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ABSTRACT

Clustering methods can be either data-driven or need-driven.
Data-driven methods intend to discover the true structure
of the underlying data while need-driven methods aims at
organizing the true structure to meet certain application
requirements. Thus, need-driven (e.g. constrained) clus-
tering is able to find more useful and actionable clusters
in applications such as energy aware sensor networks, pri-
vacy preservation, and market segmentation. However, the
existing methods of constrained clustering require users to
provide the number of clusters, which is often unknown in
advance, but has a crucial impact on the clustering result.
In this paper, we argue that a more natural way to gener-
ate actionable clusters is to let the application-specific con-
straints decide the number of clusters. For this purpose, we
introduce a novel cluster model, Constraint-Driven Cluster-
ing (CDC), which finds an a priori unspecified number of
compact clusters that satisfy all user-provided constraints.
Two general types of constraints are considered, i.e. min-
imum significance constraints and minimum variance con-
straints, as well as combinations of these two types. We
prove the NP-hardness of the CDC problem with different
constraints. We propose a novel dynamic data structure,
the CD-Tree, which organizes data points in leaf nodes such
that each leaf node approximately satisfies the CDC con-
straints and minimizes the objective function. Based on
CD-Trees, we develop an efficient algorithm to solve the
new clustering problem. Our experimental evaluation on
synthetic and real datasets demonstrates the quality of the
generated clusters and the scalability of the algorithm.
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1. INTRODUCTION
Clustering aims at grouping data objects into clusters

in an effective and efficient manner. The generated clus-
ters provide useful knowledge to support decision making
in many applications. Depending on perspective, cluster-
ing methods can be either data-driven or need-driven [7].
The data-driven clustering methods intend to discover the
true structure of the underlying data by grouping similar
objects together while the need-driven clustering methods
group objects based on not only similarity but also needs
imposed by particular applications. Thus, the clusters gen-
erated by need-driven clustering methods are more useful
and actionable to meet certain application requirements.

Need-driven or actionable data mining research has at-
tracted significant interest recently. Kleinberg et al. [24]
propose a framework to evaluate data mining results, in par-
ticular clustering results, by their utility in decision making.
In this framework, the goal of generating useful clusters is
achieved by a sophisticated objective function which is de-
fined based on business needs. Alternatively, complex appli-
cation needs can be captured by corresponding constraints.
For example, in market segmentation, relatively balanced
customer groups are more preferable so that the knowledge
extracted from each group has equal significance and are
thus easier to evaluate [19]. The special requirement of
identifying balanced clusters can be effectively captured by
imposing balancing constraints [9, 31, 7, 35].

These models enable us to find useful clusters. How-
ever, they require users to provide the number of clusters,
K, which is often unknown in advance. Even if the most
appropriate number of clusters determined from the data
distribution is known, it may not suit the application needs
[7]. Furthermore, an inappropriate number of clusters may
result in generating distorted and less actionable clusters.
We argue that a more natural way to generate actionable
clusters is to let the constraints decide the number of clus-
ters. In this paper, we propose a cluster model, Constraint-
Driven Clustering, which aims at utilizing user-provided
constraints to discover an arbitrary number of compact and
balanced clusters. The compactness of a clustering is mea-
sured by the sum of the squared distances of all data objects
to their corresponding cluster representatives.

For different application needs, various balancing con-
straints can be designed to restrict the generated clusters
in order to make them actionable. Particularly, we are in-
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terested in constraint types, i.e., minimum significance con-
straints and minimum variance constraints. The minimum
significance constraint specifies the minimum number of ob-
jects in a cluster. The minimum variance constraint poses
a lower bound on the variance of a cluster. By imposing
a minimum significance constraint or/and a minimum vari-
ance constraint, our model searches for clusters which are
balanced in terms of cardinality or/and variance.

To motivate Constraint-Driven Clustering with minimum
significance and variance constraints, we use applications in
energy aware sensor networks and privacy preservation as
our running examples.

Energy Aware Sensor Networks [18, 20, 7]: Group-
ing sensors into clusters is an important problem in sensor
networks since it can drastically affect the network’s com-
munication energy consumption [18]. Normally, a master
node is chosen from sensors in each cluster or deployed to
the central area of each cluster. Other sensors will commu-
nicate with the outside world through the closest master
node. In this context, it is desirable to require each clus-
ter to contain at least a certain number of sensors in order
to balance the work load of master nodes. To prolong the
lifetime of a sensor network, evenly distributing energy con-
sumption among clusters is desired. Since the energy con-
sumption of message transmissions increases quadratically
with the distance between communicating sensors [10], the
variance of a group of sensors corresponds to the amount
of energy consumed by those sensors on average. The min-
imum variance constraint allows to group sensors into clus-
ters which are balanced in terms of energy consumption.
Moreover, in this application, it is natural to have the con-
straints decide the appropriate number of clusters instead
of specifying a number in advance.

Privacy Preservation [28, 30]: In a privacy preserva-
tion application, we may want to release personal records
to the public without a privacy breach. To achieve this,
we can group records into small clusters and release the
summary of each cluster to the public. In this context, the
usability of a clustering is evaluated by how much privacy is
preserved in the clustering. To preserve individual privacy,
the k-anonymity model [30] requires that each cluster has to
contain at least a certain number of individuals. However,
these individuals could have very similar, even identical at-
tribute values, allowing an adversary to accurately estimate
their sensitive attribute values with high confidence from
the summary. We argue, therefore, that the clusters to
be published should also have a minimum variance which
translates into the width of the confidence interval of the
adversary estimate. In the context of privacy preservation,
again, it is typically unreasonable to specify the number of
groups in advance.

