
Constraint Driven Pin Mapping for Concurrent SOC Testing

Yu Huang1 Nilanjan Mukherjee2 Chien-Chung Tsai2 Omer Samman2

Yahya Zaidan2 Yanping Zhang2 Wu-Tung Cheng2 Sudhakar M. Reddy1

1 Department of Electrical & Computer Engineering, University of Iowa, Iowa City, IA 52242
2 Mentor Graphics Corporation, 8005 S.W. Boeckman Rd., Wilsonville, OR 97070

Abstract

A solution for mapping core I/O pins to System-
On-a-Chip (SOC) I/O pins in order to achieve cost-
efficient concurrent test for core-based designs is
presented in this paper. The problem of pin mapping is
first formulated as two well-known NP-complete
problems. A heuristic algorithm is then proposed to
determine a solution. The objectives driving this solution
are geared towards reducing the total number of SOC
pins needed and satisfying the test constraints specified
by core integrators. Experimental results demonstrate
the efficiency of the proposed method.

1 Introduction

Core-based SOC design strategy is becoming
more and more popular these days. The Semiconductor
Industry Association’s (SIA) Technology Roadmap [1]
predicts the percentage of reusable cores in SOC to be
rising to 80% in 2006, thereby resulting in a 50%
reduction of time-to-market. However, conflicting
design objectives such as increasing complexity and
reduced design cycles have made the test application
time a major bottleneck towards achieving aggressive
marketing requirements. Concurrent SOC testing (i.e.
testing more than one core simultaneously) is becoming
an attractive solution to reduce the total test application
time under such circumstances. In this paper, the pin
mapping problem in concurrent SOC testing is
addressed, and a solution is presented to optimize the
total number of SOC pins needed.

The paper is organized in the following manner.
In Section 2, related work in the SOC test scheduling
area is reviewed. In Section 3, various formulations of
the pin mapping problem are presented, and, in Section
4, a heuristic algorithm to achieve optimized concurrent
SOC test is proposed. Experimental results are presented
in Section 5, followed by the conclusion section.

2 Review of Related Work

The complexity of a SOC makes manufacturing
test a much more difficult problem than before. Many
new DFT techniques have been exploited to address this
problem. However, considering test issues for individual
cores and User Defined Logic (UDL) may not be

enough. The SOC composite test requires adequate test
scheduling given a number of chip level requirements
such as total test time, power dissipation, pin limitations
etc. Test scheduling is also necessary to run intra-core
and inter-core tests in a certain order that does not impact
the contents of individual cores. SOC test should be
created to satisfy these scheduling constraints. The
requirements for test scheduling will become more
complex as the level of SOC integration increases.
Previous research in the area is discussed in the
following paragraphs.

Sugihara et al. [2] addressed the problem of
selecting a test set for each core from a set of test sets
provided by the core vendors, and then schedule the test
sets in order to minimize the test application time. The
authors assumed that: 1) each core has its own BIST
logic, 2) external testing can be carried out for only one
core at a time, and 3) core vendors provide multiple test
sets comprising of both BIST and external test patterns
for each core. The problem was modeled as a
combinatorial optimization problem and solved using a
heuristic method. Chakrabarty [3] generalized the test
scheduling problem of [2]. He assumed that Test Access
Mechanism (TAM) includes one external test bus and
multiple BIST resources, and the cores have been
assigned to a test bus. The problem was formulated as
an m-processor open shop scheduling problem, and
solved by using a Mixed-Integer Linear Programming
(MILP) model in order to minimize the test time.
Ravikumar et al. [4, 5] proposed a method to solve test
scheduling problem under the constraint of power
consumption. They assume that BIST is the only
methodology for testing individual cores.

All the above mentioned test scheduling
algorithms for core-based systems ([2]-[5]) assume a
fixed TAM structure. However, recently, there have
been a few works considering scheduling problem
together with the test resource allocation [6]-[11].

