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Zusammenfassung

Diese Arbeit stellt einen integrierten Ansatz aus Constraint Programming (CP) und
Gemischt-Ganzzahliger Programmierung (Mixed Integer Programming, MIP) vor,
den wir Constraint Integer Programming (CIP) nennen. Sowohl Modellierungs- als
auch Lösungstechniken beider Felder fließen in den neuen integrierten Ansatz ein,
um die unterschiedlichen Stärken der beiden Gebiete zu kombinieren. Als weite-
ren Beitrag stellen wir der wissenschaftlichen Gemeinschaft die Software SCIP zur
Verfügung, die ein Framework für Constraint Integer Programming darstellt und
zusätzlich Techniken des SAT-Lösens beinhaltet. SCIP ist im Source Code für aka-
demische und nicht-kommerzielle Zwecke frei erhältlich.

Unser Ansatz des Constraint Integer Programming ist eine Verallgemeinerung
von MIP, die zusätzlich die Verwendung beliebiger Constraints erlaubt, solange sich
diese durch lineare Bedingungen ausdrücken lassen falls alle ganzzahligen Variablen
auf feste Werte eingestellt sind. Die Constraints werden von einer beliebigen Kom-
bination aus CP- und MIP-Techniken behandelt. Dies beinhaltet insbesondere die
Domain Propagation, die Relaxierung der Constraints durch lineare Ungleichungen,
sowie die Verstärkung der Relaxierung durch dynamisch generierte Schnittebenen.

Die derzeitige Version von SCIP enthält alle Komponenten, die für das effiziente
Lösen von Gemischt-Ganzzahligen Programmen benötigt werden. Die vorliegende
Arbeit liefert eine ausführliche Beschreibung dieser Komponenten und bewertet ver-
schiedene Varianten in Hinblick auf ihren Einfluß auf das Gesamt-Lösungsverhalten
anhand von aufwendigen praktischen Experimenten. Dabei wird besonders auf die
algorithmischen Aspekte eingegangen.

Der zweite Hauptteil der Arbeit befasst sich mit der Chip-Design-Verifikation,
die ein wichtiges Thema innerhalb des Fachgebiets der Electronic Design Automa-
tion darstellt. Chip-Hersteller müssen sicherstellen, dass der logische Entwurf einer
Schaltung der gegebenen Spezifikation entspricht. Andernfalls würde der Chip feh-
lerhaftes Verhalten aufweisen, dass zu Fehlfunktionen innerhalb des Gerätes führen
kann, in dem der Chip verwendet wird. Ein wichtiges Teilproblem in diesem Feld
ist das Eigenschafts-Verifikations-Problem, bei dem geprüft wird, ob der gegebene
Schaltkreisentwurf eine gewünschte Eigenschaft aufweist. Wir zeigen, wie dieses Pro-
blem als Constraint Integer Program modelliert werden kann und geben eine Reihe
von problemspezifischen Algorithmen an, die die Struktur der einzelnen Constraints
und der Gesamtschaltung ausnutzen. Testrechnungen auf Industrie-Beispielen ver-
gleichen unseren Ansatz mit den bisher verwendeten SAT-Techniken und belegen
den Erfolg unserer Methode.
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Abstract

This thesis introduces the novel paradigm of constraint integer programming (CIP),
which integrates constraint programming (CP) and mixed integer programming (MIP)
modeling and solving techniques. It is supplemented by the software SCIP, which
is a solver and framework for constraint integer programming that also features
SAT solving techniques. SCIP is freely available in source code for academic and
non-commercial purposes.

Our constraint integer programming approach is a generalization of MIP that
allows for the inclusion of arbitrary constraints, as long as they turn into linear
constraints on the continuous variables after all integer variables have been fixed.
The constraints, may they be linear or more complex, are treated by any combination
of CP and MIP techniques: the propagation of the domains by constraint specific
algorithms, the generation of a linear relaxation and its solving by LP methods, and
the strengthening of the LP by cutting plane separation.

The current version of SCIP comes with all of the necessary components to
solve mixed integer programs. In the thesis, we cover most of these ingredients
and present extensive computational results to compare different variants for the
individual building blocks of a MIP solver. We focus on the algorithms and their
impact on the overall performance of the solver.

In addition to mixed integer programming, the thesis deals with chip design
verification, which is an important topic of electronic design automation. Chip
manufacturers have to make sure that the logic design of a circuit conforms to the
specification of the chip. Otherwise, the chip would show an erroneous behavior that
may cause failures in the device where it is employed. An important subproblem of
chip design verification is the property checking problem, which is to verify whether
a circuit satisfies a specified property. We show how this problem can be modeled
as constraint integer program and provide a number of problem-specific algorithms
that exploit the structure of the individual constraints and the circuit as a whole.
Another set of extensive computational benchmarks compares our CIP approach
to the current state-of-the-art SAT methodology and documents the success of our
method.
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Introduction

This thesis introduces constraint integer programming (CIP), which is a novel way
to combine constraint programming (CP) and mixed integer programming (MIP)
methodologies. CIP is a generalization of MIP that supports the notion of general
constraints as in CP. This approach is supported by the CIP framework SCIP,
which also integrates techniques from SAT solving.

We demonstrate the usefulness of SCIP on two tasks. First, we apply the con-
straint integer programming approach to pure mixed integer programs. Computa-
tional experiments show that SCIP is almost competitive to current state-of-the-art
commercial MIP solvers, even though it incurs the overhead to support the more
general constraint integer programming model. We describe the fundamental build-
ing blocks of MIP solvers and specify how they are implemented in SCIP. For all
involved components, namely branching, node selection, domain propagation, cut-
ting plane separation, primal heuristics, and presolving, we review existing ideas
and introduce new variants that improve the runtime performance. Additionally,
we generalize conflict analysis—a technique originating from the SAT community—
to constraint and mixed integer programming. This novel concept in MIP solving
yields noticeable performance improvements.

As a second application, we employ the CIP framework to solve chip design
verification problems as they arise in the logic design of integrated circuits. Although
this problem class features a substantial kernel of linear constraints that can be
efficiently handled by MIP techniques, it involves a few highly non-linear constraint
types that are very hard to handle by pure mixed integer programming solvers. In
this setting, the CIP approach is very effective: it can apply the full sophisticated
MIP machinery to the linear part of the problem, while it is still able to deal with the
non-linear constraints outside the MIP kernel by employing constraint programming
techniques.

The idea of combining modeling and solving techniques from CP and MIP is
not new. In the recent years, several authors showed that an integrated approach
can help to solve optimization problems that were intractable with either of the two
methods alone. For example, Timpe [205] applied a hybrid procedure to solve chem-
ical industry planning problems that include lot-sizing, assignment, and sequencing
as subproblems. Other examples of successful integration include the assembly line
balancing problem (Bockmayr and Pisaruk [50]) and the parallel machine scheduling
problem (Jain and Grossmann [122]).

Different approaches to integrate general constraint and mixed integer program-
ming into a single framework have been proposed in the literature. For example,
Bockmayr and Kasper [49] developed the framework Coupe, that unifies CP and
MIP by observing that both techniques rely on branching and inference. In this
setting, cutting planes and domain propagation are just specific types of inference.
Althaus et al. [10] presented the system Scil, which introduces symbolic constraints
on top of mixed integer programming solvers. Aron et al. [21] developed Simpl, a
system for integrated modeling and solving. They view both, CP and MIP, as a
special case of an infer-relax-restrict cycle in which CP and MIP techniques closely
interact at any stage.

1



2 Introduction

Our approach differs from the existing work in the level of integration. SCIP
combines the CP, SAT, and MIP techniques on a very low level. In particular,
all involved algorithms operate on a single search tree which yields a very close
interaction. For example, MIP components can base their heuristic decisions on
statistics that have been gathered by CP algorithms or vice versa, and both can
use the dual information provided by the LP relaxation of the current subproblem.
Furthermore, the SAT-like conflict analysis evaluates both the deductions discovered
by CP techniques and the information obtained through the LP relaxation.

Content of the Thesis

This thesis consists of three parts. We now describe their content in more detail.

The first part illustrates the basic concepts of constraint programming, SAT
solving, and mixed integer programming. Chapter 1 defines the three model types
and gives a rough overview of how they can be solved in practice. The chapter
concludes with the definition of the constraint integer program that forms the basis
of our approach to integrate the solving and modeling techniques of the three ar-
eas. Chapter 2 presents the fundamental algorithms that are applied to solve CPs,
MIPs, and SAT problems, namely branch-and-bound, cutting plane separation, and
domain propagation. Finally, Chapter 3 explains the design principles of the CIP
solving framework SCIP to set the stage for the description of the domain specific
algorithms in the subsequent parts. In particular, we present sophisticated mem-
ory management methods, which yield an overall runtime performance improvement
of 8 %.1

The second part of the thesis deals with the solution of mixed integer programs.
After a general introduction to mixed integer programming in Chapter 4, we present
the ideas and algorithms for the key components of branch-and-bound based MIP
solvers as they are implemented in SCIP. Many of the techniques are gathered from
the literature, but some components as well as a lot of algorithmic subtleties and
small improvements are new developments. Except the introduction, every chapter
of the second part concludes with computational experiments to evaluate the impact
of the discussed algorithms on the MIP solving performance. Overall, this constitutes
one of the most extensive computational studies on this topic that can be found in
the literature. In total, we spent more than one CPU year on the preliminary and
final benchmarks, solving 244 instances with 115 different parameter settings each,
which totals to 28060 runs.

Chapter 5 addresses branching rules. We review the most popular strategies
and introduce a new rule called reliability branching, which generalizes many of
the previously known strategies. We show the relations of the various other rules
to different parameter settings of reliability branching. Additionally, we propose a
second novel branching approach, which we call inference branching . This rule is
influenced by ideas of the SAT and CP communities and is particularly tailored
for pure feasibility problems. Using reliability branching and inference branching
in a hybrid fashion outperforms the previous state-of-the-art pseudocost branching

1We measure the performance in the geometric mean relative to the default settings of SCIP.
For example, a performance improvement of 100 % for a default feature means that the solving
process takes twice as long in the geometric mean if the feature is disabled.



Introduction 3

with strong branching initialization rule by 8 %. On feasibility problems, we obtain
a performance improvement of more than 50 %. Besides improving the branching
strategies, we demonstrate the deficiencies of the still widely used most infeasible
branching . Our computational experiments show that this rule, although seemingly
a natural choice, is almost as poor as selecting the branching variable randomly.

Branching rules usually generate a “score” or “utility” value for the two child
nodes associated to each branching candidate. The pseudocost estimates for the LP
objective changes in the two branching directions are an example for such values. An
important aspect of the branching variable selection is the combination of these two
values into a single score value that is used to compare the branching candidates.
Commonly, one uses a convex combination

score(q−, q+) = (1− µ) ·min{q−, q+}+ µ ·max{q−, q+}

of the two child node score values q− and q+ with parameter µ ∈ [0, 1]. We propose
a novel approach which employs a product based function

score(q−, q+) = max{q−, ǫ} ·max{q+, ǫ}

with ǫ = 10−6. Our computational results show that even for the best of five different
µ values, the product function outperforms the linear approach by 14 %.

Chapter 6 deals with the node selection, which together with the branching
rule forms the search component of the solver. Again, we review existing ideas
and present several mixed strategies that aim to combine the advantages of the
individual methods. Here, the impact on the solving performance is not as strong
as for the branching rules. Compared to the basic depth first and best first search
rules, however, the hybrid node selection strategy that we employ achieves an overall
speedup of about 30 %.

Domain propagation and cutting plane separation constitute the inference engine
of the solver. Chapter 7 deals with the former and commences with a detailed
discussion of the propagation of general linear constraints, including numerical issues
that have to be considered. A key concept in the theory of constraint programming to
evaluate domain propagation algorithms is the notion of local consistency for which
several variants are distinguished. Two of them are bound consistency and the
stronger interval consistency. We show that bound consistency can be achieved easily
for general linear constraints, but deciding interval consistency for linear equations
is NP-complete. However, if the constraint is a simple inequality aTx ≤ β, our
algorithm attains interval consistency. This means, the propagation is optimal in the
sense that no further deductions can be derived by only looking at one constraint at
a time together with the bounds and integrality restrictions of the involved variables.

In addition to general linear inequalities and equations, Chapter 7 deals with
special cases of linear constraints like, for example, binary knapsack and set covering
constraints. If restricted to propagating the constraints one at a time, we cannot
get better than interval consistency. The data structures and algorithms, however,
can be improved to obtain smaller memory consumption and runtime costs. In
particular, the so-called two watched literals scheme of SAT solvers can be applied
to set covering constraints.

Chapter 8 deals with the separation of cutting planes. As most of the de-
tails of cutting plane separation in SCIP can be found in the diploma thesis of
Kati Wolter [218] and a comprehensive survey of the theory was recently given by
Klar [132], we cover the topic only very briefly. We describe the different classes of
cuts that are generated by SCIP and give a few comments on the theoretical back-
ground and the implementation of the separation algorithms. As in the previous
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chapters, we conclude with a computational study to evaluate the effectiveness of
the various cut separators. It turns out that cutting planes yield a performance
improvement of more than 100 % with the complemented mixed integer rounding
cuts having the largest impact. Besides the separation of the different classes of
cutting planes, it is also important to have good selection criteria in order to decide
which of the generated cuts should actually be added to the LP relaxation. Our
experiments show that very simple strategies like adding all the cuts that have been
found or adding only one cut per round increase the total runtime by 70 % and 80 %,
respectively, compared to a sophisticated rule that carefully selects a subset of the
available cutting planes. More interestingly, choosing cuts which are pairwise al-
most orthogonal yields a 20 % performance improvement over the common strategy
of only considering the cut violations.

Chapter 9 gives an overview of the primal heuristics included in SCIP. Similar
to the cutting planes we do not go into the details, since they can be found in the
diploma thesis of Timo Berthold [41]. We describe only the general ideas of the
various heuristics and conclude with a computational study. Our results indicate
that the contribution of primal heuristics to decrease the time to solve MIP instances
to optimality is rather small. Disabling all primal heuristics increases the time to
find the optimal solution and to prove that no better solution exists by only 14 %.
However, proving optimality is not always the primary goal of a user. For practical
applications, it is usually enough to find feasible solutions of reasonable quality
quickly. For this purpose, primal heuristics are a useful tool.

Chapter 10 presents the presolving techniques that are incorporated in SCIP.
Besides calling the regular domain propagation algorithms for the global bounds of
the variables as a subroutine, they comprise more sophisticated methods to alter the
problem structure with the goal of decreasing the size of the instance and strengthe-
ning its LP relaxation. As for domain propagation, we first discuss the presolving of
general linear constraints and continue with the special cases like binary knapsack or
set covering constraints. In addition, we present four methods that can be applied
to any constraint integer program, independent from the involved constraint types.

