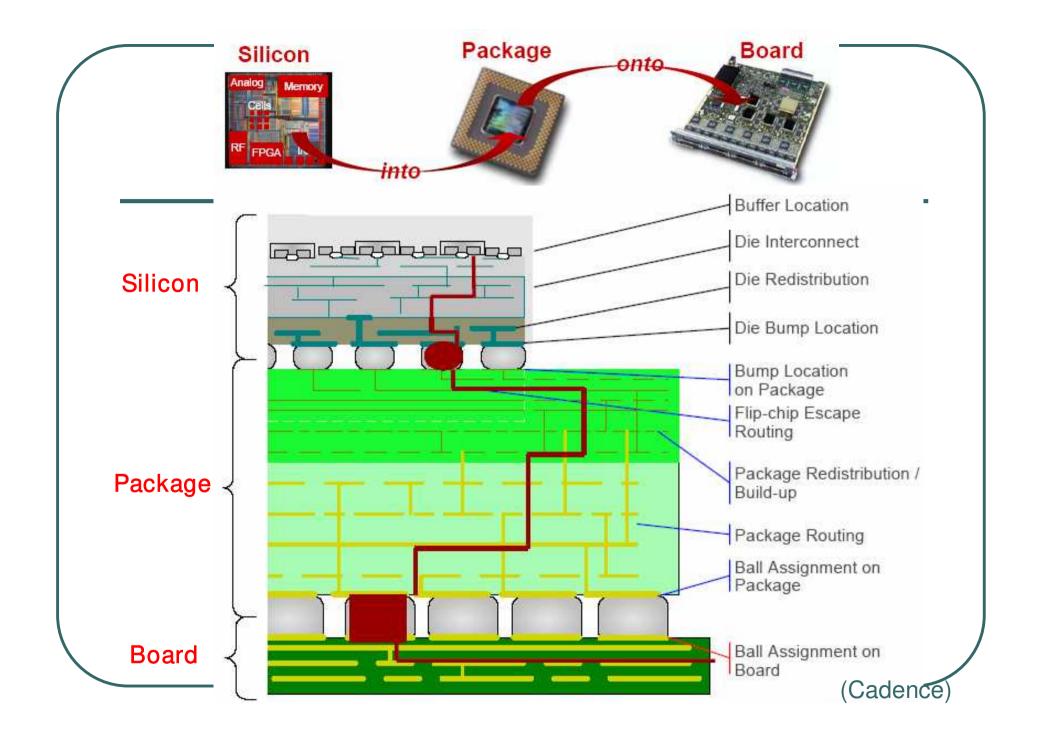
Constraint Driven I/O Planning and Placement for Chip-package Co-design

