ance matrix can be used. For the loop closure equations, the measurement
covariance is in theory zero: in reality, the pose loop is always closed. How-
ever, the measurement model is linearized, which introduces variance. Hence,
adding extra measurement noise is a way to cope with this variance.

78

5.4 Discrete Event System

State A State B

State C State D

Figure 5.1: An example of a state diagram. The arrows denote possible
transitions between states.

5.4 Discrete Event System

In true robotic applications, different states are present. For instance, for a
compliant motion task, the different states could be: approach, make contact,
move in contact, retract, and error. Figure 5.1 shows an example of a possible
state diagram.

In each of the states, different control constraints are active. Consider
two states, A and B, with their corresponding set of constraints, and weight
matrices W A and W B . When an abrupt state change is needed from A to
B, the constraints of state A are replaced by those of state B. To ensure a
smooth transition between the states however, both sets of constraints are
activated, with weighting matrices W ∗

A and W ∗
B , according to:

W ∗
A = λAW A,

W ∗
B = λBW B .

λA and λB are scale factors between one and zero. During the transition, λA

is smoothly changed from one to zero, while λB is changed from zero to one.
Figure 5.2 shows an example, where λA and λB are changed in a linear way.

5.5 Conclusions

This chapter focuses on a model update procedure, the estimation of unknown
geometric parameters and the discrete event system. The model update is
concerned with keeping the model, that is, the pose of the object and feature
frames, up to date with the actual state of the real world. Based on the known

79

5 Model Update, Estimation and Discrete Events

λ

λA λB

t

0

1

Figure 5.2: An example of linear change of the weighting matrix scale factors
lambda, to ensure smooth transition between two states.

joint positions qR, uncontrolled coordinates χU and feature frame poses at
time instant k, the feature frame poses at timestep k + 1 are calculated.

To estimate geometric parameters, these parameters are modeled as un-
controlled (and in this case also unknown) coordinates χU . The motion de-
grees of freedom of these uncontrolled coordinates are modeled in terms of
a Jacobian JU , similar to the feature Jacobian JF . Similarly to the model
update procedure, the coordinates χU are then estimated in a prediction and
a correction step.

Finally, a procedure is presented to make a smooth transition between
different states of a robot task.

80

Chapter 6

Applications

6.1 Introduction

In this chapter, several example applications are discussed, each of which illus-
trate different aspects of the task specification formalism. The first example
application (Section 6.2) is based on the minimally invasive surgery exam-
ple of Section 4.2, and shows how an existing task can easily be extended to
a new setting with extra DOF, by changing parts of the model and adding
constraints. The second and third application are the other example appli-
cations of Chapter 4: the forming task (Section 6.3) and the inspection task
(Section 6.4). The former is an example of a task involving force control and
contact between curved surfaces, and the latter task concerns a highly redun-
dant robot and features transitions between multiple states, in each of which
different control constraints are active. The fourth application is a common
example of a task which cannot be easily expressed in the TFF: the incom-
patible seam following task (Section 6.5). The final two applications are laser
tracing, involving underconstrained specification and estimation of geometric
parameters (Section 6.6), and human-robot shared control, involving overcon-
strained specification, realizing shared control between a human operator, the
robot and visual servoing (Section 6.7).

6.2 8 DOF Minimally Invasive Surgery

In Section 4.2 (page 38), a minimally invasive surgery task was discussed as
an introduction to the task specification formalism. In that task, a six DOF
robot inserts a laparascopic tool into a patient’s body through a hole, called
the trocar. The tool has a gripper at its end point. The robot’s motion is
controlled such that the trocar point stays at its desired position, and the

81

6 Applications

o2a

o1

f1a

f2a

o2bf1b

2 extra DOF

Figure 6.1: The object and feature frames for a minimally invasive surgery
task, with 8 DOF (6 DOF of the robot, and 2 extra DOF of the tool). f2b
coincides with o2b.

endpoint of the tool moves along a specified trajectory to reach an organ in
the patient’s body.

The application described in this section starts from the same setting but
uses a different laparascopic tool. The tool has two extra rotational DOF at
its tip (Figure 6.1). This allows complete 6D positioning of the gripper at the
end of the tool with respect to an organ in the body. Very little changes to
the steps from Section 4.2 are needed to incorporate the extra DOF into the
task.

As with the initial task of Section 4.2, the new setting also suggests two
motion constraints, and hence two features: one regarding the position of the
trocar point (feature a), and one regarding the motion of the endpoint of the
tool (feature b). With respect to theobject and feature frames and the feature
Jacobians for feature a, nothing changes. Hence, these frames are chosen as
follows:

• Frame o1 is fixed at a reference position on the patient’s body.

82

6.2 8 DOF Minimally Invasive Surgery

• Frame o2a is fixed to the mounting plate of the robot. It has its origin
at the attachment point of the laparascopic tool, and it is oriented with
its Z-axis along the tool.

• Frame f1a is rigidly attached to o1, with its origin at the desired position
for the trocar point, and its Z-axis normal to the patient’s body.

• Frame f2a is located on the laparascopic tool, with its origin at the
actual trocar point, while its orientation is the same as that of o2a.

Also the feature Jacobians for feature a are the same as in Section 4.2:

t
f1a
o1 = Ja

FIτ I
a,

= 0, (6.1)

f2a
f1at

f2a
f1a = Ja

FIIτ II
a,

=

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

τa
1

τa
2

τa
3

τa
4

τa
5

, (6.2)

f2a
o2a t

f2a
o2a = Ja

FIIIτ III
a,

=

0
0
1
0
0
0

[
τa
6

]
. (6.3)

For feature b, there are some changes in the assignment of the frames to
reflect the two extra DOF at the tip of the tool. These DOF are extra joints of
the robot and influence the motion of the gripper. Hence a new object frame,
o2b, is introduced at the center of the gripper. The f2b frame is chosen to
coincide with o2b. The rest of the frames is unaltered: f1b has its origin at
the same point as the origin of f2b, but the same orientation as o1. This leads

83

6 Applications

to the following feature Jacobians:

f1b
o1 t

f1b
o1 = Jb

FIτ I
b,

=

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

τ b
1

τ b
2

τ b
3

 , (6.4)

f2b
f1bt

f2b
f1b = Jb

FIIτ II
b,

=

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

τ b
4

τ b
5

τ b
6

 , (6.5)

t
f2b
o2b = Jb

FIIIτ III
b,

= 0. (6.6)

Note that these feature Jacobians are the same as the ones in the setting of
Section 4.2.

The twists of o2a and o2b are given by:

wt
o2a
w = JR1q̇R, (6.7)

wt
o2b
w = JR2q̇R. (6.8)

JR2 is the full Jacobian of the robot and the tool. JR1 is the Jacobian to
the sixth link. JR1 and JR2 are the same matrices, except for the last two
columns of JR1 which contain only zeros:

JR1 = JR2

[
I 6×6 0 6×2

0 2×6 0 2×2

]
. (6.9)

Also the constraints are unaltered with respect to the previous setting.
However, three constraints are added to also impose the relative orientation
of f1b and f2b:

• To realize the desired position of the trocar two constraints are needed,
imposing the values of τa

1 and τa
2 to the outcome of a position controller.

This leads to the following set of constraints:

τa
1 = kfb(x

a
desired − xa

actual), (6.10)

τa
2 = kfb(y

a
desired − ya

actual). (6.11)

84

6.3 Forming Task

In this, kfb is a feedback constant, xa
actual and ya

actual are the coordinates
of the origin of f2a, expressed in f1a, and xa

desired and ya
desired the

desired values for these coordinates1.

• Three further position constraints are needed to impose the translational
motion of the endpoint of the tool. These are similar to the previous
constraints, but now concern τ b

1 , τ b
2 and τ b

3 , as these coordinates express
the X, Y and Z translational velocities of f1b with respect to o1, or
thus of the endpoint of the tool with respect to the patient’s body:

τ b
1 = kfb(x

b
desired − xb

actual), (6.12)

τ b
2 = kfb(y

b
desired − yb

actual), (6.13)

τ b
3 = kfb(z

b
desired − zb

actual). (6.14)

(6.15)

In this, xb
actual, y

b
actual and zb

actual correspond to the x, y and z-co-
ordinates of f1b, expressed in o1, while xb

desired, y
b
desired and zb

desired

correspond to the desired values for these coordinates.

• Finally, another three position constraints are needed to impose the
rotational motion of the endpoint of the tool. These concern τ b

4 , τ b
5 and

τ b
6 , as these coordinates express the X, Y and Z rotational velocities of
f1b with respect to o1. A possible choice to express the constraints is
in terms of the desired Euler angles. This requires the introduction of
an integrating factor E to relate the rotational velocities to Euler angle
rates:

E−1

τ b
4

τ b
5

τ b
6

 =

kfb(φ

b
desired − φb

actual)

kfb(θ
b
desired − θb

actual)

kfb(ψ
b
desired − ψb

actual)

 . (6.16)

In this, φb
actual, θ

b
actual and ψb

actual correspond to the ZYX-Euler angles
between f2b and f1b, while φb

desired, θ
b
desired and ψb

desired correspond to
the desired values for these angles.

6.3 Forming Task

This section deals with the forming task introduced in Section 4.3.1 (Figure
6.2). In the task, a plate is placed between two spheres by a peripheral
mechanism in the robot workcell. The robot then rolls one of the spheres over

1As previously stated, it is possible to use different feedback constants or different types
of controllers. For the simplicity of notation however, always proportional controllers are
used, with the same feedback constant kfb.

85

6 Applications

o1

o2

f1
f2

Figure 6.2: The object and feature frames for a forming task. In the task, a
plate (not shown) is placed between two spheres, by a peripheral mechanism in
the robot workcell. The robot then rolls one of the spheres over the other while
maintaining a contact force. This deforms the plate into a curved surface.

the other while maintaining a contact force. This deforms the plate into a
curved surface.

As the task consists of relative motion of the spheres, these are the relevant
objects. Furthermore, the task is determined by the motion of the contact
points on each of the spheres’ surfaces, so these contact points form the rele-
vant feature. However, the task also includes states where there is no contact,
for instance when loading or unloading a plate. In order to deal with all states
in the same way, the notion of ‘contact point’ is extended to that point on the
sphere’s surface, which is the closest to the other sphere. In other words, when
there is no contact, the points on the spheres’ surfaces which correspond to
the shortest distance between the spheres are chosen instead of actual contact
points.

The object and feature frames are now chosen as follows (Figure 6.2):

• o1 is placed at the center of the fixed sphere. It has its Z-axis perpen-

86

6.3 Forming Task

dicular to the base of the sphere.

• o2 is placed at the center of the sphere which is moved by the robot,
also with Z-axis perpendicular to the base of the sphere.

• f1 has its origin at that point of the fixed sphere which is the nearest
to the other sphere. It has its X-axis along the normal of the sphere,
and its Y and Z-axes such, that its orientation with respect to o1 can
be described by two ZYX Euler angles φ1 and θ1 (rotation around Z
and around Y respectively).

• f2 is placed on the moving sphere, in a similar way as f1 on the fixed
sphere. The orientation of f2 with respect to o2 is described by ZYX
Euler angles φ2 and θ2 (rotation around Z and around Y respectively).

The feature Jacobians are chosen such, that τ1 and τ2 correspond to φ̇1

and θ̇1 respectively, and τ5 and τ6 to φ̇2 and θ̇2 (this is, corresponding to the
time rates of a minimal set of coordinates χ, as described in Section 5.2.2).
The remaining two degrees of freedom reside between f1 and f2: translation
along and rotation around the common normal to the spheres. The X-axis of
f1 corresponds to this common normal. This leads to the following feature
Jacobians:

o1t
f1
o1 = JFIτ I ,

=

0 0
0 0
0 0
0 − sin(φ1)
0 cos(φ1)
1 0

[
τ1
τ2

]
, (6.17)

f1t
f2
f1 = JFIIτ II ,

=

1 0
0 0
0 0
0 1
0 0
0 0

[
τ3
τ4

]
, (6.18)

87

6 Applications

o2t
f2
o2 = JFIIIτ III ,

=

0 0
0 0
0 0
0 − sin(φ2)
0 cos(φ2)
1 0

[
τ5
τ6

]
. (6.19)

The twists of o1 and o2 are given by:

wt
o1
w = 0, (6.20)

wt
o2
w = JRq̇R. (6.21)

Constraints are now defined to impose the motion of the spheres:

• Two position constraints realizing desired Euler angles φ1desired and
θ1desired between f1 and o1:

τ1 = kfb(φ1desired − φ1actual), (6.22)

τ2 = kfb(θ1desired − θ1actual), (6.23)

• Two position constraints realizing desired Euler angles φ2desired and
θ2desired between f2 and o2:

τ5 = kfb(φ2desired − φ2actual), (6.24)

τ6 = kfb(θ2desired − θ2actual), (6.25)

• One position constraints realizing the desired rotation of f2 around the
X-axis of f1:

τ4 = kfb(ψdesired − ψactual), (6.26)

• One force constraint, realizing the desired contact force F :

τ3 = kfbk
−1
st (F desired − F actual). (6.27)

In this, kst is the contact stiffness. During the approach or retract
phases, this constraint is replaced by a position constraint realizing a
desired distance along the common normal (this is, the X-axis of f1):

τ3 = kfb(xdesired − xactual). (6.28)

Just before making contact, a transition is made from constraint (6.28)
to (6.27) by changing the corresponding weights, as discussed in Section
5.4.

88

6.4 Inspection Task

o1

o2a

o2b

o2c

o2c

o2d

o2e

f1a

f1a

f1b

f2c

f2cam

Figure 6.3: The object and feature frames for a maintenance task.

6.4 Inspection Task

This section deals with the second example task of Section 4.3.1 (Figure 4.4,
page 51). In the task, a high-DOF maintenance robot enters a pipeline
through an uncovered flange and points a camera to a seam to perform a
visual check. The camera is attached to the last link of the robot.

The links of the robot should enter the flange one by one, starting with the
last link of the robot. For every link-flange pair a specific set of constraints
is needed when the link enters the flange. Furthermore, for the links inside
the pipe other constraints are active to align the camera with the seam, and
to avoid collisions between the links and the pipe. Hence this task consists of
numerous states, during each of which different constraints are active.

In each state of the task, the pipe is one of the relevant objects. Hence,
o1 is chosen at a reference position on the pipe (Figure 6.3). Two features of
the pipe are relevant for the task: the flange, through which the robot enters
the pipe, and the seam, with respect to which the camera should be aligned
to perform a visual inspection. Hence a feature frame is attached to each
of these features. The first feature frame, f1a, has its Y -axis aligned with

89

6 Applications

the centerline of the flange. Its Z-axis is chosen vertically, and the origin is
chosen in the middle of the flange. The second feature frame, f1b, is chosen
at a reference position on the seam.

For the constraints regarding the positioning of a link with respect to
the flange, the link is the second relevant object. Hence, an object frame
is attached to each link which will enter the flange. More specifically, these
frames are chosen at the base of the respective link, with the X-axis along the
centerline of the link. For instance, for the robot in Figure 6.3, o2e is the base
frame of the last link of the robot, o2d that of the one but last link, and so on2.
For each of those links, the feature frame is chosen parallel to the respective
object frame, but with its origin at the intersection point of the centerline
of the link with the XZ-plane of f1a (see Figure 6.3, inset top-left)3. The
motion of these frames can be modeled by the following feature Jacobians:

• There is no motion of f1a with respect to o1:

t
f1a
o1 = Ja

FIτ I
a,

= 0. (6.29)

• The feature frame of a link i, f2i, has 5 DOF with respect to f1a:
motion of the origin of f2i in theXZ-plane of f1a (2 DOF), and rotation
of f2i with respect to f1a (3 DOF). The following feature Jacobian
reflects these DOF:

f2i
f1at

f2i
f1a = Ja

FIIτ II
a,

=

1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

τa
1

τa
2

τa
3

τa
4

τa
5

. (6.30)

2The naming scheme is somewhat different than usual, as there are so many features.
Regarding the robot entering the pipe, first o1, f1a, o2e and f2e are the relevant frames,
as the last link of the robot enters the flange. In the second state, when the one but last
link enters the flange, the relevant frames are o1, f1a, o2d and f2d. And so on.

3The inset depicts a link which sits through the flange. However, the intersection point
is always defined when the centerline is not parallel to XZ-plane of f1a, also when the link
is not through the flange.

90

6.4 Inspection Task

• f2i translates along theX-axis of the object frame of link i, o2i (1 DOF):

o2it
f2i
o2i = Ja

FIIIτ III
a,

=

1
0
0
0
0
0

[
τa
6

]
. (6.31)

For the constraints regarding the positioning of the camera with respect
to the seam, the last link of the robot is the relevant object, with object frame
o2e, and the relevant feature is the camera, with feature frame f2cam. f2cam
is fixed with respect to o2e, and f1b is fixed with respect to o1. Hence all 6
DOF are present between f2cam and f1b:

t
f1b
o1 = Jb

FIτ I
b,

= 0, (6.32)
f2b
f1bt

f2cam
f1b = Jb

FIIτ II
b,

=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

τ b
1

τ b
2

τ b
3

τ b
4

τ b
5

τ b
6

, (6.33)

t
f2cam
o2e = Jb

FIIIτ III
b,

= 0. (6.34)

For each link i, a robot Jacobian JRi relates the robot joint velocities to
the twist of o2i:

wt
o2i
w = JRiq̇R. (6.35)

The Jacobian till the last link is JRe. Each of the Jacobians to an intermediate
link i is easily found from JRe by copying its first i columns, and setting the
other columns to 0 6×1.

