
Constraint-Based Verification

Carl Pixley
Advanced Technology Group
Synopsys, Inc.

John Havlicek, Ken Albin
Motorola Inc., Austin

© 2001 Synopsys, Inc. (2) CONFIDENTIAL

What is Constraint-Based
Verification?

• Designers define constraints involving the inputs
of their designs.

• They can immediately simulate their designs with
constraints ONLY and debug wave forms. No
testbench program is needed.

• Constraints and design mature incrementally.
• During integration constraints become monitors

automatically. (Flipping) This supports
assume/guarantee reasoning.

© 2001 Synopsys, Inc. (3) CONFIDENTIAL

Constraint / Assertion-Based
Methodology

High-Speed On-chip Bus

Off-chip
Bus ifc

System-on-Chip

Assertions (e.g., OVA, CBV) Verification
Use of Assertions
• Checking results
• Stimulus generation
 (Constraint assertions
 like SimGen)
• Proving correctness
• Measuring coverage
• Verification IP reuse

Bus
integrity

Logic
integrity

Interface
Compliance

Chip
Function

Micro-logic
function

Reuse of Assertions Among
Simulation, Semi-Formal, and Formal Verification

© 2001 Synopsys, Inc. (4) CONFIDENTIAL

Constraint Examples
“Inputs 0, 1 & 2 are 0-1-hot”
In0 + In1 + In2 <= 1;

“A transaction start can only be asserted
when the address state machine is in
the idle state.”

ts -> (addr_state = `ADDR_IDLE));
Constraints are just Verilog formulas.

This is not the CBV language. It works
fine with OVA or Verilog.

© 2001 Synopsys, Inc. (5) CONFIDENTIAL

Generation

High-Speed On-chip Bus

Off-chip
Bus ifc

System-on-Chip

DUT

Directed
Test Suite

Assertions and
Checkers

Constraints
As Generator

In0 + In1 + In2 <= 1;
ts -> (addr_state = `ADDR_IDLE));

© 2001 Synopsys, Inc. (6) CONFIDENTIAL

Generation -> Assertion Flipping

High-Speed On-chip Bus

Off-chip
Bus ifc

System-on-Chip

DUT

Directed
Test Suite

Assertions and
Checkers

Constraints
As Assertions

System
Environment

Not Needed if Not Needed if
Assertions have beenAssertions have been

Proven w. model checker!Proven w. model checker!

ts -> (addr_state = `ADDR_IDLE));
In0 + In1 + In2 <= 1;

© 2001 Synopsys, Inc. (7) CONFIDENTIAL

Constraint-Based Verification

• Enables early, more extensive use of
assertion–based simulation at the unit
level by designers!

-- by lowering the effort to animate a design
block and
by incrementally refining the logic and
constraints

© 2001 Synopsys, Inc. (8) CONFIDENTIAL

Constraint-Based Verification
• Design Manager:
“My proposal is for designers to test their logic

before releasing it to the verification team. This
will guarantee that we're not fighting
careless/silly errors when the blocks are
integrated in a system environment.

There are two reasons why I would like to follow the
CBV [SimGen] route: 1) all the support you and
your group have provided this past year and a
half, and 2) I believe it would be easier for
designers to use this tool than trying to learn the
[conventional directed-random simulation]
environment along with C++ and everything else.”

© 2001 Synopsys, Inc. (9) CONFIDENTIAL

Constraint-Based Verification

Low-effort, early animation of design blocks.
The cost of getting started is low.
 Designers don't have to write an elaborate test-

bench to begin animating and debugging a block.

Because the development of environments
for designs is incremental, the cost of
developing constraint-based
environments is amortized over time.

© 2001 Synopsys, Inc. (10) CONFIDENTIAL

Constraint-Based Verification
Constraint-based verification integrates well

with other, existing simulation
approaches.

It can be integrated incrementally into a
verification flow.

Constraints can be developed to monitor
inputs in a directed or directed random
approach. As constraints mature, they
become simulation drivers (E.g.,
Automotive at Motorola).