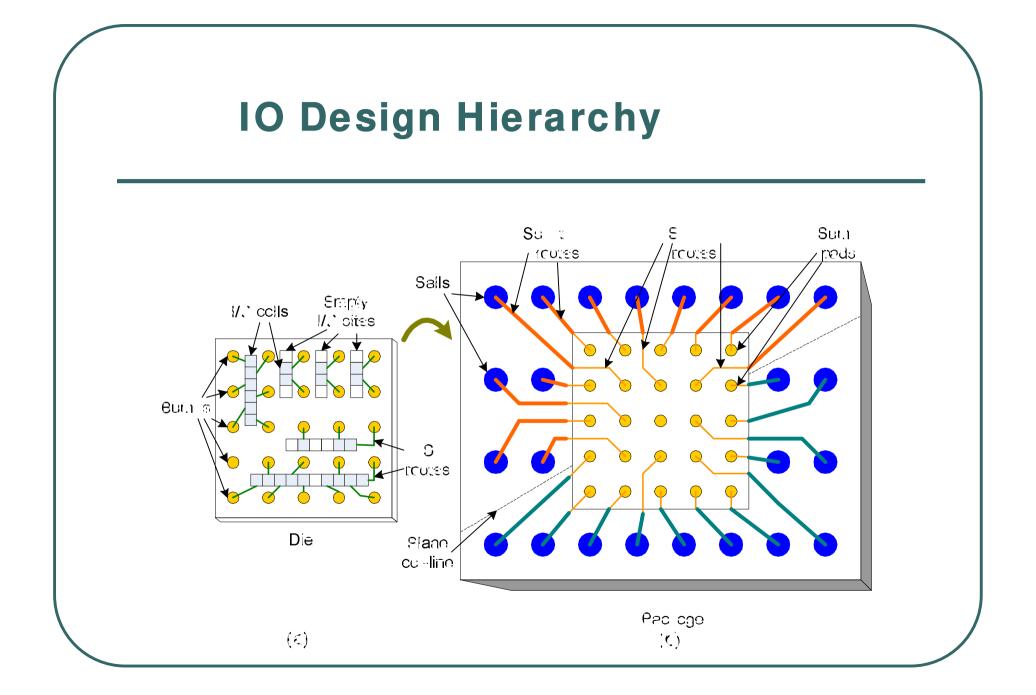

Jinjun Xiong, Yiuchung Wong, Egino Sarto, Lei He

University of California, Los Angeles Rio Design Automation, Inc.

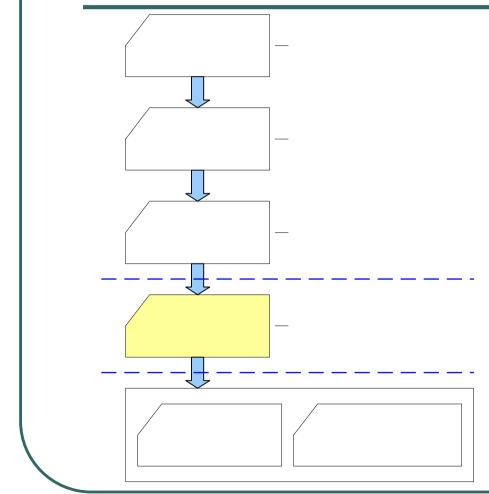
Agenda

Motivation

- Overview of our approach
- Chip-package aware design constraints
- CIOP: constraint-driven I/O placement problem formulation
- Multi-step CIOP algorithm
- Experiment results
- Conclusion



I/O Placement for Flip-chip


- I/O placement is the key to chip and package co-design
- It faces the following challenges
 - I/O cells placed anywhere on the die
 - Consider the bump locations on the package
 - Timing closure
 - Signal integrity (SI)
 - Power integrity

Major Contributions

- A design flow with respect to a set of design constraints
- A new formulation of constraint-driven I/O placement
- An effective multi-step design methodology for chip-package co-design

Co-design Methodology

- Global I/O and core coplacement
- Bump array placement
 - Areas for bump pads
- I/O site definition
 Areas for I/O cells
- Constraint driven detailed I/O placement
- I/O placement consists of three essential sub-problems
 - Placement of bump arrays
 - Placement of I/O sites
 - Placement of I/O cells

Power Integrity Constraints

- Power domain constraint
 - I/O cell voltage specification
 - Cells from same domain prefer physically closer
- Minimize power plane cut lines in the package
 - Provide proper power reference plane for traces
 - Depend on physical locations of I/O cells
- Proper signal-power-ground (SPG) ratio
 - Primary and secondary P/G driver cells
 - Minimize voltage drop and Ldi/dt noise

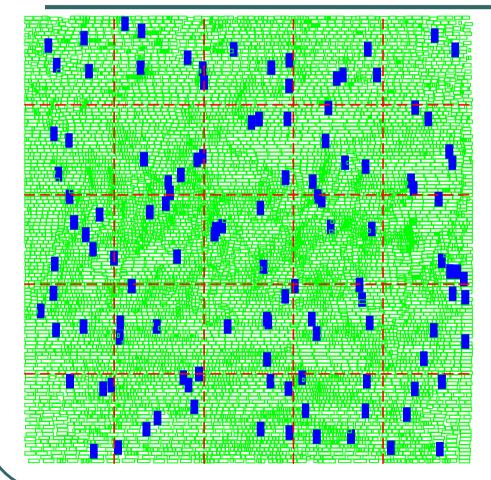
Timing Constraints

- Substrate routes in package varies significantly
 - Length spans from 1mm to 21mm
 - Timing varies more than 70ps for SSTL_2
- I/O cells with critical timing constraints shall take this into account
 - Differential pair prefer to escape in parallel

I/O Standard Related Constraints

- High-speed design \rightarrow high-speed I/O
- I/O standard requirements
 - Relative timing requirements on signals
 - Likely to be connected to the same interface at other chips, so prefer to keep relative order to ease routing
- Closeness constraint
- Bump assignment feasibility constraint

- Top-down design flow
 - PCB floorplan
- Bottom-up design
 - Chip floorplan
- I/O cells have region preference
 - Which side?
 - What location?

