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Abstract— In this paper, we propose a constraint graph-based
macro placement algorithm that removes macro overlaps and
optimizes macro positions for modern mixed-size circuit designs.
Improving over the constraint graph by working only on its
essential edges without loss of the solution quality, our algorithm
can search for high-quality macro placement solutions effectively
and efficiently. Instead of packing macros along chip boundaries
like most recent previous work, our placer can determine a
non-compacted macro placement by linear programming and
placement region cost evaluation and handle various placement
constraints/objectives. Compared with various leading academic
macro placers, our algorithm can consistently and significantly
reduce the wirelengths for designs with different utilization rates,
implying that our macro placer is robust and has very high
quality.

I. INTRODUCTION

Due to the extensive use of intellectual property (IP) modules
and pre-designed macro blocks (such as embedded memories, analog
blocks, pre-designed datapaths, etc.), the number of macros in a mod-
ern circuit design is increasing dramatically. It is reported in [3] that
a modern system-on-a-chip (SoC) design may consist of hundreds
of macros, and they may occupy more than 70% chip area. For
such large-scale designs, it is impractical to place macros manually.
Further, modern circuit designs usually contain large macros with
areas more than 10,000 times greater than that of a standard cell. The
size and aspect-ratio differences of the macros make this problem
even more complicated. Consequently, many mixed-size placement
flows/algorithms are proposed in the recent literature to tackle this
problem.

A. Previous Work
According to the macro handling methods, we can classify the

mixed-size placement algorithms into three types: (1) Simultane-
ous macro and standard-cell placement: Most existing mixed-size
placers [4]–[8], [13], [17], [19] belong to this type. However, as
the number of macros and the size difference between the macros
and standard cells increase dramatically, this methodology incurs
significant difficulties in legality and complexity. (2) Constructive
macro placement: Most partitioning-based placers [11], [18] keep
macro overlap free during the placement process by recursively
partitioning the chip/macros into subregions. Due to the intrinsic
limitation of the partitioning-based approach, its solution quality is
usually limited, compared with those in the first type. (3) Two-stage
mixed-size placement: The combinatorial technique [2], [9], [10]
belong to this type. Methods of this type consist of macro placement
followed by standard-cell placement. Given an initial placement that
considers both macros and standard cells and optimizes a predefined
cost metric (e.g., wirelength), legal macro positions are determined
with the minimum displacement in the macro placement stage. Then,
in the standard-cell placement stage, the macros are fixed and the
standard cells are placed into the rest area. Compared with the
previous two types of mixed-size placement approaches, this two-
stage approach is more robust since it can guarantee a feasible

solution as long as an overlap-free macro placement is obtained.
Further, macro orientations and placement constraints, such as pre-
placed macros and placement blockages, can be handled more easily.
Thus, the two-stage approach is widely used in industry.

The MP-tree [9], [10] was proposed to solve the addressed macro
placement problem. Given an initial placement, the MP-tree macro
placer removes overlaps, minimizes displacement, and maximizes
the area of the chip central regions for the standard-cell placement
by a multi-packing-tree representation. Although the MP-tree is
effective for higher-density designs, its solution quality for lower-
density designs is limited. The leading macro legalizers, XDP [12]
and Floorist [16], can also be applied to determine the legalized macro
positions. For a given initial placement with macro overlaps, XDP
constructs constraint graphs and iteratively swaps the edges between
the constraint graphs by a min-cut-based edge-selection heuristic.
In contrast, Floorist removes macro overlaps by an incremental
construction of constraint graphs. Since these two macro legalizers
optimize the macro positions by iterative methods, their search spaces
are often limited, and thus they may not find a desired macro
placement.