While all of these presolving techniques are well known in the MIP commu-
nity, Chapter 10 includes the additional method of restarts. This method has not
been used by MIP solvers in the past, although it is a key ingredient in modern
SAT solvers. It means to interrupt the branch-and-bound solving process, reapply
presolving, and perform another pass of branch-and-bound search. The information
about the problem instance that was discovered in the previous solving pass can lead
to additional presolving reductions and to improved decisions in the subsequent run,
for example in the branching variable selection. Although SAT solvers employ pe-
riodic restarts throughout the whole solving process, we concluded that in the case
of MIP it is better to restart only directly after the root node has been solved. We
restart the solving process if a certain amount of additional variable fixings have been
generated, for example by cutting planes or strong branching. The computational
results at the end of the chapter show that the regular presolving techniques yield
a 90 % performance improvement, while restarts achieve an additional reduction of
almost 10 %.

Finally, Chapter 11 contributes another successful integration of a SAT tech-
nique into the domain of mixed integer programming, namely the idea of conflict
analysis. Using this method, one can extract structural knowledge about the prob-
lem instance at hand from the infeasible subproblems that are processed during the
branch-and-bound search. We show how conflict analysis as employed for SAT can
be generalized to the much richer modeling constructs available in mixed integer pro-
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gramming, namely general linear constraints and integer and continuous variables.
A particularly interesting aspect is the analysis of infeasible or bound exceeding

LPs for which we use dual information in order to obtain an initial starting point for
the subsequent analysis of the branchings and propagations that lead to the conflict.
The computational experiments identify a performance improvement of more than
10 %, which can be achieved by a reasonable effort spent on the analysis of infeasible
subproblems.

In the third part of the thesis, we discuss the application of our constraint integer
programming approach to the chip design verification problem. The task is to verify
whether a given logic design of a chip satisfies certain desired properties. All the
transition operators that can be used in the logic of a chip, for example addition,
multiplication, shifting, or comparison of registers, are expressed as constraints of a
CIP model. Verifying a property means to decide whether the CIP model is feasible
or not.

Chapter 12 gives an introduction to the application and an overview of cur-
rent state-of-the-art solving techniques. The property checking problem is formally
defined in Chapter 13, and we present our CIP model together with a list of all
constraint types that can appear in the problem instances. In total, 22 different
operators have to be considered.

In Chapter 14 we go into the details of the implementation. For each constraint
type it is explained how an LP relaxation can be constructed and how the domain
propagation and presolving algorithms exploit the special structure of the constraint
class to efficiently derive deductions. Since the semantics of some of the operators
can be represented by constraints of a different operator type, we end up with 10
non-trivial constraint handlers. In addition, we need a supplementary constraint
class that provides the link between the bit and word level representations of the
problem instance.

The most complex algorithms deal with the multiplication of two registers. These
constraints feature a highly involved LP relaxation using a number of auxiliary vari-
ables. In addition, we implemented three domain propagation algorithms that op-
erate on different representations of the constraint: the LP representation, the bit
level representation, and a symbolic representation. For the latter, we employ term
algebra techniques and define a term rewriting system. We state a term nor-
malization algorithm and prove its termination by providing a well-founded partial
ordering on the operations of the underlying algebraic signature.

In regular mixed integer programming, every constraint has to be modeled with
linear inequalities and equations. In contrast, in our constraint integer programming
approach we can treat each constraint class by CP or MIP techniques alone, or we can
employ both of them simultaneously. The benefit of this flexibility is most apparent
for the shifting and slicing operators. We show, for example, that a reasonable LP
relaxation of a single shift left constraint on 64-bit registers includes 2 145 auxiliary
variables and 6 306 linear constraints with a total of 16 834 non-zero coefficients.
Therefore, a pure MIP solver would have to deal with very large problem instances.
In contrast, the CIP approach can handle these constraints outside the LP relaxation
by employing CP techniques alone, which yields much smaller node processing times.

Chapter 15 introduces two application specific presolving techniques. The first
is the use of a term rewriting system to generate problem reductions on a symbolic
level. As for the symbolic propagation of multiplication constraints, we present
a term normalization algorithm and prove that it terminates for all inputs. The
normalized terms can then be compared in order to identify fixings and equivalences
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of variables. The second presolving technique analyzes the function graph of the
problem instance in order to identify parts of the circuit that are irrelevant for
the property that should be verified. These irrelevant parts are removed from the
problem instance, which yields a significant reduction in the problem size on some
instances.

Chapter 16 gives a short overview of the search strategies, i.e., branching and
node selection rules, that are employed for solving the property checking problem.
Finally, computational results in Chapter 17 demonstrate the effectiveness of our

integrated approach by comparing its performance to the state-of-the-art in the field,
which is to apply SAT techniques for modeling and solving the problem. While
SAT solvers are usually much faster in finding counter-examples that prove the
invalidity of a property, our CIP based procedure can be—depending on the circuit
and property—several orders of magnitude faster than the traditional approach.

Software

As a supplement to this thesis we provide the constraint integer programming frame-
work SCIP, which is freely available in source code for academic and non-commercial
use and can be downloaded from http://scip.zib.de. It has LP solver interfaces
to CLP [87], Cplex [118], Mosek [167], SoPlex [219], and Xpress [76]. The cur-
rent version 0.90i consists of 223 178 lines of C code and C++ wrapper classes, which
breaks down to 145 676 lines for the CIP framework and 77 502 lines for the various
plugins. For the special plugins dealing with the chip design verification problem,
an additional 58 363 lines of C code have been implemented.

The development of SCIP started in October 2002. Most ideas and algorithms of
the then state-of-the-art MIP solver SIP of Alexander Martin [159] were transfered
into the initial version of SCIP. Since then, many new features have been developed
that further have improved the performance and the usability of the framework. As
a stand-alone tool, SCIP in combination with SoPlex as LP solver is the fastest
non-commercial MIP solver that is currently available, see Mittelmann [166]. Us-
ing Cplex 10 as LP solver, the performance of SCIP is even comparable to the
today’s best commercial codes Cplex and Xpress: the computational results in
Appendix C show that SCIP 0.90i is on average only 63 % slower than Cplex 10.

As a library, SCIP can be used to develop branch-cut-and-price algorithms, and
it can be extended to support additional classes of non-linear constraints by provid-
ing so-called constraint handler plugins. The solver for the chip design verification
problem is one example of this usage. It is the hope of the author that the per-
formance and the flexibility of the software combined with the availability of the
source code fosters research in the area of constraint and mixed integer program-
ming. Apart from the chip design verification problem covered in this thesis, SCIP
has already been used in various other projects, see, for example, Pfetsch [187],
Anders [12], Armbruster et al. [19, 20], Bley et al. [48], Joswig and Pfetsch [126],
Koch [135], Nunkesser [176], Armbruster [18], Bilgen [45], Ceselli et al. [58], Dix [81],
Kaibel et al. [127], Kutschka [138], or Orlowski et al. [178]. Additionally, it is used
for teaching graduate students, see Achterberg, Grötschel, and Koch [3].

http://scip.zib.de
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Chapter 1

Basic Definitions

In this chapter, we present three model types of search problems—constraint pro-
grams, satisfiability problems, and mixed integer programs. We specify the basic
solution strategies of the three fields and highlight the key ideas that make the
approaches efficient in practice. Finally, we derive a problem class which we call
constraint integer program. This problem class forms the basis of our approach to
integrate the modeling and solving techniques from the three domains into a single
framework.

1.1 Constraint Programs

The basic concept of general logical constraints was used in 1963 by Sutherland [202,
203] in his interactive drawing system Sketchpad. In the 1970’s, the concept of
logic programming emerged in the artificial intelligence community in the context of
automated theorem proving and language processing, most notably with the logic
programming language Prolog developed by Colmerauer et al. [64, 66] and Kowal-
ski [136]. In the 1980’s, constraint solving was integrated into logic programming,
resulting in the so-called constraint logic programming paradigm, see, e.g., Jaffar
and Lassez [121], Dincbas et al. [80], or Colmerauer [65].

In its most general form, the basic model type that is addressed by the above
approaches is the constraint satisfaction problem (CSP), which is defined as follows:

Definition 1.1 (constraint satisfaction problem). A constraint satisfaction prob-
lem is a pair CSP = (C,D) with D = D1 × . . . × Dn representing the domains of
finitely many variables xj ∈ Dj , j = 1, . . . , n, and C = {C1, . . . , Cm} being a finite
set of constraints Ci : D → {0, 1}, i = 1, . . . ,m. The task is to decide whether the
set

XCSP = {x | x ∈ D, C(x)} , with C(x) :⇔ ∀i = 1, . . . ,m : Ci(x) = 1

is non-empty, i.e., to either find a solution x ∈ D satisfying C(x) or to prove that
no such solution exists. A CSP where all domains D ∈ D are finite is called a finite
domain constraint satisfaction problem (CSP(FD)).

Note that there are no further restrictions imposed on the constraint predicates
Ci ∈ C. The optimization version of a constraint satisfaction problem is called
constraint optimization program or, for short, constraint program (CP):

Definition 1.2 (constraint program). A constraint program is a triple CP =
(C,D, f) and consists of solving

(CP) f⋆ = min{f(x) | x ∈ D, C(x)}

with the set of domains D = D1 × . . . × Dn, the constraint set C = {C1, . . . , Cm},
and an objective function f : D → R. We denote the set of feasible solutions by

9
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XCP = {x | x ∈ D, C(x)}. A CP where all domains D ∈ D are finite is called a finite
domain constraint program (CP(FD)).

Like the constraint predicates Ci ∈ C the objective function f may be an arbitrary
mapping.

Existing constraint programming solvers like Cal [7], Chip [80], Clp(R) [121],
Prolog III [65], or ILOG Solver [188] are usually restricted to finite domain
constraint programming.

To solve a CP(FD), the problem is recursively split into smaller subproblems
(usually by splitting a single variable’s domain), thereby creating a branching tree
and implicitly enumerating all potential solutions (see Section 2.1). At each sub-
problem (i.e., node in the tree) domain propagation is performed to exclude further
values from the variables’ domains (see Section 2.3). These domain reductions are
inferred by the single constraints (primal reductions) or by the objective function
and a feasible solution x̂ ∈ XCP (dual reductions). If every variable’s domain is
thereby reduced to a single value, a new primal solution is found. If any of the
variables’ domains becomes empty, the subproblem is discarded and a different leaf
of the current branching tree is selected to continue the search.

The key element for solving constraint programs in practice is the efficient im-
plementation of domain propagation algorithms, which exploit the structure of the
involved constraints. A CP solver usually includes a library of constraint types with
specifically tailored propagators. Furthermore, it provides infrastructure for manag-
ing local domains and representing the subproblems in the tree, such that the user
can integrate algorithms into the CP framework in order to control the search or to
deal with additional constraint classes.

1.2 Satisfiability Problems

The satisfiability problem (SAT) is defined as follows. The Boolean truth values false
and true are identified with the values 0 and 1, respectively, and Boolean formulas
are evaluated correspondingly.

Definition 1.3 (satisfiability problem). Let C = C1 ∧ . . .∧Cm be a logic formula
in conjunctive normal form (CNF) on Boolean variables x1, . . . , xn. Each clause
Ci = ℓi1∨. . .∨ℓ

i
ki

is a disjunction of literals. A literal ℓ ∈ L = {x1, . . . , xn, x̄1, . . . , x̄n}
is either a variable xj or the negation of a variable x̄j . The task of the satisfiability
problem (SAT) is to either find an assignment x⋆ ∈ {0, 1}n, such that the formula C

is satisfied, i.e., each clause Ci evaluates to 1, or to conclude that C is unsatisfiable,
i.e., for all x ∈ {0, 1}n at least one Ci evaluates to 0.

SAT was the first problem shown to be NP-complete by Cook [68]. Since SAT
is a special case of a constraint satisfaction problem, CSP is NP-complete as well.
Besides its theoretical relevance, SAT has many practical applications, e.g., in the

design and verification of integrated circuits or in the design of logic based intelligent
systems. We refer to Biere and Kunz [44] for an overview of SAT techniques in chip
verification and to Truemper [206] for details on logic based intelligent systems.

Modern SAT solvers like BerkMin [100], Chaff [168], or MiniSat [82] rely on
the following techniques:
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⊲ using a branching scheme (the DPLL-algorithm of Davis, Putnam, Logemann,
and Loveland [77, 78]) to split the problem into smaller subproblems (see
Section 2.1),

⊲ applying Boolean constraint propagation (BCP) [220] on the subproblems,
which is a special form of domain propagation (see Section 2.3),

⊲ analyzing infeasible subproblems to produce conflict clauses [157], which help
to prune the search tree later on (see Chapter 11), and

⊲ restarting the search in a periodic fashion in order to revise the branching
decisions after having gained new knowledge about the structure of the problem
instance, which is captured by the conflict clauses, see Gomes et al. [101].

The DPLL-algorithm creates two subproblems at each node of the search tree
by fixing a single variable to zero and one, respectively. The nodes are processed in
a depth first fashion.

1.3 Mixed Integer Programs

A mixed integer program (MIP) is defined as follows.

Definition 1.4 (mixed integer program). Given a matrix A ∈ Rm×n, vectors
b ∈ Rm, and c ∈ Rn, and a subset I ⊆ N = {1, . . . , n}, the mixed integer program
MIP = (A, b, c, I) is to solve

(MIP) c⋆ = min {cTx | Ax ≤ b, x ∈ Rn, xj ∈ Z for all j ∈ I} .

The vectors in the set XMIP = {x ∈ Rn | Ax ≤ b, xj ∈ Z for all j ∈ I} are called
feasible solutions of MIP. A feasible solution x⋆ ∈ XMIP of MIP is called optimal if
its objective value satisfies cTx⋆ = c⋆.

MIP solvers usually treat simple bound constraints lj ≤ xj ≤ uj with lj , uj ∈
R∪{±∞} separately from the remaining constraints. In particular, integer variables
with bounds 0 ≤ xj ≤ 1 play a special role in the solving algorithms and are a very
important tool to model “yes/no” decisions. We refer to the set of these binary
variables with B := {j ∈ I | lj = 0 and uj = 1} ⊆ I ⊆ N . In addition, we denote
the continuous variables by C := N \ I.

Common special cases of MIP are linear programs (LPs) with I = ∅, integer
programs (IPs) with I = N , mixed binary programs (MBPs) with B = I, and
binary programs (BPs) with B = I = N . The satisfiability problem is a special case
of a BP without objective function. Since SAT is NP-complete, BP, IP, and MIP
are NP-hard. Nevertheless, linear programs are solvable in polynomial time, which
was first shown by Khatchiyan [130, 131] using the so-called ellipsoid method.

Note that in contrast to constraint programming, in mixed integer programming
we are restricted to

⊲ linear constraints,

⊲ a linear objective function, and

⊲ integer or real-valued domains.



12 Basic Definitions

Despite these restrictions in modeling, practical applications prove that MIP, IP,
and BP can be very successfully applied to many real-word problems. However, it
often requires expert knowledge to generate models that can be solved with current
general purpose MIP solvers. In many cases, it is even necessary to adapt the solving
process itself to the specific problem structure at hand. This can be done with the
help of an MIP framework.