PPMicroCluster model [22] requires both minimum sig-
nificance and minimum radius constraints to preserve pri-
vacy. Compared to this model, our Constraint-Driven Clus-
tering model adopts a more practical constraint, i.e., min-
imum variance constraint, which describes the statistical
properties of a cluster better and can be used for a wide
range of applications. Besides, we systematically study
the complexity of the Constraint-Driven Clustering prob-
lem and propose a dynamic algorithm which is shown to
be more efficient than the static algorithm for solving the
PPMicroCluster problem.

In this paper, we introduce the Constraint-Driven clus-
tering problem. We prove the NP-hardness of the proposed

clustering problem with different constraints. Inspired by
the NP-hardness proof, we propose a novel data structure,
named CD-Tree, which organizes data points in leaf nodes
such that each leaf node approximately satisfies the signif-
icance and variance constraint and minimizes the sum of
squared distances. Based on CD-Trees, we develop an effi-
cient algorithm to generate constrained clusters with good
quality. Furthermore, benefiting from the hierarchical tree
structure, the CD-Tree algorithm can easily adapt to dy-
namic updates of the data.
The contributions of this paper are as follows:
(1) We propose the Constraint-Driven Clustering problem,
which incorporates a minimum significant constraint and
a minimum variance constraint for discovering actionable
clusters, but does not require an a priori specification of
the number of clusters.
(2) We prove the NP-hardness of the proposed clustering
problem with different constraints.
(3) We develop the efficient CD-Tree algorithm to generate
clusters w.r.t the introduced constraints.
(4) We evaluate our CD-Tree algorithm on synthetic and
real datasets and demonstrate the quality of the generated
clusters and the efficiency of the algorithm.

The rest of the paper is organized as follows. Section 2
surveys related work. Section 3 introduces the new clus-
ter model and analyzes its complexity. Section 4 presents
the CD-Tree algorithm. We report experimental results in
Section 5 and conclude the paper in Section 6.

2. RELATED WORK
Actionable Clustering. Actionable clustering was first

proposed by Kleinberg in [24], in which a clustering is eval-
uated by its utility in decision-making. By introducing a
new objective function, the goal of clustering is shifted from
identifying the true structure of the underlying distribution
to discovering useful clusters. Ester et al.[16] extend the
catalog segmentation problem [24] by introducing a new
utility measured by the number of customers that have at
least a specified minimum interest in the catalogs. A joint
optimization approach is proposed in [21] to address two
issues in market segmentation, i.e., segmenting customers
into homogeneous groups and determining the optimal pol-
icy towards each segment.

Cluster-level Constraints. The research on clustering
with constraints was introduced by [9] and systematically
studied in [31]. Both clustering models aim at partition-
ing data points into k clusters while each cluster satisfies
a significance constraint. Bradley et al. [9] proposed a
constrained k-means algorithm and suggested to achieve a
cluster assignment by solving a minimum cost network flow
problem. Tung et al. [31] propose to solve this problem by
starting with any valid clustering. The solution is repeat-
edly refined by moving some objects between clusters to
reduce the clustering cost and maintaining the constraint
satisfaction at the same time.

For the same problem, Banerjee et al. present an efficient
three-step scheme [6, 7] which gives a very general method-
ology for scaling up balanced clustering algorithms. The
same problem is converted to a graph partition problem in
[29] to discover balanced clusterings. However, the com-
plexity of the graph-based approach is higher than the one
in [6]. Different from our proposed model, all these cluster-
ing models require the number of clusters as an input.
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Instance-level Constraints. Work on instance level
constraints and clustering were first presented to the ma-
chine learning and data mining communities by Wagstaff
and Cardie [32]. In this line of work the constraints are
on instances either forcing them to be in the same cluster
(must-link) or different clusters (cannot-link). Though it
is possible to specify cluster level constraints as instance
level constraints this would require a large number of con-
straints for even moderately sized data sets. For example,
specifying all clusters must have all their points more than
δ distance apart can be achieved by must-linking all those
points less than or equal to δ distance apart [13]. Specify-
ing too many constraints is also problematic as algorithms
that attempt to satisfy all constraints can quickly be over-
constrained [12] so that efficient algorithms to find just a
single solution cannot be found even though they exist.

Clustering methods in Sensor networks. Ghiasi et
al. propose to cluster sensor nodes such that the number
of sensors in each cluster (which has a master node) is in
the range of [n

k
− δ, n

k
+ δ] and the total distance between

sensor nodes and K master nodes is minimized [18]. The
clustering problem presented in [18] is different from the
Constraint-Driven Clustering in that it specifies the num-
ber of clusters. More practical protocols are studied in the
sensor network literature to minimize the energy consump-
tion or message transmissions by grouping sensors to clus-
ters. Coyle et al.[5] proposed a randomized algorithm to
find the optimal number of cluster heads by minimizing
the total energy spent on communicating between sensors
and the information-processing center through the cluster
heads. Authors in [25] present a clustering method on self-
organizing sensor networks, for the purpose of grouping sen-
sors into the optimal number of clusters that minimize the
number of message transmissions. Similar approaches on
clustering in sensor networks also include [4, 8, 23] etc.
However, these clustering methods focus on dealing with
engineering constraints instead of systematically studying
the properties of the proposed clustering models.

k-Anonymity. The k-Anonymity model [28, 30] was
proposed for the purpose of protecting data privacy. The
k-anonymity framework archives the goal by generalizing
entries in a table with minimum cost such that every record
becomes textually indistinguishable from k−1 other records
in the table. [26] and [3] prove that k-Anonymity with Sup-
pression is NP-hard and study approximation algorithms.
The k-Anonymity model is defined on categorical data, and
thus has different properties from our model which assumes
a geometric space with the Euclidean distance. [2] intro-
duces a k-nearest neighbor based algorithm to solve the
k-anonymity problem for numerical data. Domingo-Ferrer
et al. [14] study the optimal k-partition problem which
can be considered as the k-Anonymity model in the Euclid-
ean space. And it is a special case of our model where
only significance constraints are allowed. But in [14] the
complexity of the proposed problem is not analyzed. [17]
considers privacy preservation as a problem of finding the
minimum number of hyperspheres with a fixed radius to
cover a dataset satisfying that each hypersphere covers at
least a certain number of data objects. A similar model,
named PPMicroCluster, is studied in [22] which requires
both significance and radius constraints. Compared to the
PPMicroCluster model, our model adopts a more practi-
cal constraint, i.e., minimum variance constraint which de-
scribes the statistical properties of a cluster better and can

be used for a wide range of applications. Besides, [22] does
not analyze the complexity and proposes a static algorithm.