For each state constraints are now defined to realize the task. It is assumed
that the task starts with the robot’s last link in the neighborhood of the
flange, and with the centerline of the last link not parallel to the XZ-plane of
f1a. For instance, the robot can reach this position by means of jointspace
motion. In the first phase, the last link of the robot enters the flange. In each
consecutive phase, a further link enters the flange, and the links inside the
pipe move to reach the desired pose of the camera with respect to the seam.

91

6 Applications

Phase 1

The first phase only concerns the motion of the last link of the robot with
respect to the flange, so the relevant object and feature frames are o1, f1a,
f2e and o2e. The following constraints realize the desired motion of the robot:

• To keep the link centered with respect to the flange, the origin of f2e is
regulated to a central position in the XZ-plane of f1a (for instance, so
that it coincides with the origin of f1a):

τa
1 = kfb(xdesired − xactual), (6.36)

τa
2 = kfb(zdesired − zactual). (6.37)

In this, xdesired and zdesired are the desired x and z coordinates of the
origin of f2e with respect to f1a, and xactual and zactual their actual
values.

• The orientation of f2e is regulated so, that the centerlines of the link
and the flange coincide. For this, control constraints on the ZYX Euler
angles φ and θ (rotation around Z and Y respectively) of f2e with
respect to f1a are needed4. As τa

3 , τa
4 and τa

5 are defined in terms of
rotational velocities, integrating factors are present in these constraints:

[
cosφ sin θ

cos θ

sinφ sin θ

cos θ
1

− sinφ cosφ 0

]

τa
3

τa
4

τa
5

=

[
kfb(φdesired − φactual)
kfb(θdesired − θactual)

]
. (6.38)

• A further constraint is placed on the X-motion of f2e with respect to
o2e, so the link enters the pipe:

τa
6 = kfb(x

′
desired − x′actual). (6.39)

In this, x′desired is the desired x coordinates of the origin of f2e with
respect to o2e, and x′actual its actual value.

A trajectory generator provides the desired values for x, z, φ, θ and x′, ac-
cording to a smooth trajectory from the initial value to the desired final value
(for instance, according to a trapezoidal velocity profile).

The five control constraints are sufficient to realize the insertion motion
of the last link into the pipe. However, the complete robot motion is still un-
derconstrained. For collision avoidance between the links and the pipe, extra

4Note that f1a and f2e were chosen such (this is, with Y and X-axis along the centerline
of the flange and the link, respectively), that the representation of their relative orientation
by ZYX Euler angles is well conditioned when the link sits through the flange.

92

6.4 Inspection Task

jointspace constraints are added in the nullspace of above constraints, which
keep the robot close to a neutral stance. For each link i, such a constraint is
given by:

q̇i = kfb(qi desired − qi actual). (6.40)

For a large diameter of the pipe relative to that of the links, this approach is
sufficient to ensure collision avoidance. An alternative, more reliable approach
is to define constraints on the distance between the links and the pipe. How-
ever, this approach requires the definition of extra object and feature frames
and is hence somewhat more involved.

Phase 2

The first phase is concluded when the last link of the robot has entered the
pipe, this is, when x′actual = 0. In the second phase, most constraints of the
first phase are copied to the next link, this is, to the relative motion of o1,
f1a, f2d and o2d:

• The X and Z-positions of f2d with respect to f1a are regulated, and

• The φ and θ Euler angles of f2d with respect to f1a are regulated.

However, the other constraint, on the X-position of f2d with respect to o2d,
is not copied. Instead of this constraint, a desired pose of f2cam with respect
to f1b is specified, for instance by constraints on the relative position (three
constraints) and on the Euler angles of f2cam with respect to f1b (another
three constraints). As there is only one link inside the robot, these secondary
constraints cannot be fully realized without breaking those realizing the rela-
tive pose of the link through the flange (the primary constraints). Hence, to
prevent this interference between the constraints, the secondary constraints
are specified in the nullspace of the primary constraints. Furthermore, as the
part of the robot inside the pipe has less than six DOF, the six secondary
constraints will be conflicting. Hence, weights in constraint space are needed.
As the camera is still far away from the flange, the position constraints are
more important than the constraints on the orientation. Hence, a good choice
is to put a higher weight on the position constraints than on the orientation
constraints.

While the secondary constraints overconstrain the part of the robot inside
the pipe, the motion of that part of the robot which is outside the pipe is
not necessarily fully constrained. Hence, also in this phase extra jointspace
constraints (6.40) are specified, in the nullspace of both the primary and the
secondary constraints.

93

6 Applications

Consecutive phases

In the consecutive phases, similar constraints as in phase 2 are active, but
each time on the next link. For instance, in phase 3 the constraints are
related to o1, f1a, f2c and o2c, in phase 4 to o1, f1a, f2b and o2b and so
on. The constraints on the relative pose of f2cam and o2d stay active. At
the end, the robot has entered the pipe as far as it should, and enough DOF
are available inside the pipe to align the camera and the seam as desired. In
this case, the weights on the constraints regarding the camera and the seam
become irrelevant, as the constraints are no longer conflicting.

6.5 Incompatible Seam Following (Multi-point
contact)

A common example of a task which is not easily expressible using the TFF is
incompatible seam following or multi-point contact (Figure 6.4). This section
shows that this task can easily be specified using the formalism presented in
this thesis. Seam following is the generalization of 2D contour following to
three dimensions and involves controlled motion of a tool along a seam, which
is formed by two surfaces in the environment. In general, the tool’s geometry
is incompatible with the seam, which leads to two point contacts between
the tool and the environment. In this experiment, the surfaces are planar.
Hence, two vertex-face contacts occur, and two contact forces are regulated.
The other four DOF of the tool with respect to the seam are constrained by
motion specifications: a desired relative orientation of the tool and the seam
(2 DOF), and a desired trajectory of one of the contact points in the contact
plane (2 DOF).

The two vertex-face contacts suggest two features: the contact point of the
first contact (feature a), and the contact point of the second contact (feature
b). The related objects for each feature are the tool and the corresponding
surface. The frames are chosen as follows (Figure 6.4):

• o1a and o1b are reference frames in the contacting plane of feature a
and feature b respectively. They have their Z-axis along the normal of
the corresponding plane.

• o2 is a reference frame on the mounting plate of the robot.

• f1a and f1b have their origin at the contacting vertex of the tool, and
the same orientation as o1a and o1b respectively.

• f2a and f2b also have their origin at the contacting vertices, but the
same orientation as o2.

94

6.5 Incompatible Seam Following (Multi-point contact)

o1a

o1b

o2

f1af1b

f2a

f2b

Figure 6.4: The object and feature frames for an incompatible seam following
task.

The following feature Jacobians represent the submotions of the object
and feature frames:

• f1a and f1b translate with respect to o1a and o1b respectively:

o1at
f1a
o1a = Ja

FIτ I
a,

=

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

τa
1

τa
2

τa
3

 , (6.41)

95

6 Applications

o1bt
f1b
o1b = Jb

FIτ I
b,

=

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

τ b
1

τ b
2

τ b
3

 , (6.42)

• f1a and f1b rotate with respect to f2a and f2b respectively:

f1at
f2a
f1a = Ja

FIIτ II
a,

=

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

τa
4

τa
5

τa
6

 , (6.43)

f1bt
f2b
f1b = Jb

FIIτ II
b,

=

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

τ b
4

τ b
5

τ b
6

 , (6.44)

• There is no motion between f2a, f2b and o2:

o2t
f2a
o2 = Ja

FIIIτ III
a,

= 0, (6.45)

o2t
f2b
o2 = Jb

FIIIτ III
b,

= 0. (6.46)

The twists of o1 and o2 are given by:

wt
o1
w = 0, (6.47)

wt
o2
w = JRq̇R. (6.48)

As previously mentioned, two force constraints are needed to regulate the
contact force in each contact. Furthermore, two constraints impose the motion
of the contact point in the contacting plane, and two constraints regulate the
orientation of the tool. This leads to the following constraints:

96

6.5 Incompatible Seam Following (Multi-point contact)

• Two constraints regarding the contact forces F i:

τa
3 = kfbk

a
st

−1(F a
desired − F a

actual), (6.49)

τ b
3 = kfbk

b
st

−1
(F b

desired − F b
actual), (6.50)

in which ka
st and kb

st are the respective contact stiffnesses,

• Two constraints regulating the position of the contact point:

τa
1 = kfb(x

a
desired − xa

actual), (6.51)

τa
2 = kfb(y

a
desired − ya

actual), (6.52)

in which xa
actual and ya

actual are the x and y coordinate of f1a with
respect to o1a, and xa

desired and ya
desired their desired values,

• Two constraints on the orientation of the tool, for instance by regulating
the two Euler angles φ and θ (around Z and Y respectively) between
f1a and f2a:

[
cosφ sin θ

cos θ

sinφ sin θ

cos θ
1

− sinφ cosφ 0

]

τa
4

τa
5

τa
6

=

[
kfb(φdesired − φactual)
kfb(θdesired − θactual)

]
. (6.53)

Ja
FII , chosen in (6.43), defines τa

4 , τa
5 and τa

6 as rotational velocities. As these
do not integrate into a set of Euler angles without integrating factors, these
integrating factors are present in the constraint (6.53). As the constraint
concerns the Euler angles φ and θ the integrating factors correspond to the
first two rows of E−1. An alternative is to define Ja

FII such, that τa
4 , τa

5 and
τa
6 correspond directly to Euler angle rates:

f1at
f2a
f1a = Ja

FIIτ II
a,

=

0 0 0
0 0 0
0 0 0
0 − sinφ cos θ cosφ
0 cosφ cos θ sinφ
1 0 − sinφ

τa
3

τa
4

τa
5

 . (6.54)

In that case, the constraint (6.53) simplifies to:

[
τa
4

τa
5

]
=

[
kfb(φdesired − φactual)
kfb(θdesired − θactual)

]
. (6.55)

97

6 Applications

Figure 6.5: The experimental setup of the incompatible seam following ex-
periment.

The incompatible seam following task was performed on a Kuka 361 indus-
trial robot, equipped with a wrist-mounted JR3 force/torque sensor (Figure
6.5). In the experiment, the planes of the seam form an angle of 90 degrees.
First, contact is established, with desired contact forces of 10N in each con-
tact. Then, a sinusoidal motion of the tool along the seam is commanded
(unit: [m]):

xdes = 0.08 + 0.03 sin(
2π

7.5
t),

ydes = 0.15 cos(
2π

15
t+ π).

During the experiment, the tool is kept perpendicular to the seam. Figures
6.6 and 6.7 show the measured contact forces. The plots clearly show the
disturbance of friction on the force control, when the sinusoidal motion is
started, around 50s.

98

6.5 Incompatible Seam Following (Multi-point contact)

0 10 20 30 40 50 60 70 80 90
−5

0

5

10

15

20

25

Time [s]

C
o
n
ta

c
t

fo
rc

e
 [

N
]

F
a

actual

F
a

desired

Figure 6.6: The contact force in contact a. From 50s on, the tool moves
sinusoidally along the seam. The disturbance of friction on the contact force
can be seen.

0 10 20 30 40 50 60 70 80 90
−2

0

2

4

6

8

10

12

14

Time [s]

C
o
n
ta

c
t

fo
rc

e
 [

N
]

F
b

actual

F
b

desired

Figure 6.7: The contact force in contact b. From 50s on, the tool moves
sinusoidally along the seam. The disturbance of friction on the contact force
is less prominent than in contact a, but can still be seen.

99

6 Applications

6.6 Laser Tracing

This section shows the application of the methodology to a geometrically
complex task involving an underconstrained specification as well as estimation
of uncertain geometric parameters. The goal is to simultaneously trace a path
on a plane as well as on a cylindrical barrel using two lasers which are rigidly
attached to the robot end effector (Figure 6.8). The lasers also measure the
distance to the surface. The exact position and orientation of the plane are
initially unknown. The barrel is standing in a vertical position on a floor
so its vertical position is known. However, its exact position on the floor is
unknown.

The use of two lasers beams suggests the use of two feature relationships,
one for the laser-plane combination, feature a, and one for the laser-barrel
combination, feature b. Figure 6.8 shows the object and feature frames. For
the laser-plane feature:

• frame o1a is fixed to the plane, with its Z-axis perpendicular to the
plane,

• frame o2a is fixed to the first laser on the robot end effector, with its
Z-axis along the laser beam,

• frame f1a has the same orientation as o1a, but is located at the laser
spot (this is, the intersection of the laser beam and the plane),

• frame f2a is also located at the laser spot, but has the same orientation
as o2a,

and for the laser-barrel feature:

• frame o1b is fixed to the barrel, with its X-axis along the axis of the
barrel,

• frame o2b is fixed to the second laser on the robot end effector, with its
Z-axis along the laser beam,

• frame f1b has its origin at the laser spot on the barrel, and is oriented
with its Z-axis perpendicular to the barrel surface and itsX-axis parallel
to the barrel axis,

• frame f2b has its origin at the same position as that of f1b, and has the
same orientation as o2b.

The following feature Jacobians represent the submotions of the object
and feature frames for feature a:

100

6.6 Laser Tracing

o1a

o2a

f1a

f2a

o1b

o2b

f1b

f2b

Figure 6.8: The object and feature frames for a laser tracing task. The
goal of the task is to trace simultaneously a path on a plane as well as on a
cylindrical barrel using two lasers which are rigidly attached to the robot end
effector. The lasers also measure the distance to the surface. The position
and orientation of the plane and the position of the barrel are uncertain at
the beginning of the task.

• f1a can translate on the plane, that is, in the XY -plane of o1a:

o1at
f1a
o1a = Ja

FIτ I
a,

=

1 0
0 1
0 0
0 0
0 0
0 0

[
τa
1

τa
2

]
, (6.56)

101

6 Applications

• f2a rotates with respect to f1a:

f1at
f2a
f1a = Ja

FIIτ II
a,

=

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

τa
3

τa
4

τa
5

 , (6.57)

• f2a translates along the laser beam, this is, along the Z-axis of o2a:

o2at
f2a
o2a = Ja

FIIIτ III
a,

=

0
0
1
0
0
0

[
τa
6

]
, (6.58)

and for feature b:

• f1b can translate and rotate along the X-axis of o1b:

o1bt
f1b
o1b = Jb

FIτ I
b,

=

1 0
0 0
0 0
0 1
0 0
0 0

[
τ b
1

τ b
2

]
, (6.59)

• f2b rotates with respect to f1b:

f1bt
f2b
f1b = Jb

FIIτ II
b,

=

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

τ b
3

τ b
4

τ b
5

 , (6.60)

102

6.6 Laser Tracing

• f2b translates along the laser beam, this is, along the Z-axis of o2b:

o2bt
f2b
o2b = Jb

FIIIτ III
b,

=

0
0
1
0
0
0

[
τ b
6

]
. (6.61)

The twists of o1i and o2i, with i = a or b, are given by:

wt
o1i
w = 0, (6.62)

wt
o2i
w = JRq̇R. (6.63)

The following constraints ensure that the paths are traced on the plane
and the barrel:

• To trace a path on the plane, constraints are needed on the X and
Y -motion of f1a with respect to o1a:

τa
1 = kfb(xdesired − xactual), (6.64)

τa
2 = kfb(ydesired − yactual), (6.65)

with xactual and yactual the X and Y -position of f1a with respect to
o1a, and xdesired and ydesired the desired values for these positions.

• As τ b
1 and τ b

2 correspond to cylinder coordinate rates, the following
constraints realize a desired path on the barrel:

τ b
1 = kfb(x

′
desired − x′actual), (6.66)

τ b
2 = kfb(ψdesired − ψactual), (6.67)

with x′actual the X-position of f1b with respect to o1b, ψactual its rota-
tion around the X-axis of o1b, and x′desired and ψdesired their desired
values.

These constraints realize the desired motion of the laser spots on the plane
and the barrel. The complete robot motion however is still underconstrained.
A possible solution is to define weights in jointspace. The weighted pseudo-
inverse method then yields those values for q̇R with minimal weighted norm.
Another possibility is to specify extra desired joint values, by specifying con-
straints

q̇i = kfb(qi desired − qi actual) (6.68)

103

6 Applications

x[m]

y
[m

]

modeled
desired
measured

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Figure 6.9: Motion of the laser spot on the plane, without model correc-
tion (by courtesy of Wilm Decré). Without model correction, the iterative
application of prediction results in accumulation of integration errors due to
discretization and due to errors in the geometric model. Therefore the esti-
mates of the feature frames drift away from their actual positions. While the
estimated position of the laser spot corresponds well to its desired position,
the actual position does not.

in the nullspace of the constraints (6.64)–(6.67).

Figures 6.9 and 6.10 show some simulation results of the motion of the
laser spot on the plane (feature a), in the case of a known plane and bar-
rel position. The values for xdesired and ydesired are chosen such that the
laser spot performs a circular trajectory in the plane, with a radius of 0, 4m.
Nullspace constraints (6.68) are applied, so the robots stays close to its nom-
inal position. These simulation results illustrate the model prediction and
correction steps (Section 5.2). In the results of Figure 6.9, no model correc-
tion is performed: the object and feature frame poses are only determined
by the model prediction. The iterative application of the prediction results
in accumulation of integration errors due to discretization and due to errors
in the geometric model. Therefore the estimates of the feature frames drift

104

6.6 Laser Tracing

x[m]

y
[m

]

modeled
desired
measured

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Figure 6.10: Motion of the laser spot on the plane, with model correction
(by courtesy of Wilm Decré). If the correction step is added, based on the
additional information contained in the pose closure equations, the drift of
the estimates is prevented. The estimated laser spot position corresponds to
its actual and desired position.

away from their actual positions: the origin of f1a no longer coincides with
the real laser spot on the plane. If however the correction step based on the
additional information contained in the pose closure equations is added, the
drift of the frames is prevented, as shown in Figure 6.10.