© 2001 Synopsys, Inc. (11) CONFIDENTIAL

Simulation & Formal methodology

Constraints can be used both in simulation
and formal verification (model checking).

Constraint-based verification reinforces
assertion-based verification (e.g., OVA –
because constraints ARE assertions.

Constraint-based simulation is unexpectedly
effective in finding corner cases. (See
slides below.)

© 2001 Synopsys, Inc. (12) CONFIDENTIAL

Ketchum Simulation & Formal
Verification

High-Speed On-chip Bus

Off-chip
Bus ifc

System-on-Chip

Constraints

DUT

Methodology
• Directed testbench and checkers
• Random testbench and assertions
• Constrained-Random Testbench

Directed
Test Suite
Directed

Test Suite
Directed

Test Suite
Random

Test Bench

Directed
Test Suite

Assertions and
Checkers Coverage

Report

Stimulus
Generation

Coverage Signals

RTL Source

KETCHUM

• Analyze RTL
• Analyze Environment
• Generate Stimulus
• Coverage Report

TB Source

•• Ketchum test generation Ketchum test generation
•• Ketchum proving Ketchum proving
assertionsassertions

Stimulus
Files

© 2001 Synopsys, Inc. (13) CONFIDENTIAL

Constraint-Based Verification
Reuse of constraint verification IP at the

SoC level
1. Constraints can be used with model

checking as environments.
2. Constraint-based generators can be easily

converted into checkers during system
integration.

© 2001 Synopsys, Inc. (14) CONFIDENTIAL

Constraint-Based Verification
Constraint-based verification simulates

corner cases of designs more effectively
than other methods.

Constraint-based simulation finds bugs
earlier!

Another PPC Design Manager:
“The kind of bugs [CBV/SimGen user] has

found in my logic are difficult to find in
simulation. I do not believe we can guarantee
a high quality first tapeout without [t]his work.”

© 2001 Synopsys, Inc. (15) CONFIDENTIAL

Directed-Random vs. Constrained-
Random

10/99 11/99 12/99 01/00 02/00 03/00 04/00 05/00 06/00 07/00 08/00 09/00 10/00

9
8
7
6
5
4
3
2
1

10/99 11/99 12/99 01/00 02/00 03/00 04/00 05/00 06/00 07/00 08/00 09/00 10/00

9
8
7
6
5
4
3
2
1

INBOUND PROTOCOL

Directed RandomDirected Random

Constraint-basedConstraint-based

bugs found# bugs found

bugs found# bugs found

© 2001 Synopsys, Inc. (16) CONFIDENTIAL

Constrained-random vs. directed
random

10/99 11/99 12/99 01/00 02/00 03/00 04/00 05/00 06/00 07/00 08/00 09/00 10/00

9
8
7
6
5
4
3
2
1

10/99 11/99 12/99 01/00 02/00 03/00 04/00 05/00 06/00 07/00 08/00 09/00 10/00

9
8
7
6
5
4
3
2
1

OUTBOUND - LOGIC LAYER

Directed RandomDirected Random

Constraint-basedConstraint-based

bugs found# bugs found

bugs found# bugs found

© 2001 Synopsys, Inc. (17) CONFIDENTIAL

Benefits
. Constraint-based verification can be put in

the hands of designers at the module,
block and unit levels of design. This
implies a much broader user-base for
formal and simulation tools.

. Verification checkers are left all over the
design to locate and isolate problems near
the bug site.

. Constraints formally document interfaces
to DUVs in a machine-readable way.

© 2001 Synopsys, Inc. (18) CONFIDENTIAL

Observation

. Complex temporal assertions (checkers)
CANNOT be easily reused as stimulus
generators.

© 2001 Synopsys, Inc. (19) CONFIDENTIAL

Constraint Example

Request

Req_id[0;1]

Req_type[0:2]

Req_prior[0:1]

Response

Resp_id[0:1]

Resp_type[0:1]

XYZ

Assume: A request may be given only if its identifier is not equal toAssume: A request may be given only if its identifier is not equal to
 the identifier of any active transaction. the identifier of any active transaction.