3. PROBLEM DEFINITION AND

COMPLEXITY ANALYSIS
In this section, we introduce the Constraint-Driven Clus-

tering problem and analyze its complexity under different
types of constraints.

3.1 The CDC Problem
First we define the general Constraint-Driven Clustering

problem, also referred to as CDC problem, as follows:

Definition 1. Constraint-Driven Clustering(CDC)
Given a set of points P in d-dimensional space, a set of con-
straints C, the task is to partition P into disjoint clusters
{P1, · · · , Pm}, ∀i, j, i �= j, Pi ∩ Pj = ∅, P = P1 ∪ · · · ∪ Pm,
s.t.: (1) each cluster Pi, 1 ≤ i ≤ m satisfies all constraints
in C and (2) the sum of squared distances of data points to
their corresponding cluster representatives is minimized.

Note that a cluster representative can be either a real
data point or the mean vector of a cluster. In this paper,
we study the CDC problem under the following two types
of constraints.

Definition 2. For each cluster Pi, 1 ≤ i ≤ m,

• Significance Constraint Sig ≥ 1: |Pi| ≥ Sig.

• Variance Constraint V ar ≥ 0:
�

p∈Pi
dist(p,µ)2

|Pi|
≥

V ar, where µ is the representative of Pi.

Remark. The CDC model is general in that the con-
straint set C can include one or more constraint types. Note
that when Sig = 1, the significance constraint is trivially
satisfied, similarly the variance constraint when V ar = 0.
For the CDC problem to be meaningful, at least one of the
constraints has to be non-trivial.

In the current definition of CDC, we require the gener-
ated clusters to be non-overlapping. Yet, the CDC prob-
lem can also be extended to allow overlapping. For privacy
preservation, for example, possible overlaps among the gen-
erated clusters can not only make the model more flexible,
but also enhance privacy protection. When overlapping is
allowed, a data point assigned to multiple clusters would
contribute to the objective function (sum of squared dis-
tances) multiple times. The complexity analysis in the fol-
lowing section remains valid when overlapping is permitted
since the optimal solution for the instance in the proof can
never contain overlapping clusters.

3.2 Complexity Analysis
In this section we show that the CDC problem is NP-hard

under significance or variance constraints. We shall focus
on the significance constraint, and show how the same proof
can be easily extended for the variance constraint.

In order to study the complexity of the CDC problem,
we consider the decision version of the CDC problem with
a significance constraint only (sig-CDC) as follows.

Definition 3. (sig-CDC). Given a set of points P in d
dimensional space, a constant Sig > 1 and a cost threshold
W . Decide whether P can be partitioned into disjoint clus-
ters {P1, · · · , Pm}, which satisfies the following conditions:
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1. ∀Pi, |Pi| ≥ Sig (the significance constraint).

2.
�m

j=1

�
p∈Pj

(dist(p, pj))
2 ≤ W , where pj is the medoid

of cluster Pj and dist(p, pj) is the Euclidean distance
between p and pj.

In the following we prove that the sig-CDC problem is
NP-complete by a reduction from a known NP-complete
problem, PLANAR X3C.

Definition 4. (PLANAR X3C [15])
Given a set Q with |Q| = 3q and a set T of triples from
Q × Q × Q such that (1) every element of Q occurs in at
most three triples and (2) the induced graph is planar. (The
induced graph G contains a vertex for every element of Q
and for every triple in T . There is an edge connecting a
triple to an element if and only if the element is a member
of the triple. Clearly, G is bipartite with vertex bipartition
Q and T .) Decide whether there exists a subset of q triples
in T which contains all the elements of Q.

Theorem 3.1. sig-CDC is NP-complete for Sig ≥ 3.

Proof. First, the problem is in NP since it takes poly-
nomial time to verify whether a given clustering solution is
feasible. To prove the NP-hardness, we perform a reduc-
tion from PLANAR X3C. Given an instance I = (Q, T ) of
PLANAR X3C, we create an instance I ′ = (P, Sig, W ) of
the sig-CDC problem by the following procedure.

1. Construct a planar bipartite graph G(V, E) of the in-
stance I where V = Q ∪ T and E = {(q, t)|q ∈ Q, t ∈
T, q is a member of t}.

Figure 1: Rectilinear layout L.

2. Compute a rectilinear layout of G where each vertex v
of G is mapped to a point pv on the integer lattice. We
further enlarge the layout by a factor of 1000 to en-
sure that every two distinct horizontal (vertical) line
segments are far away enough from each other. Each
edge e = (q, t) of G is broken into a sequence of line
segments of length 5 by placing points in the rectilin-
ear layout (Figure 1). The resulting layout is denoted
as L. [33] proposed a linear time algorithm to com-
pute such a layout. A similar rectilinear layout is used
in [13] to prove the NP-completeness of the feasibility
problem for the Must-Link and ǫ constraints.

3. Replace the corresponding point pt of a triple t ∈
T by a point set Ut = {p1

t , p
2
t , p

3
t}. p1

t , p
2
t , p

3
t form

an isosceles triangle with two sides of length 2 and
one side of length 1. Ut is called triple set in the
following. Then, we connect p1

t , p
2
t , and p3

t each with
a different path of pt leading to the corresponding

Figure 2: Final layout L′

element points in the original layout. To adapt to
this change, the layout L needs to be adjusted by
allowing edge segments to be inclined. See Figure 2
for such a transformation. In the following, we refer
to points whose corresponding vertices are in Q as
element points, and refer to points in the triple sets
as triple points.