Laser tracing with distance control

As the laser sensors measure the distance to the plane and the cylinder, the
current task can be expanded with extra constraints concerning these dis-
tances. For instance, it is important to keep the lasers as good as possible at
the nominal distance to the plane and the cylinder, as the lasers measurement
ranges are limited. Another example is that of spray painting. Spray painting
has the same topology as laser tracing (with one laser). However, for spray
painting it is important that the spray gun is maintained at a fixed distance

105

6 Applications

to the painted object. To this extent, two constraints are added:

τa
6 = kfb(zdesired − zactual), (6.69)

τ b
6 = kfb(z

′
desired − z′actual), (6.70)

with zdesired and z′desired the desired distances of the lasers to the plane and
the cylinder respectively, and zactual and z′actual their actual values. Adding
two extra constraints on the laser distances however makes the task overcon-
strained, as the constraints are conflicting. Hence, to ensure that the laser
spots do not deviate from their desired trajectories, the distance constraints
are applied in the nullspace of the primary constraints (6.64)–(6.67).

Laser tracing with estimation

The distance measurements from the laser sensors provide extra information
about the pose of the objects with respect to the world. Hence, using these
measurements it is possible to estimate these poses.

According to the procedure described in Section 5.3, extra coordinates
χU are introduced which describe the unknown position of the plane and the
barrel. For the plane, these coordinates are chosen as:

χU
a =

ha

θa

ψa

 , (6.71)

with ha the z-coordinate in w of the intersection point of the plane and the
Z-axis of w, and θa and ψa the Y and X-Euler angles respectively, which
determine the orientation of the plane with respect to the world. The unknown
position of the cylinder is modeled by:

χU
b =

[
xb

yb

]
, (6.72)

with xb and yb the X and Y -position of the cylinder with respect to w. Note
that other parameters, such as the Z-Euler angle of the plane or the rotation
of the cylinder around its axis are not observable and are not chosen part of
the uncertainty coordinates.

The motion of the object frames can now be modeled as:

wt
o1a
w = Ja

U χ̇U
a (6.73)

=

0 0 0
0 0 0
1 0 0
0 0 cos(θa)
0 1 0
0 0 0

ḣa

θ̇a

ψ̇a

 , (6.74)

106

6.6 Laser Tracing

and

wt
o1b
w = Jb

U χ̇U
b (6.75)

=

1 0
0 1
0 0
0 0
0 0
0 0

[
xb

yb

]
. (6.76)

Next, the prediction equation is determined. As, in this case, the object
poses are constant, the prediction equation is given by:

χ̃U k+1 = χ̂U k, (6.77)

with χU the total coordinate vector:

χU =

[
χU

a

χU
b

]
. (6.78)

The measurements za and zb correspond to the Z-coordinates of f2a with
respect to o2a and of f2b with respect to o2b:

za =
[

0 0 1 0 0 0
]
d

f2a
o2a , (6.79)

zb =
[

0 0 1 0 0 0
]
d

f2b
o2b . (6.80)

Hence:

ż =

[
ża

żb

]
=

[
τa
6

τ b
6

]
, (6.81)

or, with HF and HU according to (5.35):

HF = 0 2×12, (6.82)

HU =

[
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

]
. (6.83)

According to (5.38), the complete Kalman equation z = Hx is then obtained,
and the parameters estimated according to the Kalman Filter procedures.

Simulations are shown in Figure 6.11 (plane) and Figure 6.12 (barrel). The
initial estimation errors for the plane are 0.40m for ha, 20◦ for Euler angle θa

and 30◦ for Euler angle ψa. The initial estimation errors for the barrel are
0.40m in the X-direction and 0.10m in the Y -direction. An extended Kalman
filter is used for the estimation. As soon as the locations of the plane and the
barrel are estimated correctly, after tracing approximately one circle (8s), the
circles traced by the laser beams equal the desired ones.

107

6 Applications

0 1 2 3 4 5 6 7 8 9 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

time [s]

h
a
[m

]

Estimate
Real
2σ boundary

(a) Height of the plane, ha.

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

20

25

time [s]

θa
[◦

]

Estimate
Real
2σ boundary

(b) Orientation of the plane, θa.

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

20

25

30

35

time [s]

ψ
a
[◦

]

Estimate
Real
2σ boundary

(c) Orientation of the plane, ψa.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

x[m]

y
[m

]

Desired
Real
Starting point

(d) Laser spot on plane.

Figure 6.11: Laser tracing on plane (simulation): estimation of plane height
(ha) and plane orientation (θa and ψa). (by courtesy of Tinne De Laet and
Wilm Decré)

Figure 6.13 shows results of an experiment in which the position of a
barrel position was estimated from distance measurements of a Baumer laser
distance sensor (OADM 2016480/S14F). The figure shows the motion of the
laser with respect to the barrel, the distance to the surface measured by the
laser, and the estimation results. The position of the barrel is estimated with
the desired accuracy after approximately 7s.

6.7 Human-Robot Shared Control

This section shows the application of the methodology to an overconstrained
task involving human-robot co-manipulation (Figure 6.14). A robot assists
an operator to carry a heavy machine part, and fine position it on a support

108

6.7 Human-Robot Shared Control

0 1 2 3 4 5 6 7 8 9 10
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

time [s]

x
[m

]

Estimate
Real
2σ boundary

(a) x-position of the barrel, xb.

0 1 2 3 4 5 6 7 8 9 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

time [s]

y
[m

]

Estimate
Real
2σ boundary

(b) y-position of the barrel, yb.

0 0.05 0.1 0.15 0.2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

s[m]

x
[m

]

Desired
Real
Starting point

(c) Laser spot on barrel surface, with s =
Rαb the arc length and x the distance
along the cylinder axis.

Figure 6.12: Laser tracing on barrel (simulation): estimation of x- and y-
position of the barrel (xb

u and yb
u). (by courtesy of Tinne De Laet and Wilm

Decré)

beneath the part. A force/torque sensor is attached to the robot wrist. The
force/torque sensor allows the operator to interact with the robot by exerting
forces on the machine part. Using these interaction forces, the operator aligns
one side of the part with its desired location on the support. A camera
provides information of the position of the other side of the part, relative to
its desired position. These measurements are used by the robot to position
that side of the part. Hence, task control is shared between the human and
the robot. The robot carries the weight of the machine part, generates a
downward motion to realize a contact force between the part and its support,
and at the same time positions one side of the part based on the camera
measurements. Simultaneously, the human aligns the other side of the part

109

6 Applications

x

y

w

barrel

laserrobot

xb

yb

(a) Top view of the experiment.

0 1 2 3 4 5 6 7 8 9 10
0.3

0.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

d
[m

]

time [s]

(b) Laser distance measurement z2.

0 1 2 3 4 5 6 7 8 9 10
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

t

Initial estimate

x
[m

]

Estimate
Real

2σ boundary

(c) x-position of the barrel, xb.

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

Initial estimate

y
[m

]

Estimate
Real

2σ boundary

(d) y-position of the barrel, yb.

Figure 6.13: Laser tracing on barrel (experiment): estimation of X and Y -
position of the barrel. Note that the initial 2σ boundaries do not fit on the
displayed area. (by courtesy of Tinne De Laet and Wilm Decré)

while maintaining overall control of the task.
The use of two sensors suggests two features: feature a for the visual

servoing and feature b for the force control. For both features the relevant
objects are the robot environment, o1, and the manipulated part, o2, as both
the visual servoing and the force control concern motion of the part with
respect to the environment. Figure 6.14 shows the object and feature frames
(with a plate as manipulated part):

• Frame o1 is fixed to the robot environment. The camera frame is a
possible choice for this frame, as the camera is fixed in the environment.

• Frame o2 is chosen at the center of the manipulated part.

• Frame f1a is chosen at the reference pose on the support, to which the

110

6.7 Human-Robot Shared Control

o1a

o2

f1a
f2a

Camera

JR3 Sensor

Markers

Figure 6.14: The object and feature frames for a human-robot co-
manipulation task. In the experiment, the manipulated object is a plate.
Colored sheets are attached to the plate and the table below it, to facilitate
recognition of the object and the support in the camera images.

object should be aligned using the camera measurements. In the case
of a fixed support, the position of f1a with respect to o1 is known. If
however the support is not fixed (for instance, if each time a different
support is used and there is some variance on the exact location of the
support), the position of f1a is measured from the camera images.

• Frame f2a is fixed to the object, at the reference point which should
be aligned to f1a. While the pose of f2a with respect to o2 is known,
the relative pose between f2a and f1a is obtained from the camera
measurements.

• Frame f2b is attached to the manipulated part, at the reference position
for the force control. That is, its origin is the reference point for the
force control; measured torques will generate rotation around this point.
A central point of the manipulated part is a common choice for the

111

6 Applications

reference point. Hence, f2b is chosen to coincide with o2.

• Frame f1b is attached to the support, and is chosen to coincide with
f1a.

For each feature the feature frames are fixed with respect to the object
frames, and all six DOF between the objects are located between the feature
frames. Hence similar feature Jacobians describe the motion of the frames for
each feature. With i = a or b:

t
f1i
o1 = J i

FIτ I
i,

= 0, (6.84)

f2i
f1it

f2i
f1i = J i

FIIτ II
i,

=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

τ i
1

τ i
2

τ i
3

τ i
4

τ i
5

τ i
6

, (6.85)

t
f2i
o2 = J i

FIIIτ III
i,

= 0. (6.86)

The following constraints realize the desired behavior:

• The first two constraints are camera constraints, regulating the X and
Y -motion of f2a with respect to f1a in the camera images5. Hence,
these constraints contain the camera Jacobian (Section 4.3.3, page 61;
with φ = 0):

f

z
0 −

fx

z2

0
f

z
−
fy

z2

τa
1

τa
2

τa
3

 = kfb

[
xc,desired − xc,measured

yc,desired − yc,measured

]
. (6.87)

In this, xc,measured and yc,measured are the measured positions of f2a
in the camera image. xc,desired and yc,desired are the desired values for
these positions (that is, the positions of f1a in the camera image).

5Regulating the rotation in the camera image is also possible, but is not done in this
example.

112

6.7 Human-Robot Shared Control

• The next three constraints are robot force constraints, and realize a con-
tact force between the part and the support by regulating Fz, Tx and
Ty, the force and torques along the Z, X and Y -axes respectively of
f1b. The origin of f2b is the reference point for the force control. As-
suming that the contact stiffness between the part and the support can
be described by a diagonal matrix diag(kx, ky, kz, kαx, kαy, kαz), these
constraints are given by:

τ b
3 = kfbk

−1
z (Fz,desired − Fz,measured), (6.88)

τ b
4 = kfbk

−1
αx (Tx,desired − Tx,measured), (6.89)

τ b
5 = kfbk

−1
αy (Ty,desired − Ty,measured). (6.90)

When there is no contact, these constraints result in a downwards mo-
tion, eventually resulting in contact between the part and its support.

• Three further force constraints regulate Fx, Fy and Tz, the forces and
torque along the X, Y and Z-axes respectively, of f1b. These allow the
operator to interact with the robot.

τ b
1 = kfbk

−1
x (Fx,desired − Fx,measured), (6.91)

τ b
2 = kfbk

−1
y (Fy,desired − Ty,measured), (6.92)

τ b
6 = kfbk

−1
αz (Tz,desired − Ty,measured). (6.93)

Constraints (6.91) and (6.92) conflict with the camera constraints (6.87), as
they all control translational motion of the machine part in the horizontal
plane. Hence, constraint weights have to be specified. As this weighting
deliberates the error on the force relative to the error on the pose as measured
by the camera, the weighted combination of the constraints acts like a spring:
deviation from the camera position is possible by exerting force, but greater
deviations necessite greater forces. The chosen weights influence the stiffness
of this virtual spring. The greater the weights of the force constraints with
respect to the position constraints, the easier it is to deviate from a desired
position (as a deviation from the desired position is less important than a
deviation from the desired force), and the lower the spring constant of this
virtual spring will be.

This application has been carried out on a Kuka 361 industrial robot
equipped with a wrist mounted JR3 force/torque sensor. Figure 6.14 shows
the setup. The manipulated object consists of a rectangular plate, which is to
be placed on a table. Colored sheets are attached to the plate and the table as
markers, to facilitate recognition of the object and the support in the camera
images. The application was implemented in Orocos (Bruyninckx 2001), and
the visual recognition was done using LTI. Figure 6.15 shows some results.

113

6 Applications

56 58 60 62 64 66 68 70
−10

0

10

20

30

40

E
x
e
rt

e
d
 f
o
rc

e
s
 F

x
 a

n
d
 F

y
 [
N

]

Time [s]
56 58 60 62 64 66 68 70

−60

−30

0

30

60

90

120

X
−

 a
n
d
 Y

−
 p

o
s
it
io

n
 o

f
th

e
 o

b
je

c
t
[m

m
]

Time [s]

Figure 6.15: The left plot shows the forces Fx and Fy, exerted by the operator
during the co-manipulation task. The right plot shows the alignment errors
xa and ya as measured by the camera.

The left plot shows the Fx and Fy-forces, exerted by the operator. The right
plot shows the alignment errors xa and ya, as measured by the camera. As
the task is overconstrained, the forces exerted by the operator conflict with
the aligning motion from the visual servoing, yielding a spring-like behavior.
The relative weights of the force and visual servoing constraints determine
the spring constant of this behavior.

6.8 Conclusions

In this chapter, iTASC is applied to several example applications, showing
the effectiveness of the approach. Each of the applications illustrates different
aspects of the task specification formalism. For instance, the minimally inva-
sive surgery task with extra degrees of freedom shows that an existing task is
easily extensible to a new setting, simply by changing parts of the model
and adding constraints. The other examples deal with over- and under-
constrained tasks, with different kinds of robots and different sensors,
and illustrate the model update procedure, estimation of geometric
parameters, and the transition between states.

114

Chapter 7

General Conclusions

During the last decades, research extensively focused on sensor-based robot
tasks. Several task specification methodologies for these kinds of tasks were
developed, such as the Task Frame Formalism, or the formalisms based on
hybrid force/position control defined in terms of the wrench and twist spaces
corresponding to a contact formation. However, most of these task specifi-
cation formalisms exclusively focus on force control. Moreover, they cannot
handle complex robot tasks, such as tasks dealing with multiple sensors con-
currently or with general kinds of robots and constraints on multiple or inter-
mediate links of those robots. Furthermore, these formalisms pay little to no
attention to the estimation of geometric parameters.

The goal of our research is to fill this gap. We want to develop program-
ming support for the implementation of complex, sensor-based robotic tasks in
the presence of geometric uncertainty. The foundation for this programming
support is iTASC: a generic and systematic approach to specify and control
a sensor based task while dealing properly with geometric uncertainty.

The following two sections give an overview of the main contributions and
conclusions of this thesis in the area of task specification for sensor-based
tasks (Section 7.1), and an evaluation of the limitations of the formalism with
suggestions for further research topics (Section 7.2).

7.1 Main contributions

This section lists the parts of this thesis that are original contributions to
the state-of-the-art in robot task specification for sensor based tasks in the
presence of geometric uncertainty.

115

7 General Conclusions

Generic, constraint-based methodology to model and specify sensor
based robot tasks

iTASC is a constraint-based methodology to specify sensor-based tasks. In-
spired by the work of Ambler and Popplestone (1975), objects and features
on these objects are introduced, and a task is formulated in terms of task
relations between the features. However, where Ambler and Popplestone pro-
pose the use of analytic methods to solve the task relations, this text proposes
to model the motion of the objects and features numerically in terms of fea-
ture Jacobians and feature twist coordinates. This allows us to express the
task relations in terms of these auxiliary coordinates, which is straightfor-
ward as the feature twist coordinates are closely task related. Combined with
the twist closure equations, the task relations are reformulated as a linear
set of constraints on the joint velocities. This set of constraints corresponds
to the first order expression of the Task Function (Samson, Le Borgne, and
Espiau 1991), as needed for velocity resolved robots. The set of constraints
can be both redundant or overconstrained; well-known approaches are used
to solve the set of constraints numerically (Doty, Melchiorri, and Bonivento
1993; Nakamura 1991). In short, the specification formalism consists of the
following four steps:

1. Choice of the object and features,

2. Modeling of the relative motion of the objects and features,

3. Definition of the constraints,

4. Solving for the instantaneous motion.

In contrast to previously presented approaches in which task specification
is done in a single Task Frame or a single base, the methodology presented
here is a true constraint-based approach. Constraints can be defined on any
object-feature pair, so iTASC can cope with tasks involving multiple sources
of constraints (such as multiple sensor inputs or constraints on different links
of a robot). iTASC is a generic framework in that it does not focus on one
particular kind of task, sensor or robot system: it can be used for general,
velocity resolved robot systems, consisting of rigid links and joints. Also,
where the previous approaches mostly focus on force control or, to a lesser
extent, on the combination force-vision, in iTASC all sensors yielding geo-
metric information can be used (for instance, cameras or distance sensors,
but also dynamical sensors such as a force sensor, if the task is executed in a
quasistatic way).

In Chapter 6 the methodology is applied to several example applications,
showing the effectiveness of the approach. Each of the applications illus-
trates different aspects of the task specification formalism. For instance, the

116

7.1 Main contributions

minimally invasive surgery task with extra degrees of freedom shows that an
existing task is easily extensible to a new setting, by changing parts of
the model and adding constraints. The other examples deal with over- and
underconstrained tasks, with different kinds of robots and different sen-
sors, and illustrate the model update procedure and the estimation of
geometric parameters.