Chakrabarty [6] assumed a TestRAIL TAM
structure and formulated the problem with an ILP model
to find an optimum solution for allocating N test lines to
a fixed number (NB) of test buses, and assign each core
to a test bus in order to minimize the total test time. The
place-and-route and power constraints were also
considered in [7]. In [8], a technique to determine
optimal SOC test schedules with precedence constraints,
i.e. schedules that preserve desired ordering among tests
were introduced. An algorithm was proposed to solve

the problem in polynomial time by using preemption.
Bagchi et al. [9] addressed the same problem as in [6],
but considered clustering some cores into a module, and
schedule testing of modules rather than individual cores
in order to reduce the total test time.

Marinissen et al. [10] broke down a test into a
test protocol and a list of test patterns. The test
protocols, originally defined at the core terminals, are
translated to the IC pins by Test Protocol Expansion.
Subsequently, the expanded test protocol together with
the test pattern list are used to assemble an IC-level test.
The test scheduling problem was formalized as a No-
Wait Job Shop scheduling problem. Huang et al. [11]
proposed a method to allocate test resources and
schedule test sets in order to achieve optimal concurrent
SOC test. The objective was to minimize the test
application time, while offering full scan / partial scan /
functional tests for different TAMs under the constraint
of peak power consumption.

Compared with the above-mentioned methods,
the method proposed in this paper does not target the test
scheduling problem, instead, it uses the test scheduling
information as a constraint to optimize the necessary
SOC resources.

The concurrent test scheduling information is
specified usually by core integrators. Because core
integrators have access to the information such as test
application time and power dissipation for each core,
they prefer specifying groups of cores that should be
tested concurrently. In practice, this scenario is more
typical when core integrators happen to be core providers
themselves.

In this paper, the problem of mapping core pins
to SOC pins to access cores from chip-level I/Os directly
under the test scheduling constraints is addressed. There
are several major techniques for direct access of
embedded core, such as multiplexed access [12, 13], Test
Bus [14], and TestRAIL [15]. Our methodology is a
general solution to fit all the above test access
mechanisms. Given a fixed set of concurrent test groups
and the total number of SOC pins, the method proposed
in this paper can find the optimal resource requirement
and allocation that can be used to satisfy the specified
concurrent test constraints and save valuable chip-level
I/Os as much as possible.

3 Problem Formulations
3.1 Assumptions

Before the description of the problem, some of
the assumptions are listed as follows.

1. It is assumed that only a subset of the SOC I/Os
are available for mapping (either via MUXes or through
test buses) based on the functionality and user
preferences. Specifically, the dedicated SOC pins such

as clocks, scan inputs, scan outputs, scan enables and test
enables are excluded from consideration. A total of N
SOC I/Os are considered ready for mapping.

2. User-Defined Logic (UDL) is treated as a core,
and for each core, there are clearly modes available to
place it into isolation or subject it to test. The isolated
core remains free from any harmful effects of input
changes at the core boundary and test patterns can be
applied in an unconstrained fashion to other core(s)
under test. The cores that are specified for serial test or
internal BIST will use the dedicated resources, and are
not considered in the problem formulation. It is assumed
that there are a total of K cores waiting for resource
allocation.

3. For each core Ci (0<i≤K), the number of I/O
pins that need mapping to SOC pins is Wi. It is assumed
that the SOC pins can be bi-directional in nature.
Therefore the pin direction is not a constraint in the
problem we address, i.e. any pin of a core can be mapped
to any pin of SOC.

4. All core pins are assumed to have direct access
from the SOC pins.

3.2 Problem Statement

The problem is formally stated as follows.
Given N SOC pins and K cores, for each core Ci (0<i≤K),
its total number of I/O pins Wi is recorded as a weight
for core i. Let Ω indicate the set of groups. In each
group, there are a set of cores which have to be tested
concurrently. A core can appear in different groups.
The objective is to determine a one-to-one mapping from
pins of each core Ci to the SOC pins. The realization of
the concurrent SOC test needs to satisfy the following
conditions.
(1) The total number of SOC pins has to be

minimized. If the determined number of SOC
pins M is less than the maximum allowed pins
(N), then one can use the additional available
SOC pins to balance the load for each pin or to
alleviate the routing congestion. If M>N, the
program reports back to the core integrator
about pin shortage. It is then up to the core
integrator to decide whether to add more SOC
pins or change the grouping constraints.