4. Break each line segment of length 5 into three seg-
ments with length 2, 1, 2 respectively, by adding two
auxiliary points to the line segment (see Figure 1).

5. Let L′ denote the final layout. Let P be the set con-
sisting of all the points in L′ and set Sig = 3 and
W = 5|P |/3.

Let m be the number of edge segments in L. Note that
|P | is a multiple of 3 since |P | = 3m + |Q| and |Q| is a
multiple of 3. For any t ∈ T , let Qt ⊂ Q be the set of
the three elements covered by t. We define a path as a
collection of line segments from a triple point pi

t ∈ Ut to its
corresponding element point pq where q ∈ Qt without going
through any other triple points. Furthermore, note that the
distance between two neighboring points on a path is 1 or
2, and the distance between two non-neighboring points is
greater than 2.

Assume that there is a set of triples C ⊂ T which covers
all elements of Q exactly once. We construct a feasible
clustering of instance I ′ with a cost of 5|P |/3 as follows.
For every triple set Ut, we first group all the three triple
points of Ut into one cluster if t ∈ C. We then start from
the first unassigned point on each path originating from
the points in Ut and group every three consecutive points
together. Figure 3 illustrates how points are grouped along
a path. Note that for any element q ∈ Qt that is covered
by t ∈ C, the corresponding point pq ∈ P is grouped with
its two closest auxiliary points on the path from pi

t to pq.
Since q is only covered by one triple in C, pq is uniquely
assigned to one cluster. Furthermore, every cluster has a
cost of 5 (including those clusters consisting of all the points
in a triple set). Thus, we obtain |P |/3 clusters each with a
cost of 5 so that the total cost is 5|P |/3.

Now assume that there is a feasible clustering with the
total cost smaller than or equal to 5|P |/3. We demonstrate
how to obtain a subset of triples C ⊂ T that covers every
element in Q exactly once. First we prove that any feasible
clustering consists of |P |/3 disjoint clusters each consist of 3
points. For any i ≥ 3, let Hi denote the number of clusters
consisting of i points. We have |P | =

�
i iHi and the total

number of clusters is
�

i Hi. Note that the minimum cost
of a cluster with three points is 5 by grouping three points
connected through two consecutive edges and choosing the
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Figure 3: (a). Points in a triple set are grouped into
one cluster. (b). Points in a triple set are grouped
separately with auxiliary points.

middle point as the medoid. Furthermore, every additional
node in a cluster with more than three points contributes
at least 4 to the total cost (check the cluster containing four
points in the dashed circle in Figure 2). Thus,

5|P |/3 ≥ total clustering cost
≥ �

i 4(i − 3)Hi + 5
�

i Hi = 4
�

i iHi − 7
�

i Hi.

Hence
�

i Hi ≥ |P |/3 since |P | =
�

i iHi. Besides, since
the cost of a cluster is at least 5 and the total cost is at
most 5|p|/3, �i Hi ≤ |P |/3. Thus

�
i Hi = |P |/3. Thus

we can conclude that there must be |P |/3 disjoint clusters,
each consists of 3 points and has a cost of 5.

In a feasible clustering, observe that all the points in a
triple set either (a) form a single cluster, or (b) belong to
three different clusters, otherwise at least one cluster would
cost more than 5. We call a triple set Ut is of type (a) if (a)
happens. Define G = {t ∈ T |Ut is of type (a)}. It remains
to show that G covers every element in Q exactly once. If Ut

is of type (a), each of the three points in Qt must be grouped
into different clusters with the two nearest auxiliary points
along the path from Ut (See Figure 3(a)). If Ut is of type
(b), none of the points in Qt is grouped with points along
the paths from Ut (See Figure 3(b)). Since every element in
Q is uniquely assigned to a cluster, T must consist of |Q|/3
type (a) triples (i.e., |G| = |Q|/3). These triples must cover
every element in Q exactly once.

Next we demonstrate that the sig-CDC problem remains
NP-Complete if using the mean vector (instead of the medoid)
of a cluster as the representative. We refer to this model
as µ-sig-CDC. Due to limited space, we only present the
sketch of NP-hardness proof for the following problems.

Theorem 3.2. The µ-sig-CDC problem is NP-complete.

Proof. (Sketch.) The proof is by a reduction from
PLANAR X3C that is similar to the one for Theorem 3.1.
We first construct a rectilinear layout for a PLANAR X3C
instance and replace each triple set by an isosceles trian-
gle with two sides of length

√
37 and one side of length 2.

See Figure 4 for the final layout. Next, we set the signif-
icance constraint Sig = 3 and set the total cost threshold
W = 26|P |/3. Similar to the proof of Theorem 3.1, we
can show that in a feasible clustering, there must be ex-
actly |P |/3 disjoint clusters, each consists of three points

Figure 4: Transformed Layout for Theorem 3.2 and
Theorem 3.3.

and has a cost of 26. Given this, we can show that there
is a feasible clustering if and only if the corresponding in-
stance of PLANAR X3C has a feasible solution. Hence, the
µ-sig-CDC problem is NP-complete.

Finally, we apply the previous technique to show that
the CDC problem is NP-Complete if only a variance con-
straint is specified and mean vectors are used as the cluster
representatives. We refer to this model as µ-var-CDC.

Theorem 3.3. The µ-var-CDC problem is NP-complete.