Model update procedure

In the task specification methodology, objects and features are represented
by frames. At each timestep, the pose of these frames must be known. This
requirement is also present in other specification approaches, where for exam-
ple the pose of a Task Frame or an instantaneous twist and wrench base is
needed. With the exception of for instance the track-on-force and track-on-
velocity methods in COMRADE, task specification methodologies generally
assume that the Task Frames or bases are known or can be calculated, for
instance from an (analytic) description of the object geometries. In contrast
to this, Section 5.2 presents a generic update procedure to keep track of the
frame poses. While in most approaches the programmer needs to implement
ad-hoc procedures to calculate these poses, the generic update procedure au-
tomatically tracks the poses of the object and feature frames. Furthermore,
such a procedure is a necessary component of future software support for the
task specification, which will hide the mathematics and inner workings of the
task specification procedure as much as possible from the end user.

The model update procedure consists of a prediction and a correction step.
In the prediction step, the object and feature frame twists are integrated, to
obtain a prediction of the new object and feature frame poses. Iterative
application of this prediction is prone to accumulation of integration errors
due to discretization and due to errors in the geometric model. Therefore the
predicted poses are corrected in the correction step, based on the additional
information contained in the pose closure equations.

Estimation of geometric parameters

Section 5.3 integrates the estimation of geometric parameters into the speci-
fication framework. To this end, an additional set of uncertainty coordinates
which model the unknown geometric parameters is introduced, in a similar
way as the feature twist coordinates. The measurement models, relating the
measurements to the geometric parameters, are expressed in terms of the fea-
ture twist coordinates. For well chosen object and feature frames, it is very
straightforward to define these measurement models in terms of the feature
twist coordinates. Finally, the twist closure equations are used as extra mea-
surement equations, relating the feature twist coordinates to the uncertainty

117

7 General Conclusions

coordinates. The procedures proposed here are generic, in that they allow
identification of any kind of geometric parameter which is observable, and
that they do not focus on a specific identification problem, such as the track-
ing of a Task Frame. To the author’s knowledge no previous attempts have
been made to integrate the estimation of geometric parameters into the task
specification process in such a generic way.

7.2 Limitations and future work

This section describes the limitations of iTASC and suggests topics for further
research.

Fields of application

The ultimate goal of sensor-based robotics is to create intelligent machines,
capable of performing tasks autonomously in unstructured environments. The
state of the art, including iTASC, is still far away from this target. This section
discusses the fields of application of iTASC, both with respect to the target
users, as well as to the target environments.

Target users iTASC is a methodology for low-level task specification of
sensor-based robot tasks. It has a strong focus on geometric modeling and
hence primarily targets system integrators, who develop applications for end-
users. System integrators can learn the principles of iTASC, and gain the
insight needed to apply these to specify different tasks. Insight is still needed
to specify a task, as there are no strict rules to choose for instance the object
and feature frames or the feature Jacobians. A good choice is necessary, as
it is difficult to express the constraints in terms of ill-chosen feature twist
coordinates. This is clearly a disadvantage, but it is not something peculiar
to iTASC: similar insight is also required in other task specification method-
ologies, notwithstanding their successful application for multiple tasks. For
instance, also according to the TFF it is difficult to specify a task if the Task
Frame is ill-chosen. This inspired the publication of reference papers such as
(Bruyninckx and De Schutter 1996), in which multiple examples are given of
tasks specified according to the TFF. Similarly, in Chapter 6, this thesis gives
multiple examples of tasks specified according to iTASC.

Furthermore, software is being developed at our research group to support
system integrators in specifying a task. In this software, the motion degrees
of freedom between the object and feature frames are specified as links of a
kinematic chain. The feature Jacobians are automatically deduced from this
model, and the mathematical representations are hidden from the integrator.

118

7.2 Limitations and future work

For end-users of an applications, the iTASC methodology is usually com-
pletely hidden. To interact with the task, they use a task-specific interface
which is provided by the system integrator. In general, such an interface al-
lows the end-user to change parameters of the task, such as the control gains
or the active state, but hides the internal model, such as the feature Jacobians,
from the user.

Target environments In iTASC, the programmer specifies a task by defin-
ing constraints and estimators, based on a geometric model of the task. To
foresee the different states of the task and to specify the different models and
constraints for each state, the environment should have a certain degree of
structure. This is for instance the case in industrial environments, in which
the objects are known, but not necessarily their exact locations in the robot
environment. In other words, iTASC primarily targets semi-structured envi-
ronments.

When using robots in a completely unstructured environment, such as a
domestic environment, it is impossible to implement different constraints and
estimators for all possible situations that can occur. In such settings, higher-
level artificial intelligence is needed, capable of making autonomous, strate-
gic decisions. The development of such a cognitive system is an interesting
research topic, and has been an active research topic for the last decades.
Nevertheless, the state-of-the-art is still far away from what can be called a
true intelligent system. In our research group, modeling techniques are being
developed to build geometric models of an unknown environment based on
contact measurements (force and position) (Slaets et al. 2007). A possible
topic for further research is to integrate these techniques into iTASC. A given
target action between two objects can then be executed once these objects
have been found in the robot environment.

Another possibility to use robots in unstructured environments is to have
the robot and the operator work together to realize a task. For instance,
an operator uses a teleoperation setup to move a robot within the range of
target objects in its environment, and once these are identified, the robot
autonomously continues the task.

In any case, iTASC can be used as the underlying methodology for these
tasks, once the robot environment has been identified to such an extent that
a geometric model of the task can be built and constraints specified within
this model.

Framework for instantaneous control

iTASC is a framework for instantaneous control. The generated models are
instantaneous kinematic models of the task, and are used to generate veloc-
ity setpoints, that is, instantaneous joint velocities. This implies that path

119

7 General Conclusions

planning is limited to trajectory generation, for instance using trapezoidal
or minimum-jerk trajectories. Also the optimization criteria in iTASC are
local criteria, minimizing an instantaneous norm of the joint velocities or of
the constraint violation. The extension of iTASC to incorporate global path
planning, capable of error recovery and re-planning, and global optimization,
is a challenging research topic.

Focus on velocity resolved robots

According to iTASC, a task is specified in such a way that a first order ex-
pression of the Task Function is obtained, as needed for velocity resolved
robots. For acceleration (or torque) resolved robots, a second order expres-
sion is needed (De Laet and De Schutter 2007). The main reasons that this
thesis focuses on velocity resolved systems are (i) that many tasks can be
adequately specified on a velocity level, (ii) that many robots which are inter-
faced to an external control computer are effectively velocity resolved systems,
and (iii) that the mathematical expressions for acceleration resolved systems
are more involved, as it requires expressions for the time derivatives of the
feature Jacobians. It is much harder to gain insight in and specify feature
Jacobians at the acceleration level. These are of course no decisive reasons:
nothing prohibits the formulation of the task specification formalism on an
acceleration level. However, because of the added complexity of specifying the
feature Jacobians at the acceleration level, it is the author’s belief that in this
case software support is definitely needed for the formalism to be practically
usable.

Inequality constraints

iTASC is based on the definition of equality constraints to realize a task. For
some applications however, it is desirable to specify inequality constraints.
Such constraints express a don’t care behavior as long as the inequality is not
violated. For instance, consider a robot of which some links are close to a wall.
For those links it is important that the motion is restricted to avoid collision,
while such a restriction is not needed for the other links. A possible way to
realize such inequality constraints could be to add extra equality constraints,
with a weighting which differs from zero only in the neighborhood of the
inequality violation. In the example above, these constraints would realize a
move away from wall behavior, and have zero weights for all but the links
close to the wall.

120

7.2 Limitations and future work

Non-linear estimation techniques

The estimation techniques described in Section 5.3 are based on a linearization
of the measurement equations, as for instance needed for a Kalman Filter.
However, a linearized approach is not always appropriate for strongly non-
linear estimation problems. In such cases the use of different techniques, such
as a sequential Monte Carlo filter (particle filter) can yield a better result.

121

122

References

ABB (2006). ABB Robotics. http://www.abb.com/robotics/.

Aghili, F. (2005). A unified approach for inverse and direct dynamics of con-
strained multibody systems based on linear projection operator: appli-
cations to control and simulation. IEEE Transactions on Robotics 21 (5),
834–849.

Ahmad, S. and S. Luo (1989). Coordinated motion control of multi-
ple robotic devices for welding and redundancy coordination through
constrained optimization in Cartesian space. IEEE Transactions on
Robotics and Automation 5 (4), 409–417.

Aksenov, G. S., D. K. Voronetskaya, and V. N. Fomin (1978). A construc-
tion of program movements of a manipulator with the aid of a computer.
Engineering Cybernetics 16 (4), 40–45.

Ambler, A. P. and R. J. Popplestone (1975). Inferring the positions of bodies
from specified spatial relationships. Artificial Intelligence 6, 157–174.

An, C. H. and J. Hollerbach (1989). The role of dynamic models in Carte-
sian force control of manipulators. IJRR 8 (4), 51–72.

Anderson, R. J. and M. W. Spong (1988). Hybrid impedance control of
robotics manipulators. IEEE Journal of Robotics and Automation 4 (5),
549–556.

Baeten, J., H. Bruyninckx, and J. De Schutter (2003). Integrated vi-
sion/force robotics servoing in the task frame formalism. The Inter-
national Journal of Robotics Research 22 (10), 941–954.

Baeten, J. and J. De Schutter (2003). Integrated Visual Servoing and
Force Control. The Task Frame Approach. Springer Tracts in Advanced
Robotics. Springer Verlag.

Ben-Israel, A. and T. N. E. Greville (1980). Generalized Inverses: Theory
and Applications (Reprinted ed.). Huntington, NY: Robert E. Krieger
Publishing Company.

123

References

Blajer, W. (1997). A geometric unification of constrained system dynamics.
Multibody System Dynamics 1 (1), 3–21.

Bonaventura, C. S. and K. W. Jablokow (2005). A modular approach to
the dynamics of complex multirobot systems. IEEE Transactions on
Robotics 21 (1), 26– 37.

Bredereke, J. and A. Lankenau (2005). Safety-relevant mode confusions
– modelling and reducing them. Reliability Engineering and System
Safety 88 (3), 229–245.

Bruemmer, D. J., D. A. Few, R. L. Boring, J. L. Marble, M. C. Walton, and
C. W. Nielsen (2005). Shared understanding for collaborative control.
IEEE Transactions on Systems, Man, and Cybernetics. Part A: Systems
and Humans 35 (4), 494–504.

Bruyninckx, H. (2001). Open RObot COntrol Software. http://www.

orocos.org/.

Bruyninckx, H. and J. De Schutter (1996). Specification of force-controlled
actions in the “Task Frame Formalism”: A survey. IEEE Transactions
on Robotics and Automation 12 (5), 581–589.

Bruyninckx, H. and J. De Schutter (1997). Where does the Task Frame
go? In Y. Shirai and S. Hiroshe (Eds.), Robotics Research, The Eight
International Symposium, Shonan, Japan, pp. 55–65. Springer-Verlag.

Bruyninckx, H. and O. Khatib (2000). Gauss’ Principle and the dynam-
ics of redundant and constrained manipulators. In Proceedings of the
2000 IEEE International Conference on Robotics and Automation, San
Francisco, CA, pp. 2563–2568.

Caccavale, F., C. Natale, B. Siciliano, and L. Villani (2005). Integration
for the next generation: embedding force control into industrial robots.
IEEE Robotics and Automation Magazine 12 (3), 53–64.

Canudas de Wit, C., B. Siciliano, and G. Bastin (Eds.) (1996). Theory
of Robot Control. Communications and Control Engineering. London,
England: Springer.

Chang, K.-S. and O. Khatib (2000). Operational space dynamics: efficient
algorithms for modeling and control of branching mechanisms. In Pro-
ceedings of the 2000 IEEE International Conference on Robotics and
Automation, San Francisco, CA, pp. 850–856.

Chen, J. and A. Zelinsky (2003). Programing by demonstration: Coping
with suboptimal teaching actions. The International Journal of Robotics
Research 22 (5), 299–319.

124

References

Chiaverini, S. and L. Sciavicco (1993). The parallel approach to
force/position control manipulators. IEEE Transactions on Robotics
and Automation 9, 289–293.

Cortesão, R., J. Park, and O. Khatib (2003a). Real-time adaptive control
for haptic manipulation with active observers. In Proceedings of the 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Las Vegas, USA, pp. 2938–2943.

Cortesão, R., J. Park, and O. Khatib (2003b). Robust and adaptive tele-
operation for compliant motion tasks. In Proceedings of the 2003 In-
ternational Conference on Advanced Robotics, Coimbra, Portugal, pp.
513–519.

Critchley, J. and K. S. Anderson (2003). A generalized recursive coordi-
nate reduction method for multibody system dynamics. International
Journal for Multiscale Computational Engineering 1 (2–3), 181–199.

Davison, A. J. (2003). Real-time simultaneous localisation and mapping
with a single camera. In Proceedings of the 9th International Conference
on Computer Vision, Nice, France, pp. 1403–1410.

de Jalón, J. G. and E. Bayo (1993). Kinematic and Dynamic Simulation of
Multibody Systems—The Real Time Challenge. Springer.

De Laet, T. and J. De Schutter (2007). Control schemes for constraint-based
task specification in the presence of geometric uncertainty using auxil-
iary coordinates. Internal report 07RP001, Department of Mechanical
Engineering, Katholieke Universiteit Leuven, Belgium.

De Schutter, J. (1988). Improved force control laws for advanced tracking
applications. In Proceedings of the 1988 IEEE International Conference
on Robotics and Automation, Philadelphia, PA, pp. 1497–1502.

De Schutter, J. and H. Bruyninckx (1996). Force control of robot manipu-
lators. In The Control Handbook, pp. 1351–1358. CRC Press.

De Schutter, J., H. Bruyninckx, S. Dutré, J. De Geeter, J. Katupitiya,
S. Demey, and T. Lefebvre (1999, Dec). Estimating first-order geo-
metric parameters and monitoring contact transitions during force-
controlled compliant motions. The International Journal of Robotics
Research 18 (12), 1161–1184.

De Schutter, J., H. Bruyninckx, W.-H. Zhu, and M. W. Spong (1997).
Force control: a bird’s eye view. In B. Siciliano (Ed.), Control Problems
in Robotics and Automation: Future Directions, pp. 1–17. San Diego,
CA: Springer.

De Schutter, J. and J. Leysen (1987). Tracking in compliant robot motion:
Automatic generation of the task frame trajectory based on observation

125

References

of the natural constraints. In R. Bolles (Ed.), Proceedings of the 4th Int.
Symposium of Robotics Research, Santa Cruz, CA. MIT Press.

De Schutter, J., J. Rutgeerts, E. Aertbelien, F. De Groote, T. De Laet,
T. Lefebvre, W. Verdonck, and H. Bruyninckx (2005). Unified
constraint-based task specification for complex sensor-based robot sys-
tems. In Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, Barcelona, Spain, pp. 3618–3623.

De Schutter, J., D. Torfs, S. Dutré, and H. Bruyninckx (1997). Invariant
hybrid force/position control of a velocity controlled robot with compli-
ant end effector using modal decoupling. The International Journal of
Robotics Research 16 (3), 340–356.

De Schutter, J. and H. Van Brussel (1988a, Aug). Compliant Motion I, II.
The International Journal of Robotics Research 7 (4), 3–33.

De Schutter, J. and H. Van Brussel (1988b). Compliant robot motion I.
A formalism for specifying compliant motion tasks. The International
Journal of Robotics Research 7 (4), 3–17.

De Schutter, J. and H. Van Brussel (1988c). Compliant robot motion II.
A control approach based on external control loops. The International
Journal of Robotics Research 7 (4), 18–33.

Delmia (2006). Delmia v5 robotics. http://www.delmia.com/gallery/

pdf/DELMA V5Robotics.pdf.

Demeester, E., M. Nuttin, D. Vanhooydonck, and H. Van Brussel (2003,
March). Assessing the user’s intent using Bayes’ rule: Application to
wheelchair control. In Proc. of ASER 2003, Bardolino, Italy, pp. 117–
124.

Doty, K. L., C. Melchiorri, and C. Bonivento (1993). A theory of general-
ized inverses applied to robotics. The International Journal of Robotics
Research 12 (1), 1–19.

Doucet, A., N. J. Gordon, and V. Krishnamurthy (2001, march). Particle
Filters for State Estimation of Jump Markov Linear Systems. IEEE
Transactions on Signal Processing 49 (3), 613–624.

Duffy, J. (1990). The fallacy of modern hybrid control theory that is based
on “orthogonal complements” of twist and wrench spaces. Journal of
Robotic Systems 7 (2), 139–144.

English, J. D. and A. A. Maciejewski (2000). On the implementation of ve-
locity control for kinematically redundant manipulators. ITSMC 30 (3),
233–237.

126

References

Espiau, B., F. Chaumette, and P. Rives (1992). A new approach to vi-
sual servoing in robotics. IEEE Transactions on Robotics and Automa-
tion 8 (3), 313–326.

Estrada, C., J. Neira, and J. D. Tardós (2005). Hierarchical SLAM: real-
time accurate mapping of large environments. IEEE Transactions on
Robotics 21 (4), 588–596.

Featherstone, R. (2004). Modeling and control of contact between con-
strained rigid bodies. The International Journal of Robotics Re-
search 23 (1), 82–92.

Featherstone, R., S. Sonck, and O. Khatib (1999). A general contact model
for dynamically-decoupled force/motion control. In Proceedings of the
1999 IEEE International Conference on Robotics and Automation, De-
troit, MI, pp. 3281–3286.