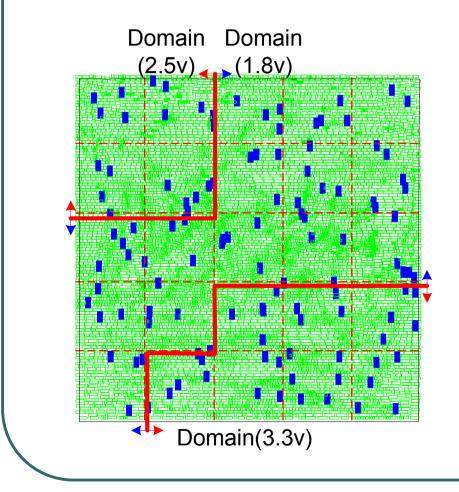

CIOP Problem Formulation

- Given: a fixed die size, a net-list with I/O cells, a set of design constraints
- Find:
 - Placement of bump arrays
 - Placement of I/O site
 - Legal placement of I/O cells
- Such that: all design constraints are satisfied
 - Wire length is also minimized

Agenda

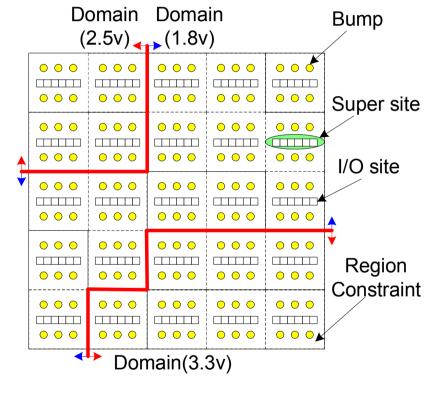
- Motivation
- Overview of our approach
- Chip-package aware design constraints
- CIOP: constraint-driven I/O placement problem formulation
- Multi-step CIOP algorithm
 - Constraint-driven global I/O planning
 - Constraint-driven detailed I/O placement
- Experiment results
- Conclusion

Global I/O and Core Co-placement



- Wire-length driven
- Constraint driven
 - Minimize power domain slicing on the package planes
- Grid-based
 - Uniformity
- No restriction on a particular global placement engine
 - Force-directed
 - Partition-based
 - Analytic-based

Global I/O and Core Co-placement


- Additional components to cost function
 - Region constraint: quadratic penalty functions
 - SI constraints and escapability constraints → bin capacity constraints
 - High level abstraction for efficiency consideration
- Power domain constraints: I/O cells from the same power domain closer to each other
 - Add a virtual net to connect I/O cells belonging to the same domain
 - Each bin is assigned to at most one power domain
 - Decided by the majority I/O cells' power domain property
 - Adjacent bins of the same domain are merged
 - If one power domain is too fragmented, the corresponding virtual net will be given a higher weight in the next placement run

Global I/O and Core Co-placement

- Power domain definition
 - Majority I/O cells location
 - Modeled in global placement
- Translated to region constraints for I/O cells for the following steps

Bump and Site Definition

- Regular bump pattern is preferred
 - Escapability analysis
 - Regular I/O site is preferred
 - I/O proximity
 - RDL planar routability analysis
 - I/O sites more than I/O cells
 - SPG ratio consideration
 - Flexibility for later bump assignment
- I/O super site: a cluster of I/O sites

Agenda

- Motivation
- Overview of our approach
- Chip-package aware design constraints
- CIOP: constraint-driven I/O placement problem formulation
- Multi-step CIOP algorithm
 - Constraint-driven global I/O planning
 - Constraint-driven detailed I/O placement
- Experiment results
- Conclusion