B. Our Contributions
We adopt the two-stage mixed-size placement approach because of

its various advantages and popularity in industry. Our work focuses
on the first stage, macro placement, which is crucial for modern
mixed-size placement since macro positions significantly affect the
final placement quality. For the addressed problem, we propose
a constraint graph-based macro placement algorithm that removes
macro overlaps and optimizes macro positions/orientations. In this
paper, we choose the transitive closure graph (TCG) [14], [15] as
our constraint graph due to its good properties. (Nevertheless, our
algorithm is flexible and can be based on different constraint graphs
as well.) Based on the TCG floorplan representation [14], [15],
our algorithm searches for desired macro positions through a new
adaptive simulated annealing (SA) scheme. For a feasible TCG,
we further adopt a linear programming formulation to determine
the legalized macro positions with displacement minimization. We
summarize the advantages of our macro placement algorithm as
follows:

• By linear programming and bin-based standard-cell place-
ment region cost evaluation, our placer can determine a non-
compacted macro placement and preserve a continuous region
for standard-cell placement. Compared with the MP-tree, our
macro placer can achieve 11% better average wirelength based
on the ISPD’06 placement benchmarks.

• Our approach smoothly controls the macro distributions under
different chip utilization rates. As a result, our macro placer
significantly outperforms NTUplace3 alone, XDP, and MP-
tree by 4%–14% under various pratical utilization rates. Even
for the 90% utilization rate, our macro placer obtains much
shorter wirelengths than NTUplace3 alone and XDP, and is
comparable to MP-tree which is specially developed for high-
density designs.

• Without loss of the solution quality, our algorithm only needs
to work on a subset of the edges in TCG (specifically, the

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 218



reduction edges as defined in [14], [15]), significantly improving
the efficiency without trading off the solution quality.

• We propose a new adaptive SA flow with a smoothing technique
for cost evaluation to reduce the number of linear programs
solved and minimize the gap between two different evaluation
methods (namely corner packing and linear programming).

• Our macro placer is very robust. Combined with various leading
academic placers (such as mPL6, Capo 10.2, and NTUplace3),
it can consistently and significantly reduces the wirelength.

Table 1 summarizes the comparisons among our macro placer,
MP-trees, and two constraint graph-based macro legalizers, XDP and
Floorist.

The rest of this paper is organized as follows. Section II defines the
macro placement problem. Section III details our macro placement
algorithm. Experimental results are presented in Section IV. Finally,
conclusions are given in Section V.

II. PROBLEM FORMULATION

In this section, we first describe our mixed-size placement flow
and then define the addressed macro placement problem.

A. The Mixed-Size Placement Flow

placement prototyping macro placement standard-cell placement

Fig. 1. Our mixed-size placement flow.

Figure 1 summarizes our mixed-size placement flow. Given the
circuit information, a placement prototype is first generated by
wirelength-driven mixed-size global placement that considers both
the macros and standard cells. The placement prototype may contain
macro overlaps. For the given macro positions, our macro placer not
only legalizes the macros, but also optimizes the macro orientations.
With the objective of displacement minimization and placement
region optimization, our macro placer explicitly optimizes the wire-
length to find a better final placement. Finally, all macros are fixed
and a standard-cell placer is then applied to place all standard cells
in the remaining area.

B. The Macro Placement Problem
In the mixed-size placement flow, macro placement plays an

important role and significantly affects the final placement. Thus, we
shall consider the macro placement problem formulated as follows:

• Macro Placement Problem: Given an initial placement which
contains a set M = {m1, m2, · · · , mn} of n macros, where
the respective coordinates, width, height, and area of mi are
(xi, yi), Wi, Hi, and Ai, and a set of pre-placed macros
F ⊂ M , the problem is to find legalized macro positions that
minimizes some cost metric (e.g., macro displacement from
their original positions, wirelength, placement region cost).

III. OUR MACRO PLACEMENT ALGORITHM

Our underlying strategy is to place macros inside the placement
region and reserve a continuous standard-cell placement region
considering displacement minimization. Since the macros in modern
designs are usually very large and there are routing blockages above
macros in real-world applications, the macros tend to block the routes
if they are placed in the chip center. Further, by minimizing the macro
displacement, we can keep the desired wirelength implicitly since the
initial global placement has been optimized for wirelength.