Fernandez, V., C. Balaguer, D. Blanco, and M. A. Salichs (2001). Active
human-mobile manipulator cooperation through intention recognition.
In Proceedings of the 2001 IEEE International Conference on Robotics
and Automation, Seoul, Korea, pp. 2668–2673.

Ferretti, G., G. Magnani, and P. Rocco (2004). Impedance control for elas-
tic joints industrial manipulators. IEEE Transactions on Robotics and
Automation 20 (3), 488–498.

Fisher, W. D. and M. S. Mujtaba (1992). Hybrid position/force con-
trol: A correct formulation. The International Journal of Robotics Re-
search 11 (4), 299–311.

Fruchard, M., P. Morin, and C. Samson (2006). A framework for the con-
trol of nonholonomic mobile manipulators. The International Journal
of Robotics Research 25 (8), 745–780.

Garćia, J. G., A. Robertsson, J. G. Ortega, and R. Johansson (2005). Force
and acceleration sensor fusion for compliant robot motion control. In
Proceedings of the 2005 IEEE International Conference on Robotics and
Automation, Barcelona, Spain, pp. 2709–2714.

Garćia, J. G., A. Robertsson, J. G. Ortega, and R. Johansson (2006). Gen-
eralized contact force estimation for a robot manipulator. In Proceedings
of the 2006 IEEE International Conference on Robotics and Automa-
tion, Orlando, U.S.A., pp. 4019–4024.

Gautier, M. (1986). Identification of robot dynamics. In Proceedings of the
IFAC Symposium on Theory of Robots, Vienna, Austria, pp. 351–356.

Glover, J., S. Thrun, and J. T. Matthews (2004). Learning user models of
mobility-related activities through instrumented walking aids. In Pro-
ceedings of the 2004 IEEE International Conference on Robotics and
Automation, New Orleans, U.S.A., pp. 3306–3312.

127

References

Hogan, N. (1985). Impedance control: An approach to manipulation. Parts
I-III. Transactions of the ASME, Journal of Dynamic Systems, Mea-
surement, and Control 107, 1–24.

Hogan, N. (1987). Stable execution of contact tasks using impedance con-
trol. In Proceedings of the 1987 IEEE International Conference on
Robotics and Automation, Raleigh, NC, pp. 1047–1054.

Huang, H.-k. and G. C. I. Lin (2003). Rapid and flexible prototyping
through a dual-robot workcell. Robotics and Computer Integrated Man-
ufacturing 19 (3), 263–272.

Jankowski, K. P. and H. A. ElMaraghy (1996). Constraint formulation for
invariant hybrid position/force control of robots. Transactions of the
ASME, Journal of Dynamic Systems, Measurement, and Control 118,
290–299.

Jouaneh, M. K., D. A. Dornfeld, and M. Tomizuka (1990). Trajectory plan-
ning for coordinated motion of a robot and a positioning table: Part
2—optimal trajectory specification. IEEE Transactions on Robotics and
Automation 6 (6), 746–759.

Jouaneh, M. K., Z. Wang, and D. A. Dornfeld (1990). Trajectory planning
for coordinated motion of a robot and a positioning table: Part 1—path
specification. IEEE Transactions on Robotics and Automation 6 (6),
735–745.

Kalman, R. E. (1960). A new approach to linear filtering and prediction
problems. Transactions of the ASME, Journal of Basic Engineering 82,
34–45.

Khatib, O. (1987). A unified approach for motion and force control of
robot manipulators: The operational space formulation. IEEE Journal
of Robotics and Automation RA-3 (1), 43–53.

Khatib, O., O. Brock, K.-S. Chang, D. Ruspini, L. Sentis, and S. Viji (2003).
Robots for the human and interactive simulations. In T. Huang (Ed.),
Proceedings of the 11th World Congress in Mechanism and Machine
Science, Tianjin, China, pp. 1572–1576. China Machinery Press.

Khatib, O., O. Brock, K.-S. Chang, D. Ruspini, L. Sentis, and S. Viji
(2004). Human-centered robotics and interactive haptic simulation. The
International Journal of Robotics Research 23 (2), 167–178.

Klein, C. A. and C. H. Huang (1983). Review of pseudoinverse control for
use with kinematically redundant manipulators. IEEE Transactions on
Systems, Man, and Cybernetics 13, 245–250.

Kröger, T., B. Finkemeyer, M. Heuck, and F. M. Wahl (2004). Adaptive
implicit hybrid force/pose control of industrial manipulators: Compli-

128

References

ant motion experiments. In Proceedings of the 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Sendai, Japan,
pp. 816–821.

Kröger, T., B. Finkemeyer, and F. M. Wahl (2004). A task frame formalism
for practical implementations. In Proceedings of the 2004 IEEE Inter-
national Conference on Robotics and Automation, New Orleans, U.S.A.,
pp. 5218–5223.

Kröger, T., D. Kubus, and F. M. Wahl (2006). 6D force and acceleration
sensor fusion for compliant motion control. In Proceedings of the 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Beijing, China, pp. 2626–2630.

Kulić, D. and E. Croft (2003). Estimating intent for human robot interac-
tion. In Proceedings of the 2003 International Conference on Advanced
Robotics, Coimbra, Portugal, pp. 810 – 815.

Latombe, J. C. (1989). Motion planning with uncertainty: on the preimage
backchaining approach. In O. Khatib, J. J. Craig, and T. Lozano-Pérez
(Eds.), The Robotics Review, pp. 55–69. MIT Press.

Latombe, J. C. (1991). Robot motion planning, Volume 124 of Int. Series
in Engineering and Computer Science. Boston, MA: Kluwer Academic
Publishers.

Latombe, J. C. (1999). Motion planning: A journey of robots, molecules,
digital actors, and other artifacts. The International Journal of Robotics
Research 18 (11), 1119– 1128. Invited paper.

LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.

Lefebvre, T., H. Bruyninckx, and J. De Schutter (2005a). Nonlinear Kalman
Filtering for Force-Controlled Robot Tasks. Springer Tracts in Advanced
Robotics. Springer Verlag.

Lefebvre, T., H. Bruyninckx, and J. De Schutter (2005b). Online statistical
model recognition and state estimation for autonomous compliant mo-
tion. IEEE Transactions on Systems, Man, and Cybernetics. Part C:
Applications and Reviews 35 (1), 16–29.

Leonard, J. J. and H. F. Durrant-Whyte (1991). Simultaneous map build-
ing and localization for an autonomous mobile robot. In Proceedings of
the 1991 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Osaka, Japan, pp. 1442–1447.

Leonard, J. J. and H. F. Durrant-Whyte (1992). Directed sonar sensing for
mobile robot navigation. Boston, MA: Kluwer Academic Publishers.

129

References

Liegeois, A. (1977). Automatic supervisory control of the configuration and
behavior of multibody mechanisms. IEEE Transactions on Systems,
Man, and Cybernetics SMC-7 (12), 868–871.

Lipkin, H. and J. Duffy (1988). Hybrid twist and wrench control for a
robotic manipulator. Transactions of the ASME, Journal of Mecha-
nisms, Transmissions, and Automation in Design 110, 138–144.

Liu, G., K. Dubowsky, and G. Morel (1998). A base force/torque sensor
approach to robot manipulator inertial parameter estimation. In Pro-
ceedings of the 1998 IEEE International Conference on Robotics and
Automation, Leuven, Belgium, pp. 3316–3321.

Liu, G. and Z. Li (2002). A unified geometric approach to modeling and con-
trol of constrained mechanical systems. IEEE Transactions on Robotics
and Automation 18 (4), 574–587.

Liu, Y.-H., Y. Xu, and M. Bergerman (1999). Cooperation control of mul-
tiple manipulators with passive joints. IEEE Transactions on Robotics
and Automation 15 (2), 258–267.

Lozano-Pérez, T. (1983). Spatial planning: A configuration space approach.
IEEE Transactions on Computers C-32 (2), 108–120.

Marcelo, H., W. Lin, and S.-Y. Lim (1999). A walk-through programmed
robot for welding in shipyards. The Industrial Robot 26 (5), 377–388.

Mason, M. and K. Salisbury (1985). Robot Hands and the Mechanics of
Manipulation. MIT Press.

Mason, M. T. (1981). Compliance and force control for computer con-
trolled manipulators. IEEE Transactions on Systems, Man, and Cy-
bernetics SMC-11 (6), 418–432.

Metris (2007). Metris. http://www.metris.com/.

Miller, D. J. and R. C. Lennox (1990). An object-oriented environment
for robot system architectures. In Proceedings of the 1990 IEEE Inter-
national Conference on Robotics and Automation, Cincinnati, OH, pp.
352–361.

Montemayor, G. and J. T. Wen (2005). Decentralized collaborative load
transport by multiple robots. In Proceedings of the 2005 IEEE Interna-
tional Conference on Robotics and Automation, Barcelona, Spain, pp.
372–377.

Murray, R. M., Z. Li, and S. S. Sastry (1994). A mathematical introduction
to robotic manipulation. Boca Raton, FL: CRC Press.

Mustapic, G., J. Andersson, C. Norström, and A. Wall (2004). A depend-
able open platform for industrial robotics: A case study. In Architecting

130

References

Dependable Systems II, Lecture Notes in Computer Science, pp. 307–
329. Springer.

Nakamura, Y. (1991). Advanced robotics: redundancy and optimization.
Reading, MA: Addison-Wesley.

Nakamura, Y., H. Hanafusa, and T. Yoshikawa (1987). Task-priority based
redundancy control of robot manipulators. The International Journal
of Robotics Research 6 (2), 3–15.

Natale, C. (2003). Interaction control of robot manipulators – Six-Degrees-
of-Freedom tasks, Volume 3 of Springer Tracts in Advanced Robotics.
London, UK: Springer-Verlag.

Owen, W. S., E. A. Croft, and B. Benhabib (2005). Acceleration and torque
redistribution for a dual-manipulator system. IEEE Transactions on
Robotics 21 (6), 1226–1230.

Park, J. and O. Khatib (2005). Multi-link multi-contact force control for
manipulators. In Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, Barcelona, Spain, pp. 3624–3629.

Penrose, R. (1955). A generalized inverse for matrices. Proc. Cambridge
Philos. Soc. 51, 406–413.

Popplestone, R. J., R. Weiss, and Y. Liu (1988). Using characteristic in-
variants to infer new spatial relationships. In Proceedings of the 1988
IEEE International Conference on Robotics and Automation, Philadel-
phia, PA, pp. 1107–1112.

Raibert, M. and J. J. Craig (1981). Hybrid position/force control of ma-
nipulators. Transactions of the ASME, Journal of Dynamic Systems,
Measurement, and Control 102, 126–133.

Ruspini, D. and O. Khatib (1999). Collision/contact models for dynamic
simulation and haptic interaction. In J. Hollerbach and D. Koditschek
(Eds.), Robotics Research, The Ninth International Symposium, Snow-
bird, Utah, pp. 185–194. Springer-Verlag.

Salisbury, J. K. (1980). Active stiffness control of a manipulator in Carte-
sian coordinates. In 19th IEEE Conf. on Decision and Control.

Samson, C., M. Le Borgne, and B. Espiau (1991). Robot Control, the Task
Function Approach. Oxford, England: Clarendon Press.

Saridis, G. N. (1979). Self-organizing control of stochastic systems. New
York, NY: Marcel Dekker.

Siciliano, B. (1995). Parallel force/position control of robot manipulators.
In G. Giralt and G. Hirzinger (Eds.), Robotics Research, the 7th Inter-
national Symposium, London, UK, pp. 78–89. Springer-Verlag.

131

References

Siciliano, B. and L. Villani (1999). Robot Force Control. Kluwer Academic
Publishers.

Sirouspour, S. (2005). Modelling and control of cooperative teleoperation
systems. IEEE Transactions on Robotics 21 (6), 1220–1225.

Slaets, P., T. Lefebvre, J. Rutgeerts, H. Bruyninckx, and J. De Schutter
(2007). Incremental building of a polyhedral feature model for program-
ming by human demonstration of force controlled tasks. IEEE Trans-
actions on Robotics 23 (1), 20–33.

Sminchisescu, C., D. Metaxas, and S. Dickinson (2005). Incremental model-
based estimation using geometric constraints. IEEE Transactions on
Pattern Analysis and Machine Intelligence 27 (3), 727–738.

Soatto, S., R. Frezza, and P. Perona (1996). Motion estimation via dynamic
vision. IEEE Transactions on Automatic Control 41, 393–414.

Sorenson, H. W. (1970). Least-squares estimation from Gauss to Kalman.
IEEE Spectrum 7, 63–68.

Sorenson, H. W. (1985). Kalman filtering: theory and application. New
York, NY: IEEE Press.

Stäubli (2006). Stäubli Robotics. http://www.staubli.com/web/robot/
division.nsf.

Sugihara, T. and Y. Nakamura (2002). Whole-body cooperative balancing
of humanoid robot using COG jacobian. In Proceedings of the 2002
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Lausanne, Switzerland, pp. 2563–2568.

Swevers, J., C. Ganseman, J. De Schutter, and H. Van Brussel (1996).
Experimental robot identification using optimised periodic trajectories.
Mechanical Systems and Signal Processing 10 (5), 561–577.

Tanizaki, H. (1996). Nonlinear Filters. Estimation and Applications.
Springer-Verlag.

Taylor, R. H. (1976). Synthesis of manipulator control programs from task-
level specifications. Ph. D. thesis, Department of Computer Science,
Stanford University, Stanford CA.

Todd, D. (1986). Fundamentals of Robot Technology. New York, NY: John
Wiley & Sons.

Van de Poel, P., J. De Schutter, and H. Van Brussel (1994). Robotise pol-
ishing of precast concrete surfaces using sensor control: feasibility study
report. Internal report 94R31, Department of Mechanical Engineering,
Katholieke Universiteit Leuven, Belgium.

132

References

Van de Poel, P., W. Witvrouw, H. Bruyninckx, and J. De Schutter (1993).
An environment for developing and optimizing compliant robot motion
tasks. In Proceedings of the 1993 International Conference on Advanced
Robotics, Tokyo, Japan, pp. 713–718.

Verdonck, W., J. Swevers, and J.-C. Samin (2001). Experimental dynamic
robot identification: advantages of combining internal and external mea-
surements and of using periodic excitation. Transactions of the ASME,
Journal of Dynamic Systems, Measurement, and Control 123 (4), 630–
636.

Wang, Q. (1999, November). Programming of compliant robot motion by
human demonstration. Ph. D. thesis, Department of Mechanical Engi-
neering, Katholieke Universiteit Leuven, Belgium.

Whitney, D. E. (1977). Force feedback control of manipulator fine motions.
Transactions of the ASME, Journal of Dynamic Systems, Measurement,
and Control 99 (2), 91–97.

Whitney, D. E. (1987). Historical perspective and state of the art in robot
force control. The International Journal of Robotics Research 6 (1), 3–
14.

Witvrouw, W. (1996). Development of experiments and environment for
sensor controlled robot tasks. Ph. D. thesis, Department of Mechanical
Engineering, Katholieke Universiteit Leuven, Belgium.

Witvrouw, W., P. Van de Poel, and J. De Schutter (1995). Comrade: Com-
pliant motion research and development environment. In 3rd IFAC/IFIP
workshop on Algorithms and Architectures for Real-Time Control, Os-
tend, Belgium, pp. 81–87.

Wu, L., K. Cui, and S. B. Chen (2000). Redundancy coordination of
multiple robotic devices for welding through genetic algorithm. Robot-
ica 18 (6), 669–676.

Yoshikawa, T. (2000). Force control of robot manipulators. In Proceedings of
the 2000 IEEE International Conference on Robotics and Automation,
San Francisco, CA, pp. 220–226.

Yoshikawa, T., T. Sugie, and N. Tanaka (1988). Dynamic hybrid posi-
tion/force control of robot manipulators—controller design and experi-
ments. IEEE Journal of Robotics and Automation 4 (6), 699–705.

133

134

Index

ACM, 3, 16
artificial intelligence, 119

Compliance Frame, 18
COMRADE, 3, 18
configuration space, 16
constraint-based programming, 19,

36, 48
constraints, 43, 55, 84, 88, 92, 112

force, 96, 113
inequality, 120
nullspace, 34, 64, 103
pose, 57
sensor output, 58
solving, 63
velocity, 56

control components
controller, 10
estimator, 10
inputs, 12
model, 10
outputs, 12
path generator, 10
setpoints, 12

cross product matrix, 28

discrete event system, 10, 67, 79

estimation, 67, 75, 100, 106, 117
Euler angles, 25, 28, 97
exponential

of a rotational velocity, 29
of a twist, 30

feature frame, 39, 53, 82, 86, 90,
100, 110

feature Jacobian, 37, 40, 54, 83, 84,
87, 90, 95, 100, 112, 116

feature pose coordinates, 71
feature twist coordinates, 40, 54,

56, 116
features, 37, 39, 52, 116
finite displacement, 25

homogeneous transformation, 26
hybrid control, 16

impedance control, 16
incompatible seam following, 94
instantaneous control, 119
instantaneous motion, 62
integrating factor, 28, 97
invariance, 17
iTASC, 35, 38, 48

Kalman filter, 4, 21, 77
non-minimal state, 4

logarithm
of a finite displacement, 31

measurement equation, 58, 73
minimal coordinates, 71
model update, 67, 68, 117

correction step, 69
prediction step, 69

multi-point contact, 94

135

Index

object frame, 39, 53, 82, 86, 90,
100, 110

objects, 37, 39, 49, 116
Orocos, 5, 113

parallel control, 16
particle filter, 4, 21, 121
pose, 25
pose closure equations, 69
pseudo-inverse, 46

Moore Penrose, 32
weighted, 17, 33, 103

reference frame, 26, 41, 42
reference point, 26, 41, 42
reference point transformation ma-

trix, 28

screw projection matrix, 28
sensor Jacobian, 58, 59
shared control, 109
SLAM, 22
submotions, 52, 54

Task Frame Formalism, 18
Task Function, 36, 48

Approach, 20, 36, 48
task level programming, 15
task model, 48
task relation, 49, 116
task specification

configuration space, 16
lead-through teaching, 13
task level programming, 15
teleoperation, 13
walk-through teaching, 13

Task-Net, 19
twist, 26
twist closure equation, 45, 55, 116

uncontrolled degrees of freedom, 68
uncontrolled motion, 55
underconstrained, 46

velocity resolved robot, 37, 48, 116,
120

weighting
constraint space, 65, 114
joint space, 46, 63
jointspace, 103

136

Curriculum Vitae

Personal data

Johan Rutgeerts
27 October 1979, Roeselare, Belgium
johan.rutgeerts@gmx.net

Education

• 2002-2007: Ph.D. in mechanical engineering at the Katholieke
Universiteit Leuven, Belgium.