Proof. (Sketch) To prove that the µ-var-CDC problem
is NP-Complete, we use the same construction for proving
Theorem 3.2. We set the variance constraint V ar = 26/3
and set the total cost W = 26|P |/3. Let Cl be an ar-
bitrary cluster and denote by Cost(Cl) the total cost of
Cl. Note that due to the minimum variance constraint,
Cost(Cl) ≥ 26|Cl|/3, and by a case analysis we can show
that the equality holds only when |Cl| = 3. Hence, in order
to have a total cost of 26|P |/3, we must have |P |/3 disjoint
clusters each of which consists of 3 points. The rest of the
proof is similar to that of Theorem 3.2.

4. ALGORITHM
In the last section we have shown that the CDC problem

with either a significance or a variance constraint is NP-
hard. In order to efficiently solve the CDC problem, we
design a heuristic algorithm which builds a compact tree
structure to generate clusters satisfying user specified con-
straints. The algorithm is general in that it can handle both
constraints separately or together.

We observe that a solution to the CDC problem has
the following characteristics. (1) To minimize the objec-
tive function (the sum of squared distances), the generated
clusters in an optimal solution should be balanced in terms
of given constraints. For example, when only a significance
constraint is provided, the generated clusters in an opti-
mal solution should contain similar number of data points.
(2) The membership assignment of any data point can be
decided by considering its close neighbors. Thus, easily re-
trieving the local neighborhood of data points is critical to
the design of a universal algorithm that can handle differ-
ent constraints. Guided by these observations, we propose
an algorithm based on a novel data structure, called the
CD-Tree, which is similar to the B-Tree and CF -Tree [34].

4.1 The CD-Tree
The CD-Tree has two input parameters, i.e., a signifi-

cance parameter S, a variance parameter V . Normally we
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set S = Sig and V = V ar, i.e., the parameters of the CDC
problem. If one of the CDC constraints is trivial, meth-
ods for automatically determining appropriate parameter
values are needed which are discussed in Section 4.4.

In a CD-Tree, the maximum capacity of leaf nodes is
set to 2S − 1 and the variance of points in leaf nodes is
upper bounded by 2V . Note that the CDC problem spec-
ifies minimum constraints on the significance and variance
of a cluster, while in the CD-Tree we specify upper bounds
for the significance and variance of leaf nodes in order to
keep them compact. Keeping leaf nodes compact matches
our goal of minimizing the sum of squared distances of gen-
erated clusters since points in leaf nodes will be used to
generate constrained clusters to solve the CDC problem.

It is appropriate to upper-bound the variance, because a
too small variance may yield too many leaf nodes, while a
too large variance will make the statistical information of
this leaf node less meaningful when it is used to direct a
new point to its closest leaf node. We set 2V as the upper
bound of the variance since it makes leaf nodes to be rea-
sonably compact and to likely satisfy the minimum variance
constraint V ar. The maximum capacity of leaf nodes is set
to 2S −1 since, as we show in the following lemma, there is
always an optimal solution where the number of points in
every cluster is smaller than 2Sig.

Lemma 4.1. In the µ-sig-CDC problem, there exists an
optimal clustering s.t. the number of data points in any
cluster is less than 2Sig and greater than or equal to Sig.1

Proof. By contradiction. Assume that in every opti-
mal clustering, there is a cluster C containing l data points
where l ≥ 2Sig.

We arbitrarily split C into two clusters C1 and C2 where

|C1| = Sig and |C2| = l − Sig. Let
−⇀
M be the mean vector

of the points in C. Similarly let
−⇀
M1 and

−⇀
M2 be the mean

vectors of the points in C1 and C2 respectively. Note that

−⇀
M =

1

l

��
p∈C1

−⇀p +
�

q∈C2

−⇀q
�

=
1

l
[Sig

−⇀
M1 + (l − Sig)

−⇀
M2] (1)

Let f(C) be the objective value of Cluster C. We have

f(C) =
�
p∈C

(−⇀p −−⇀
M)2 =

�
p∈C

−⇀p 2 − l
−⇀
M2,

since
�

p∈C
−⇀p = l

−⇀
M . Similarly, f(C1) =

�
p∈C1

−⇀p 2 −
Sig

−⇀
M1 and f(C2) =

�
q∈C2

−⇀q 2 − (l − Sig)
−⇀
M2

2.
Applying Equation 1 and straightforward algebra, we get

f(C) − (f(C1) + f(C2))

= Sig
−⇀
M1

2 + (l − Sig)
−⇀
M2

2 − l
−⇀
M2

=
Sig(l − Sig)

l
(
−⇀
M1

2 +
−⇀
M2

2 − 2
−⇀
M1

−⇀
M2) ≥ 0 (2)

Thus, we could obtain a clustering whose objective value
is smaller than or equal to the previous one by splitting C
into C1 and C2, yielding a contradiction.

1Note that a similar result is presented in [14].

In the CD-Tree, each entry of a leaf node represents an
individual data point. The maximum capacity of a non-
leaf node is set to Z which is a constant and can be set
arbitrarily. Every entry of a non-leaf node corresponds to
the subtree rooted at one of its child nodes. The entry
stores a pointer to the child node, as well as the statistical
information (the mean vector, linear sum and squared sum)
of all the points in the corresponding subtree. Similar to
the CF -Features [34], the statistical information is used
to direct a new point along a path to the closest leaf node.
Besides, all the leaf nodes are linked together for easy access
of their neighborhood.

The construction of a CD-Tree relies on two basic oper-
ations: insertion and split. The CD-Tree algorithm takes
one data point at a time and inserts it into an appropriate
leaf node following the path from the root. A tree node is
split into two nodes whenever its capacity is exceeded. The
CD-Tree is constructed by repeatedly invoking these two
operations until all data are processed. After the CD-Tree
is ready, some post-processing is needed to generate clusters
that satisfy the constraints of the CDC problem.