We present a TCG-based macro placement algorithm that removes
macro overlaps and optimizes macro positions and orientations. For a
feasible TCG, we solve a linear program to determine legalized macro
positions with displacement minimization and standard-cell place-
ment region optimization. We define a macro placement evaluation
metric which consists of wirelength, displacement, and placement
region costs. Based on TCG and the cost metric, our algorithm
searches for better macro configurations through a new adaptive

simulated annealing (SA) scheme. We shall detail those techniques
in the following sections.

A. Macro Placement Using TCG

Fig. 2. (a) An infeasible TCG. (b) The corresponding placement
exceeds the chip boundary. (c) A feasible and optimized TCG, (d)
and its corresponding placement.

Due to the chip outline constraint and the existence of pre-placed
macros, a macro geometric relation represented by a TCG may not
produce legalized macro positions. Take the TCG shown in Fig-
ure 2(a) as an example. The corresponding placement (Figure 2(b))
cannot fit into the chip outline due to the pre-placed macro C. Thus,
we define the feasibility of a TCG as follows:

Definition 1: A TCG is feasible if there exists a legalized macro
placement that can fit into the chip outline under the geometric
relations defined by the TCG.

We compute the slacks for each vertex to check if a constraint
graph is feasible. The slack is the feasible position range for a macro
without violating the TCG properties. For a given TCG, we first
add two pseudo macros ms and mt representing the source vs and
the sink vt in Ch. The widths and heights of the pseudo macros
ms and mt are set to zero, and their initial positions are set to the
corresponding chip boundaries, i.e., (xs, ys) = (L, B) and (xt, yt)
= (R, T ), where L, R, T , and B represent the left, right, top, and
bottom boundaries of the placement region, respectively. We then
connect vs to the vertices with zero in-degree and the vertices with
zero out-degree to vt. Let C′

h denote the modified graph, and lvi and
uvi denote the leftmost and rightmost coordinates that a macro mi

can place. The slack svi of each vertex vi in C′
h can be calculated

as follows:
lvi = uvi = xi, ∀mi ∈ F ′ and vi ∈ C′

h,

lvj = max(lvi + wij), ∀eij ∈ C′
h,

uvi = min(uvj − wij), ∀eij ∈ C′
h,

svi = uvi − lvi , ∀vi ∈ C′
h,

where F ′ = F ∪{ms, mt}, and wij is the weight of the edge eij in
C′

h, which equals (Wi + Wj)/2. C′
v and the corresponding values

for the vertical dimension can be similarly defined.
This procedure, at first glance, is similar to the one proposed

in [12] (XDP), but we extend it to consider pre-placed macros and
add significant modifications to handle the addressed problem. (See
Section IV-A for the different effects of XDP and our method.) We
then define the infeasibility value κ of a TCG by

κ = −min(svi), ∀vi ∈ C′
h, C′

v. (1)

Lemma 1: A TCG is feasible if and only if κ = 0.
Unlike [12] that resorts to an iterative graph refinement process,

we model the infeasibility into our cost function to guide the adaptive
SA process. Figure 2(c) shows a feasible and optimized TCG, and
(d) its corresponding placement.
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TABLE I

COMPARISONS BETWEEN OUR MACRO PLACER, MP-TREE, XDP, AND FLOORIST.

MP-tree XDP Floorist Ours

Topology representation Multi-packing tree Constraint graph Constraint graph Transitive closure graph
Optimization method Simulated annealing Iterative refinement Iterative refinement Adaptive SA

Optimization Displacement, wirelength, Displacement Displacement Displacement, wirelength,
objective standard-cell placement minimization minimization standard-cell placement

region region, routability
Macro position Packing procedure Linear Greedy heuristic Linear programming
determination programming and corner packing

Orientation optimization Yes No No Yes
Pre-placed macro consideration Yes No No Yes

B. Linear Programming Formulation
In order to minimize the macro displacement and preserve a

better standard-cell placement region, we solve the following linear
programming problem to determine the macro coordinates after a
feasible TCG is obtained.