My research is situated in the area of task specification for sensor-based
robot systems in the presence of geometrical uncertainty. The aim of
this research is to develop a task specification methodology, which al-
lows users to specify complex robot tasks incorporating estimation of
geometrical parameters in a generic and systematic way.

• 2000 - 2002: Master of science in mechanical engineering spe-
cialization mechatronics and machine design at the Katholieke Univer-
siteit Leuven, Belgium.

2000 - 2001: ECTS (European Credit Transfer System) one year study
exchange with the Graz University of Technology, Austria.

2001: Athens program at the Ecole Nationale des Ponts et Chaussées,
Paris, France.

138

List of Publications

Bruyninckx, H., J. De Schutter, T. Lefebvre, K. Gadeyne, P. Soetens,
J. Rutgeerts, P. Slaets, and W. Meeussen (2003). Building blocks for
slam in autonomous compliant motion. In R. Chatila, P. Dario, and
O. Khatib (Eds.), Robotics Research, the 11th International Symposium,
Siena, Italy, pp. 432–441.

De Schutter, J., T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aert-
beliën, K. Claes, and H. Bruyninckx (2007). Constraint-based task spec-
ification and estimation for sensor-based robot systems in the presence of
geometric uncertainty. The International Journal of Robotics Research.
To appear in May 2007.

De Schutter, J., J. Rutgeerts, E. Aertbelien, F. De Groote, T. De Laet,
T. Lefebvre, W. Verdonck, and H. Bruyninckx (2005). Unified
constraint-based task specification for complex sensor-based robot sys-
tems. In Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, Barcelona, Spain, pp. 3618–3623.

Meeussen, W., J. Rutgeerts, K. Gadeyne, H. Bruyninckx, and J. De Schut-
ter (2006a). Bayesian contact state segmentation for programming by
human demonstration in compliant motion tasks. In Proceedings of the
International Symposium on Experimental Robotics, Rio de Janeiro,
Brazil. in press.

Meeussen, W., J. Rutgeerts, K. Gadeyne, H. Bruyninckx, and J. De Schut-
ter (2006b). Contact state segmentation using particle filters for pro-
gramming by human demonstration in compliant motion tasks. IEEE
Transactions on Robotics. in press.

Meeussen, W., J. Rutgeerts, K. Gadeyne, H. Bruyninckx, and J. De Schut-
ter (2006c). Particle filters for hybrid event sensor fusion with 3d vision
and force. In IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems, Heidelberg, Germany, pp. 518–523.

Rutgeerts, J., P. Slaets, F. Schillebeeckx, W. Meeussen, B. Stallaert,
P. Princen, T. Lefebvre, H. Bruyninckx, and J. De Schutter (2005).

139

List of publications

A demonstration tool with Kalman Filter data processing for robot
programming by human demonstration. In Proceedings of the 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Edmonton, Canada, pp. 3918–3923.

Slaets, P., J. Rutgeerts, K. Gadeyne, T. Lefebvre, H. Bruyninckx, and
J. De Schutter (2004). Construction of a Geometric 3-D Model from Sen-
sor Measurements Collected during Compliant Motion. In Proceedings
of the International Symposium on Experimental Robotics, Singapore,
Australia, pp. 571–580. in press.

140

Nederlandse Samenvatting

Taakspecificatie met
behulp van beperkingen en
schatting van geometrische

onzekerheden voor
sensorgebaseerde
robottoepassingen

Nederlandse Samenvatting

1 Inleiding

Vrijwel alle robots die op dit moment in gebruik zijn in een niet-experimentele
omgeving, zijn blinde machines die zich niet gewaar zijn van hun omgeving.
De taken die een dergelijke robot uitvoert zijn pure positioneringstaken, zoals
trajectvolgen of pick-and-place-toepassingen. Deze robottaken bestaan uit
het afspelen van een voorgeprogrammeerd traject, waarbij op gezette tijden
een actie uitgevoerd wordt zoals het spuiten van verf of het plaatsen van
een puntlas. Aangezien de robot geen informatie heeft over de toestand van
zijn omgeving tijdens de uitvoering van de taak, moet de omgeving volledig
overeenkomen met wat vooropgesteld is bij het programmeren van de taak.
De omgeving van de robot moet dus volledig gestructureerd zijn, en aangepast
zijn aan de robot. Dit brengt aanzienlijke kosten met zich mee, en zorgt ervoor
dat het gebruik van robots voornamelijk beperkt blijft tot taken die veelvuldig
herhaald moeten worden, zoals assemblagetaken bij massaproductie.

Een mogelijke oplossing om robots in te zetten in minder gestructureerde
omgevingen, is het gebruik van sensoren. Door een robot uit te rusten met
extra sensoren, zoals een krachtsensor, een camera of een afstandssensor, kan
de robot zijn omgeving waarnemen, en de taakuitvoering aanpassen aan de
toestand van de omgeving.

Sensorgebaseerde robotica kan slechts veelvuldig toegepast worden, als
sensorgebaseerde taken eenvoudig gespecificeerd kunnen worden. Om de taak-
specificatie voor dergelijke toepassingen te ondersteunen werden in onder-
zoeksomgevingen verschillende methodologieën ontwikkeld, zoals het Task
Frame Formalism (TFF) (De Schutter and Leysen 1987), of een aantal for-
malismen gebaseerd op hybride kracht/positie-controle (Aghili 2005; Liu and
Li 2002).

Hoewel deze methodologieën zeer nuttig zijn om bepaalde soorten toepas-
singen te specificeren, hebben ze een aantal gemeenschappelijke nadelen. Ze
gebruiken eenvoudige geometrische modellen om de taakspecificatie te onder-
steunen, zoals één enkel taakassenstelsel of één enkele snelheids- en krachtba-

I

Nederlandse samenvatting

sis. Dit betekent dat dergelijke methodologieën ongeschikt zijn om taken te
specificeren die verschillende bronnen van controlebeperkingen vereisen, zoals
taken waarbij verschillende sensoren gedeeltelijke informatie leveren om de
taak te realiseren. Ook bijvoorbeeld taken waarbij er deelspecificaties zijn
voor verschillende delen van de robot, kunnen niet of moeilijk gespecificeerd
worden met de bestaande methodologieën. Verder besteden de bestaande me-
thodologieën weinig aandacht aan het schatten van geometrische parameters.

Bijdragen van dit proefschrift

In dit proefschrift wordt iTASC (instantaneous Task Specification based on
Constraints) voorgesteld: een methodologie om sensorgebaseerde taken te
specificeren. De voornaamste bijdragen van iTASC zijn:

• de beperkingsgebaseerde aard: iTASC is een echte beperkingsge-
baseerde methodologie. Hierdoor is iTASC geschikt om taken te speci-
ficeren die verschillende bronnen van controlebeperkingen vereisen. In
iTASC worden taken gespecificeerd volgens de Task Function Approach
(Samson, Le Borgne, and Espiau 1991). Om deze manier van specifi-
ceren te ondersteunen worden de concepten van objecten en kenmerken
ingevoerd, en controlebeperkingen gedefinieerd op de relatieve beweging
van deze objecten en kenmerken. De methodologie laat exact, onder- en
overgespecificeerde taken toe.

• het generieke karakter: iTASC is een generieke aanpak: de focus ligt
niet op een bepaald soort taak, sensor of robot. iTASC kan algemeen
gebruikt worden voor snelheidsgestuurde robots met rigide gelederen en
gewrichten. Verder kunnen alle sensoren die geometrische informatie
leveren ingepast worden in de methodologie (bijvoorbeeld camera’s of
afstandssensoren, maar ook dynamische sensoren zoals een krachtsensor,
indien de taak quasistatisch verloopt).

• de modelactualisatie: Alle taakspecificatiemethodologieën gebruiken
een geometrisch model van de taak, dat geactualiseerd moet worden
tijdens het uitvoeren van de taak. Waar andere methodologieën erop
rekenen dat hiertoe een ad-hocmethode gëımplementeerd wordt, voor-
ziet iTASC een generieke actualisatieprocedure, om automatisch de pose
van de object- en kenmerkassenstelsels te berekenen.

• de integratie van schatting: Daar waar overige methodologieën er
doorgaans op rekenen dat het gebruik van metingen in de controle
de taakuitvoering bestand maakt tegen geometrische variaties, biedt
iTASC de primitieven aan om deze geometrische onzekerheden te mo-
delleren en te schatten.

II

2 Taakmodellering en -specificatie

Om de effectiviteit van iTASC aan te tonen, wordt de methodologie toegepast
op verschillende voorbeeldapplicaties.

2 Taakmodellering en -specificatie

Deze sectie beschrijft iTASC (instantaneous Task Specification based on Con-
straints): een methodologie om taken beperkingsgebaseerd te specificeren.

2.1 Controle gebaseerd op beperkingen

Samson, Le Borgne, and Espiau (1991) introduceerden de Task Function Ap-
proach, om robottaken te beschrijven. De idee achter deze aanpak is, dat
robotcontrole neerkomt op het regelen van een –eventueel multidimensionale–
functie, de Task Function genoemd. Een taak wordt gespecificeerd door deze
Task Function e(qR, t), en de gewenste waarde edes voor deze functie:

e(qR, t) = edes. (1)

Aangezien (1) een set (mogelijks niet-lineaire) beperkingen uitdrukt op de
gewrichtsposities qR, wordt de benaming beperkingsgebaseerde controle ge-
bruikt.

Voor een snelheidsgebaseerde robot genereert het controleprogramma de
gewrichtssnelheden, die aan de robot aangelegd worden om de taak te reali-
seren. De eerste-orde afgeleide van (1) drukt de relatie –of: de beperkingen–
uit, waaraan deze gewrichtssnelheden q̇R moeten voldoen:

∂e

∂qR

q̇R +
∂e

∂t
= ėdes. (2)

Aangezien (2) lineair is in q̇R, kunnen gekende optimalisatietechnieken aan-
gewend worden, om q̇R te berekenen (Doty, Melchiorri, and Bonivento 1993;
Nakamura 1991).

Hoewel het concept op zich, om een taak te beschrijven in termen van
een lineaire set beperkingen (2), eenvoudig is, is het niet noodzakelijk een-
voudig om de beperkingen zelf op te stellen. De meest generieke proce-
dure is om (1) en de afgeleide (2) analytisch op te stellen. Deze methode
is echter enkel praktisch bruikbaar voor eenvoudige taken. Om complexere
taken (of dus, complexere beperkingen) te specificeren, is taakspecificatie-
ondersteuning noodzakelijk. Deze sectie beschrijft iTASC: een methodologie
om taken beperkingsgebaseerd te specificeren.

Om de specificatie van de beperkingen te ondersteunen, vertrekt de metho-
dologie van een kinematisch model van de taak. Hiervoor worden de concepten

III

Nederlandse samenvatting

o2

o1

f1a

f2a

f1b

f2b

Figuur 1: De object- en kenmerkassenstelsels bij een toepassing voor een
minimaal invasieve chirurgie.

van objecten en kenmerken ingevoerd. Hun relatieve beweging wordt gemo-
delleerd in termen van ogenblikkelijke basissen voor deze beweging, kenmerk-
jacobianen, en de coördinaten in deze basissen, de kenmerk-twistcoördinaten1.
Uiteindelijk worden de beperkingen gedefinieerd in termen van deze kenmerk-
twistcoördinaten. De volgende sectie beschrijft iTASC aan de hand van een
voorbeeldtoepassing.

2.2 De iTASC-methodologie

Deze sectie beschrijft de iTASC-methodologie aan de hand van een voorbeeld-
toepassing. De methodologie bestaat uit vier stappen:

1. De keuze van de objecten en kenmerken.

1
Twist is de Engelse benaming voor een 6D snelheidsvector t, bestaande uit een

translatie- en een rotatiesnelheid: t = [v ω]T . Aangezien de correcte Nederlandse be-
naming, kronkel, zeer weinig gebruikt wordt, wordt hier de Engelse uitdrukking gebruikt.

IV

2 Taakmodellering en -specificatie

2. De modellering van de relatieve beweging van de objecten en de ken-
merken.

3. De definitie van de beperkingen.

4. Het oplossen naar de ogenblikkelijke beweging.

De voorbeeldtoepassing is een toepassing voor minimaal invasieve chirurgie
(Figuur 1). Een robot met zes vrijheidsgraden manipuleert een laparoscopisch
werktuig, dat een grijper heeft als uiteinde. Het werktuig wordt in het lichaam
van een patiënt gebracht via een opening in de huid. Deze opening wordt de
trocar genoemd. De beweging van de robot moet zo aangestuurd worden, dat
het trocarpunt, of dus de intersectie van het werktuig en de patiënt, op de
gewenste positie blijft. Verder moet de beweging van de robot zo gecontro-
leerd worden dat de grijper, of dus het uiteinde van het werktuig, langs een
gespecificeerd traject beweegt om een orgaan in het lichaam van de patiënt te
bereiken. Deze taakbeschrijving suggereert twee sets bewegingsbeperkingen:
één gerelateerd aan de positie van het trocarpunt, en één gerelateerd aan de
beweging van de grijper.

Stap 1: De keuze van de objecten en kenmerken

In het algemeen beschrijft de Task Function (1), of de eerste-orde uitdrukking
van de Task Function (2), een aantal gelijktijdige subtaken waarin telkens een
zekere relatie tussen objecten in de omgeving van de robot moet gecontroleerd
worden, door de robot te bewegen. Een dergelijke relatie wordt een taakrelatie
genoemd. In de voorbeeldtoepassing zijn er twee taakrelaties: (i) controleer
de positie van het trocarpunt, en (ii) controleer de beweging van de grijper. In
beide gevallen handelt het zich om bewegingen van het werktuig ten opzichte
van het lichaam van de patiënt. Deze zijn dus de relevante objecten in de
taak: het lichaam van de patiënt (object 1), en het werktuig (object 2), dat
vast verbonden is aan de robot.

Na de keuze van de objecten worden de kenmerken van deze objecten ge-
kozen. Een kenmerk is dat onderdeel van het object, dat relevant is voor de
taakrelatie. Een kenmerk kan een fysiek onderdeel van het object zijn, zo-
als een hoekpunt, een zijde of een oppervlak, of een abstracte geometrische
eigenschap van een fysiek onderdeel, zoals bijvoorbeeld de symmetrie-as van
een cilinder of het referentie-assenstelsel van een sensor. In de voorbeeldtoe-
passing zijn er twee sets beperkingen en dus twee relevante kenmerken: het
trocarpunt (kenmerk a) en het uiteinde van het werktuig (kenmerk b).

V

Nederlandse samenvatting

Stap 2: De modellering van de relatieve beweging van de objecten
en de kenmerken

In de tweede stap worden de objecten en de kenmerken gemodelleerd door
assenstelsels, en worden de relatieve bewegingen van deze assenstelsels be-
schreven in termen van basissen voor deze beweging, de kenmerkjacobianen,
en coördinaten in deze basissen, de kenmerk-twistcoördinaten.

Voor elke taakrelatie worden twee objectassenstelsels ingevoerd, o1 en o2,
en twee kenmerkassenstelsels, f1 en f2. De regels om deze assenstelsels te
definiëren zijn:

1. o1 en o2 zijn vast verbonden met de objecten,

2. f1 en f2 zijn verbonden met de objecten, maar niet noodzakelijk vast
verbonden,

3. de verbinding o1→f1→f2→o2 vormt een kinematische ketting; de zes
vrijheidsgraden tussen o1 en o2 zijn verspreid over drie deelbewegingen:
deelbeweging I van f1 ten opzichte van o1, deelbeweging II van f2 ten
opzichte van f1 en deelbeweging III, van o2 ten opzichte van f2.

Verder worden de assenstelsels zo gekozen, dat eenvoudige wiskundige uit-
drukkingen voor de deelbewegingen bekomen worden.

Figuur 1 toont de assenstelsels voor de voorbeeldtoepassing:

• Assenstelsel o1 geeft een referentiepositie op het lichaam van de patiënt
weer,

• Assenstelsel o2 is bevestigd aan de robot. De oorsprong van o2 valt
samen met het punt waar het laparoscopisch werktuig bevestigd is, en
de Z-as van o2 is georiënteerd langs de as van het werktuig.

• Assenstelsel f1a bevindt zich op een vaste positie ten opzichte van o1.
De oorsprong van f1a geeft de gewenste positie voor het trocarpunt
weer, en de Z-as van f1a staat loodrecht op het lichaam van de patiënt.