(2) At any given time t, a group / set of cores (Ct1,
Ct2…Ctr) included in Ω can be tested
simultaneously.

3.3 Problem Formulation I

The problem can be transformed to a well-
known chromatic number problem as follows.

A graph G(V,E) corresponding to the problem
given in the last subsection is built. Each vertex
represents a pin on a core. An edge exists between two
vertices if and only if one of the following condition
holds.
(1) The two pins represented by these two vertices
belong to the same core.
(2) The two pins represented by these two vertices
belong to two different cores, but those two cores are
specified in one concurrent group in Ω.

Now, the problem is easily transformed to a
chromatic number problem. Each vertex is assigned a
color, which means that the core pin represented by the
vertex is to be mapped to a SOC pin indicated by that
color. The original problem is transformed to find
minimum number of colors to achieve a proper coloring
of G. A proper coloring of G occurs when no two
adjacent vertices have the same color. Chromatic
number problem is a notoriously well-known NP-
complete problem [16].

3.4 Problem Formulation II

The same problem could also be formulated as a
dependency matrix partitioning problem used in
pseudoexhaustive test [17]. The dependency matrix
corresponding to the problem given in subsection 3.2 has
m rows and n columns, where m is the cardinality of the
concurrent test set Ω and n is the total number of the pins
for all cores. An entry aij is “1” if and only if the
corresponding pin of the jth column belongs to a core
which is included in the ith concurrent test group. All
other entries are “0”. The dependency matrix
partitioning problem is formed by partitioning the
columns of the dependency matrix into sets such that
each row of a set has at most one 1-entry and the total
number of sets is a minimum.

It was shown that the above problem is also NP-
complete [18].

4 Proposed Algorithm

In this section, a clique partitioning based
heuristic method is proposed to solve the concurrent
SOC testing problem. Note that both the above
formulations are pin-based. Although there are several
heuristics for solving the chromatic number problem, one
needs to be careful while using them in this scenario
because the total number of pins of cores in a SOC could
be very large (could be up to ~10K), thereby leading to
very expensive computational cost. In addition, the pin
based heuristic solutions are typically 10% off, and as
much as 100% off from the exact solutions [19]. In
contrast, the number of cores in a SOC is limited
(typically, less than 100 in practical designs). Therefore,
in this paper a heuristic solution based on cores rather
than pins is proposed.

The basic idea of the algorithm is to find a
lower bound for this problem, and increase the lower
bound gradually until a solution is found. The algorithm
is described in Fig. 1.

Fig. 1. Flow Chart of the Proposed Algorithm.

The steps of the algorithm as presented in the
flow chart are explained in detail with the following
example.

Example 1: Let there be 7 cores C1, C2, … C7 in a
design and the number of pins for these cores be 200,
200, 100, 150, 160, 100, and 80 respectively. Let the
concurrent test groups be the following:
Ω = { (C1, C2), (C1, C4), (C1, C6, C7), (C2, C5), (C3, C4),
(C3, C5), (C3, C6, C7) }.

To apply the proposed algorithm in order to get
an optimal number of SOC pins under the given
constraints, the following steps are necessary.

Step1 To start, a weighted incompatibility graph
G(V,E) is built. A weighted incompatibility graph is

defined as a graph where each vertex in V represents a
core and an edge between two vertices exists iff these
two vertices appear in the same group at least once (The
vertices are incompatible since they can not share any
SOC pins). A weight attached to each vertex is the
number of pins of the corresponding core.

The incompatibility graph for the given example
is given in Fig. 2.

Fig. 2. Incompatibility Graph for Example 1.