min
∑n

i=1
(ωxidxi + ωyidyi)

s.t. −dxi ≤ x′
i − x̂i ≤ dxi (2)

−dyi ≤ y′
i − ŷi ≤ dyi (3)

x′
j − x′

i ≥ wh
ij , ∀eij ∈ E′

h, (4)

y′
j − y′

i ≥ wv
ij , ∀eij ∈ E′

v, (5)

x′
i = xi, y′

i = yi, ∀mi ∈ F ′,

where x̂i (ŷi) is the expanded displacement reference coordinate, dxi

(dyi ) denotes the displacement along the x (y) direction w.r.t. x̂i (ŷi),
E′

h (E′
v) is the set of all reduction edges in C′

h (C′
v), wh

ij and wv
ij

are the edge weights defined in C′
h and C′

v , and Inequalities (4) and
(5) are derived from the reduction edges of a TCG. Here, as defined
in [14], [15], an edge eij is said to be a reduction edge if there does
not exist another path from vi to vj , except the edge eij itself.

To reserve a continuous region for standard-cell placement, we
expand the displacement reference positions to free a “central” region
for the standard-cell placement. The expanded reference position is
calculated by

x̂i = (1 − ρ)cx + ρxi, ŷi = (1 − ρ)cy + ρyi,

where cx and cy give the coordinate of the gravity center of standard
cells calculated by the average x and y coordinates for all standard
cells. The idea is to expand the displacement reference position
linearly w.r.t. the gravity center of standard cells. Here, ρ is a user-
specified parameter, called the expansion ratio, which can be used to
control the degree of expansion. Figure 3 shows example expansion
ratios for placement with different utilization rates. For a design with
a low utilization rate, a smaller expansion ratio is more suitable to free
the space for the standard cells while the displacement minimization
can still be preserved. For a design with a high utilization rate, in
contrast, a larger expansion ratio will try to minimize the dead spaces
among macros and ensure that the central region be maximized for the
standard-cell placement. In our implementation, the expansion ratios,
ρ’s, are set to 1.05, 1.1, 1.2, and 1.3 for circuits with the utilization
rates less than 70%, between 70% and 80%, between 80% and 90%,
and larger than 90%, respectively.

At first glance, the main differences between our linear-
programming formulation and that of [12] lie in Inequalities (2) and
(3). As a matter of fact, our formulation/process has the following
advantages over the work [12]:

• Instead of optimizing macro displacement alone, we introduce
the concept of reference position expansion to expand the dis-
placement reference position linearly w.r.t. the gravity center of
standard cells. This scheme results in a better macro placement
that preserves a continuous standard-cell placement region and
thus leads to a better final placement.

• We construct the geometric constraints only on the reduction
edges of TCG, instead of building one constraint edge between
each pair of macros. Thus, the problem size and computation
time of our linear programming can significantly be reduced
without loss of solution quality.

• Our linear programming combined with adaptive SA can further
optimize the macro orientations and thus obtain better macro
positions.

• It will be clear in Section IV-A that our linear programming
formulation achieves 6% shorter HPWL on average than that
of [12] with comparable running time.

Fig. 3. Different expansion ratios for placements with different
utilization rates.

C. Macro Placement Evaluation
To evaluate the quality of a macro placement, we define the cost

function Φ of a macro placement P as follows:

Φ(P ) = αD + βS + γR + δI, (6)

where D is the total macro displacement, S is the minimum slack of
a TCG, R is the placement region cost, I is the macro wirelength,
and α, β, γ, and δ are user-specified weighting parameters. Here,
α controls the degree of displacement; a higher α is recommended
when the initial placement contains small overlaps. We usually use
a higher β to make the infeasibility cost a dominating term so that
it is easier to obtain a legal placement result. Since S always equals
zero for feasible TCGs, the SA will be guided by the other three
terms for the optimization. Since the effect of R is opposite to that
of D, if a larger α is applied to minimize the displacement, γ is set
to be smaller, and vice versa. In our implementation, we usually use
a smaller δ since the macro wirelength is much smaller compared to
those of standard cells. We have explained the computation of S in
Section III-A and will explain those for D, R, and I in the following.