• Assenstelsel f2a bevindt zich op het laparoscopisch werktuig. De oor-
sprong van f2a valt samen met het werkelijk trocarpunt, en de oriëntatie
van f2a is dezelfde als die van o2.

• Beide assenstelsels f1b en f2b hebben hun oorsprong op het uiteinde
van het werktuig. De oriëntatie van f1b is dezelfde als die van o1, en de
oriëntatie van f2b is dezelfde als die van o2.

Voor elk van de kenmerken worden de deelbewegingen tussen o1 en o2
voorgesteld door een ogenblikkelijke twist: t

f1
o1 , t

f2
f1 en t

o2
f2. Voor elk van deze

twists i = I, II of III wordt een basis JFi gedefinieerd, die de bewegingsruimte

VI

2 Taakmodellering en -specificatie

van de deelbeweging omspant. De basissen JFi worden kenmerkjacobianen
genoemd. De coördinaten van de deelbewegingen in deze basissen zijn de
kenmerk-twistcoördinaten τ i:

t
f1
o1 = JFIτ I , t

f2
f1 = JFIIτ II , t

o2
f2 = JFIIIτ III . (3)

Voor de voorbeeldtoepassing worden de kenmerkjacobianen als volgt ge-
definieerd voor kenmerk a:

• Geen beweging tussen f1a en o2:

t
f1a
o1 = Ja

FIτ I
a,

= 0. (4)

• Twee vrijheidsgraden in translatie en drie in rotatie tussen f2a en f1a:

f2a
f1at

f2a
f1a = Ja

FIIτ II
a,

=

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

τa
1

τa
2

τa
3

τa
4

τa
5

. (5)

• Eén vrijheidsgraad in translatie tussen f2a en o2:

f2a
o2 to2 = Ja

FIIIτ III
a,

=

0
0
1
0
0
0

[
τa
6

]
. (6)

En voor feature b:

• Drie vrijheidsgraden in translatie tussen f1b en o1:

f1b
o1 t

f1b
o1 = Jb

FIτ I
b,

=

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

τ b
1

τ b
2

τ b
3

 , (7)

VII

Nederlandse samenvatting

• Drie vrijheidsgraden in rotatie tussen f2b en f1b:

f2b
f1bt

f2b
f1b = Jb

FIIτ II
b,

=

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

τ b
4

τ b
5

τ b
6

 , (8)

• Geen beweging tussen f2b en o2:

t
f2b
o2 = Jb

FIIIτ III
b,

= 0. (9)

Merk op dat de keuze van de object- en kenmerkassenstelsels en de keuze van
het referentie-assenstelsel en referentiepunt van de twists leidt tot wiskundig
eenvoudige uitdrukkingen voor de kenmerkjacobianen.

Aangezien o2 bevestigd is aan de robot, kan t
o2
w uitgedrukt worden in

termen van de Jacobiaan van de robot JR en de gewrichtssnelheden q̇R:

wt
o2
w = JRq̇R. (10)

Hierin is w een inertieel referentie-assenstelsel.
De beweging van o1 hangt af van de bewegingen van de patiënt en wordt

verondersteld gekend te zijn, bijvoorbeeld uit sensormetingen.

Stap 3: De definitie van de beperkingen

In de derde stap worden de beperkingen gedefinieerd die de gewenste bewe-
gingen opleggen. In de voorbeeldtoepassing zijn twee sets van beperkingen
noodzakelijk: één om de positie van de trocar te regelen, en één voor de
beweging van het uiteinde van het werktuig:

• τa
1 en τa

2 drukken de X en Y -snelheid van f2a ten opzichte van f1a
uit, of dus van het werkelijke trocarpunt ten opzichte van de gewenste
positie. Om de gewenste positie van het trocarpunt te regelen worden
de volgende beperkingen gedefinieerd:

τa
1 = kfb(x

a
desired − xa

actual), (11)

τa
2 = kfb(y

a
desired − ya

actual). (12)

Hierin is kfb een terugkoppelconstante, zijn xa
actual en ya

actual de coör-
dinaten van de oorsprong van f2a, uitgedrukt in f1a, en zijn xa

desired

VIII

2 Taakmodellering en -specificatie

en ya
desired de gewenste waardes voor deze coördinaten. Aangezien geen

beweging van de trocar gewenst is, zijn xa
desired en ya

desired in deze toe-
passing constanten.

• Drie andere beperkingen zijn nodig om de translatiebeweging van het
eindpunt van het werktuig op te leggen. Deze zijn analoog aan de vo-
rige beperkingen, maar hebben betrekking tot τ b

1 , τ b
2 en τ b

3 , aangezien
deze coördinaten de X, Y en Z-snelheid van f1b ten opzichte van o1
uitdrukken, of dus van het uiteinde van het werktuig ten opzichte van
het lichaam van de patiënt:

τ b
1 = kfb(x

b
desired − xb

actual), (13)

τ b
2 = kfb(y

b
desired − yb

actual), (14)

τ b
3 = kfb(z

b
desired − zb

actual). (15)

Hierin zijn xb
actual, y

b
actual en zb

actual de x, y en z-coördinaten van f1b,
uitgedrukt in o1. De gewenste waardes voor deze coördinaten, xb

desired,
yb

desired en zb
desired, zijn tijdsafhankelijk. Ze worden gegenereerd door

een padplanner, die een pad berekent tussen de initiële positie en de
gewenste eindpositie.

Merk op dat de keuze van de object- en kenmerkassenstelsels, en van de ken-
merkjacobianen, leidt tot eenvoudige uitdrukkingen voor de beperkingen.

Aangezien er in de voorbeeldtoepassing geen sensormetingen gebruikt wor-
den, zijn er geen beperkingen die sensormetingen naar een gewenste waarde
regelen. De definitie van dergelijke beperkingen vertrekt van de meetvergelij-
king van de sensor. De algemene beschrijving van de meetvergelijking voor
geometrische sensoren wordt gegeven door:

z = g(do2
o1).

Deze meetvergelijking geldt ook voor dynamische sensoren, zoals een kracht-
sensor, indien de taak quasistatisch verloopt. De eerste-orde beschrijving van
deze meetvergelijking wordt gegeven door:

ż =
dg

ddo2
o1

ḋo2
o1

=
dg

ddo2
o1

EJFτ

≡ Jsτ . (16)

Vergelijking (16) definieert de sensorjacobiaan Js. De beperking om een
sensorwaarde z te regelen naar een gewenste waarde zdes wordt dan gegeven
door:

Jsτ = u,

IX

Nederlandse samenvatting

met u het resultaat van een controlewet, zoals, in het geval van proportionele
controle, u = kfb (zdes − z). De meest generieke manier om Js te bekomen,

is het analytisch afleiden van
dg

dτ
. Voor veel praktische toepassingen kan Js

echter direct opgesteld worden.

Stap 4: Het oplossen van de ogenblikkelijke beweging

In de laatste stap wordt de set beperkingen (11)–(15) gecombineerd met de
vergelijkingen van de relatieve beweging (4)–(10), zodat een set beperkin-
gen (2) bekomen wordt. Deze set beperkingen wordt dan opgelost naar de
gewrichtssnelheden q̇R, die aangelegd worden aan de robot.

Definieer Ja
F en τ a als:

Ja
F =

[
wJa

FI wJa
FII wJa

FIII

]
, (17)

τ a =
[
τa
1 τa

2 . . . τa
6

]T
. (18)

In (17) stelt wJa
Fi de kenmerkjacobiaan Ja

Fi voor, maar met w als referentieas-
senstelsel en de oorsprong van w als referentiepunt. Jb

F en τ b worden analoog
gedefinieerd.

Voor beide kenmerken geldt: t
o2
o1 = t

f1
o1 + t

f2
f1 + t

o2
f2. Met (3), (17) en (18)

leidt dit tot:

wt
o2
o1 = Ja

Fτ a, (19)

en tot een gelijkaardige uitdrukking voor kenmerk b:

wt
o2
o1 = Jb

Fτ b. (20)

Beschouw nu de gesloten kinematische ketting w→o1→f1→f2→o2→w. De
snelheidskringloopvergelijking voor deze ketting is:

t
o1
w + t

f1
o1 + t

f2
f1 + t

o2
f2 + t

w
o2 = 0,

of:
t
o1
w + t

o2
o1 + t

w
o2 = 0.

Gecombineerd met (10), (19) en (20), leidt dit tot:

wt
o1
w + Ja

Fτ a − JRq̇R = 0,

wt
o1
w + Jb

Fτ b − JRq̇R = 0.

In matrixnotatie wordt dit geschreven als:

[
Ja

F 0

0 Jb
F

] [
τ a

τ b

]
−

[
JR

JR

]
q̇R = −

[
wt

o1
w

wt
o1
w

]
,

X

3 Modelactualisatie

of, met invoering van de notaties J̄F , τ̄ , J̄R en T̄ u:

J̄F τ̄ − J̄Rq̇R = T̄ u. (21)

Aangezien J̄F steeds van volle rang is, want opgebouwd uit de matrices Ja
F en

Jb
F die basissen zijn van volle rang, leidt (21) tot een uitdrukking voor τ̄ :

τ̄ = J̄−1
F

(
T̄ u + J̄Rq̇R

)
. (22)

Met definitie van ū en C̄F als:

ū =

kfb(x
a
desired − xa

actual)
kfb(y

a
desired − ya

actual)

kfb(x
b
desired − xb

actual)

kfb(y
b
desired − yb

actual)

kfb(z
b
desired − zb

actual)

,

C̄F =

[
I 2×2 0 2×4 0 2×3 0 2×3

0 3×2 0 3×4 I 3×3 0 3×3

]
,

kan de set beperkingen (11)–(15) herschreven worden als:

C̄F τ̄ = ū. (23)

In deze voorbeeldtoepassing is C̄F een selectiematrix, die de coördinaten τi
voor elke beperking selecteert uit de volledige coördinaatvector τ̄ . Door (23)
te combineren met (22), wordt een stelsel lineaire vergelijkingen in q̇R beko-
men:

C̄FJ̄−1
F

(
T̄ u + J̄Rq̇R

)
= ū,

of: (
C̄FJ̄−1

F
J̄R

)
q̇R =

(
ū − C̄FJ̄−1

F
T̄ u

)
. (24)

In elke tijdstap worden de gewrichtssnelheden berekend uit dit stelsel vergelij-
kingen (Doty, Melchiorri, and Bonivento 1993; Nakamura 1991), en aangelegd
aan de robot. Aangezien in deze voorbeeldtoepassing slechts vijf beperkingen
gedefinieerd zijn is het stelsel vergelijkingen onderbepaald. Indien de gewogen
pseudo-inverse gebruikt wordt om (24) op te lossen, moeten gewichten in de
gewrichtsruimte gedefinieerd worden. Een andere mogelijkheid is om extra
beperkingen te definiëren in de nulruimte van C̄FJ̄−1

F
J̄R.

3 Modelactualisatie

Om de set beperkingen (2) uit te rekenen moet op elke tijdstap de pose van
alle object- en kenmerkassenstelsels bekend zijn. Deze sectie beschrijft een
generieke methode om deze modelactualisatie uit te voeren. De methode
bestaat uit twee stappen: predictie en correctie.

XI

Nederlandse samenvatting

Predictie

De kenmerk-twistcoördinaten kunnen in elke tijdstap berekend worden uit de
ogenblikkelijke gewrichtssnelheden (vergelijking (22)):

τ̄ = J̄−1
F

(
T̄ u + J̄Rq̇R

)
.

Voor elk kenmerkassenstelsel van kenmerk i wordt de overeenkomstige twist
gevonden door de subvector τ I

i, τ II
i or τ III

i uit τ̄ te vermenigvuldigen met
de overeenkomstige kenmerkjacobiaan J i

FI , J i
FII or J i

FIII . Bijvoorbeeld, voor

t
f1
o1 :

t
f1
o1 = JFIτ I .

Gelijkaardige uitdrukkingen gelden voor de overige twists. Een predictie voor
de pose van de kenmerkassenstelsels op tijdstip k+ 1 wordt bekomen door de
poses op tijdstip k te integreren met deze twists:

T̃
f1

o1 k+1 = exp
(
t
f1
o1Ts

)
T̂

f1
o1 k, (25)

T̃
f2

f1 k+1 = exp
(
t
f2
f1Ts

)
T̂

f2
f1 k, (26)

T̃ o2
f2 k+1 = exp

(
t
o2
f2Ts

)
T̂ o2
f2 k. (27)

Hierin drukt ˜ een predictie uit, en ˆ een schatting. Ts is de tijdstap.

Correctie

De iteratieve toepassing van (25) – (26) leidt tot divergentie door ophoping
van integratiefouten. Daarom worden de voorspelde poses aangepast in een
correctiestap. De correctie is gebaseerd op de bijkomende informatie in de
posekringloopverglijkingen:

T o1
w (qR,χU) T

f1
o1 T

f2
f1 T o2

f2 T w
o2 (qR,χU) = I 4×4. (28)

Hierin is qR de vector van de gewrichtsposities van de robot, en χU een vector
met eventuele ongecontroleerde vrijheidsgraden die van invloed zijn op de po-
sitie van de objecten (bijvoorbeeld de positie van een lopende band die extern
aangestuurd wordt). In deze sectie wordt χU gekend verondersteld. Fouten
in de predictie zorgen voor het niet-sluiten van de kringloopvergelijking:

T o1
w (qR,χU) T̃

f1
o1 T̃

f2
f1 T̃ o2

f2 T w
o2 (qR,χU) = ∆. (29)

In deze vergelijking stelt ∆ een homogene transformatiematrix voor, die ver-
schilt van I 4×4. De linearisatie van (29) wordt gegeven door de snelheids-
kringloopvergelijking (maar dan met eindige verplaatsingen):

J̄F τ̄∆ + J̄R ∆qR + T̄ u∆ = t̄∆. (30)

XII

4 Schatting

Hierin stelt τ̄∆ de variaties voor op de kenmerk-twistcoördinaten, T̄ u∆ de ein-
dige verplaatsingen die overeenkomen met variaties van de ongecontroleerde
vrijheidsgraden χU , en t̄∆ de eindige verplaatsingen die overeenkomen met de
homogene transformaties ∆.

Aangezien er tijdens de correctiestap geen fysische beweging is van de robot
of van de ongecontroleerde vrijheidsgraden, zijn ∆qR en T̄ u∆ nulmatrices, en
wordt (30) gereduceerd tot:

J̄F τ̄∆ = t̄∆,

⇔ τ̄∆ = J̄−1
F

t̄∆. (31)

Voor elke kenmerk worden de kenmerkassenstelsels nu aangepast met de over-
eenkomstige subvector uit τ̄∆:

T̂
f1

o1 k+1 = exp (JFI τ I∆) T̃
f1

o1 k+1, (32)

T̂
f2

f1 k+1 = exp (JFII τ II∆) T̃
f2

f1 k+1, (33)

T̂ o2
f2 k+1 = exp (JFIII τ III∆) T̃ o2

f2 k+1. (34)

4 Schatting

In de vorige sectie werden reeds coördinaten χU ingevoerd, die ongecontro-
leerde vrijheidsgraden voorstellen. Ook ongekende parameters kunnen met
deze coördinaten voorgesteld worden. Deze sectie beschrijft hoe dergelijke
parameters geschat kunnen worden op basis van sensormetingen.

De pose van de objectassenstelsels wordt gegeven door:

T o1
w = T o1

w (qR,χU), (35)

T o2
w = T o2

w (qR,χU). (36)

Analoog aan de kenmerkjacobianen worden voor de coördinaten χU ook ba-
sissen JU gedefinieerd, die uitdrukken hoe de objectassenstelsels bewegen bij
tijdsvariatie van de coördinaten χU :

t
o1
o2 = JRq̇R + JU χ̇U . (37)

Beschouw bijvoorbeeld een taak waarbij een robot een ton moet lokaliseren.
Als de verticale positie van de ton gekend is, kan de positie van de ton be-
schreven worden door drie coördinaten: de posities x en y in het vlak, en de
rotatie rond de verticale, φ. Of dus:

T o2
o1 = T w

o1 (qR) T o2
w (χU),

XIII

Nederlandse samenvatting

met

χU =

x
y
φ

 .

De beweging van het objectassenstelsel bij variaties van de ongekende coördinaten
wordt dan beschreven door:

wt
o2
w = JU χ̇U

=

1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1

ẋ
ẏ

φ̇

 .

4.1 Integratie van schatting in de modelactualisatie

De predictie- en correctiestap van de modelactualisatie worden uitgebreid voor
de schatting van de ongekende parameters.

Predictie

In het algemeen wordt het systeemmodel, dat de waardes van χU op tijdstip
k + 1 relateert aan die op tijdstip k, uitgedrukt door:

χU k+1 = f(χU k). (38)

Bijvoorbeeld, bij het schatten van de positie van de ton zijn de coördinaten
χU constant, of dus:

χU k+1 = χU k.

In een ander opstelling, waar de ton aangevoerd wordt door een lopende band,
is een model van constante snelheid beter geschikt:

χU k+1 = χU k + χ̇UTs.

Volgens het systeemmodel wordt een voorspelling χU berekend:

χ̃U k+1 = f(χ̂U k).

Een voorspelling van de kenmerkassenstelsels wordt bekomen zoals uitgelegd
in Sectie 3. De predictie van de poses van o1 en o2 wordt bekomen door
χ̃U k+1 in te vullen in (35) en (36).