Step2 A maximum-weight clique in the weighted
incompatibility graph is obtained with the total weight
W. A clique of G is a complete subgraph of G. Hence,
no two cores corresponding to a pair of vertices in the
clique can share SOC pins. Therefore, a lower bound on
the number of required SOC pins is the total weight of
this clique. Since the number of cores in practice is
limited (<100), it is computationally feasible to solve the
maximum weight clique problem to get an exact
solution. In the proposed algorithm, we use a branch
and bound method proposed in [20] to solve the
maximum weight clique problem.

In Example 1, the maximum weight-clique is
(C1, C2). The total weight W is 400.

Step3 Based on the incompatibility graph, a
compatibility graph is built. The compatibility graph is
the complement of the incompatibility graph. For
Example 1, the compatibility graph is shown in Fig. 3.

Fig. 3. Compatibility Graph for Example 1.

 Step4 Next, a maximum clique in the compatibility
graph is determined that satisfies the following
conditions.
(1) At least one core is selected from the maximum-
weight clique as determined in Step 2.
(2) The maximum clique is determined without
considering their weights.
(3) If there are more than one candidate groups, the
group that has the largest total weight is picked. If there
is still a tie, one of the groups is picked randomly.

In Example 1, there are 2 maximum cliques that
satisfy the above-mentioned conditions, (C2, C4, C6) and
(C2, C4, C7). Group (C2, C4, C6) is picked as it has a
larger weight.

Step5 Let wi be the weight of core i that is included in
the maximum clique selected in Step 4. Min(wi) is the
minimum weight of a core in this clique. Min(wi) pins
are selected out of each core in the clique, and are
mapped to the same SOC pins. For each core selected in
the clique, the weight is updated to (wi - Min(wi)). If a
core has weight 0, the corresponding vertex and all the
edges incident to it are deleted.

In order to illustrate the mapping process, let
C[a,b] indicate the pins in the range from a to b in a core
or the SOC. For the given example, C2[1,100],
C4[1,100], and C6[1,100] are mapped to SOC[1,100], and
the updated compatibility graph is shown in Fig. 4.

Fig. 4. Updated Compatibility Graph

Steps 4 and 5 are repeated until the number of
mapped SOC pins reach the maximum limit W, which is
determined in Step 2. The process is shown in figure 5.

Fig. 5. Updating Compatibility Graph for Example 1.

At this point, there are still 2 vertices left, for
which one needs to go back to Step 1 to repeat the above
steps iteratively until there is no vertex left in the graph.
At the end, pins C7[51,80] are mapped to SOC[401,430],
and pins C3[91,100] are mapped to SOC[431,440].
Therefore, a total 440 SOC pins are needed to
concurrently test the cores under the specified
constraints.

5 Experimental Results

In order to evaluate the proposed algorithm, we
compare the results with two greedy algorithms – namely
Heuristic 2 (H2) and Heuristic 3 (H3). H2 is based on
the information of a core and its immediate neighbors.
In this case, a degree is associated to each core, which is
the sum of the weights of all the neighbors including the
core itself. A core with the maximum degree is selected
first for mapping. In heuristic H3, the algorithm is the
same except that the degree for each core is now
calculated based on just its neighbors (without
considering the weights). In other words, both these
algorithms try to map the most “hard-to-map” cores first
based on some locally optimal decisions. In addition, the
proposed method is also compared with another greedy
algorithm where the cores are ordered randomly for pin
mapping. All these algorithms were implemented to
provide a fair comparison of the proposed method as no
such work in this area is reported in the literature.

These algorithms are run on 9 hypothetical but
nontrivial SOCs (S1 to S9) and 2 real industrial designs
(IND1, IND2). The number of pins for each core is
randomly generated between 30 and 300 for S1 to S9.
The number of cores and number of pins for each core in
SOCs IND1 and IND2 were fixed when designed for
commercial use. However, since the core grouping
information is not available, the concurrent test groups
for all the circuits were generated randomly. The
algorithms were implemented in C running on a
SUNBlade1000 workstation. The CPU time for each
benchmark is less than 1 second for the proposed
algorithm (H1) and up to ~10s for H2 and H3. That’s
why the CPU time is not included in the tabulated
results.