This approach has three advantages: (1) Building a CD-
Tree requires only one scan of a dataset so that the disk
access is minimized. (2) Benefiting from the tree structure,
our approach can easily deal with incremental updates of
the dataset. (3) The CD-Tree algorithm ensures that the
points in the same leaf node are similar to each other. Thus
it is sufficient to examine only the neighboring leaf nodes
whenever there is some change to the required constraints.

Insertion. Given a new data point p, we first locate the
leaf node that p shall be inserted into. Starting from the
root of the CD-Tree, every time we pick the subtree whose
mean vector (which is part of the statistical information) is
the closest to p. Repeat this process until we reach some
leaf node. If the variance of a leaf node exceeds the thresh-
old after inserting p, we need to create a new leaf node to
accommodate it.

Split. In the construction of the CD-Tree, a split is
invoked whenever the capacity of a node is exceeded. The
proof of Lemma 4.1 provides an efficient way to evaluate the
drop of the objective value during a split. Based on Equa-
tion 2, we design an efficient algorithm to split a group of 2S
data points C into two clusters C1 and C2 (Algorithm 1).
The algorithm proceeds in a greedy fashion. First we pick
the point that is farthest from C’s mean vector and add
it to C2. Then we iteratively add points that are closest
to C2’s mean vector into C2 until the objective value stops
decreasing. And C1 keeps all remaining points in C. Split-
ting non-leaf nodes can be done similarly by considering the
mean vector saved in the entries of the non-leaf nodes.

Finally, after each split, we need to decide how to link the
newly created leaf nodes with the existing nodes. Suppose
we just split a leaf node C into C1 and C2. Let Cprev

and Cnext be the both neighbors of C before split. There
are two ways to link C1 and C2. Let µ(C) be the mean
vector of C. If |µ(Cprev) − µ(C1)| ≤ |µ(Cprev) − µ(C2)|,
we create links Cprev → C1 → C2 → Cnext, otherwise
Cprev → C2 → C1 → Cnext.

4.2 Solving the CDC problem
After we construct a CD-Tree, the CDC problem can be

solved by post-processing the leaf nodes of the CD-Tree.
Similar to many other hierarchical tree structures, a CD-
Tree has the property that data points located in the same
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Algorithm 1 Splitting a group of 2S points.

1: Input: C contains 2S points
2: Output: C1 and C2

3: C1 = C; size = |C1|;
4: Set

−⇀
M1 to the mean vector of points in C1;

5: Pick the point p in C1 that is farthest from
−⇀
M1;

6: Remove p from C1 and update
−⇀
M1;

7: C2 = {p}; −⇀M2 = −⇀p ;

8: MaxObjDrop = (size−1)
size

(
−⇀
M1

2 +
−⇀
M2

2 − 2
−⇀
M1

−⇀
M2);

9: for i = 2 to S do
10: Pick a point p′ from C1 that is nearest to

−⇀
M2;

11: Remove p′ from C1 and update
−⇀
M1;

12: Add p′ to C2 and update
−⇀
M2;

13: ObjDrop = (size−i)
size

(
−⇀
M1

2 +
−⇀
M2

2 − 2
−⇀
M1

−⇀
M2);

14: if ObjDrop ≥ MaxObjDrop then
15: Continue;
16: else
17: Remove p′ from C2 and add p′ back to C1;
18: end if
19: end for

Figure 5: (a) Data Points. (b) Visualization of the
CD-Tree.

subtree tend to be more similar than the points located in
different subtrees. By linking tree nodes appropriately, we
are able to retrieve the neighbors of any data point easily.
For example, Figure 5 shows a small dataset and its corre-
sponding CD-Tree. In this figure, dashed circles represent
leaf nodes and solid circles correspond to non-leaf nodes of
the CD-Tree. Since every new data point is inserted into
the tree based on its distance to the mean vectors of sub-
trees, data points in l1 are more similar to data points in l2
than to data points in l3 or l4. This allows us to postprocess
the neighboring leaf nodes to obtain constrained clusters.

We propose a sliding window approach for solving the
CDC problem. A sliding window consists of exactly Z leaf
nodes with the same parent node. Starting with the first
leaf node in the window, we examine one leaf node at a
time. Depending on the given significance constraint Sig
and variance constraint V ar, we distinguish between two
types of a leaf node L. L is called qualified if L has at
least Sig points and variance at least V ar, otherwise not-
qualified. For every qualified leaf node L, we output its
“kernel”, which is a subset of points of L that just satisfies
the given constraints. Kernels can be easily calculated using
a greedy approach (Case a of Algorithm 2). The remaining
points in L are treated together with those under-qualified
leaf nodes. We repeatedly absorb points from other leaf
nodes in the same window to form clusters that satisfy the
given constraints (Case b of Algorithm 2). Note that all
the points which have been assigned to some clusters are
not considered in case b. After looping through all the leaf
nodes, a set of constrained clusters is generated.

Algorithm 2 Cluster leaf nodes

1: Input: significance constraint Sig, variance constraint
V ar, a leaf node L.

2: Output: a set of constrained clusters
3: Q = ∅

Case a:
4: if L.size ≥ Sig and L.var ≥ V ar then
5: insert the point closest to L.mean to Q
6: while Q.size < Sig or Q.var < V ar do
7: Add the point closest to the Q.mean from L to Q
8: end while
9: Output Q

10: L = L \ Q, apply Case b to L
11: end if

Case b:
12: while L.size < Sig or L.var < V ar /*not-qualified*/

do
13: Absorb similar points from other leaf nodes in the

same window following the link, shift the window if
all points in the current window are absorbed

14: end while
15: Output L

4.3 Runtime Analysis
We assume that both CDC constraints are non-trivial.

In order to analyze the runtime of the CD-Tree algorithm,
we first bound the height of a CD-Tree. In the worst case,
a CD-Tree can have O(n) levels if every inserted point trig-
gers a split and every split results in two leaf nodes contain-
ing 2Sig − 1 points and one point respectively.

