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What is Constraint-Based
Verification?

• Designers define constraints involving the inputs
of their designs.

• They can immediately simulate their designs with
constraints ONLY and debug wave forms. No
testbench program is needed.

• Constraints and design mature incrementally.
• During integration constraints become monitors

automatically. (Flipping)  This supports
assume/guarantee reasoning.
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Constraint / Assertion-Based
Methodology
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Use of Assertions
• Checking results
• Stimulus generation 
   (Constraint assertions 
    like SimGen)
• Proving correctness
• Measuring coverage
• Verification IP reuse
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Constraint Examples
“Inputs 0, 1 & 2 are 0-1-hot”
In0 + In1 + In2 <= 1;

“A transaction start can only be asserted
when the address state machine is in
the idle state.”

ts -> (addr_state = `ADDR_IDLE));
Constraints are just Verilog formulas.

This is not the CBV language.  It works
fine with OVA or Verilog.
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Generation
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In0 + In1 + In2 <= 1;
ts -> (addr_state = `ADDR_IDLE));
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Generation -> Assertion Flipping
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System 
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Not Needed if Not Needed if 
Assertions have beenAssertions have been

Proven w. model checker!Proven w. model checker!

ts -> (addr_state = `ADDR_IDLE));
In0 + In1 + In2 <= 1;
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Constraint-Based Verification

• Enables early, more extensive use of
assertion–based simulation at the unit
level by designers!

-- by lowering the effort to animate a design
block and
by incrementally refining the logic and
constraints
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Constraint-Based Verification
• Design Manager:
“My proposal is for designers to test their logic

before releasing it to the verification team. This
will guarantee that we're not fighting
careless/silly errors when the blocks are
integrated in a system environment.

There are two reasons why I would like to follow the
CBV [SimGen] route: 1) all the support you and
your group have provided this past year and a
half, and 2) I believe it would be easier for
designers to use this tool than trying to learn the
[conventional directed-random simulation]
environment along with C++ and everything else.”
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Constraint-Based Verification

Low-effort, early animation of design blocks.
The cost of getting started is low.
   Designers don't have to write an elaborate test-

bench to begin animating and debugging a block.

Because the development of environments
for designs is incremental, the cost of
developing constraint-based
environments is amortized over time.
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Constraint-Based Verification
Constraint-based verification integrates well

with other, existing simulation
approaches.

It can be integrated incrementally into a
verification flow.

Constraints can be developed to monitor
inputs in a directed or directed random
approach.  As constraints mature, they
become simulation drivers (E.g.,
Automotive at Motorola).
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Simulation & Formal methodology

Constraints can be used both in simulation
and formal verification (model checking).

Constraint-based verification reinforces
assertion-based verification (e.g., OVA –
because constraints ARE assertions.

Constraint-based simulation is unexpectedly
effective in finding corner cases. (See
slides below.)
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Ketchum Simulation & Formal
Verification

High-Speed On-chip Bus

Off-chip
Bus ifc

System-on-Chip

Constraints

DUT

Methodology
• Directed testbench and checkers
• Random testbench and assertions
• Constrained-Random Testbench

Directed
Test Suite
Directed

Test Suite
Directed

Test Suite
Random

Test Bench

Directed
Test Suite

Assertions and
Checkers Coverage

Report

Stimulus
Generation

Coverage Signals

RTL Source

KETCHUM

• Analyze RTL
• Analyze Environment
• Generate Stimulus
• Coverage Report

TB Source

•• Ketchum test generation Ketchum test generation
•• Ketchum proving Ketchum proving
assertionsassertions

Stimulus
Files



© 2001 Synopsys, Inc. (13) CONFIDENTIAL

Constraint-Based Verification
Reuse of constraint verification IP at the

SoC level
1. Constraints can be used with model

checking as environments.
2. Constraint-based generators can be easily

converted into checkers during system
integration.
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Constraint-Based Verification
Constraint-based verification simulates

corner cases of designs more effectively
than other methods.

Constraint-based simulation finds bugs
earlier!

Another PPC Design Manager:
“The kind of bugs [CBV/SimGen user]  has

found in my logic are difficult to find in
simulation. I do not believe we can guarantee
a high quality first tapeout without [t]his work.”
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Directed-Random vs. Constrained-
Random
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Constrained-random vs. directed
random
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Benefits
. Constraint-based verification can be put in

the hands of designers at the module,
block and unit levels of design.  This
implies a much broader user-base for
formal and simulation tools.

. Verification checkers are left all over the
design to locate and isolate problems near
the bug site.

. Constraints formally document interfaces
to DUVs in a machine-readable way.



© 2001 Synopsys, Inc. (18) CONFIDENTIAL

Observation

. Complex temporal assertions (checkers)
CANNOT be easily reused as stimulus
generators.
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Constraint Example

Request

Req_id[0;1]

Req_type[0:2]

Req_prior[0:1]

Response

Resp_id[0:1]

Resp_type[0:1]

XYZ

Assume: A request may be given only if its identifier is not equal toAssume: A request may be given only if its identifier is not equal to
       the identifier of any active transaction.       the identifier of any active transaction.
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Constraint Example
module xyz;
function activate(id[0:1])[0:0]   = request  &

(req_id == id) ;
function deactivate(id[0:1])[0:0] = response

& (resp_id == id) ;
function active_next(id[0:1])[0:0] =
      (deactivate(id) ? 1'b0       :
        activate(id)   ? 1'b1       :
                        active[id]) ;
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Constraint-based Verification
var active[0:3] =
       {active_next(0),
         active_next(1),
         active_next(2),
         active_next(3),
           } ;
constraint(request ? ~active[req_id] : 1'b1) ;
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Constraint-based Verification
• User provides constraints as Boolean

expressions involving state and inputs.
• User provides biasing for each variable.
• SimGen generates input vectors to

simulator on each clock cycle by solving
constraints -- all together.

• SimGen is non-backtracking!
• SimGen is constant cost for each cycle.

The cost is linear data structures
representing constraints (e.g. BDDs).
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SimGen technical issues

• Keeping BDD size low
• Automatic identification of special

constraints that can be handled separately
• Constraint fracturing
• Variable ordering
• Constraint prioritization
• Run-time constraint solving (e.g.,

Shimizu/Dill)
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Summary
• Provides early/easy animation of DUVs by

designers -- without checkers, without
stimulus driver programs, ….

• Provides robust stimulus to exercise
corner cases of design

• Inputs can be “weighted” to bias
simulation

• Stimulus generation and checkers are
dual concepts.

• Incrementally integrates into existing
simulation environment.
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Summary (cont.)

• Constraint-based verification is a sales
opportunity.

• Constraint-Based Verification works with
both simulation (VCS & Vera), formal tools
(Ketchum) and OVA.

• Constraints can be used by designers
directly and incrementally – broader
market.

• Constraint-based verification finds bugs
faster than other methods.
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End of Talk
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Common User Assertion Examples

• One-hot buses
• Full and parallel case synthesis pragmas
• Array accesses
• Bus contention
• Valid data not lost in stalled pipelines
• Low priority events eventually processed
• Requests handled within spec’d window
• Packet Valid signal asserted correctly