Cost D is the total macro displacement, defined as D =∑n

i=1
(|x′

i − xi| + |y′
i − yi|)2, where (xi, yi) is the initial position

of the macro mi, and (x′
i, y

′
i) is the current position of macro mi

determined by the linear programming described in Section III-B.
The quadratic penalty is used to prevent a large displacement for a
macro.

The macro wirelength I is calculated by the half-perimeter wire-
length (HPWL) of all nets connected to the macros. Since the
standard-cell positions are not yet determined, we consider only the
interconnections among macros at this stage. (As mentioned earlier,
nevertheless, the wirelength among the macros and standard cells
have been considered during the initial placement and implicitly
handled by minimizing the macro displacement.) The cost R is used
to evaluate the standard-cell placement region, and is computed by
the two methods: (1) the overlapping area among macros and standard
cells, and (2) the overlapping area among macros and a given ellipse
used to approximate a continuous standard-cell placement region.
Figure 4 illustrates the computation of R using exact standard-cell
positions and an approximated ellipse. The underlying idea is to
generate a macro placement that causes the minimum disturbance
to the initial standard-cell placement (thus implicitly optimizing the
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wirelength by minimizing the disturbance), and preserve a better
standard-cell placement region. We also impose a penalty of placing
macros in the standard-cell congested regions.

To compute R, we first divide the placement region into k uniform
bins. For each bin gi, we compute the two values tmi and tsi ,
where tmi (tsi ) is the area ratio of movable macros (standard cells)
to the bin. The cost of the overlapping area equals

∑k

i=1
tmitsi .

Alternatively, we can find an ellipse that covers 80% of the standard-
cell prototyping positions with foci f1 and f2, and the semimajor
axis a. Then, tei of the bin gi is computed as follows:

tei =
2a

dist(gi, f1) + dist(gi, f2)
, (7)

where dist(gi, f1) (dist(gi, f1)) denotes the distance between the
center of the bin gi and the focus f1 (f1). This formulation gives
the central region a higher weight. Then, the cost R is defined as
R =

∑k

i=1
tmi(tsi + tei). This equation sums up the costs of the

overlapping areas for all bins. In Figure 4, darker bins imply higher
costs.

ts te

Rbin

standard-cell
distribution

approximated
ellipse

tm

A
D
E

B

macro placement

C

+

*

Fig. 4. Computing the standard-cell placement region cost. Macro
placement, standard-cell placement, and an approximated ellipse
are first quantified by the bin structure. For each bin, ts and te

are summed up and then multiplied by tm. Finally, the cost R is
calculated by summing up the product of each bin.

D. The Macro Placement Flow
Figure 5 shows the flow of our macro placer with adaptive SA.

Given the circuit information, we construct an initial TCG. Adaptive
SA is then used to find the desired macro placement. We adopt the
following four operations defined in [14], [15] to perturb a TCG: (1)
rotation: rotate a module, (2) swap: swap two nodes in both of Ch

and Cv , (3) reverse: reverse a reduction edge in Ch or Cv , and (4)
move: move a reduction edge from one TCG to another. By applying
these operations and the cost function proposed in Section III-C, the
geometric relations and orientations of macros can be optimized.

We apply two methods to evaluate a new solution. In traditional
floorplanning, packing is applied to determine the placement result.
In our macro placement, however, the macro positions are determined
by solving a linear program, which typically leads to a better solution,
but has a much higher time complexity, compared to the traditional
packing. Therefore, we resort to an adaptive scheme for our SA:
When the solution quality is poor (e.g., the TCG is infeasible or the
macro displacement is large), we determine the macro positions by
corner packing. The corner packing procedure places macros around
the corners of the placement region using the following equations:

x′
i = lvi ∀ i, vi ∈ Ch, lvi ≤ max(lvi

)