An insertion of a single point into the CD-Tree involves
two operations: locating the right leaf node to insert the
point and splitting the leaf node if its capacity is exceeded.
The time to locate the right leaf node is O(n) since the
height of the CD tree is O(n). In a split (Algorithm 1),
we create a new node starting with the farthest point from
the mean of the old node (which can be found in O(Sig)
steps), and gradually absorb the closest point to the mean
of the new node (each of the O(Sig) absorptions takes
O(Sig) steps). Hence, the runtime of a split is O(Sig2).
For building a CD-Tree with n points, the total runtime is
O(n2 + Sig2n) in the worst case.

In the phase of postprocessing the CD-Tree to solve the
CDC problem, if the variance constraint V ar is not speci-
fied, generating a valid cluster consisting of O(Sig) points
requires O(Z ·Sig2) steps since there are at most O(Z ·Sig)
points in a sliding window of length Z which is often con-
sidered as a constant. Thus, generating a set of O(n/Sig)
valid clusters takes O(n ·Sig) steps. If a variance constraint
V ar is also specified, the number of points in a valid cluster
could be O(n) in the worst case (imagine that there is only
one valid cluster containing all data points). In such a case
the runtime of the second phase is O(n2). Therefore, the
overall runtime is O(n2 + Sig2n).

Yet, in practice, Sig is typically small compared to n. If
the data distribution is not highly skewed, the height of the
CD-Tree is usually small. In such cases, our algorithm is
very efficient as demonstrated by the experimental evalua-
tion in Section 5.

4.4 Discussion
How to handle a trivial variance constraint? If a
variance constraint is trivial, i.e., V ar = 0, we need to set
the variance parameter V used for the CD-Tree construc-
tion automatically. A suitable threshold should allow Sig
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closest points to be grouped together. Ideally, if we know
the average Sig nearest neighbor distance of a dataset, this
distance can be used to approximate the variance parame-
ter. However, the exact computation of the average Sig
nearest neighbor distance is expensive. Therefore, we pro-
pose to estimate the Sig nearest neighbor distance based
on the following lemma.

Lemma 4.2. Given a dataset of n points that are uni-
formly distributed in a d dimensional space with volume
V ol. Fix any point p, let R be the random variable indicat-
ing the radius of the smallest enclosing ball of the Sig near-
est neighbors of p. Let R∗ = π−1/2 d

�
Sig · V olΓ(d/2 + 1)n−1

where Γ is the Gamma Function [1]. Then

Pr[2−3/dR∗ ≤ R ≤ 22/dR∗] ≥ 1 − 2e−Sig.

Proof. We first show that Pr[R > 22/dR∗] ≤ n−2. Let

H be the hypersphere with radius 22/dR∗ centered at p. Let
vol(H) be the volume of H . Then, from [1], we have

vol(H) = π
d
2 (22/dR∗)d(Γ(d/2 + 1))−1 = 4Sig · V ol/n.

Let Q be a random variable indicating the number of points
in H . We have E[Q] = n · vol(H)/V ol = 4Sig. Using
Chernoff’s bound we obtain Pr[Q < Sig] ≤ Pr[Q < (1 −
3/4)E[Q]] < eE[Q]·(3/4)2/2 ≤ e−Sig. Consequently Pr[R >

22/dR∗] ≤ Pr[Q < Sig] < e−Sig. Similarly we can show

that Pr[R < 2−3/dR∗] < e−Sig so the result follows.

Lemma 4.2 shows that we can estimate the Sig nearest
neighbor distance with high probability if we know the vol-
ume V ol of a dataset for uniformly distributed data. In
practice, if the volume is not known, we can draw a small
set of samples to obtain a good estimation.
How to handle a trivial significance constraint? A
CD-Tree requires a meaningful significance constraint to set
its leaf node capacity. If the supplied significance constraint
is 0 and only a variance constraint V ar is given, we can
estimate the number of points located in a hypersphere of
radius

√
V ar for uniformly distributed data and set the

number to be Sig. Let vol(H) be the hypersphere with

radius
√

V ar and V ol be the volume of a dataset. The
expected number of points located in this hypersphere is n ·
vol(H)/V ol, n is the total number of points in the dataset.

Figure 6: Results for Dataset DS1 (Only signifi-
cance constraints are specified).

5. EXPERIMENTAL EVALUATION
In this section, we experimentally demonstrate the ef-

ficiency and effectiveness of the CD-Tree algorithm using
real and synthetic datasets.

Figure 7: Results for Dataset DS1 (Both signifi-
cance and variance constraints are specified).

5.1 Methodology
In order to evaluate the CD-Tree algorithm for sensor

network applications, we generated a synthetic dataset (DS1)
consisting of 5000 two dimensional data points which simu-
lates a sensor network with 5000 sensors uniformly deployed
in a two dimensional space. A similar simulation was used
in [20] to evaluate clustering results for sensor networks.
In addition, we evaluated the CD-Tree algorithm on two
real datasets. The first one is the “Abalone” dataset and
the second one is the “Letter” dataset. Both datasets are
from UCI machine learning repository [27]. The “Abalone”
dataset was also used by [2] for evaluating the quality of
the condensation group approach for privacy preservation
applications. The original abalone dataset contains 4177
data points and 9 attributes. We preprocessed the dataset
and kept 7 out of total 8 continuous attributes since one
of the attributes is the class label. The Letter dataset in-
cludes 20,000 instances and has 16 continuous attributes.
Finally, we generated three large synthetic datasets, con-
taining 0.5 million, 1 million, and 2 million three dimen-
sional data points, to evaluate the scalability of the CD-
Tree algorithm.

Figure 8: Results for Abalone Dataset (Only signif-
icance constraints are specified).