Like CP and SAT solvers, most modern MIP solvers recursively split the problem
into smaller subproblems, thereby generating a branching tree (see Section 2.1).
However, the processing of the nodes is different. For each node of the tree, the
LP relaxation is solved, which can be constructed from the MIP by removing the
integrality conditions:

Definition 1.5 (LP relaxation of an MIP). Given a mixed integer program
MIP = (A, b, c, I), its LP relaxation is defined as

(LP) č = min {cTx | Ax ≤ b, x ∈ Rn} .

XLP = {x ∈ Rn | Ax ≤ b} is the set of feasible solutions of the LP relaxation. An
LP-feasible solution x̌ ∈ XLP is called LP-optimal if cT x̌ = č.

The LP relaxation can be strengthened by cutting planes which use the LP
information and the integrality restrictions to derive valid inequalities that cut off
the solution of the current LP relaxation without removing integral solutions (see
Section 2.2). The objective value č of the LP relaxation provides a lower bound
for the whole subtree, and if this bound is not smaller than the value ĉ = cT x̂ of
the current best primal solution x̂, the node and its subtree can be discarded. The
LP relaxation usually gives a much stronger bound than the one that is provided by
simple dual propagation of CP solvers. The solution of the LP relaxation usually
requires much more time, however.

The most important ingredients of an MIP solver implementation are a fast
and numerically stable LP solver, cutting plane separators, primal heuristics, and
presolving algorithms (see Bixby et al. [46]). Additionally, the applied branching
rule is of major importance (see Achterberg, Koch, and Martin [5]). Necessary
infrastructure includes the management of subproblem modifications, LP warm start
information, and a cut pool.

Modern MIP solvers like CBC [86], Cplex [118], GLPK [99], Lindo [147],
Minto [171, 172], Mosek [167], SIP [159], Symphony [190], or Xpress [76] offer
a variety of different general purpose separators which can be activated for solv-
ing the problem instance at hand (see Atamtürk and Savelsbergh [26] for a feature
overview for a number of MIP solvers). It is also possible to add problem specific
cuts through callback mechanisms, thus providing some of the flexibility a full MIP
framework offers. These mechanisms are in many cases sufficient to solve a given
problem instance. With the help of modeling tools like Aimms [182], Ampl [89],
Gams [56], Lingo [148], Mosel [75], MPL [162], OPL [119], or Zimpl [133] it
is often even possible to formulate the model in a mathematical fashion, to auto-
matically transform the model and data into solver input, and to solve the instance
within reasonable time. In this setting, the user does not need to know the internals
of the MIP solver, which is used as a black-box tool.

Unfortunately, this rapid mathematical prototyping chain (see Koch [134]) does
not yield results in acceptable solving time for every problem class, sometimes not
even for small instances. For these problem classes, the user has to develop special
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purpose codes with problem specific algorithms. To provide the necessary infrastruc-
ture like the branching tree and LP management, or to give support for standard
general purpose algorithms like LP based cutting plane separators or primal heuris-
tics, a branch-and-cut framework like Abacus [204], the tools provided by the Coin
project [63], or the callback mechanisms provided, for example, by Cplex or Xpress
can be used. As we will see in the following, SCIP can also be used in this fashion.

1.4 Constraint Integer Programs

As described in the previous sections, most solvers for constraint programs, satisfia-
bility problems, and mixed integer programs share the idea of dividing the problem
into smaller subproblems and implicitly enumerating all potential solutions. They
differ, however, in the way of processing the subproblems.

Because MIP is a very specific case of CP, MIP solvers can apply sophisticated
problem specific algorithms that operate on the subproblem as a whole. In
particular, they use the simplex algorithm invented by Dantzig [73] to solve the LP
relaxations, and cutting plane separators like the Gomory cut separator [104].

In contrast, due to the unrestricted definition of CPs, CP solvers cannot take
such a global perspective. They have to rely on the constraint propagators, each of
them exploiting the structure of a single constraint class. Usually, the only commu-
nication between the individual constraints takes place via the variables’ domains.
An advantage of CP is, however, the possibility to model the problem more directly,
using very expressive constraints which contain a lot of structure. Transforming
those constraints into linear inequalities can conceal their structure from an MIP
solver, and therefore lessen the solver’s ability to draw valuable conclusions about
the instance or to make the right decisions during the search.

SAT is also a very specific case of CP with only one type of constraints, namely
Boolean clauses. A clause Ci = ℓi1 ∨ . . . ∨ ℓ

i
ki

can easily be linearized with the set

covering constraint ℓi1 + . . .+ ℓiki
≥ 1. However, this LP relaxation of SAT is rather

useless, since it cannot detect the infeasibility of subproblems earlier than domain
propagation: by setting all unfixed variables to x̌j = 1

2 , the linear relaxations of all
clauses with at least two unfixed literals are satisfied. Therefore, SAT solvers mainly
exploit the special problem structure to speed up the domain propagation algorithm
and to improve the underlying data structures.

The hope of combining CP, SAT, and MIP techniques is to combine their advan-
tages and to compensate for their individual weaknesses. We propose the following
slight restriction of a CP to specify our integrated approach:

Definition 1.6 (constraint integer program). A constraint integer program
CIP = (C, I, c) consists of solving

(CIP) c⋆ = min{cTx | C(x), x ∈ Rn, xj ∈ Z for all j ∈ I}

with a finite set C = {C1, . . . , Cm} of constraints Ci : Rn → {0, 1}, i = 1, . . . ,m, a
subset I ⊆ N = {1, . . . , n} of the variable index set, and an objective function vector
c ∈ Rn. A CIP has to fulfill the following condition:

∀x̂I ∈ ZI ∃(A′, b′) : {xC ∈ RC | C(x̂I , xC)} = {xC ∈ RC | A′xC ≤ b
′} (1.1)

with C := N \ I, A′ ∈ Rk×C , and b′ ∈ Rk for some k ∈ Z≥0.



14 Basic Definitions

Restriction (1.1) ensures that the remaining subproblem after fixing the integer
variables is always a linear program. This means that in the case of finite domain
integer variables, the problem can be—in principle—completely solved by enumer-
ating all values of the integer variables and solving the corresponding LPs. Note
that this does not forbid quadratic or even more involved expressions. Only the re-
maining part after fixing (and thus eliminating) the integer variables must be linear
in the continuous variables.

The linearity restriction of the objective function can easily be compensated by
introducing an auxiliary objective variable z that is linked to the actual non-linear
objective function with a non-linear constraint z = f(x). We just demand a linear
objective function in order to simplify the derivation of the LP relaxation. The
same holds for omitting the general variable domains D that exist in Definition 1.2
of the constraint program. They can also be represented as additional constraints.
Therefore, every CP that meets Condition (1.1) can be represented as constraint
integer program. In particular, we can observe the following:

Proposition 1.7. The notion of constraint integer programming generalizes finite
domain constraint programming and mixed integer programming:

(a) Every CP(FD) and CSP(FD) can be modeled as a CIP.

(b) Every MIP can be modeled as CIP.

Proof. The notion of a constraint is the same in CP as in CIP. The linear system
Ax ≤ b of an MIP is a conjunction of linear constraints, each of which is a special
case of the general constraint notion in CP and CIP. Therefore, we only have to
verify Condition (1.1).

For a CSP(FD), all variables have finite domain and can therefore be equivalently
represented as integers, leaving Condition (1.1) empty. In the case of a CP(FD),
the only non-integer variable is the auxiliary objective variable z, i.e., xC = (z).
Therefore, Condition (1.1) can be satisfied for a given x̂I by setting

A′ :=

(
1
−1

)

and b′ :=

(
f(x̂I)
−f(x̂I)

)

.

For an MIP, partition the constraint matrix A = (AI , AC) into the columns of the
integer variables I and the continuous variables C. For a given x̂I ∈ ZI set A′ := AC

and b′ := b− AI x̂I to meet Condition (1.1).

Like for a mixed integer program, we can define the notion of the LP relaxation
for a constraint integer program:

Definition 1.8 (LP relaxation of a CIP). Given a constraint integer program
CIP = (C, I, c), a linear program

(LP) č = min {cTx | Ax ≤ b, x ∈ Rn}

is called LP relaxation of CIP if

{x ∈ Rn | Ax ≤ b} ⊇ {x ∈ Rn | C(x), xj ∈ Z for all j ∈ I}.



Chapter 2

Algorithms

This chapter presents algorithms that can be used to solve constraint programs,
satisfiability problems, and mixed integer programs. All of the three problem classes
are commonly solved by branch-and-bound, which is explained in Section 2.1.

State-of-the-art MIP solvers heavily rely on the linear programming (LP) relax-
ation to calculate lower bounds for the subproblems of the search tree and to guide
the branching decision. The LP relaxation can be tightened to improve the lower
bounds by cutting planes, see Section 2.2.

In contrast to MIP, constraint programming is not restricted to linear constraints
to define the feasible set. This means, there usually is no canonical linear relaxation
at hand that can be used to derive lower bounds for the subproblems. Therefore,
one has to stick to other algorithms to prune the search tree as much as possible
in order to avoid the immense running time of complete enumeration. A method
that is employed in practice is domain propagation, which is a restricted version of
the so-called constraint propagation. Section 2.3 gives an overview of this approach.
Note that MIP solvers are also applying domain propagation on the subproblems
in the search tree. However, the MIP community usually calls this technique “node
preprocessing”.

Although the clauses that appear in a SAT problem can easily be represented
as linear constraints, the LP relaxation of a satisfiability problem is almost useless
since SAT has no objective function and the LP can always be satisfied by setting
xj = 1

2
for all variables (as long as each clause contains at least two literals).

Therefore, SAT solvers operate similar to CP solvers and rely on branching and
domain propagation.

Overall, the three algorithms presented in this chapter (branch-and-bound, LP
relaxation strengthened by cutting planes, and domain propagation) form the basic
building blocks of our integrated constraint integer programming solver SCIP.

2.1 Branch and Bound

The branch-and-bound procedure is a very general and widely used method to solve
optimization problems. It is also known as implicit enumeration, divide-and-conquer,
backtracking, or decomposition. The idea is to successively divide the given prob-
lem instance into smaller subproblems until the individual subproblems are easy to
solve. The best of the subproblems’ solutions is the global optimum. Algorithm 2.1
summarizes this procedure.

The splitting of a subproblem into two or more smaller subproblems in Step 7
is called branching. During the course of the algorithm, a branching tree is created
with each node representing one of the subproblems (see Figure 2.1). The root
of the tree corresponds to the initial problem R, while the leaves are either “easy”
subproblems that have already been solved or subproblems in L that still have to
be processed.

15
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Algorithm 2.1 Branch-and-bound

Input : Minimization problem instance R.

Output : Optimal solution x⋆ with value c⋆, or conclusion that R has no solution,
indicated by c⋆ =∞.

1. Initialize L := {R}, ĉ :=∞. [init ]

2. If L = ∅, stop and return x⋆ = x̂ and c⋆ = ĉ. [abort ]

3. Choose Q ∈ L, and set L := L \ {Q}. [select ]

4. Solve a relaxation Qrelax of Q. If Qrelax is empty, set č :=∞. Otherwise, let x̌
be an optimal solution of Qrelax and č its objective value. [solve]

5. If č ≥ ĉ, goto Step 2. [bound ]

6. If x̌ is feasible for R, set x̂ := x̌, ĉ := č, and goto Step 2. [check ]

7. Split Q into subproblems Q = Q1 ∪ . . . ∪Qk, set L := L ∪ {Q1, . . . , Qk}, and
goto Step 2. [branch]

The intention of the bounding in Step 5 is to avoid a complete enumeration of
all potential solutions of R, which are usually exponentially many. In order for
bounding to be effective, good lower (dual) bounds č and upper (primal) bounds ĉ
must be available. Lower bounds are calculated with the help of a relaxation Qrelax

which should be easy to solve. Upper bounds can be found during the branch-and-
bound algorithm in Step 6, but they can also be generated by primal heuristics.

The node selection in Step 3 and the branching scheme in Step 7 determine
important decisions of a branch-and-bound algorithm that should be tailored to the
given problem class. Both of them have a major impact on how early good
primal solutions can be found in Step 6 and how fast the lower bounds of the open

R

Q

Q1 Qk

root node

pruned solved

current

subproblem

subproblem

subproblem

new unsolved

subproblemssubproblems

feasible

solution

Figure 2.1. Branch-and-bound search tree.
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Q Q1 Q2

x̌x̌

Figure 2.2. LP based branching on a single fractional variable.

subproblems in L increase. They influence the bounding in Step 5, which should
cut off subproblems as early as possible and thereby prune large parts of the search
tree. Even more important for a branch-and-bound algorithm to be effective is the
type of relaxation that is solved in Step 4. A reasonable relaxation must fulfill two
usually opposing requirements: it should be easy to solve, and it should yield strong
dual bounds.

In mixed integer programming, the most widely used relaxation is the LP relax-
ation (see Definition 1.5), which proved to be very successful in practice. Currently,
almost all efficient commercial and academic MIP solvers are LP relaxation based
branch-and-bound algorithms. This includes the solvers mentioned in Section 1.3.

Besides supplying a dual bound that can be exploited for the bounding in Step 5,
the LP relaxation can also be used to guide the branching decisions of Step 7.
The most popular branching strategy in MIP solving is to split the domain of an
integer variable xj , j ∈ I, with fractional LP value x̌j /∈ Z into two parts, thus
creating the two subproblems Q1 = Q ∩ {xj ≤ ⌊x̌j⌋} and Q2 = Q ∩ {xj ≥ ⌈x̌j⌉}
(see Figure 2.2). Methods to select a fractional variable as branching variable are
discussed in Chapter 5.

In constraint programming, the branching step is usually carried out by selecting
an integer variable xj and fix it to a certain value xj = v ∈ Dj in one child node and
rule out the value in the other child node by enforcing xj ∈ Dj \ {v}. In contrast
to MIP, constraint programs do not have a strong canonical relaxation like the LP
relaxation. Although there might be good relaxations for special types of constraint
programs, there is no useful relaxation available for the general model. Therefore,
CP solvers implement the bounding Step 5 of Algorithm 2.1 only by propagating
the objective function constraint f(x) < ĉ with ĉ being the value of the current
incumbent solution. Thus, the strength of the bounding step heavily depends on the
propagation potential of the objective function constraint. In fact, CP solvers are
usually inferior to MIP solvers on problems where achieving feasibility is easy, but
finding the optimal solution is hard.

The branching applied in SAT solvers is very similar to the one of constraint
programming solvers. Since all variables are binary, however, it reduces to selecting
a variable xj and fixing it to xj = 0 in one child node and to xj = 1 in the other child
node. Actually, current SAT solvers do not even need to represent the branching
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Q QI

x̌x̌

Figure 2.3. A cutting plane that separates the fractional LP solution x̌ from the convex hull QI

of integer points of Q.

decisions in a tree. Because they apply depth first search, they only need to store
the nodes on the path from the root node to the current node. This simplification
in data structures is possible since the node selection of Step 3 is performed in a
depth-first fashion and conflict clauses (see Chapter 11) are generated for infeasible
subproblems that implicitly lead the search to the opposite fixing of the branching
variable after backtracking has been performed.

As SAT has no objective function, there is no need for the bounding Step 5 of
Algorithm 2.1. A SAT solver can immediately abort after having found the first
feasible solution.