2
,

x′
i = uvi ∀ i, vi ∈ Ch, lvi >

max(lvi
)

2
,

y′
i = lvi ∀ i, vi ∈ Cv, lvi ≤ max(lvi

)

2
,

y′
i = uvi ∀ i, vi ∈ Cv, lvi >

max(lvi
)

2
,

Feasibility Analysis

Perturbation

Corner Packing Linear Programming

fast cost evaluation

Accept / Reject

Initial TCG
simulated annealing 

loop

“good enough”

exact cost evaluation

Macro Placement

Optimized Macro Positions

Placement Prototype

Fig. 5. Our adaptive SA flow, the second stage of the flow illustrated
in Figure 1.

where lvi and uvi are given by the feasibility analysis described in
Section III-A.

To smooth the cost evaluation, we propose a cost-smoothing
technique to reduce the gap between the two evaluation methods,
linear programming and corner packing. Let Ψl denote the cost
evaluated by linear programming and Ψc be the cost derived from
corner packing. We introduce a state variable r to scale the two costs,
Ψl and Ψc. The smoothed cost Ψs is defined as follows:

Ψs = rΨc + (rm − r)Ψl, (8)

where rm is the maximum number of states. In our experiments, rm

equals 5. The variable r is updated in each iteration. If the current
solution quality meets the criteria of applying linear programming,
r is decreased by one. Otherwise, r is increased by one. The value
of r is limited between rm and zero. Both corner packing and linear
programming are performed when rm < r < 0. Figure 6 illustrates
the determination of the state variable r. Initially, the cost is evaluated
by corner packing, and the variable r is set to rm. Then, while
changing the evaluation from corner packing to linear programming,
the cost evaluation method is also changed gradually by reducing
the weight of corner packing and increasing the weight of linear
programming. As shown in Figure 6, after rm iterations of the first
change of the evaluation, the evaluation method is totally switched
to linear programming, and the corner packing process stops. This
cost-smoothing technique prevents the cost from dramatic changes
as the evaluation method switches and helps the SA obtain a better
solution.

0

rm

r

time
C L C L

linear programmingcorner packing

Fig. 6. An example of changing the variable r. The colored bars
indicate the duration when corner packing and linear programming
are performed. “C (L)” denotes the duration when the solution quality
is suitable for corner packing (linear programming).

After evaluating the macro placement, we decide whether we
should accept the new solution or not, according to the quality of
the macro placement and the current temperature. The SA continues
until the predefined termination condition is reached.
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IV. EXPERIMENTAL RESULTS

To test our macro placer, we conducted three experiments based on
the ISPD’06 placement contest benchmarks [1]. We changed all fixed
macros in the ISPD’06 placement benchmarks to movable ones to test
the macro placement algorithms. All the experiments on the ISPD’06
placement contest benchmarks were performed on an AMD Opteron
1.8GHz machine with 8 GB memory. The linear programming solver
applied here was lp solve 5.5.

We applied three state-of-the-art publicly available academic
mixed-size placers, NTUplace3 [7], [8] mPL6 [5], and Capo
10.2 [18], where NTUplace3 and mPL6 are two leading analytical
placers while Capo 10.2 is a partitioning-based placer. We also
compared our macro placer with the leading macro placer, MP-
tree [9], [10], and the macro legalizer, XDP [12].

We conducted three experiments. For the first experiment, we com-
pared the effectiveness and efficiency of different macro placement
algorithms by integrating our macro placer, MP-tree, and XDP into
NTUplace3, separately. For the second experiment, we studied the
effects of different chip utilization rates on those macro placement
algorithms. For the third experiment, we further combined our macro
placer with mPL6 and Capo 10.2 to evaluate our macro placement
algorithm with different placers.

A. Comparisons among Academic Macro Placers
In this experiment, we compared the resulting HPWLs and the

total runtimes of various placers based on the ISPD’06 placement
benchmarks with the default utilization rates. Every tested macro
placer took the global placement results of NTUplace3 as its initial
placement, and then tried to generate legal macro placement results.
All macros were fixed after macro placement, and standard cells were
then placed by NTUplace3. Table II summarizes the experimental
results. Note that the CPU times reported here contain both the
runtimes of macro placement and standard-cell placement.