Two related approaches, the PPMicroCluster algorithm
[22] and the condensation group approach [2], solve a con-
strained clustering problem similar to the CDC problem.
We chose the PPMicroCluster algorithm as our compari-
son partner due to the following reasons. First, its problem
definition is equivalent to the CDC problem except that
is specifies a radius constraint instead of a variance con-
straint. Different from the variance, the radius of a cluster
is the maximum distance between all points in a cluster
to the cluster representative. We have adapted the PPMi-
croCluster algorithm to handle the variance constraint in
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Figure 9: Results for Abalone Dataset (Both signif-
icance and variance constraints are specified).

order to have a meaningful comparison. Second, the PPMi-
croClustering problem generalizes the condensation group
approach (which has only the significance constraint), and
the significance constraint is handled by the PPMicroClus-
ter algorithm in the same style as by the condensation group
approach. Note that the following experiments were con-
ducted on the static phase of the PPMicroCluster algorithm
since we did not evaluate the incremental updates of data-
bases and the static phase of the PPMicroCluster algorithm
is more effective due to the availability of the global knowl-
edge for all data points.

5.2 Results
We compared the two algorithms from two aspects, clus-

tering quality and runtime. We set the same parameters
for both algorithms and ran them on the aforementioned
datasets. The clustering quality is measured by the sum
of squared distances of data points to their corresponding
cluster representatives. Note that the CD-Tree and the
adapted PPMicroCluster algorithm both satisfy the same
constraints, but with possibly different compactness of the
discovered clusters. For the CD-Tree algorithm, we set the
capacity of non-leaf nodes to 20 and the runtime is the to-
tal time spent on building a tree and generating constrained
clusters from the tree. For the PPMicroCluster algorithm,
we assume an index structure (R-Tree) existing for support-
ing fast k-nearest-neighbor query. The runtime only records
the time spent on generating valid clusters based on the in-
dex structure, excluding the index construction time. All
the experiments were conducted on a server with an Intel
Pentium IV 3.0GHz CPU and 2GB memory running the
Window Server 2003.

Figure 10: Results for the Letter Dataset (Only
significance constraints are specified).

Figure 11: Results for the Letter Data set (Both
significance and variance constraints are specified).

For dataset DS1, the results are presented in Figure 6
and 7 for significance constraints only and both constraints
respectively. For both comparisons, the CD-Tree algorithm
outperforms the PPMicroCluster algorithm in terms of clus-
tering quality. Similar behavior is observed on the abalone
dataset, for which the results are depicted in Figure 8 and
9. Due to the smaller size of the abalone dataset, both
algorithms require comparable time.

For the larger Letter dataset (see Figure 10 and 11), we
observe that the PPMicroCluster algorithm slightly outper-
forms the CD-Tree algorithm in terms of clustering quality.
This behavior is expected since the PPMicroCluster algo-
rithm relies on an index structure to maintain an accurate
neighborhood relations among data points, while the tree
structure built by the CD-Tree algorithm only keeps ap-
proximate neighborhood relations among data points. How-
ever, the CD-Tree algorithm runs more than 100 times
faster than the PPMicroCluster algorithm. A small sac-
rifice of the clustering quality is reasonable for a dynamic
algorithm like the CD-Tree algorithm.

# of points 0.5 million 1 million 2 million

Runtime (in seconds) 160 295 677

Table 1: Scalability vs. Number of Points.

In order to evaluate the scalability of the CD-Tree al-
gorithm to large datasets, we generated three synthetic
datasets with 0.5 million, 1 million, and 2 million three
dimensional data points. We evaluated only the CD-Tree
algorithm on these synthetic datasets since the PPMicro-
Cluster algorithm can not handle such large datasets. The
runtime results of the CD-Tree algorithm with the signif-
icance constraint Sig = 30 are presented in Table 1. In
order to evaluate the impact of different values of the con-
straints, we apply the CD-Tree algorithm on the dataset
with 1 million points. Table 2 contains the runtime results.

Constraint Combinations Runtime (in seconds)
Sig = 20, V ar = 0 231
Sig = 30, V ar = 0 295
Sig = 40, V ar = 0 402

Sig = 30, V ar = 0.7 408
Sig = 30, V ar = 1.1 438
Sig = 30, V ar = 1.5 471

Table 2: Scalability vs. Different Constraints.
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6. CONCLUSION
Clustering methods can be either data-driven or need-

driven. Among need-driven methods, constrained cluster-
ing captures application requirements by specifying con-
straints. In this paper, we have introduced a novel clus-
tering model, Constraint-Driven Clustering (CDC), which
aims at utilizing constraints to drive the cluster formation.
We have focused on two constraint types, i.e., minimum
significance constraints and minimum variance constraints,
for discovering actionable clusters for applications such as
energy aware sensor networks and privacy preservation ap-
plications. We have proved the NP-hardness of the pro-
posed CDC problem with difference constraints. We have
also proposed a novel dynamic data structure, the CD-Tree,
which keeps dataset summaries that approximately satisfy
the given constraints by minimizing the sum of squared dis-
tances during its construction. Based on CD-Trees, an effi-
cient algorithm is developed for the new clustering problem.
Our experimental evaluation on synthetic and real datasets
showed that our algorithm yields good clusters efficiently.

This paper suggests several interesting directions for fu-
ture research. First, some issues related to our heuristic
algorithm, such as how the maximum capacity of a non-
leaf node influences the final partition and how effective
is our heuristic algorithm on high dimensional data, can
be further studied. Second, we want to evaluate the CDC
model in real life applications. Third, the application needs
may not always suggest exact values for the significance and
variance constraints. Therefore, it is worthwhile to explore
variants of the CDC model that allow the user to specify
ranges instead of a fixed minimum value. Finally, we be-
lieve that the CDC framework and the CD-Tree algorithm
can be generalized to include other constraint types, such as
minimum separation constraints [11], to produce actionable
clusters in an even broader category of applications.
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