© 2001 Synopsys, Inc. (20) CONFIDENTIAL

Constraint Example
module xyz;
function activate(id[0:1])[0:0] = request &

(req_id == id) ;
function deactivate(id[0:1])[0:0] = response

& (resp_id == id) ;
function active_next(id[0:1])[0:0] =
 (deactivate(id) ? 1'b0 :
 activate(id) ? 1'b1 :
 active[id]) ;

© 2001 Synopsys, Inc. (21) CONFIDENTIAL

Constraint-based Verification
var active[0:3] =
 {active_next(0),
 active_next(1),
 active_next(2),
 active_next(3),
 } ;
constraint(request ? ~active[req_id] : 1'b1) ;

© 2001 Synopsys, Inc. (22) CONFIDENTIAL

Constraint-based Verification
• User provides constraints as Boolean

expressions involving state and inputs.
• User provides biasing for each variable.
• SimGen generates input vectors to

simulator on each clock cycle by solving
constraints -- all together.

• SimGen is non-backtracking!
• SimGen is constant cost for each cycle.

The cost is linear data structures
representing constraints (e.g. BDDs).

© 2001 Synopsys, Inc. (23) CONFIDENTIAL

SimGen technical issues

• Keeping BDD size low
• Automatic identification of special

constraints that can be handled separately
• Constraint fracturing
• Variable ordering
• Constraint prioritization
• Run-time constraint solving (e.g.,

Shimizu/Dill)

© 2001 Synopsys, Inc. (24) CONFIDENTIAL

Summary
• Provides early/easy animation of DUVs by

designers -- without checkers, without
stimulus driver programs, ….

• Provides robust stimulus to exercise
corner cases of design

• Inputs can be “weighted” to bias
simulation

• Stimulus generation and checkers are
dual concepts.

• Incrementally integrates into existing
simulation environment.

© 2001 Synopsys, Inc. (25) CONFIDENTIAL

Summary (cont.)

• Constraint-based verification is a sales
opportunity.

• Constraint-Based Verification works with
both simulation (VCS & Vera), formal tools
(Ketchum) and OVA.

• Constraints can be used by designers
directly and incrementally – broader
market.

• Constraint-based verification finds bugs
faster than other methods.

© 2001 Synopsys, Inc. (26) CONFIDENTIAL

References
• [0] J. Yuan, K. Shultz, C. Pixley, H. Miller, “SimGen: A Tool for

Automatically Generating Simulation Environments from
Constraints”, ITC Workshop on Microprocessor Test and
Verification, October 22-23, 1998

• [1] J. Yuan, K. Shultz, C. Pixley, H. Miller, A. Aziz, “Modeling
Design Constraints and Biasing in Simulation Using BDDs”,
ICCAD 1999

• [2] James H. Kukula and Thomas R. Shiple, "Building Circuits
from Relations" CAV 2000

• [3] K. Shimizu, D. L. Dill, and A. J. Hu. "Monitor-Based Formal
Specification of PCI", FMCAD 2000, Austin, Texas.

• [4] K. Shimizu, D. L. Dill, C-T. Chou, "A Specification Methodology
by a Collection of Compact Properties as Applied to the Intel
Itanium Processor Bus Protocol", CHARME 2001, Livingston,
Scotland.

• [5] Matt Kaufmann, A. Martin, C. Pixley, “Design Constraints in
Symbolic Model Checking”, CAV 1998: 477-487

© 2001 Synopsys, Inc. (27) CONFIDENTIAL

End of Talk

© 2001 Synopsys, Inc. (28) CONFIDENTIAL

Common User Assertion Examples

• One-hot buses
• Full and parallel case synthesis pragmas
• Array accesses
• Bus contention
• Valid data not lost in stalled pipelines
• Low priority events eventually processed
• Requests handled within spec’d window
• Packet Valid signal asserted correctly