2.2 Cutting Planes

Besides splitting the current subproblem Q into two or more easier subproblems by
branching, one can also try to tighten the subproblem’s relaxation in order to rule
out the current solution x̌ and to obtain a different one. Since MIP is the only
of the three investigated problem classes that features a generally applicable useful
relaxation, this technique is in this form unique to MIP.

The LP relaxation can be tightened by introducing additional linear constraints
aTx ≤ b that are violated by the current LP solution x̌ but do not cut off feasible
solutions from Q (see Figure 2.3). Thus, the current solution x̌ is separated from
the convex hull of integer solutions QI by the cutting plane aTx ≤ b, i.e.,

x̌ /∈ {x ∈ R | aTx ≤ b} ⊇ QI .

Gomory presented a general algorithm [102, 103] to find such cutting planes for in-
teger programs. He also proved [104] that his algorithm is finite for integer programs
with rational data, i.e., an optimal IP solution is found after adding a finite number
of cutting planes. His algorithm, however, is not practicable since it usually adds an
exponential number of cutting planes, which dramatically decreases the performance
and the numerical stability of the LP solver.

To benefit from the stronger relaxations obtained by cutting planes without
hampering the solvability of the LP relaxations, today’s most successful MIP solvers
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combine branching and cutting plane separation in one of the following fashions:

Cut-and-branch. The LP relaxationRLP of the initial (root) problemR is strength-
ened by cutting planes as long as it seems to be reasonable and does not reduce
numerical stability too much. Afterwards, the problem is solved with branch-and-
bound.

Branch-and-cut. The problem is solved with branch-and-bound, but the LP re-
laxations QLP of all subproblems Q (including the initial problem R) might be
strengthened by cutting planes. Here one has to distinguish between globally valid
cuts and cuts that are only valid in a local part of the branch-and-bound search tree,
i.e., cuts that were deduced by taking the branching decisions into account. Globally
valid cuts can be used for all subproblems during the course of the algorithm, but
local cuts have to be removed from the LP relaxation after the search leaves the
subtree for which they are valid.

Marchand et al. [154] and Fügenschuh and Martin [90] give an overview of compu-
tationally useful cutting plane techniques. A recent survey of cutting plane literature
can be found in Klar [132]. For further details, we refer to Chapter 8 and the refer-
ences therein.

2.3 Domain Propagation

Constraint propagation is an integral part of every constraint programming solver.
The task is to analyze the set of constraints of the current subproblem and the
current domains of the variables in order to infer additional valid constraints and
domain reductions, thereby restricting the search space. The special case where
only the domains of the variables are affected by the propagation process is called
domain propagation. If the propagation only tightens the lower and upper bounds
of the domains without introducing holes it is called bound propagation or bound
strengthening.

In mixed integer programming, the concept of bound propagation is well-known
under the term node preprocessing. One usually applies a restricted version of the
preprocessing algorithm that is used before starting the branch-and-bound process
to simplify the problem instance (see, e.g., Savelsbergh [199] or Fügenschuh and
Martin [90]). Besides the integrality restrictions, only linear constraints appear in
mixed integer programming problems. Therefore, MIP solvers only employ a very
limited number of propagation algorithms, the most prominent being the bound
strengthening on individual linear constraints (see Section 7.1).

In contrast, a constraint programming model can include a large variety of con-
straint classes with different semantics and structure. Thus, a CP solver provides
specialized constraint propagation algorithms for every single constraint class. Fig-
ure 2.4 shows a particular propagation of the alldiff constraint, which demands
that the involved variables have to take pairwise different values. Fast domain
propagation algorithms for alldiff constraints include the computation of maxi-
mal matchings in bipartite graphs (see Régin [192]). Bound propagation algorithms
identify so-called Hall intervals (Puget [189], López-Ortis et al. [151]).

The following example illustrates constraint propagation and domain propagation
for clauses of the satisfiability problem (see Section 1.2).
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Figure 2.4. Domain propagation on an alldiff constraint. In the current subproblem on the left
hand side, the values red and yellow are not available for variables x1 and x2 (for example, due to
branching). The propagation algorithm detects that the values green and blue can be ruled out for
the variables x3 and x4.

Example 2.1 (SAT constraint propagation). Consider the clauses C1 = x∨y∨v
and C2 = x̄∨ y∨w with binary variables x, y, v, w ∈ {0, 1}. The following resolution
can be performed:

C1 : x ∨ y ∨ v
C2 : x̄ ∨ y ∨ w

C3 : y ∨ v ∨ w

The resolution process yields a valid clause, namely C3 = y ∨ v ∨ w, which can be
added to the problem. Thus, resolution is a form of constraint propagation.

As a second example, suppose that we branched on v = 0 and w = 0 to obtain
the current subproblem. Looking at C3, we can deduce y = 1 because the constraint
would become unsatisfiable with y = 0. This latter constraint propagation is a
domain propagation, because the deduced constraint y = 1 directly restricts the
domain of a variable. In fact, since the lower bound of y is raised to 1, it is actually
a bound propagation. In the nomenclature of SAT solving, clause C3 with v = w = 0
is called a unit clause and the bound propagation process that fixes the remaining
literal y is called Boolean constraint propagation (BCP).

As Example 2.1 shows, one propagation can trigger additional propagations. In
the example, the generation of the inferred constraint C3 lead to the subsequent fixing
of y = 1. Such chains of iteratively applied propagations happen very frequently in
constraint propagation algorithms. Therefore, a constraint propagation framework
has to provide infrastructure that allows a fast detection of problem parts that have
to be inspected again for propagation. For example, the current state-of-the-art
to implement BCP for SAT is to apply the so-called two watched literals scheme
(Moskewicz et al. [168]) where only two of the unfixed literals in a clause need to
be watched for changes of their current domains. SCIP uses an event system to
reactivate constraints for propagation (see Section 3.1.10). The constraint handler
of SCIP that treats SAT clauses implements the two watched literals scheme by
tracking the bound change events on two unfixed literals per clause, see Section 7.4.

The ultimate goal of a constraint propagation scheme is to decide the global
consistency of the problem instance at hand.

Definition 2.2 (global consistency). A constraint satisfaction problem CSP =
(C,D) with constraint set C and domains of variables D (see Definition 1.1) is called
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globally consistent if there exists a solution x⋆ ∈ D with C(x⋆).

Since CSP is NP-complete, it is unlikely that efficient propagation schemes exist
that decide global consistency. Therefore, the iterative application of constraint
propagation usually aims to achieve some form of local consistency, which is a weaker
form of global consistency: a locally consistent CSP does not need to be globally
consistent, but global consistency implies local consistency. In the following we
present only some basic notions of local consistency that will be used in this thesis.
A more thorough overview can be found in Apt [17].

Definition 2.3 (node consistency). Consider a constraint satisfaction problem
CSP = (C,D) with constraint set C and domains of variables D (see Definition 1.1).
A unary constraint C ∈ C on a variable xj

C : Dj → {0, 1}

is called node consistent if C(xj) = 1 for all values xj ∈ Dj . A CSP is called node
consistent if all of its unary constraints are node consistent.

Definition 2.4 (arc consistency). A binary constraint C ∈ C on variables xi and
xj , i 6= j,

C : Di ×Dj → {0, 1},

of a constraint satisfaction problem CSP = (C,D) is called arc consistent if

∀xi ∈ Di ∃xj ∈ Dj : C(xi, xj) = 1, and

∀xj ∈ Dj ∃xi ∈ Di : C(xi, xj) = 1.

A CSP is called arc consistent if all of its binary constraints are arc consistent.

Definition 2.5 (hyper-arc consistency). An arbitrary constraint C ∈ C on vari-
ables xj1 , . . . , xjk

,
C : Dj1 × . . . ×Djk

→ {0, 1},

of a constraint satisfaction problem CSP = (C,D) is called hyper-arc consistent if

∀i ∈ {1, . . . , k} ∀xji
∈ Dji

∃x⋆ ∈ Dj1 × . . . ×Djk
: x⋆

ji
= xji

∧ C(x⋆) = 1.

A CSP is called hyper-arc consistent if all of its constraints are hyper-arc consistent.

Hyper-arc consistency is the strongest possible local consistency notion with
respect to a single constraint. It demands that for each constraint C each value
in the involved domains participates in a solution which satisfies C. In other words,
no further values can be excluded from the domains of the variables by considering
the constraints individually.

An algorithm which aims to achieve hyper-arc consistency for a given constraint
has to remove all values from the domains of the involved variables that do not
take part in a solution for the constraint. For domains D ⊆ R, one usually has
to introduce holes in order to achieve hyper-arc consistency. Such algorithms can
be very time-consuming. Additionally, the LP relaxation of a constraint integer
program can only deal with continuous intervals without holes. Therefore, we will
usually regard one of the following relaxed versions of hyper-arc consistency, which
only deal with the bounds of the interval domains:
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Definition 2.6 (interval consistency). An arbitrary constraint C ∈ C on variables
xj1 , . . . , xjk

,
C : Dj1 × . . . ×Djk

→ {0, 1},

of a constraint satisfaction problem CSP = (C,D) with interval domains Dji
=

[lji
, uji

], lji
, uji

∈ R, or Dji
= {lji

, . . . , uji
}, lji

, uji
∈ Z, i = 1, . . . , k, is called

interval consistent if

∀i ∈ {1, . . . , k} ∀xji
∈ {lji

, uji
} ∃x⋆ ∈ Dj1 × . . . ×Djk

: x⋆
ji

= xji
∧ C(x⋆) = 1.

A CSP with interval domains is called interval consistent if all of its constraints are
interval consistent.

Definition 2.7 (bound consistency). Let C ∈ C,

C : Dr
j1
× . . . ×Dr

jk
→ {0, 1},

be a constraint defined on real-valued variables xj1 , . . . , xjk
, Dr

ji
= [lji

, uji
], lji

, uji
∈

R, i = 1, . . . , k, which is part of a constraint satisfaction problem CSP = (C,D) with
interval domains Dji

= [lji
, uji

], lji
, uji

∈ R, or Dji
= {lji

, . . . , uji
}, lji

, uji
∈ Z,

i = 1, . . . , k. Then, C is called bound consistent if

∀i ∈ {1, . . . , k} ∀xji
∈ {lji

, uji
} ∃x⋆ ∈ Dr

j1
× . . . ×Dr

jk
: x⋆

ji
= xji

∧ C(x⋆) = 1.

A CSP with constraints defined on real-valued variables and variables with interval
domains is called bound consistent if all of its constraints are bound consistent.

Note that bound consistency is weaker than interval consistency: every interval
consistent CSP in which the constraints are defined on real-valued variables is bound
consistent. On the other hand, there are bound consistent CSPs that are not interval
consistent, as the following example illustrates:

Example 2.8. Let C : [0, 1]× [0, 1]× [0, 1]→ {0, 1} be the linear constraint

C(x) = 1 ⇔ 2x1 + 2x2 + 2x3 = 3.

Now consider the constraint satisfaction problem CSP = (C,D) with C = {C},
D = D1 × D2 × D3, and integer domains D1 = D2 = D3 = {0, 1}. This CSP is
bound consistent: the vector xl1 = (0, 1, 0.5) supports the lower bound of x1 while
xu1 = (1, 0, 0.5) supports the upper bound of x1, and similar support vectors can
be constructed for the bounds of x2 and x3. These vectors are feasible solutions to
the real-valued constraint C(x), although they are not feasible solutions to the CSP
due to the fractionality of one of their components. On the other hand, the CSP is
not interval consistent, since there are no vectors x⋆ ∈ D that support the bounds
of the variables.



Chapter 3

SCIP as a CIP Framework

This chapter describes the constraint integer programming framework SCIP (an
acronym for “Solving Constraint Integer Programs”). SCIP is being developed at
the Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) since 2001. It is the
successor of the mixed integer programming solver SIP of Alexander Martin [159]
and adopts several ideas and algorithms of its predecessor. Nevertheless, it was
implemented from scratch in order to obtain a much more flexible design, which is
capable of supporting constraint integer programming techniques and a wide variety
of user plugins that can be included via a callback mechanism.

Section 3.1 describes the various types of user plugins that can enrich the basic
CIP framework and explains their role in the solving process. The algorithmic design
and the main sequence of the solving steps are illustrated in Section 3.2. Finally,
Section 3.3 covers the infrastructure which is supplied by SCIP in order to provide
data structures and efficient methods to represent and access the problem data and
to allow interaction and sharing of information between the plugins.

3.1 Basic Concepts of SCIP

SCIP is a constraint integer programming framework that provides the infrastruc-
ture to implement very flexible branch-and-bound based search algorithms. In ad-
dition, it includes a large library of default algorithms to control the search. These
main algorithms of SCIP are part of external plugins, which are user defined call-
back objects that interact with the framework through a very detailed interface.
The current distribution of SCIP contains the necessary plugins to solve MIPs (see
Part II). In the following, we describe the different plugin types and their role in
solving a CIP.

3.1.1 Constraint Handlers

Since a CIP consists of constraints, the central objects of SCIP are the constraint
handlers. Each constraint handler represents the semantics of a single class of con-
straints and provides algorithms to handle constraints of the corresponding type.

The primary task of a constraint handler is to check a given solution for fea-
sibility with respect to all constraints of its type existing in the problem instance.
This feasibility test suffices to turn SCIP into an algorithm which correctly solves
CIPs with constraints of the supported type, at least if no continuous variables are
involved. However, the resulting procedure would be a complete enumeration of all
potential solutions, because no additional information about the problem structure
would be available.

To improve the performance of the solving process constraint handlers may pro-
vide additional algorithms and information about their constraints to the framework,
namely

23
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⊲ presolving methods to simplify the problem’s representation,

⊲ propagation methods to tighten the variables’ domains,

⊲ a linear relaxation, which can be generated in advance or on the fly, that
strengthens the LP relaxation of the problem, and

⊲ branching decisions to split the problem into smaller subproblems, using struc-
tural knowledge of the constraints in order to generate a well-balanced branch-
ing tree.

Example 3.1 (knapsack constraint handler). A binary knapsack constraint is
a specialization of a linear constraint

aTx ≤ β (3.1)

with non-negative integral right hand side β ∈ Z≥0, non-negative integral coefficients
aj ∈ Z≥0, and binary variables xj ∈ {0, 1}, j ∈ N .

The feasibility test of the knapsack constraint handler is very simple: it only
adds up the coefficients aj of variables xj set to 1 in the given solution and com-
pares the result with the right hand side β. Presolving algorithms for knapsack
constraints include modifying the coefficients and right hand side in order to tighten
the LP relaxation, and fixing variables with aj > β to 0, see Savelsbergh [199] and
Section 10.2.

The propagation method fixes additional variables to 0, that would not fit into
the knapsack together with the variables that are already fixed to 1 in the current
subproblem.

The linear relaxation of the knapsack constraint initially consists of the knapsack
inequality (3.1) itself. Additional cutting planes like lifted cover cuts (see, for
example, Balas [28], Balas and Zemel [35] or Martin and Weismantel [160]) or GUB
cover cuts (see Wolsey [217]) are dynamically generated to enrich the knapsack’s
relaxation and to cut off the current LP solution; see also Section 8.1.