XIV

4 Schatting

Correctie

Fouten in de predictie zorgen terug voor het niet-sluiten van de kringloopver-
gelijking:

T̃ o1
w (qR, χ̃U) T̃

f1
o1 T̃

f2
f1 T̃ o2

f2 T̃ w
o2 (qR, χ̃U) = ∆. (39)

De linearisatie van (39) wordt gegeven door de snelheidskringloopvergelijking,
met eindige verplaatsingen:

J̄F τ̄∆ + J̄R ∆qR + J̄U∆χU = t̄∆. (40)

Of, aangezien de gewrichtsposities gekend zijn (∆qR = 0):

[
JF JU

] [
τ̄∆

∆χU

]
= t∆. (41)

De meetvergelijking voor geometrische sensoren wordt gegeven door:

z = g(do2
o1). (42)

De tijdsafgeleide van (42) wordt gegeven door:

ż =
dg

ddo2
o1

ḋo2
o1

=
dg

ddo2
o1

E−1
t
o2
o1. (43)

Hierin kan t
o2
o1 steeds uitgedrukt worden als een lineaire combinatie van q̇R, τ

en tu, of dus, voor alle kenmerken:

ż =
[

H̄R H̄F H̄U

]

q̇R

τ̄

χ̇U

 . (44)

Volgens (42) wordt een voorspelling voor de meting berekend:

z̃ = g(d̃o2
o1). (45)

Voor beperkte variaties ∆z = (z̃ − z) geldt:

∆z =
[

H̄R H̄F H̄U

]

∆qR

τ̄∆

∆χU

 . (46)

Of, aangezien de gewrichtsposities gekend zijn:

∆z =
[

H̄F H̄U

] [
τ̄∆

∆χU

]
. (47)

XV

Nederlandse samenvatting

Uit (41) en (47) worden τ̄∆ en ∆χU berekend:

[
t∆

∆z

]
=

[
JF JU

HF HU

]#

W

[
τ̄∆

∆χU

]
. (48)

Hierin is W een wegingsmatrix die het relatieve belang van de positie-kring-
loopvergelijking en de metingen in de correctie weergeeft. De object- en ken-
merkassenstelsels voor elk kenmerk worden dan aangepast volgens:

T̂
f1

o1 k+1 = exp (JFIτ∆I) T̃
f1

o1 k+1, (49)

T̂
f2

f1 k+1 = exp (JFIIτ∆II) T̃
f2

f1 k+1, (50)

T̂ o2
f2 k+1 = exp (JFIIIτ∆III) T̃ o2

f2 k+1, (51)

en

T̂ o1
w k+1 = T o1

w (qR, χ̃U + ∆χU), (52)

T̂ o2
w k+1 = T o2

w (qR, χ̃U + ∆χU). (53)

5 Toepassingen

Deze sectie geeft een overzicht van de toepassingen die in dit proefschrift
besproken worden, als voorbeelden van de toepassing van iTASC.

Minimaal invasieve chirurgie met acht vrijheidsgraden

Deze toepassing (pagina 81) is een uitbreiding van de voorbeeldtoepassing
voor minimaal invasieve chirurgie, waarbij het laparoscopisch werktuig twee
extra vrijheidsgraden heeft in het lichaam van de patiënt. Dit laat toe de
grijper in zes dimensies te positioneren ten opzichte van een orgaan in het
lichaam.

De focus bij deze taak ligt op de aanpassing van een bestaande toepassing
aan een nieuwe opstelling: om de uitgebreidere taak te specificeren zijn slechts
beperkte veranderingen nodig aan de specificatie van de voorbeeldtoepassing.

Vormgeving

In deze taak (pagina 85) wordt een plaat geplaatst tussen twee halve bollen,
waarvan één gemanipuleerd wordt door de robot. Door de bollen over elkaar
te rollen en een contactkracht te regelen, wordt de plaat omgevormd tot een
gekromd oppervlak.

Deze taak is voornamelijk een voorbeeld van een taak waarbij sensorme-
tingen (kracht) gebruikt worden in de controle.

XVI

5 Toepassingen

Inspectie

In deze taak (pagina 89) voert een hoog-redundante robot een inspectietaak
uit in een pijpleiding. De robot gaat de pijpleiding binnen langs een flens en
oriënteert een camera naar een naad om een visuele controle uit te voeren.
De gewrichten van de robot moeten één voor één door de flens passeren.
Hiervoor is telkens een set beperkingen actief. Overige beperkingen realiseren
de relatieve oriëntatie tussen de camera (op het uiteinde van de robot) en de
naad.

In deze taak zijn beperkingen gelijkaardig aan die van de toepassing voor
minimaal invasieve chirurgie. De focus bij deze taak ligt echter op de overgang
tussen de discrete fases waarin telkens andere beperkingen actief zijn.

Meervoudig puntcontact

Het meervoudig puntcontact (pagina 94) is een typevoorbeeld van een taak
die niet (eenvoudig) te beschrijven is met methodologieën zoals het Task Fra-
me Formalism. In deze toepassing moet een werktuig een naad volgen, die
gevormd wordt door twee oppervlakken. De vorm van het werktuig is niet
dezelfde als die van de naad, waardoor het contact tussen het werktuig en
de naad bestaat uit twee puntcontacten. De beperkingen regelen de contact-
krachten en de relatieve beweging van het werktuig ten opzichte van de naad.

Lasergraveren met twee lasers

In deze toepassing (pagina 100) bestaat de taak eruit simultaan een pad te
traceren op een vlak en een cilindrische ton, met twee lasers die vast verbonden
zijn met de robot. De lasers meten tevens de afstand tot het vlak en de ton.
De exacte posities van het vlak en de ton zijn initieel ongekend.

Bij deze deze voorbeeldtoepassing wordt de invloed van de correctiestap
bij de modelactualisatie verduidelijkt. Verder bevat deze toepassing schatting
van geometrische parameters.

Mens-robot gedeelde controle

Deze toepassing (pagina 108) is een voorbeeld van een overgespecificeerde
taak, voor mens-robot gedeelde controle. Een robot helpt een operator om een
zwaar machine-onderdeel te dragen en te positioneren in een assemblage. De
operator interageert met de robot door krachten uit te oefenen op het machine-
onderdeel. Om deze krachten te meten is een krachtsensor gemonteerd op het
uiteinde van de robot. Het is de taak van de operator om één kant van het
onderdeel uit te lijnen met de assemblage. De andere kant van het onderdeel
wordt uitgelijnd door de robot, op basis van visuele informatie van een camera.
De controle over de taak wordt dus gedeeld door de operator en de robot.

XVII

Nederlandse samenvatting

De focus bij deze toepassing ligt op het gebruik van meerdere sensoren
om een taak uit te voeren, en de gedeelde controle tussen de mens en de
robot, waarbij het dynamisch gedrag bepaald wordt door de weging van de
beperkingen.

6 Besluit

Sensorgebaseerde robotica komt reeds verschillende jaren veelvuldig aan bod
in onderzoekstoepassingen. Dit resulteerde in de ontwikkeling van verschil-
lende taakspecificatiemethodologieën, zoals het Task Frame Formalism of een
aantal methodologieën gebaseerd op hybride kracht/positiecontrole gedefini-
eerd in termen van een ogenblikkelijke kracht- en snelheidsbasis. Deze metho-
dologieën zijn echter voornamelijk toegespitst op krachtcontrole. Verder is het
niet eenvoudig om met deze methodologieën complexere taken te specificeren,
zoals taken waarbij verschillende sensoren gelijktijdig gedeeltelijke informatie
over de taak leveren, of taken waarbij gelijktijdig verschillende controlebeper-
kingen actief zijn, bijvoorbeeld voor verschillende delen van de robot. Ook
gaat bij de bestaande methodologieën zo goed als geen aandacht uit naar het
schatten van geometrische parameters.

In dit proefschrift wordt iTASC (instantaneous Task Specification based
on Constraints) voorgesteld: een methodologie om sensorgebaseerde taken te
specificeren, met inbegrip van schatting van geometrische parameters.

Bijdragen van dit proefschrift

De voornaamste bijdragen van iTASC zijn:

• de beperkingsgebaseerde aard: iTASC is een beperkingsgebaseer-
de methodologie. Hierdoor is iTASC geschikt om taken te specificeren
die verschillende bronnen van controlebeperkingen vereisen. In iTASC
worden taken gespecificeerd volgens de Task Function Approach (Sam-
son, Le Borgne, and Espiau 1991). Om deze manier van specificeren
te ondersteunen worden de concepten van objecten en kenmerken in-
gevoerd, en controlebeperkingen gedefinieerd op de relatieve beweging
van deze objecten en kenmerken. De methodologie laat exact, onder- en
overgespecificeerde taken toe.

• het generieke karakter: iTASC is een generieke aanpak: de focus ligt
niet op een bepaald soort taak, sensor of robot. iTASC kan algemeen
gebruikt worden voor snelheidsgestuurde robots met rigide gelederen en
gewrichten. Verder kunnen alle sensoren die geometrische informatie
leveren ingepast worden in de methodologie (bijvoorbeeld camera’s of

XVIII

6 Besluit

afstandssensoren, maar ook dynamische sensoren zoals een krachtsensor,
indien de taak quasistatisch verloopt).

• de modelactualisatie: Alle taakspecificatiemethodologieën gebruiken
een geometrisch model van de taak, dat geactualiseerd moet worden
tijdens het uitvoeren van de taak. Waar andere methodologieën erop
rekenen dat hiertoe een ad-hocmethode gëımplementeerd wordt, voor-
ziet iTASC een generieke actualisatieprocedure, om automatisch de pose
van de object- en kenmerkassenstelsels te berekenen.

• de integratie van schatting: Daar waar overige methodologieën er
doorgaans op rekenen dat het gebruik van metingen in de controle
de taakuitvoering bestand maakt tegen geometrische variaties, biedt
iTASC de primitieven aan om deze geometrische onzekerheden te mo-
delleren en te schatten.

Om de effectiviteit van iTASC aan te tonen, wordt de methodologie toegepast
op verschillende voorbeeldapplicaties.

Beperkingen en toekomstig onderzoek

Deze sectie bespreekt de beperkingen van iTASC en geeft suggesties voor
toekomstig onderzoek.

Toepassingsgebieden Het ultieme doel van de sensorgebaseerde robotica
is het ontwikkelen van intelligente robots, die hun taken volledig autonoom
kunnen uitvoeren in ongestructureerde omgevingen. De stand der techniek
is nog ver van deze doelstelling verwijderd. Deze sectie bespreekt de toe-
passingsgebieden van iTASC, voor wat betreft de gebruikersdoelgroep en de
robotomgevingen waarvoor de methodologie geschikt is.

• Gebruikersdoelgroep iTASC is een methodologie voor ogenblikkelij-
ke controle. De methodologie steunt op de geometrische modellering
van de taak, en de doelgroep voor iTASC bestaat dan ook vooral uit
systeemintegratoren, die toepassingen ontwikkelen voor eindgebruikers.
Systeemintegratoren kunnen de principes van iTASC aanleren, en het
nodige inzicht verwerven om taken te specificeren volgens de methodo-
logie. Om een taak te specificeren volgens iTASC is effectief inzicht
vereist, omdat er geen vaste regels zijn om de object- en kenmerkassen-
stelsels en de kenmerkjacobianen te kiezen. Een goede keuze is nood-
zakelijk, omdat het moeilijk is de beperkingen te specificeren bij slecht
gekozen kenmerk-twistcoördinaten. Dit is een nadeel, maar geen unieke
eigenschap van de iTASC-methodologie. Ook bij andere specificatie-
methodologieën is dergelijk inzicht noodzakelijk en verhindert dit de

XIX

Nederlandse samenvatting

veelvuldige toepassing van deze methodologieën niet. Bijvoorbeeld, ook
bij het Task Frame Formalism is het moeilijk een taak te specificeren,
bij een slecht gekozen Task Frame.

Toch is het wenselijk de gebruiker verder te ondersteunen bij het op-
bouwen van het model van de taak. Hiertoe wordt specificatiesoftware
ontwikkeld in onze onderzoeksgroep. In deze software worden de vrij-
heidsgraden tussen de object- en kenmerkassenstelsels voorgesteld door
een kinematische ketting. De kenmerkjacobianen worden dan automa-
tisch gegenereerd, zodat de wiskundige voorstelling van de gebruiker
geabstraheerd wordt.

Voor eindgebruikers van een bepaalde robottoepassing blijft de iTASC-
methodologie doorgaans volledig verborgen. Eindgebruikers interageren
met de taak via een taakspecifieke interface, die ontworpen is door de
systeemintegrator. In het algemeen laat een dergelijke interface de eind-
gebruiker toe parameters aan te passen, zoals bijvoorbeeld terugkoppel-
constantes of de actieve toestand. Het interne model, zoals bijvoorbeeld
de kenmerkjacobianen, blijft voor deze gebruikers verborgen.

• Robotomgevingen Volgens iTASC wordt een taak gespecificeerd door
beperkingen en schatters te definiëren op basis van een model van de
taak. Om de verschillende mogelijke toestanden in de taak te voorzien
en de nodige beperkingen en schatters te definiëren voor elke toestand,
moet de omgeving in zekere mate gestructureerd zijn. Dit is bijvoor-
beeld het geval in industriële omgevingen, waar de mogelijke objecten
in de omgeving van de robot bekend zijn, maar variatie mogelijk is op
hun exacte posities. iTASC richt zich voornamelijk op dergelijke semi-
gestructureerde omgevingen.

Wanneer robots ingezet worden in volledig ongestructureerde omgevin-
gen, zoals een huiselijke omgeving, is het onmogelijk om de beperkingen
en schatters te specificeren voor elke mogelijke toestand. In dergelij-
ke omgevingen is een hoger cognitief niveau vereist, dat in staat is de
sensormetingen te interpreteren en autonoom strategische beslissingen
te nemen. Hoewel reeds jaren onderzoek verricht wordt naar dergelijke
artificiële intelligentie, zijn we nog ver verwijderd van echt intelligente
systemen. In onze onderzoeksgroep worden schattingsmethodes ontwik-
keld om geometrische modellen op te bouwen van volledig ongekende
omgevingen, op basis van contactmetingen (kracht en positie) (Slaets
et al. 2007). Een mogelijk onderwerp voor verder onderzoek is de
integratie van deze methodes in iTASC. Een geplande handeling tus-
sen twee objecten kan dan uitgevoerd worden van zodra deze objecten
gëıdentificeerd zijn in de omgeving van de robot.

Een andere mogelijkheid om robots in te zetten in volledig ongestructu-

XX

6 Besluit

reerde omgevingen, is een operator en een robot samen te laten werken
om de taak te realiseren. Bijvoorbeeld, bij gebruik van een teleoperatie-
opstelling kan de operator de robot tot bij de relevante objecten brengen,
waarna de robot zijn taak verder autonoom uitvoert.

In elk geval kan iTASC gebruikt worden als de onderliggende methodolo-
gie, wanneer de omgeving van de robot in voldoende mate gestructureerd
is zodat een model van de taak kan opgebouwd worden, en beperkingen
en schatters gespecificeerd kunnen worden binnen dit model.

Methodologie voor ogenblikkelijke controle iTASC is een methodolo-
gie voor ogenblikkelijke controle. De gebruike modellen zijn ogenblikkelijke
kinematische modellen van de taak, en worden gebruikt om ogenblikkelijke
gewrichtssnelheden te berekenen. Hierdoor blijft padplanning beperkt tot het
genereren van trajecten, en zijn de gebruikte optimalisatiecriteria in iTASC
locale criteria, die een ogenblikkelijke norm minimaliseren, bijvoorbeeld van
de gewrichtssnelheden of van de fout op de beperkingen. De uitbreiding van
iTASC om globale padplanning en globale optimalisatie te ondersteunen is
een uitdagend onderwerp voor verder onderzoek.

Focus op snelheidsgestuurde robots Volgens de iTASC-methodologie
wordt een taak zo gespecificeerd, dat een eerste-orde uitdrukking van de Task
Function bekomen wordt. Voor versnellingsgebaseerde robots is een tweede-
orde uitdrukking nodig. De voornaamste redenen waarom dit proefschrift de
nadruk legt op snelheidsgebaseerde robots zijn (i) dat vele taken gespecificeerd
kunnen worden op snelheidsniveau, (ii) dat veel van de robots die aanstuur-
baar zijn vanop een controle-PC effectief snelheidsgestuurde systemen zijn,
en (iii) dat het veel moeilijker is inzicht te krijgen in de kenmerkjacobia-
nen en deze te specificeren op het versnellingsniveau. Principieel staat echter
niets de formulering van iTASC op versnellingsniveau in de weg (De Laet and
De Schutter 2007).

Ongelijkheidsbeperkingen iTASC is gebaseerd op de specificatie van ge-
lijkheidsbeperkingen om een taak te specificeren. Voor bepaalde toepassingen
zijn ongelijkheidsbeperkingen echter wenselijk. Een voorbeeld is het verhinde-
ren van botsingen: de afstand tussen de robot en een hindernis is in principe
onbelangrijk, zolang deze boven een minimale (veilige) waarde blijft. Een
mogelijke methode om dergelijke ongelijkheidsbeperkingen in iTASC te inte-
greren is het toevoegen van deze beperkingen als gelijkheidsbeperkingen, die
enkel geactiveerd worden als de ongelijkheid dreigt overtreden te worden.

Niet-lineaire schattingstechnieken De schattingstechnieken beschreven
in Sectie 5.3 zijn gebaseerd op de linearisatie van de meetvergelijkingen, zoals

XXI

Nederlandse samenvatting

bijvoorbeeld nodig voor een Kalman Filter. Een gelineariseerde aanpak is
echter niet steeds geschikt voor sterk niet-lineaire schattingsproblemen. In
dergelijke gevallen kunnen met overige technieken, zoals particle filters betere
resultaten behaald worden.

XXII