ILP Feasibility Problem for Super Site Assignment

$$\sum x_{i,j} \le \overline{p_j}, \quad \forall S_j$$

 \mathbf{U} .

$$\sum (x_{i0,j} + x_{i1,j}) \le \overline{d_j}, \quad \forall S_j$$

$$x_{k,j} = \mathbf{0}, \quad \forall c_k \in C_i^R, \forall S_j \notin R_i$$

$$x_{i0,j} = x_{i1,j}, \quad \forall D_i, \forall S_j$$

- One I/O cell to one I/O site
- (2) I/O site
 capacity const
 (3) Differential
- (3)
 Differential pair capacity
 - Region constr.
- (5) Differential pair const.

ILP Feasibility Problem for Super Site Assignment

$$\begin{split} l_{i,x}^{min} &\leq a_j \cdot x_{k,j} + u_R \cdot (1 - x_{k,j}), \quad \forall c_k \in C_i^L, \forall L_i, \forall S_j \\ a_j \cdot x_{k,j} + u_L \cdot (1 - x_{k,j}) \leq l_{i,x}^{max}, \quad \forall c_k \in C_i^L, \forall L_i, \forall S_j \\ l_{i,x}^{max} - l_{i,x}^{min} \leq \overline{l_{i,x}}, \qquad \forall L_i \\ l_{i,y}^{min} &\leq b_j \cdot x_{k,j} + u_T \cdot (1 - x_{k,j}), \quad \forall c_k \in C_i^L, \forall L_i, \forall S_j \\ b_j \cdot x_{k,j} + u_B \cdot (1 - x_{k,j}) \leq l_{i,y}^{max}, \quad \forall c_k \in C_i^L, \forall L_i, \forall S_j \\ l_{i,y}^{max} - l_{i,y}^{min} \leq \overline{l_{i,y}}, \qquad \forall L_i \end{split}$$

Captures clustering constraints (L_i, C_i^L)

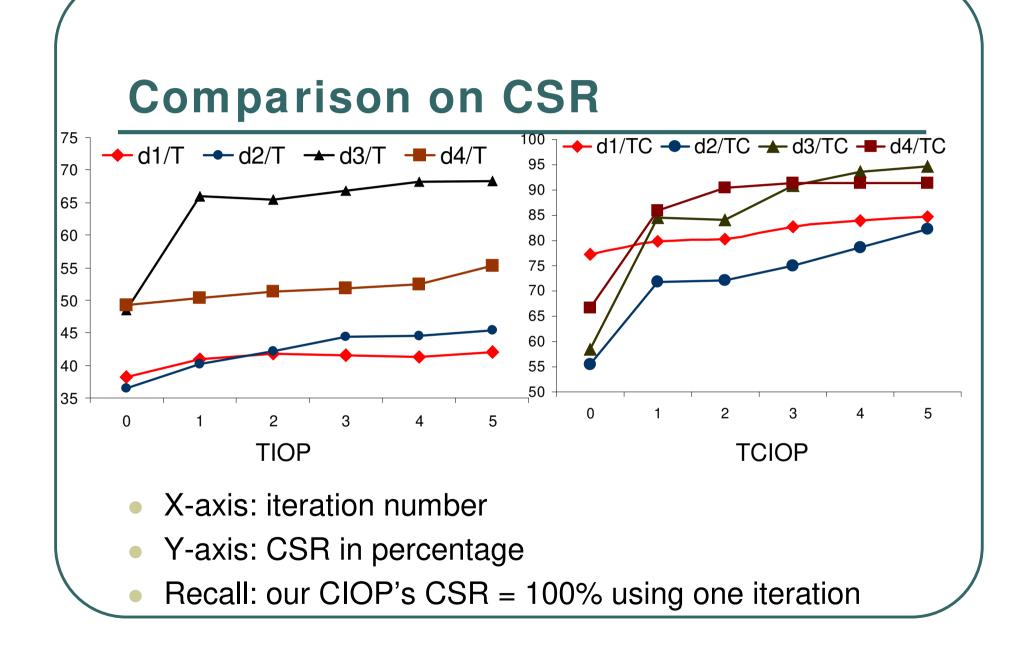
Legal Assignment of I/O Cells to I/O Sites