The experimental results are shown in Table 1.
The number of cores for each test case is shown in the
second column. The lower bound of SOC pins given by
the proposed clique partitioning algorithm are in Column
3. The SOC pins obtained in the proposed algorithm
(H1) are listed in Column 4. The incremental number of
SOC pins obtained by algorithms H2 and H3 over H1 are
shown in Column 5 and Column 6 respectively. The
next 6 columns show the results obtained by 6 runs of the
greedy algorithm based on random selection. From the
results, it is evident that:

(1) The proposed algorithm H1 results in the best
solution for all the test cases used. Note that the results
are quite close to the lower bound.
(2) The order of mapping is very critical. A bad
ordering of cores could lead to results that are far from
the optimal solution.
(3) The greedy algorithm H2 is better than H3.
(4) The greedy algorithm based on random core
selection usually can not guarantee good solutions.

On average, the total number of SOC pins
computed by greedy algorithms H2 and H3 are about 3%
and 5.5% more than the proposed method H1
respectively. The random algorithm, on the other hand,
may use upto 13% more SOC pins.

In order to compare the heuristics with an exact
solution, a pin-based exact coloring algorithm is
implemented using the method proposed in [19].
However, for the test cases used in Table 1, the
computational time is exponentially large and far from
completion. For some of the large test cases in Table 1,
the exact algorithm could not come up with a solution
after running for even 2 days. Therefore, small test cases
were used to compare the results. The results are shown
in Table 2. In Column 2, the total numbers of pins on all
cores are given. This is followed by the optimum
number of SOC pins necessary in each case. In the last 3
columns, the numbers of SOC pins obtained by H1, H2,
and H3 are presented.

The computational time for all heuristics are
less than 0.01s for all the test cases in Table 2, whereas
the exact solution suffers from exponential
computational time. Even for these small test cases, the
CPU time for the exact solution is upto 6386.3s. The
results in Table 2 show that the proposed heuristics can
come up with solutions that are very close to the exact
solution, and would therefore provide fairly good results
for all practical scenarios.

6 Conclusions
In this paper, an algorithm to allocate test

resources efficiently for achieving concurrent SOC test
under specific test constraints is presented. The
objective was to minimize the total number of SOC pins
required for a design. The problem can be formulated as
a chromatic number or a clique partitioning problem. A
heuristic algorithm is proposed to solve the problem.
Experimental results show that the proposed method
produces much better results when compared with
several greedy approaches and is cost efficient when
compared with an exact solution.

References
[1] Semiconductor Industry Association, The National
Technology Roadmap for Semiconductors, Sematech, Inc.
pp24, 1997.

[2] M. Sugihara, H.Date, and H. Yasuura, “A Novel Test
Methodology for Core-Based System LSIs and a Testing Time
Minimization Problem,” pp. 465-472, ITC 1998.
[3] K. Chakrabarty, “Test Scheduling for Core-Based Systems
Using Mixed-Integer Linear Programming,” pp.1163-1174,
IEEE TCAD, Vol. 19, Oct., 2000.
[4] C. P. Ravikumar, A. Verma, and G. Chandra, “A
Polynomial-Time Algorithm for Power Constrained Testing of
Core Based Systems,” pp.107-112, ATS 1999.
[5] C. P. Ravikumar, G. Chandra, and A. Verma,
“Simultaneous Module Selection and Scheduling for Power-
Constrained Testing of Core Based Systems,” VLSI Design
2000.
[6] K. Chakrabarty, “Design of System-on-a-Chip Test Access
Architectures using Integer Linear Programming,” pp. 127-134,
VTS 2000.
[7] K. Chakrabarty, “Design of System-on-a-Chip Test Access
Architectures under Place-and-Route and Power Constraints,”
DAC 2000, pp.432-437.
[8] V. Iyengar and K. Chakrabarty, “Predence-Based,
Preemptive, and Power-Contrainted Test Scheduling for
System-on-a-Chip,” VTS 2001, pp.368-374.
[9] D. Bagchi, D.R.Chowdhury, and J. Mukherjee, “A Novel
Strategy to Test Core Based Designs,” pp.122-127, VLSI
Design 2001.
[10] E. J. Marinissen, and J. Aerts, “Test Protocol Scheduling
for Embedded-Core Based System ICs,” IEEE International
Workshop of Testing Embedded Core-based System-Chips,
1998.
[11] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O.
Samman, Z. Yahya, and S. M. Reddy, “Resource Allocation