Example 3.2 (nosubtour constraint handler). The symmetric traveling sales-
man problem (TSP) on a graph G = (V,E) with edge lengths cuv ∈ R≥0, uv ∈ E,
can be stated as a constraint integer program in the following way:

min
∑

uv∈E

cuv xuv

s.t.
∑

u∈δ(v)

xuv = 2 for all v ∈ V (3.2)

nosubtour(G,x) (3.3)

xuv ∈ {0, 1} for all uv ∈ E (3.4)

Formally, this model consists of |V | degree constraints (3.2), one nosubtour con-
straint (3.3), and |E| integrality constraints (3.4). The nosubtour constraint is a
non-linear constraint which is defined as

nosubtour(G,x) ⇔ ∄C ⊆ {uv ∈ E | xuv = 1} : C is a cycle of length |C| < |V |.

This constraint must be supported by a constraint handler, which for a given integral
solution x ∈ {0, 1}E checks whether the corresponding set of edges contains a subtour
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C. The linear relaxation of the nosubtour constraint consists of exponentially
many subtour elimination inequalities

∑

uv∈E(S)

xuv ≤ |S| − 1 for all S ⊂ V with 2 ≤ |S| ≤ |V | − 2,

which can be separated and added on demand to the LP relaxation. Additionally,
the constraint handler could separate various other classes of valid inequalities for
the traveling salesman problem that can be found in the literature, see, for exam-
ple, Grötschel and Padberg [108, 109], Grötschel and Holland [107], Clochard and
Naddef [62], Applegate et al. [14, 15, 16], or Naddef [169].

3.1.2 Presolvers

In addition to the constraint based (primal) presolving mechanisms provided by the
individual constraint handlers, additional presolving algorithms can be applied with
the help of presolvers, which interact with the whole set of constraints. They may,
for example, perform dual presolving reductions which take the objective function
into account.

For instance, if the value of a variable xj can always be decreased without ren-
dering any constraint infeasible (an information, the constraint handlers have to
provide by setting variable locks, see Section 3.3.3), and if the objective value cj of
the variable is non-negative, the dual fixing presolver fixes the variable to its lower
bound, see Section 10.8. In the setting of an MIP with inequality system Ax ≤ b,
this condition is satisfied if and only if A·j ≥ 0 and cj ≥ 0.1

3.1.3 Cut Separators

In SCIP, we distinguish between two different types of cutting planes. The first type
are the constraint based cutting planes, that are valid inequalities or even facets of
the polyhedron described by a single constraint or a subset of the constraints of a
single constraint class. These cutting planes may also be strengthened by lifting
procedures that take information about the full problem into account, for example
the implication graph, see Section 3.3.5. They are generated by the constraint han-
dlers of the corresponding constraint types. Prominent examples are the different
types of knapsack cuts that are generated in the knapsack constraint handler, see
Example 3.1, or the cuts for the traveling salesman problem like subtour elimina-
tion and comb inequalities which can be separated by the nosubtour constraint
handler, see Example 3.2.

The second type of cutting planes are general purpose cuts, which are using the
current LP relaxation and the integrality conditions to generate valid inequalities.
Generating those cuts is the task of cut separators. Examples are Gomory fractional
and Gomory mixed integer cuts (Gomory [104]), complemented mixed integer round-
ing cuts (Marchand and Wolsey [155]), and strong Chvátal-Gomory cuts (Letchford
and Lodi [142]).

3.1.4 Domain Propagators

Like for cutting planes, there are two different types of domain propagations. Con-
straint based (primal) domain propagation algorithms are part of the correspond-

1Here, A·j is the j’th column of the coefficient matrix A.
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ing constraint handlers. For example, the alldiff2 constraint handler excludes
certain values of the variables’ domains with the help of a bipartite matching algo-
rithm, see Regin [192], or applies bound propagation by so-called Hall intervals, see
Leconte [140], Puget [189], or López-Ortiz et al. [151].

In contrast, domain propagators provide dual propagations, i.e., propagations
that can be applied due to the objective function and the currently best known primal
solution. An example is the simple objective function propagator of Section 7.6 that
tightens the variables’ domains with respect to the objective bound

cTx < ĉ

with ĉ being the objective value of the currently best primal solution.

3.1.5 Variable Pricers

Several optimization problems are modeled with a huge number of variables, e.g.,
with each path in a graph or each subset of a given set corresponding to a single
variable. In this case, the full set of variables cannot be generated in advance.
Instead, the variables are added dynamically to the problem whenever they may
improve the current solution. In mixed integer programming, this technique is
called column generation.

SCIP supports dynamic variable creation by variable pricers. They are called
during the subproblem processing and have to generate additional variables that
reduce the lower bound of the subproblem. If they operate on the LP relaxation,
they would usually calculate the reduced costs of the not yet existing variables with a
problem specific algorithm and add some or all of the variables with negative reduced
costs. Note that since variable pricers are part of the model, they are always problem
class specific. Therefore, SCIP does not contain any “default” variable pricers.

3.1.6 Branching Rules

If the LP solution of the current subproblem is fractional, the integrality constraint
handler calls the branching rules to split the problems into subproblems. Addition-
ally, branching rules are called as a last resort on integral solutions that violate one
or more constraints for which the associated constraint handlers were not able to
resolve the infeasibility in a more sophisticated way, see Section 3.2.8.

Usually, a branching rule creates two subproblems by splitting a single variable’s
domain. If applied on a fractional LP solution, commonly an integer variable xj

with fractional value x̌j is selected, and the two branches xj ≤ ⌊x̌j⌋ and xj ≥ ⌈x̌j⌉
are created. The well-known most infeasible, pseudocost, reliability, and strong
branching rules are examples of this type (see Achterberg, Martin, and Koch [5] and
Chapter 5). It is also possible to implement much more general branching schemes,
for example by creating more than two subproblems, or by adding additional con-
straints to the subproblems instead of tightening the domains of the variables.

3.1.7 Node Selectors

Node selectors decide which of the leaves in the current branching tree is selected
as next subproblem to be processed. This choice can have a large impact on the

2alldiff(x1, . . . , xk) requires the integer variables x1, . . . , xk to take pairwise different values.
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solver’s performance, because it influences the finding of feasible solutions and the
development of the global dual bound.

Constraint programming was originally developed for constraint satisfaction prob-
lems (CSPs). In this setting, the solver only has to check whether there is a feasible
solution or not. Therefore, many of the available CP solvers employ depth first
search. The same holds for the satisfiability problem. SAT solvers are even more
tailored to depth first search, since one of their key components—conflict analysis
(see Chapter 11)—is best suited for the use inside a depth first search algorithm. A
more extensive discussion of this topic can be found in Section 16.2.

With the addition of an objective function, depth first search is usually an inferior
strategy. It tends to evaluate many nodes in the tree that could have been discarded
if a good or optimal solution were known earlier. In mixed integer programming,
several node selection strategies are known that try to discover good feasible solutions
early during the search process. Examples of those strategies are best first and best
estimate search. See Chapter 6 for a comparison of node selection strategies for
MIP.

3.1.8 Primal Heuristics

Feasible solutions can be found in two different ways during the traversal of the
branching tree. On the one hand, the solution of a node’s relaxation may be feasible
w.r.t. the constraints. On the other hand, feasible solutions can be discovered by
primal heuristics. They are called periodically during the search.

SCIP provides specific infrastructure for diving and probing heuristics. Div-
ing heuristics iteratively resolve the LP after making a few changes to the current
subproblem, usually aiming at driving the fractional values of integer variables to
integrality. Probing heuristics are even more sophisticated. Besides solving LP
relaxations, they may call the domain propagation algorithms of the constraint han-
dlers after applying changes to the variables’ domains, and they can undo these
changes using backtracking.

Other heuristics without special support in SCIP include local search heuristics
like tabu search [97], rounding heuristics which try to round the current fractional
LP solution to a feasible integral solution, and improvement heuristics like local
branching [85] or RINS [72], which try to generate improved solutions by inspecting
one or more of the feasible solutions that have already been found. Chapter 9
provides an overview of the heuristics included in SCIP to solve mixed integer
programs.

3.1.9 Relaxation Handlers

SCIP provides specific support for LP relaxations: constraint handlers implement
callback methods for generating the LP, additional cut separators may be included to
further tighten the LP relaxation, and there are a lot of interface methods available
to access the LP information at the current subproblem.

In addition, it is also possible to include other relaxations, e.g., Lagrange re-
laxations or semidefinite relaxations. This is possible through relaxation handler
plugins. The relaxation handler manages the necessary data structures and calls the
relaxation solver to generate dual bounds and primal solution candidates. However,
the data to define a single relaxation must either be extracted by the relaxation
handler itself (e.g., from the user defined problem data, the LP information, or the
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integrality conditions), or be provided by the constraint handlers. In the latter case,
the constraint handlers have to be extended to support this specific relaxation.

Like with LP relaxations, support for managing warm start information is avail-
able to speed up the resolves at the subproblems. At each subproblem, the user
may solve any number of relaxations, including the LP relaxation. In particular, it
is possible to refrain from solving any relaxation, in which case SCIP behaves like
a CP solver.

3.1.10 Event Handlers

SCIP contains a sophisticated event system, which can be used by external plugins
to be informed about certain events. These events are processed by event handler
plugins. Usually, the event handlers pass the information to other objects, e.g., to
a constraint handler. It is very common in SCIP that a constraint handler closely
interacts with an event handler in order to improve its own runtime performance.

For example, a constraint handler may want to be informed about the domain
changes of the variables involved in its constraints. This can be used to avoid
unnecessary work in preprocessing and propagation: a constraint has only to be
processed again, if at least one domain of the involved variables was changed since
the last preprocessing or propagation call. Events can also be used to update certain
internal values (e.g., the total weight of variables currently fixed to 1 in a knapsack
constraint) in order to avoid frequent recalculations.

Other potential applications for the event system include a dynamic graphical
display of the currently best solution and the online visualization of the branching
tree. These are supported by events triggered whenever a new primal solution has
been found or a node has been processed.

3.1.11 Conflict Handlers

Current state-of-the-art SAT solvers employ analysis of infeasible subproblems to
generate so-called conflict clauses (see Marques-Silva and Sakallah [157]). These are
implied constraints that may help to prune the branching tree. In the CP community,
a generalization of those clauses is known as no-goods.

SCIP adopts this mechanism and extends it to the analysis of infeasible LPs, see
Chapter 11. Whenever a conflict was found by the internal analysis algorithms, the
included conflict handlers are called to create a conflict constraint out of the set of
conflicting variables. Conflict handlers usually cooperate with constraint handlers
by calling the constraint creation method of the constraint handler and adding the
constraint to the model.

3.1.12 File Readers

File readers are called to parse an input file and generate a CIP model. They create
constraints and variables and activate variable pricers if necessary. Each file reader
is hooked to a single file name extension. It is automatically called if the user wants
to read in a problem file of corresponding name. Examples of file formats are
the MPS format [117] and the Cplex LP format [118] for linear and mixed integer
programs, the CNF format for SAT instances in conjunctive normal form, and the
TSP format [193] for instances of the traveling salesman problem.
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Figure 3.1. Operational stages of SCIP. The arrows represent possible transitions between stages.

3.1.13 Display Columns

While solving a constraint integer program, SCIP displays status information in a
column-like fashion. The current number of processed branching tree nodes, the
solving time, and the relative gap between primal and dual bound are examples of
such display columns. There already exists a wide variety of display columns which
can be activated or deactivated on demand. Additionally, the user can implement
his own display columns in order to track problem or algorithm specific values.

3.1.14 Dialog Handlers

SCIP comes with a command line shell which allows the user to read in problem
instances, modify the solver’s parameters, initiate the optimization, and display
certain statistics and solution information. This shell can be extended by dialog
handlers. They are linked to the shell’s calling tree and executed whenever the
user enters the respective command. The default shell itself is also generated by
dialog handlers and is therefore completely adjustable to the needs of the software
developer.

3.1.15 Message Handlers

All screen output of SCIP is passed through a message handler. By overwriting the
appropriate callback methods, the user can easily redirect or suppress the output.

3.2 Algorithmic Design

Figure 3.1 shows a flow chart of the main operational stages that are traversed during
the execution of SCIP. In this section we specify which callback methods of the
different plugins are executed and which operations the user may perform during
the different stages. It is explained how the problem is represented in SCIP’s data
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structures and which transformations are being applied during the course of the
algorithm. Compare also the data flow illustrated in Figure 3.5 on page 37.

3.2.1 Init Stage

In the init stage, the basic data structures are allocated and initialized. The user has
to include the required plugins with calls to the SCIPinclude...() methods. Each
included plugin may allocate its own private data. With a call to SCIPcreateProb()

or SCIPreadProb(), the solver leaves the init stage and enters the problem specifi-
cation stage, the latter one executing a file reader to create the problem instance.

3.2.2 Problem Specification Stage

During the problem specification stage, the user can define and modify the original
problem instance that he wants to solve. He can create constraints and variables
and activate included variable pricers. A file reader that is called during the init
stage switches to the problem specification stage with a call to SCIPcreateProb()

and subsequently creates the necessary problem data.

3.2.3 Transforming Stage

Before the actual solving process begins, SCIP creates a working copy of the orig-
inal problem instance. The working copy is called the transformed problem and
protects the original problem instance from modifications applied during presolving
or solving. The original problem can only be modified in the problem specification
stage.

In the transforming stage, the data of variables and constraints are copied into
a separate memory area. Because SCIP does not know how the constraints are
represented, it has to call the constraint handlers to create copies of their constraints.

3.2.4 Transformed Stage

After the copying process of the transforming stage is completed, the transformed
stage is reached. This state is only an intermediate state, from which the user may
initiate the presolving stage or free the solving process data by switching into the
free transform stage.

3.2.5 Presolving Stage

In the presolving stage, permanent problem modifications on the transformed prob-
lem are applied by the presolvers and the presolving methods of the constraint
handlers. These plugins are called iteratively until no more reductions can be found
or until a specified limit is reached.

One of the main tasks of presolving is to detect fixings and aggregations of
variables, which are stored in the variable aggregation graph, see Section 3.3.4. Fixed
and aggregated variables are deleted from the transformed problem and replaced by
their fixed value or their representing active variables, respectively.

Constraint handlers may also upgrade their constraints to a more specific con-
straint type. For example, as explained in Section 10.1, the linear constraint handler
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provides an upgrading mechanism for its constraints

β ≤ aTx ≤ β.

Other constraint handlers can be hooked into this mechanism to be called for convert-
ing linear constraints into constraints of their own type. For example, the knapsack
constraint handler (see Example 3.1) checks whether the linear constraint consists of
only binary variables, integral weights, and only one finite side β or β. If the check
succeeds, the linear constraint is converted into a knapsack constraint, possibly by
negating some of the binary variables or inverting the inequality. Such an upgrad-
ing of a constraint into a more specific type has the advantage that the specialized
constraint handler can store the constraint data in a more compact form and can
employ specialized, more efficient algorithms.