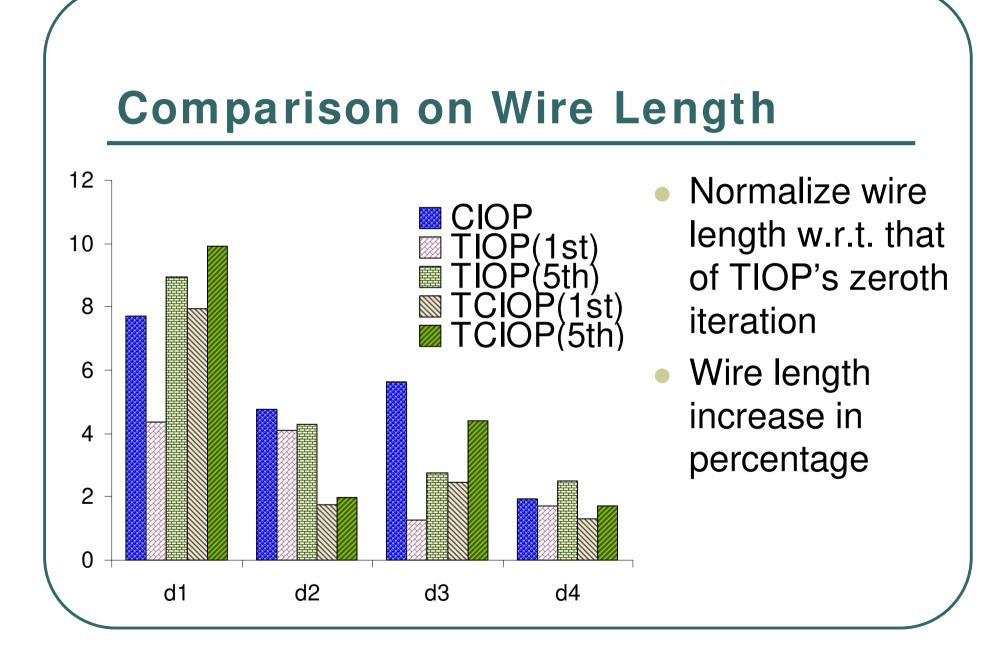
- Solved on a per super site basis
- Min-cost-max-flow problem
 - A bipartite graph G(V1,V2,E)
 - V1: the set of I/O cells assigned to the super site
 - V2: the set of I/O cells within the super site
 - E: the feasible connection between V1 and V2
 - Query bumps escape layer properties
 - Query substrate route characteristics: e.g., impedance, route length
 - Determine whether or not an I/O cell is allowed to be assigned to an I/O site
 - Cost of E: preference in assignment
 - RDL wire length from I/O cells to I/O sites
 - Constraint violation

Experiment Results

Design	# Signal I/O	# Power Domain	# Constraints
d1	1221	4	1801
d2	504	6	814
d3	450	4	934
d4	641	25	1433

- Real industrial designs
- Constraints not include the ones that are generated internally


Experiment Results


Design	Bumps	Domains	P/G Cells	CSR	Runtime(s)
d1	1560	6	328	100%	538
d2	963	12	445	100%	177
d3	906	6	453	100%	132
d4	1187	71	459	100%	81

- CSR: Constraint Satisfaction Ratio
- Our algorithm can satisfy all design constraints in one iteration
- Runtime is very promising

Comparison Study

- Two base-line algorithms are studied
 - TIOP: conventional constraint-oblivious approach
 - TCIOP: Constraint-driven global I/O planning + conventional constraint-oblivious I/O placement
 - Both may not satisfy all design constraints in one iteration
- Iterative local refinement procedure follows to further improve CSR
 - Swapping, shifting, relocating

Agenda

- Motivation
- Overview of our approach
- Chip-package aware design constraints
- CIOP: constraint-driven I/O placement problem formulation
- Multi-step CIOP algorithm
- Experiment results
- Conclusion

Conclusion

- Formally defined a set of common design constraints for chip-package codesign
- Formulated a detailed constraint-driven
 I/O placement problem (CIOP)
- Solved CIOP via an effective multi-step algorithm