and Test Scheduling for Concurrent Test of Core-Based SOC
Design,” ATS 2001, accepted.
[12] V. Immaneni, and S. Raman, “Direct Access Test Scheme
– Design of Block and Core Cells for Embedded ASICs,”
pp.488-492, ITC 1990.
[13] S. Bhatia, T. Gheewala, and P. Varma, “A Unifying
Methodology for Intellectual Property and Custom Logic
Testing,” ITC 1996, pp.639-648.
[14] P. Varma and S. Bhatia, “A Structured Test Re-Use
Methodology for Core-Based System Chips,” pp.294-302, ITC
1998.
[15] E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M.
Lousberg, and C. Wouters, “A Structured and Scalable
Mechanism for Test Access to Embedded Reusable Cores,”
pp.284-292, ITC 1998.
[16] M.R.Garey and D.S.Johnson, Computers and
Intractability: A Guide to The Theory of NP-Completeness,
W.H.Freeman Company.
[17] E. D. Mccluskey, “Verification Testing – A
Pseudoexhaustive Test Technique,” IEEE Trans. On
Computers, vol. C-33, No.6, June, 1984.
[18] F. Hirose and V. Singh, “McDDP, A program for
partitioning verification testing matrices,” Center for Reliable
Computing, Stanford Univ., Stanford, CA, Tech. Rep. 81-13,
July, 1982.
[19] O. Coudert, “Exact Coloring of Real-Life Graphs is Easy,”
pp.121-126, DAC 1997.
[20] P.R.J.Ostergard, “A New Algorithm for the maximum-
weight clique problem,” Discrete Applied Mathematics, 2001.

Table 1: Comparison of the Proposed Concurrent SOC Pin Mapping with Random Method.
Additional SOC Pins needed by the Random

Core Selection Method.
SOC

Circuits
of

Cores
Lower
Bound

SOC Pins achieved
by the proposed

algorithm H1

Additional
SOC Pins

Needed by H2

Additional
SOC Pins

Needed by H3 I II III IV V VI
S1 10 338 338 0 0 44 0 28 15 36 79
S2 15 469 502 55 55 55 22 92 79 100 55
S3 20 505 547 3 3 96 85 49 34 94 36
S4 25 609 609 0 40 92 153 77 126 86 72
S5 30 482 482 37 40 51 105 99 120 58 5
S6 35 477 496 14 84 111 115 97 78 134 144
S7 40 704 717 32 76 73 71 37 166 32 111
S8 45 606 606 56 12 56 103 70 69 78 106
S9 50 507 507 2 0 66 25 59 0 42 70

IND1 23 814 814 0 0 38 0 94 38 41 38
IND2 34 811 822 6 48 48 147 173 269 217 88
Avg. 30 575 585 18 32 78

Table 2: Comparison of the Heuristic Concurrent SOC Pin Mapping With the Exact Solution.
Test Case Total # of Pins on All

Cores
SOC Pins obtained by

Exact Solution
SOC Pins obtained

by H1
SOC Pins obtained

by H2
SOC Pins obtained

by H3
I 22 13 14 14 14
II 23 7 8 8 9
III 24 7 8 9 9
IV 25 13 13 13 13
V 26 14 14 14 14
VI 27 8 9 9 10
VII 28 8 9 9 10
VIII 29 15 15 15 15