3.2.6 Presolved Stage

Like the transformed stage, the presolved stage is an intermediate stage, which is
reached after the presolving is completed. Thereafter, the actual solving process
may be launched. If the presolving already solved the problem instance by detecting
infeasibility or unboundness or by fixing all variables, SCIP automatically switches
via the init solve stage to the solved stage.

3.2.7 Init Solve Stage

In the init solve stage all necessary data structures for the solving process are set
up. For example, the root node of the branching tree is created and the LP solver is
initialized. Additionally, the plugins are informed about the beginning of the solving
process in order to enable them to create and initialize their private data.

3.2.8 Solving Stage

If the problem was not already solved in the presolving stage, the branch-and-bound
process is performed in the solving stage to implicitly enumerate the potential so-
lutions. This stage contains the main solving loop of SCIP which consists of five
different steps that are called successively until the problem is solved or the solving
process is interrupted (see Figure 3.2).

Node Selection

The first step of each iteration in the main solving loop is the selection of the
next subproblem. The node selector of highest priority (the active node selector) is
called to select one of the leaves in the branching tree to be processed. It can decide
between the current node’s children and siblings, and the “best” of the remaining
leaves stored in the tree. The ordering relation of the tree’s leaves is also defined by
the active node selector.

Successively choosing a child or sibling of the current node is called plunging or
diving. Selecting the best leaf of the tree ends the current plunging sequence and
starts the next one. During plunging, the setup of the subproblems to be processed
is computationally less expensive, since the children and siblings are most likely to
be closely related to the current node. Switching to the best leaf of the tree is more
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Figure 3.2. Main solving loop of the solving stage.

expensive, but has the advantage that the search can be brought to regions in the
search space that are more promising to contain feasible solutions of small objective
value—at least if the ordering of the leaves corresponds to the subproblems’ dual
(i.e., lower) bounds. Additionally, it helps to improve the global dual bound more
quickly. Efficient node selectors for MIP employ a mixture of plunging and best first
search. SAT and CSP solvers usually perform depth first search since these two
problems are pure feasibility problems, which do not contain an objective function.

SCIP has two different operation modes: the standard mode and the memory
saving mode. If the memory limit—given as a parameter by the user—is nearly
reached, SCIP switches to the memory saving mode in which different priorities
for the node selectors are applied. Usually, the depth first search node selector
has highest priority in memory saving mode, since it does not produce as many
unprocessed nodes as strategies like best first search and tends to reduce the number
of open leaves, thereby releasing allocated memory. If the memory consumption
decreased sufficiently, SCIP switches back to standard mode.

Primal Heuristics

Primal heuristics have different entry points during the solving process. If applicable,
a primal heuristic can be called directly after the next subproblem to be processed is
selected. This is particularly useful for heuristics that do not need to access the LP
solution of the current node. If such a heuristic finds a feasible solution, the leaves
of the branching tree exceeding the new primal bound are pruned. It may happen
that even the current node can be cut off without solving the LP relaxation. Very
fast heuristics that require an LP solution can also be called during the “Relaxation
Solving” loop, see below. Most heuristics, however, are called either after the LP
relaxation was solved or after the node has been completely processed, which means
that the node was either cut off or a branching was applied.

Like most plugins in SCIP, primal heuristics do not need to be executed at every
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Figure 3.3. Main solving loop of the solving stage with detailed LP solving loop.

single node. They are usually called with a certain frequency, i.e., at specific depth
levels in the branching tree, with the more expensive heuristics being called less
often.

Domain Propagation

After a node is selected to be processed, the corresponding subproblem is set up,
and the applicable primal heuristics have been called, the domain propagators and
the domain propagation methods of the constraint handlers are called to tighten
the variables’ local domains. This propagation is applied iteratively until no more
reductions are found or a propagation limit set by the user is reached. Domain
propagation does not have to be applied at every node. Every constraint handler
and domain propagator can decide whether it wants to invest the effort of trying to
tighten the variables’ domains.

Relaxation Solving

The next step of the solving loop is to solve the subproblem’s relaxations, in par-
ticular the LP relaxation. Like domain propagation, the solving of relaxations can
be skipped or applied as needed. If there are active variable pricers, however, the
LP relaxation has to be solved in order to generate new variables and to obtain a
feasible dual bound.

The LP solving consists of an inner loop as can be seen in Figure 3.3. It is
executed as long as changes to the LP have been applied in the variable pricing or
cut separation steps.

Calling LP Solver. The first step is to call the LP solver to solve the initial LP
relaxation of the subproblem. In the root node, this is defined by the relaxations of
constraints that are marked to be initial : the constraint handlers are asked to enrich
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the LP with rows that correspond to their initial constraints before the first LP is
solved. The initial LP relaxation of a subsequent node equals its parent’s relaxation
modified by the additional bound changes of the node. Note that branching on
constraints does affect the LP relaxation of the child nodes directly only if the
branching constraints are marked to be initial. Otherwise, the branching only
modifies the CIP subproblem, and the corresponding constraint handlers may then
tighten the LP in their cut separation or constraint enforcement methods.

After an LP basis is loaded from the warm start information stored in the branch-
ing tree into the LP solver, the LP is solved with the primal or dual simplex algo-
rithm, depending on the feasibility status of the current basis. It is also possible to
use an interior point method like the barrier algorithm to solve the LP relaxations,
if such an algorithm is available. Note, however, that current interior point methods
are not able to exploit warm start information. Therefore, they are usually inferior
to simplex solvers for processing the relaxations of the subproblems. Nevertheless,
for some problem classes it can be beneficial to use the barrier algorithm even for
the subproblems. For example, Koch [134] reported performance gains in using the
barrier algorithm for some instances of the Steiner tree packing problem.

After the LP solver has solved the relaxation, the resulting LP solution is checked
for stability. In a numerically unstable situation, different LP solver parameter
settings are tried in order to achieve a stable solution. If this fails, the LP relaxation
of the current subproblem is discarded, and the solving process continues as if the LP
was not solved at the current node. This is a valuable feature for solving numerically
difficult problems. Since SCIP does not need to solve the LP at every node, it can
easily leap over numerical troubles in the LP solver without having to abandon the
whole solving process.

Variable Pricing. After the initial LP is solved, the variable pricers are called
to create new variables and add additional columns to the LP. Variable pricers can
be complete or incomplete. A complete pricer generates at least one new variable if
the current LP solution is not optimal in the relaxation of the full variable space. If
an incomplete pricer is used, the objective value of the optimal LP solution is not
necessarily a dual bound of the subproblem and cannot be used to apply bounding,
since there may exist other variables which would further reduce the LP value.

The pricing is performed in rounds. In each round, several new variables are cre-
ated with their associated LP columns stored in a pricing storage, see Section 3.3.9.
After each pricing round, some or all of the columns in the pricing store are added
to the LP, and the LP solver is called again to resolve the relaxation. Note that the
primal simplex algorithm can be used to quickly resolve the LP after new columns
have been added, since new columns do not affect the primal feasibility of the current
basis.

Cut Separation. After the pricing is performed and the LP is resolved, the cut
separators and the separation methods of the constraint handlers are called to tighten
the LP relaxation with additional cutting planes. In each iteration of the LP solving
loop, cutting planes are collected in a separation storage, and only some of them
are added to the LP afterwards, see Section 3.3.8. Note that the well-known reduced
cost strengthening (see Nemhauser and Wolsey [174] and Section 8.8) is implemented
as a general purpose cutting plane separator, and does therefore not appear as an
explicit step in the algorithm.

Some cutting planes found by the cut separators or constraint handlers might be
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simple bound changes, i.e., cuts with only one non-zero coefficient. In particular, the
reduced cost strengthening cut separator produces inequalities of this type. Needless
to say, such trivial cuts are not added as rows to the LP, but modify the local
bounds of the variables directly. If bound changes have been applied, the domain
propagation is called again with the hope to tighten even more bounds. If no bound
changes, but other cutting planes have been found, the LP is resolved. The dual
simplex algorithm can be applied efficiently, since added rows and modified bounds
do not affect the dual feasibility of the current basis. If no cutting planes have been
generated, the LP solving loop is finished, and the applicable primal heuristics are
called.

Constraint Enforcement

After the domain propagation has been applied and the relaxations are solved, the
constraint handlers are asked to process one of the relaxations’ primal solutions.
In MIP, they usually use the solution of the LP relaxation.

In contrast to the constraint handlers’ feasibility tests, which only check a given
primal solution (generated by a primal heuristic) for feasibility, the enforcement
methods should also try to resolve an infeasibility. The constraint handler has dif-
ferent options of dealing with an infeasibility (see Figure 3.4):

⊲ reducing a variable’s domain to exclude the infeasible solution from the local
set of domains,

⊲ adding an additional valid constraint that can deal appropriately with the
infeasible solution,

⊲ adding a cutting plane to the LP relaxation that cuts off the infeasible solution,

⊲ creating a branching with the infeasible solution no longer being feasible in the
relaxations of the child nodes,

⊲ concluding that the current subproblem is infeasible as a whole and can be
pruned from the branching tree,

⊲ stating that the solution is infeasible without resolving the infeasibility.

Constraint handlers can also answer that the current solution is feasible for all of its
constraints.

The constraint handlers’ enforcement methods are called in an order specified
by the constraint handlers’ enforcement priorities. Depending on the result of each
constraint enforcement method, SCIP proceeds differently. If the constraint handler
tightened a variable’s domain or added a constraint, the enforcement cycle is aborted
and the algorithm jumps back to domain propagation. Adding a cutting plane
invokes the LP solving again. Branching and pruning the current node finishes the
processing of the node after which the primal heuristics are called. If the constraint
handler detects the solution to be infeasible without resolving it, or if the solution
is feasible for the constraints of the constraint handler, the next constraint handler
is asked to process the current solution.

The constraint enforcement cycle can have three different outcomes:

1. A constraint handler has resolved an infeasibility, after which the node pro-
cessing is continued appropriately.
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Figure 3.4. Constraint enforcement results. Depending on the enforcement result of a constraint
handler, the solving process continues differently.

2. All constraint handlers have declared the solution to be feasible, which means
that a new feasible solution has been found.

3. At least one constraint handler has detected an infeasibility, but none of them
has resolved it. This is a very undesirable case, since the solution is not feasible
but no additional information on the problem structure is available to guide the
search. As a last resort, the branching rules are called to create a branching by
splitting an integer variable’s domain. Ultimately, this leads to a subproblem
in which all integer variables are fixed. Due to Definition 1.6 of the constraint
integer program, such a subproblem can be solved to optimality by solving the
LP relaxation.

Note that the integrality constraint handler enforces its constraint by calling the
branching rules, if at least one of the integer variables has a fractional value. The
integrality constraint handler has an enforcement priority of 0, so that constraint
handlers may decide whether they want to be called only on integral solutions (in
which case they should have a negative priority) or to be also called on fractional
solutions (with a positive priority). To be called only on integral solutions can be
useful if an efficient feasibility test of the constraint handler can only be applied on
integral solutions, e.g., if the solution selects edges in a graph and the feasibility test
is some graph algorithm. To be called on fractional solutions can be useful if one
wants to apply a constraint specific branching rule. For example, the constraint
handler for set partitioning constraints

x1 + . . . + xq = 1 with xj ∈ {0, 1}, j = 1, . . . , q

may want to apply the so-called special ordered set branching (see Beale and Tom-
lin [38]). This means to branch on a subset of the variable set using the disjunction

x1 = . . . = xk = 0 ∨ xk+1 = . . . = xq = 0,
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with k ∈ {1, . . . , q − 1}.

3.3 Infrastructure

SCIP provides all necessary infrastructure to implement branch-and-bound based
algorithms for solving CIPs. It manages the branching tree along with all sub-
problem data, automatically updates the LP relaxations, and handles all necessary
transformations due to the preprocessing problem modifications. Additionally, a
cut pool, pricing and separation storage management, and a SAT-like conflict anal-
ysis mechanism (see Chapter 11) are available. SCIP provides an efficient memory
allocation shell, which also includes a simple leak detection if compiled in debug
mode. Finally, statistical output can be generated to support the diagnosis of the
user’s algorithms. In particular, the branching tree can be visualized with the help
of Sebastian Leipert’s VBC Tool [141].

Figure 3.5 gives a rough sketch of the different components of SCIP and how they
interact with each other and with the external plugins. The problem information is
represented in three different parts of the diagram. Initially, the user states the CIP
instance as original problem. The constraint handler and presolver plugins generate
the transformed problem, which is an equivalent but usually more compact and
smaller formulation of the problem instance. Both objects are CIP representations
of the model consisting of variables and general constraints. Feasible solutions for
the instance—i.e., value assignments for the variables such that all constraints are
satisfied—are stored in the solution pool. Optionally, an implication graph and a
clique table can be associated to the transformed problem.

The third representation of the problem instance is only a partial representation,
namely the LP relaxation. It consists of columns, each with lower and upper bound
and objective coefficient, and rows which are linear inequalities or equations over
the columns. The LP relaxation is populated via intermediate storage components,
the pricing storage and the separation storage. Additionally, the cut pool can store
valid inequalities that can be added on demand to the LP through the separation
storage. The branching tree and conflict analysis components operate on both
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representations, the CIP model of the transformed problem and the LP relaxation.
The user plugins can access all of the components, although the LP relaxation can
only be modified through the pricing and separation storages.

The following sections take a closer look at the different components and describe
their role in the solving process and their interaction with the user plugins.

3.3.1 Original Problem

The original problem stores the data of the problem instance as it was entered by
the user. It consists of variables and constraints. Each variable xj has an objective
function coefficient cj ∈ R, a lower bound lj ∈ R and an upper bound uj ∈ R.
Additionally, it is known whether the variable is of integer or continuous type. In
contrast to this explicit information about the variables, the constraints are just
abstract data objects. To define their semantics, the user has to provide exter-
nal plugins (constraint handlers) for each class of constraints. SCIP calls these
constraint handlers through a callback interface at different points in the solving
process, see Section 3.1.1.

3.3.2 Transformed Problem

The transformed problem is created as a direct copy of the original problem. While
the original problem instance is retained in a separate data area, the transformed
problem is modified in the presolving and solving steps of SCIP. For example,
variables and constraints of the transformed problem can be eliminated or replaced,
the domains of variables can be tightened, or the constraint data can be altered.
Nevertheless, the transformed problem remains equivalent to the original problem
in the sense that the transformed problem is feasible if and only if the original
problem is feasible, and that every feasible (optimal) solution of the transformed
problem can be converted into a feasible (optimal) solution of the original problem.

3.3.3 Dual Information

One main drawback of the abstract constraint approach of SCIP is the inaccessibility
of dual information about the variables. For example, a component like a presolving
plugin cannot answer the question in which constraints a variable appears, since the
data of the constraints are private to the corresponding constraint handler.

To remedy this situation, SCIP requires the constraint handlers to provide at
least a minimum of dual information which is stored in the data structures of the
variables. This information consists of the number of down-locks and up-locks for
each variable.