As shown in Table II, our macro placer combined with NTUplace3
obtains the smallest wirelength on average. Compared with the
results of NTUplace3 alone, our macro placer reduces the average
HPWL by 15%. Compared with MP-tree and XDP integrated with
NTUplace3, our macro placer integrated with NTUplace3 improves
the average HPWL by 11% and 6%, respectively. As shown in
Table II, NTUplace3 combined with our macro placer is about three
times faster than NTUplace3 alone, and achieves 58% shorter runtime
compared with MP-tree combined with NTUplace3.

B. Effects of Chip Utilization Rates
In this experiment, we compared the effects with different chip

utilization rates. We modified the core region of the ISPD’06 bench-
marks to obtain the three utilization rates, 70%, 80%, and 90%.
Table III shows the resulting HPWLs with different chip utilization
rates.

Integrating our macro placer with NTUplace3, we can obtain legal
placements for all the benchmarks. In contrast, NTUplace3 alone
cannot generate legal placements for newblue3 with all utilization
rates, and XDP integrated with NTUplace3 also fails for the same
circuit under the 90% utilization rate. Compared with NTUplace3
alone on those legalized benchmarks, our macro placer integrated
with NTUplace3 results in 4%, 4%, and 14% better average HPWL
for 70%, 80%, and 90% utilization rates, respectively. Further, while
the utilization rate decreases from 90% to 70%, our placer combined
with NTUplace3 outperforms that of MP-tree by larger margins (from
0% up to 9%), implying that our macro placer is robust for designs
with various utilization rates. In contrast, the solution quality of XDP
combined with NTUplace3 degrades as the utilization rate increases.

C. Integration with Other Placers
In addition to NTUplace3, we also integrated our macro placer

with mPL6 and Capo 10.2, which are based on the analytical and min-
cut placement techniques, respectively. Again, we tested the ISPD’06
placement benchmarks with the default chip utilization rates. Our
macro placer took the global placement results of mPL6 and Capo as
initial solutions, and then optimize macro positions and orientations.
Finally, the macro positions were fixed, and mPL6 and Capo were
again applied to place the standard cells.

(a) (b) (c)

Fig. 7. The placement result for adaptec5 with the 80% chip
utilization rate. (a) Our macro placer can determine non-compacted
macro positions and optimize the placement region. (b) MP-tree tends
to pack macros along the chip boundaries. (c) XDP does not optimize
the placement region, and thus some macros stay in the chip center.

Table IV shows the results without and with our macro placer.
As shown in the table, mPL6 failed to find legal solution in all
circuits. However, integrated with our macro placer, mPL6 can obtain
legal solutions for all circuits, and the resulting HPWLs are further
reduced by 6% for the circuits other than newblue3 and newblue7.
For Capo, we report the wirelengths and runtimes after the global
placement and legalization stages (without detailed placement), since
the detailed placement of Capo for the modified benchmarks cannot
function correctly for some unknown reason. As shown in Table IV,
Capo is robust in finding legal placements since macro positions are
guaranteed to be overlap-free during the global placement. However,
the quality is not good. Integrated with our macro placer, Capo
reduced 5% average HPWL than that without our macro placer.
The results show that our macro placer is very flexible and robust
to be effectively integrated into various placers (mPL6, Capo, and
NTUplace3 as well).

V. CONCLUSIONS

We have proposed a novel constraint graph-based macro place-
ment algorithm to remove macro overlaps and optimize macro
positions/orientations effectively and efficiently. Experimental results
have shown that the proposed algorithm can further improve the
quality of state-of-the-art academic placers. Unlike the previous MP-
tree work that focuses only on high-density designs, further, our
macro placer is robust and can consistently provide high-quality
macro placement solutions for various utilization rates.
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