Definition 3.3 (variable locks). Let Ci : Rn → {0, 1} be a constraint of a con-
straint integer program CIP = (C, I, c). We say that Ci down-locks (up-locks) xj

if there exist two vectors x̂, ẋ ∈ Rn with Ci(x̂) = 1, Ci(ẋ) = 0, ẋk = x̂k for all
k 6= j, x̂j , ẋj ∈ Z if j ∈ I, and ẋj < x̂j (ẋj > x̂j). The number of constraints which
down-lock and up-lock variable xj is denoted by ζ−j and ζ+

j , respectively.

The variable locks ζ−j and ζ+
j can be interpreted as the number of constraints

that “block” the shifting of xj in direction to its lower or upper bound.
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Example 3.4 (variable locks for inequality systems). For a mixed integer
program with constraint system Ax ≤ b, the variable lock numbers are given by the
number of negative and positive coefficients per column: ζ−j = |{i | Aij < 0}| and

ζ+
j = |{i | Aij > 0}|.

Example 3.5 (variable locks for general constraints). Consider the constraint
integer program

C1 : 3x1 +5x2− 2x3 +x4− 2x5 ≤ 8

C2 : 4x3 +3x5 = 5

C3 : alldiff( x1 , x2 , x3 )

with variables x1, x2, x3 ∈ Z≥0 and x4, x5 ∈ R≥0. The linear inequality C1 down-
locks x3 and x5, and up-locks x1, x2, and x4. The equation C2 down-locks and
up-locks both involved variables, x3 and x5. The alldiff constraint C3 also down-
and up-locks its variables, i.e., x1, x2, and x3. The resulting lock numbers are
ζ−1 = 1, ζ+

1 = 2, ζ−2 = 1, ζ+
2 = 2, ζ−3 = 3, ζ+

3 = 2, ζ−4 = 0, ζ+
4 = 1, ζ−5 = 2, ζ+

5 = 1.
Most interestingly, variable x4 has no down-locks. If its objective function coefficient
c4 is non-negative, we can fix it to its lower bound. This reduction does not alter the
feasibility status of the instance, and if the instance is feasible it preserves at least
one optimal solution. It is performed by the dual fixing plugin, see Section 10.8.

3.3.4 Variable Aggregation

One of the main operations to simplify the transformed problem during presolving is
the fixing and aggregation of variables. This can delete variables from the problem
by replacing their occurrences in the constraints with the corresponding counterpart,
either a fixed value or an affine linear combination of active problem variables. The
fixings and aggregations are stored in a variable aggregation graph, which is used
by the framework to automatically convert any operations on those variables to
equivalent ones on active problem variables. The variable aggregation graph is a
directed graph which is free of directed cycles. The sinks of this graph, i.e., the
nodes which do not have outgoing arcs, represent either fixed or active problem
variables.

The variable aggregation graph encodes an equation system in triangular form

y1 = f1(x)

y2 = f2(x, y1)

. . .

yk = fk(x, y1, . . . , yk−1)

with fi being affine linear functions on active problem variables x ∈ Rn−k and
aggregated variables y1, . . . , yi−1 ∈ R. The automatic transformations applied by
SCIP to represent a given affine linear form in terms of active problem variables is
called crushing.

Definition 3.6 (crushed form). Let {yi = fi(x, y1, . . . , yi−1) | i = 1, . . . , k} be an
equation system in triangular form with affine linear functions fi on active problem
variables x ∈ Rn−k and aggregated variables y ∈ Rk. Given an affine linear function
g = g(x, y), the crushed form τ(g) = τ(g)(x) is defined by recursively substituting
fi(x, y1, . . . , yi−1) for all occurrences of yi in g(x, y), i = k, . . . , 1.
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Figure 3.6. Variable aggregation graph of Example 3.8.

If the aggregations imply that two variables always take the same value in any
feasible solution, we say that these variables are equivalent. Binary variables which
always take opposite values are called negated equivalent.

Definition 3.7 (equivalence of variables). Given an aggregation system
{
yi = fi(x, y1, . . . , yi−1) | i = 1, . . . , k

}
,

two variables z1, z2 ∈ {x1, . . . , xn−k, y1, . . . , yk} are called equivalent or always equal,
denoted by z1

⋆= z2, if τ(z1) = τ(z2). Two binary variables z1, z2 are called negated

equivalent or always unequal, denoted by z1 Y
⋆
= z2, if τ(z1) = τ(1− z2).

In an algorithmic environment, the action of aggregating a variable y with an
affine linear form f(x) is denoted by y : ⋆= f(x).

Example 3.8. Consider the linear constraints

3x1 = 9 (3.5)

2x1 + 4x2 − x3 = 0 (3.6)

x3 + x4 = 1 (3.7)

on integer variables x1, x2, x3, x4 ∈ Z. The presolving of Constraint (3.5) fixes
x1 : ⋆= 3. The linear constraint handler then replaces the occurrence of x1 in (3.6)
with its fixed value, resulting in 4x2 − x3 = −6. Now, x3 can be aggregated to
x3 : ⋆= 4x2 + 6. Additionally, Constraint (3.7) inserts the aggregation x4 : ⋆= 1 − x3

into the aggregation graph.
Figure 3.6 shows the complete aggregation graph of this example. On the left

hand side, the original problem variables are shown. They are linked to their trans-
formed problem counterparts. The aggregations introduce additional links between
the transformed variables.

Assume now, some constraint handler or cut separator adds the inequality

x1 + 4x2 + 3x3 + 2x4 ≤ 23

to the LP relaxation. This inequality is constructed out of a mixture of original,
fixed, aggregated, and active problem variables. Applying the aggregation graph,
it is automatically transformed into a form only involving active problem variables.
This results in the crushed form

τ(x1 + 4x2 + 3x3 + 2x4) = 8x2 + 11 ≤ 23,
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which is actually passed as 8x2 ≤ 12 to the LP solver. From this inequality, we can
derive the bound change x2 ≤ 1, which also automatically produces the correspond-
ing bound changes x3 ≤ 10 and x4 ≥ −9.

3.3.5 Implication Graph and Clique Table

Atamtürk, Nemhauser, and Savelsbergh [24] proposed the notion of a conflict graph
to store assignment pairs (xi = vi, xj = vj) of binary variables xi, xj ∈ {0, 1} that
cannot occur in any feasible solution. Such conflicting assignments can be detected
in the presolving stage by constraint handlers or presolver plugins, in particular by
the probing presolver, see Section 10.6. The conflict graph G = (V,E) consists of
vertices V = {xj , x̄j | j = 1, . . . , n}, and edges E ⊆ {uv | u, v ∈ V, u = 1→ v = 0}.3

Note that this condition is symmetric and hence G is undirected. Each edge of the
graph represents one pair of conflicting variable assignments. The conflict graph
defines a stable set relaxation of the problem instance, since variable assignments
can only occur in a feasible solution if the corresponding vertices are not adjacent
in the graph. Atamtürk, Nemhauser, and Savelsbergh use this relaxation to
generate cutting planes which are known to be valid or facet defining for the stable
set polytope, for example clique inequalities or odd-hole inequalities.

We take a slightly different approach. Instead of storing conflicting assignments
in a conflict graph, we store implications in an implication graph. Additionally,
we do not only store implications between binary variables, but also include impli-
cations between binary and arbitrary variables. Note also, that we use the term
“conflict graph” for a different object which is constructed during conflict analysis,
see Chapter 11.

Definition 3.9 (implication graph). Let CIP = (C, I, c) be a CIP instance on
variables x ∈ Rn, xj ∈ Z for j ∈ I ⊆ N = {1, . . . , n}, and let B ⊆ I be the indices of
the binary variables xj ∈ {0, 1}. Then, the implication graph for CIP is the directed
infinite graph D = (V,A) with vertices

V = {(xj ≤ v), (xj ≥ v) | j ∈ N, v ∈ R}

and arcs

A = {(xi ≤ 0, xj ≤ v) | i ∈ B, j ∈ N, v ∈ R, xi = 0→ xj ≤ v} ∪

{(xi ≤ 0, xj ≥ v) | i ∈ B, j ∈ N, v ∈ R, xi = 0→ xj ≥ v} ∪

{(xi ≥ 1, xj ≤ v) | i ∈ B, j ∈ N, v ∈ R, xi = 1→ xj ≤ v} ∪

{(xi ≥ 1, xj ≥ v) | i ∈ B, j ∈ N, v ∈ R, xi = 1→ xj ≥ v},

which represent the derivable implications xi = vi → xj ≤ vj or xi = vi → xj ≥ vj

with i ∈ B, j ∈ N , vi ∈ {0, 1}, vj ∈ R.

Since one usually does not know all implications between the variables, the graph
stored during the solving process is in general only a partial version of the full
implication graph. Furthermore, we store only those nodes and arcs that are needed

3In general, we can only construct a subset of all conflict edges, since generating the full conflict
graph is NP-hard: deciding the feasibility of a binary programming instance is NP-complete (see
Garey and Johnson [92]), and for a given binary programming instance the conflict graph is the
complete graph if and only if the instance is infeasible.
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to represent the strongest implications for each binary variable assignment that are
known to the solver, i.e.,

xi = vi → xj ≤ min{vj | xi = vi → xj ≤ vj}

and

xi = vi → xj ≥ max{vj | xi = vi → xj ≥ vj}.

Note that due to Condition (1.1) of Definition 1.6, there are no implications on con-
tinuous variables with strict inequalities in a constraint integer program. Therefore,
the minimum and maximum above always exist or are infinite in which case the
binary variable can be fixed to the opposite value.

The implication graph includes all conflicting assignments between binary vari-
ables. For such an assignment xi = 1 → xj = 0, both arcs (xi ≥ 1, xj ≤ 0) and
(xj ≥ 1, xi ≤ 0) are member of the implication graph. Implications xi = vi → xj ≤
vj or xi = vi → xj ≥ vj between binary variables xi and non-binary variables xj are
only included unidirectional. The other direction is implicitly stored as a variable
bound of xj :

Definition 3.10 (variable bounds). Let xi, i ∈ I, be an integer variable and xj ,
j ∈ N , be an arbitrary variable of a constraint integer program. Valid inequalities

xj ≥ sxi + d or xj ≤ sxi + d

with s, d ∈ R are called variable lower bounds and variable upper bounds of xj ,
respectively.

Note that in the definition of the variable bounds, the variable xi does not need to
be binary. If xi is binary, however, the implications of xi are related to the variable
bounds of xj .

Observation 3.11. Each implication on binary variables xi ∈ {0, 1} and arbitrary
variables xj ∈ [lj , uj ] gives rise to a variable bound of xj :

xi = 0→ xj ≤ vj ⇔ xj ≤ (uj − vj)xi + vj

xi = 0→ xj ≥ vj ⇔ xj ≥ (lj − vj)xi + vj

xi = 1→ xj ≤ vj ⇔ xj ≤ (vj − uj)xi + uj

xi = 1→ xj ≥ vj ⇔ xj ≥ (vj − lj)xi + lj

if the corresponding global bound lj or uj is finite.

SCIP stores the variable bounds in a similar data structure as the implications.
This means, given a non-binary variable xj , we can find all implications with xj in
the conclusion by inspecting the list of variable bounds of xj . Whenever implications
between binary variables are added, the arcs for both directions are added to the
implication graph. If an implication between a binary variable xi and a non-binary
variable xj is added, a corresponding variable bound for xj is added to the variable
bounds data structure. If a variable bound is added for xj with xi being binary,
a corresponding implication between xi and xj is added to the implication graph.
Furthermore, the implication graph is always maintained to be closed with respect
to transitivity.
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For certain types of problem instances, in particular for set partitioning and set
packing instances, the explicit construction of the implication graph can consume
huge amounts of memory. For example, consider the set partitioning constraint

q
∑

j=1

xj = 1

with xj ∈ {0, 1} for all j = 1, . . . , q. In this case, every fixing of xj = 1 leads to
implications xj = 1→ xk = 0 for all k 6= j. This means that each pair of variables
in the constraint yields an arc in the implication graph, and thus, the number of
arcs is quadratic in the number of variables. Typical set partitioning instances
have a lot of variables, but only a few constraints. Take the instance nw04 from
Miplib 2003 [4, 6] as an example. It has 87482 variables, 36 constraints, and 636666
non-zero coefficients, which gives an average of 17685 variables per constraint. This
leads to about 11 billion implications, and with 20 bytes used for each implication
in SCIP’s data structures, this results in 220 gigabyte memory consumption.

To avoid this situation, such sets of pairwise contradicting assignments of binary
variables are stored in a separate table. This table is called clique table, since the
variable assignments form a clique in the conflict graph as defined by Atamtürk,
Nemhauser, and Savelsbergh [24]. We denote this table by Q and write Q(xj = v),
v ∈ {0, 1}, to refer to the set of cliques the variable xj (v = 1) or its negation x̄j

(v = 0) is member of.
In the example of nw04, we just have to store 36 cliques in the clique table, each

of them having 17685 members on average. Using 12 bytes per element in the clique,
this yields a memory consumption of about 8 Megabyte. The small disadvantage of
the clique table is that we now have to scan two different data structures when we
want to check for implications of a binary variable. In particular, this complicates
the implementation of the clique cut separator, see Section 8.7.

3.3.6 Branching Tree

The subproblems that are processed during the branch-and-bound search are or-
ganized as a branching tree, see Section 2.1. The root node of the tree represents
the global problem instance R. The partitioning of a problem Q into subproblems
Q1, . . . , Qk by branching creates child nodes of Q. Except for the root node, each
node Q has a unique parent node p(Q). Child nodes Qi, Qj with the same parent
node p(Qi) = p(Qj) are called siblings. The nodes on the path from the parent node
p(Qi) to the root node R are called ancestors of Q. If a subproblem is pruned (due
to bounding, infeasibility, or optimality), it is removed from the tree. Additionally,
its ancestors are removed recursively as long as they have no other children. If the
root node is removed, the problem instance has been solved.

The search tree can be partitioned into depth levels, where the level d(Q) of a
node Q is the length of the shortest path from Q to the root node R. This means,
the root node is in depth level d(R) = 0, and the children Qi of a node Q are in
depth level d(Qi) = d(Q) + 1.

SCIP stores the subproblem information using trailing, which means to only store
the differences to the parent node p(Q) in the subproblem Q. Therefore, to switch
from one subproblem Q to the next subproblem Q′, one has to find the common
ancestor Q̂ of Q and Q′ of maximal depth, undo the problem changes on the path
from Q to Q̂, and apply the changes on the path from Q̂ to Q′. An alternative to
trailing is to employ copying where the whole problem information is stored at each
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Figure 3.7. Branching tree data structure. Each node has a pointer to its parent. The focus
node, its children and its siblings are stored in individual data structures. The other unprocessed
leaves of the tree are stored in a priority queue.

subproblem. This would entail a faster switching between subproblems at a cost of
a larger memory consumption. See Schulte [200] for a comparison of these strategies
in constraint programming.

The unprocessed leaves of the search tree are stored in a priority queue L—the
leaf priority queue—with a priority function being defined by the node selection
strategy in charge, see Section 3.1.7. The currently processed subproblem, its
siblings, and its children are stored in separate data structures outside the queue,
see Figure 3.7. The following information is attached to each node Q of SCIP’s
search tree:

⊲ a pointer to the parent node p(Q),

⊲ the constraints that have been deleted at Q,

⊲ the constraints that have been added to Q,

⊲ the bounds that have been tightened at Q,

⊲ a lower (dual) objective bound of Q,

⊲ the depth d(Q) of the node in the search tree,

⊲ a successively assigned unique node number,

⊲ a flag that indicates whether the node is active or not,

⊲ the type of the node.

The path A = (A0, . . . ,Ad(Q)) from the root nodeA0 = R to the currently processed

subproblem Ad(Q) = Q is called active path. A node Q̂ ∈ A is called active node.
Note that the root node R is always active.

We distinguish between the following types of nodes:

⊲ the focusnode is the currently processed subproblem,
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⊲ a sibling is a sibling of the focus node that was not yet stored in the leaf
priority queue,

⊲ a child is a child of the focus node,

⊲ a leaf is a leaf which is stored in the leaf priority queue,

⊲ a junction is an already processed subproblem for which the LP relaxation
was not solved, and

⊲ a fork is an already processed subproblem for which the LP relaxation was
solved.

In fact, there are some more node types, namely probingnode, deadend, pseudo-
fork, subroot, and refocusnode. We omit these additional node types in the
presentation, since they are only needed due to technical implementation issues.

Depending on the type of the node, additional node information is stored at a
subproblem:

⊲ the number of existing children (focusnode, junction, fork),

⊲ the columns and rows that have been added to the LP relaxation (focusnode,
fork),

⊲ the LP warm start information (focusnode, fork), and

⊲ a pointer to the fork parent, i.e., the ancestor of maximal depth for which
the LP relaxation was solved (sibling, child, leaf).

The main operation that is supported by the branching tree is the switching
between subproblems Q and Q′, which is depicted in Algorithm 3.1. In order to
find the common ancestor Q̂ of Q and Q′ in Step 1, we just have to follow the path
from Q′ to the root node R until an active node is discovered. Note that the loop
always terminates, since the root node is active. Step 2 restores the ancestor Q̂ by
undoing all problem and LP changes on the path from Q̂ to Q in reverse direction.
Since the problem and LP changes from Q̂ to Q′ have to be applied in forward
direction, and we can only traverse the tree in backward direction from the leaves to
the root, we have to first construct the new active path A in Step 3. Afterwards, the
path can be traversed in the desired direction in order to apply the problem changes
and to construct subproblem Q′.

If the old focus node Q has children, i.e., a branching took place to solve the
subproblem, it is converted into a fork or junction node in Step 5. If the LP
relaxation was solved, the current warm start information is retrieved from the LP
solver, and the node type is set to fork. If the LP relaxation of Q was not solved
or if it was discarded due to numerical difficulties, the node type is set to junction.

If the old focus node has no children, it is either infeasible, exceeds the primal
bound, or was solved to optimality. In any case, it can be pruned from the tree,
thereby reducing the number of live children of its parent p(Q). If the parent now
also has no more children, it can be deleted as well, and the deletion can be continued
recursively.

Steps 6 to 8 update the sets of current siblings S, children C, and active leaves L.
If the new focus node Q′ is a child of the old focus node Q, the former children

become siblings and the former siblings are moved to the leaf priority queue. If
Q′ is a sibling of Q, the other siblings remain siblings, and the former children are
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Algorithm 3.1 Node Switching

Input : current subproblem Q with siblings S = {S1, . . . , Sl} and children C =
{Q1, . . . , Qk}, active path A, and leaf priority queue L; next subproblem
Q′ to be processed which is of type sibling, or child, or which is the
top-priority leaf in L.

Output : updated data structures such that the new current problem is Q′.

1. Find the common ancestor node Q̂ of Q and Q′ of maximal depth:

(a) Set Q̂ := Q′.

(b) While Q̂ is not active, set Q̂ := p(Q̂).

2. Undo all problem and LP changes on the path from Q to Q̂:

(a) Set Q̃ := Q.

(b) While Q̃ 6= Q̂:

i. Remove the columns and rows from the LP relaxation that have been
added at Q̃.

ii. Add the constraints that have been deleted from Q̃.
iii. Delete the constraints that have been added to Q̃.
iv. Relax the bounds that have been tightened at Q̃.
v. Set Q̃ := p(Q̃).

3. Update the active path:

(a) Set Q̃ := Q′.

(b) While Q̃ 6= Q̂: Set Ad(Q̃) := Q̃, and set Q̃ := p(Q̃).

4. Apply all problem changes on the path from Q̂ to Q′:

(a) For Q̃ = Ad(Q̂), . . . ,Ad(Q′):

i. Tighten the bounds that have been tightened at Q̃.
ii. Add the constraints that have been added to Q̃.
iii. Delete the constraints that have been deleted from Q̃.
iv. Add the columns and rows from the LP relaxation that have been

added at Q̃.

5. If C 6= ∅, convert Q into a fork or junction node, depending on whether
the LP relaxation has been solved or not. Otherwise, delete Q and all of its
ancestors without live children.

6. If Q′ is of type child: Convert siblings S to type leaf, set L := L∪S, convert
children C \ {Q′} to type sibling, and set S := C \ {Q′} and C := ∅.

7. If Q′ is of type sibling: Convert children C to type leaf, and set L := L∪C,
S := S \ {Q′}, and C := ∅.

8. If Q′ is of type leaf: Convert siblings S and children C to type leaf, and set
L := (L \ {Q′}) ∪ S ∪ C, S := ∅, and C := ∅.

9. Convert Q′ to type focusnode, and update Q := Q′.

10. Load the LP warm start information of the fork parent of Q.
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moved to the leaf priority queue. If the new focus node Q′ is a leaf from the priority
queue, it is not a direct relative of the former children and siblings. Therefore, both
children and siblings must be moved to the leaf priority queue.

Step 9 installs node Q′ as the new focus node Q. Finally in Step 10, the LP
warm start information for the new focus node Q is loaded into the LP solver. For
simplex solvers, this is usually the optimal simplex basis of the fork parent, but
since the warm start information is an abstract data type, which is implemented
in the LP solver interface, each LP solver can store a different type of warm start
information in the tree.

Note. The LP warm start information should be as compact as possible, since the
warm start information of a subproblem Q must stay in memory as long as there
is any active node left whose fork parent is Q. A simplex basis can be stored
using only two bits per row and column, since for each row (i.e., slack variable) and
each column we only need to know whether it is basic, on its lower, or on its upper
bound. Using this information, the corresponding basic solution can be recalculated
by refactorizing the basis matrix and solving the corresponding equation systems.

Of course, it would improve the LP solving performance if we also stored the
basis matrix factorization, since this would save the effort for recalculating the initial
factorization. Unfortunately, the factorization usually consumes too much memory
to store it in the search tree for every node. A reasonable tradeoff is to apply depth
first search or plunging node selection strategies, see Section 3.1.7 and Chapter 6.
They tend to choose children of the current node as the next subproblem to be
processed, which means that the current factorization which is still loaded in the LP
solver can be used further and does not need to be recalculated.

3.3.7 LP Relaxation

The LP relaxation stores a linear relaxation of the current subproblem. Like the
stable set relaxation, given by the implication graph described in Section 3.3.5, it
provides a global view on the problem and a way of sharing information between
different plugins.

We make the following notational distinctions between the CIP and its LP re-
laxation. The CIP consists of variables and constraints. The variables are marked
to be integer or continuous. The constraints are stored in constraint handler specific
data structures. Their semantics is unknown to the framework and only implicitly
given by the actions performed in the constraint handlers’ callback methods. The
LP relaxation consists of columns and rows. For each column, the lower and upper
bounds are known. Every column belongs to exactly one CIP variable, but not every
CIP variable needs to be represented by a column in the LP. The rows are defined
as linear combinations of columns and have left and right hand sides as additional
data. A single constraint like the TSP’s nosubtour constraint (see Example 3.2
on page 24) can give rise to multiple rows in the LP, but rows can also live on their
own, e.g., if they were created by a general purpose cut separator.

The LP relaxation is created and extended by variable pricing and cutting plane
separation. Pricing of existing problem variables is performed automatically, while
unknown variables have to be treated by problem specific variable pricer plugins,
see Section 3.1.5. New columns enter the LP through the pricing storage described
in Section 3.3.9. Cutting plane separation is performed by constraint handlers and
separators, see Sections 3.1.1 and 3.1.3, respectively. These linear inequalities and
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equations are passed to the LP relaxation via the separation storage explained in
Section 3.3.8. Both variables and constraints can be marked to be initial which
means that their corresponding columns and rows form the initial LP of the root
node relaxation. Afterwards, further extensions are applied in the price-and-cut loop
during the processing of the subproblems, see Section 3.2.8. The LP relaxation is
automatically updated during the switching between subproblems in the search tree,
see Section 3.3.6.

For any given subproblem, the user may choose whether the LP relaxation should
be solved. By completely deactivating the LP relaxation, one can mimic a pure
constraint programming or SAT solver, while solving the LP relaxation at every
node is common for mixed integer programming solvers.

3.3.8 Separation Storage

Cutting planes are produced by constraint handlers and cut separators, see Sec-
tions 3.1.1 and 3.1.3, respectively. After adding cuts, the LP is resolved, and the
separators are called again with the new LP solution. It turns out to be very ineffi-
cient to immediately resolve the LP after the first cutting plane was found. Instead,
one performs cutting plane separation in rounds. In each round, various cutting
planes are generated to cut off the current LP solution. Since one does not want
to increase the size of the LP too much by adding all cutting planes that one can
find, they are first collected in the separation storage from which only a subset of
the available cutting planes is selected to enter the LP.

The selection of the cuts to be added to the LP is a crucial decision which affects
the performance and the stability of the LP solving process in the subsequent calls.
In SCIP, the cuts are selected with respect to three different criteria:

⊲ the efficacy of the cuts, i.e., the distance of their corresponding hyperplanes
to the current LP solution,

⊲ the orthogonality of the cuts with respect to each other, and

⊲ the parallelism of the cuts with respect to the objective function.

The first two have already been used by Balas, Ceria, and Cornuéjols [30] in the
context of lift-and-project cuts, and by Andreello, Caprara, and Fischetti [13] for
{0, 1

2}-cuts.
It is tried to select a nearly orthogonal subset of cutting planes, which cut as deep

as possible into the current LP polyhedron. Cutting planes are slightly preferred
if they are closer to being parallel to the objective function. The user has the
possibility to change the employed distance norm to measure the efficacy of the
cuts. The default settings apply the Euclidean norm. The user can also adjust the
importance of the three criteria with respect to each other. Computational results
to evaluate the cutting plane selection can be found in Section 8.10.

Algorithm 3.2 shows the details of the selection procedure. For each cut r ∈ R
that was found in the current separation round, we calculate the efficacy er and
the objective function parallelism pr in Step 1. Using an initial orthogonality value
of or = 1, the initial score sr = s(er, pr, or) is computed. The score function
s : R3 → R in SCIP combines the individual quality measures to produce a single
value by calculating a weighted sum s(er, pr, or) = weer +wppr +woor of the three
operands with non-negative weights we, wp, wo ∈ R≥0. The weights themselves can
be adjusted by the user. The default settings are we = 1, wp = 0.1, and wo = 1.
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Algorithm 3.2 Cutting Plane Selection

Input : current LP solution x̌ and set R of generated cutting planes; a score func-
tion s : R3 → R, the minimal orthogonality minortho ∈ [0, 1], and the
maximal number maxsepacuts of separated cuts per round.

Output : updated LP relaxation.

1. For all r ∈ R with r : γr ≤ d
T

r x ≤ γr calculate:

(a) the efficacy er := max{γr − d
T

r x̌, d
T

r x̌− γr}/‖dr‖,

(b) the objective parallelism pr := |dT

r c| / (‖dr‖ · ‖c‖),

(c) the initial orthogonality or := 1, and

(d) the initial score sr := s(er, pr, or).

2. While R 6= ∅ and less than maxsepacuts cuts have been added to the LP:

(a) Add cut r⋆ ∈ R with largest score sr⋆ to the LP. Set R := R \ {r⋆}.

(b) For all cuts r ∈ R:

i. Update or := min
{
or, 1 − |d

T

r⋆dr| / (‖dr⋆‖ · ‖dr‖)
}

.
ii. If or < minortho, set R := R \ {r}.

Otherwise, update sr := s(er, pr, or).

After calculating the initial score values, the cuts are consecutively passed to
the LP relaxations in Loop 2 until the cut list is empty or a maximum number
maxsepacuts of cuts has been added. In each iteration of the loop, a cut r⋆ with
largest score sr⋆ is selected in Step 2a and enters the LP. Afterwards, we update
the orthogonalities or of the remaining cuts r ∈ R in Step 2b. A cut is discarded
if its orthogonality falls below the threshold minortho. Otherwise, we recalculate its
score sr.

SCIP uses a default setting of minortho = 0.5. The number of cuts generated per
round is restricted to maxsepacuts = 2000 in the root node and to maxsepacuts =
100 in subproblems. Using a minimal orthogonality minortho > 0 automatically
removes all cuts that are dominated by or are equal to parallel cuts. Stronger
domination criteria that take the current bounds of the variables into account are
not applied. However, cuts can be marked to be “removable”, which means that they
will be eliminated from the LP if they are not satisfied with equality for a number
of separation rounds or in the final LP solution. Thereby, dominated “removable”
cuts are automatically deleted from the LP relaxation with a slight delay.

The results of computational experiments to evaluate various cut selection poli-
cies can be found in Section 8.10 in the context of cutting plane separation for mixed
integer programs.

3.3.9 Pricing Storage

Like cutting plane separation, pricing of variables is performed in rounds. In every
pricing round, the current problem variables which are not yet represented in the LP
are inspected to check whether their inclusion in the LP relaxation would potentially
decrease (i.e., improve) the LP objective value. Additionally, all activated pricer
plugins are called to generate new variables. These candidate variables for entering
the LP as columns are collected in a pricing storage.

In contrast to cutting planes, the CIP framework does not have enough informa-
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tion about a variable to evaluate its effectiveness in the LP relaxation. In fact, it is
unknown which constraints depend on the new variable and which role the variable
plays for the semantics of the constraints. Therefore, the new variables are sorted
in the pricing storage with respect to a score value, which must be provided by the
external pricing algorithms. Usually, one uses the reduced costs of the variable as
score value, but other—more problem specific—criteria are also possible.

After a pricing round is finished, the best maxpricevars variables in the pricing
storage are added to the LP relaxation by creating corresponding columns. In the
default settings, SCIP uses maxpricevars = 2000 at the root node and maxpricevars =
100 at subproblems. After adding the new columns, the LP is resolved and the
next pricing round is performed. This process is iterated until no more improving
variables can be found.

3.3.10 Cut Pool

Certain cut separation algorithms are computationally very expensive or produce
cutting planes in a heuristic fashion. In this case, it might be desirable to keep
the retrieved cutting planes even if they are useless for separating the current LP
solution. The hope is that they might be applicable in later separation rounds or
on other subproblems in the search tree. Since it is very expensive to generate them
again or—due to the heuristic nature of the separation algorithm—we may fail to
find them again, it can be useful to store those cutting planes for later use in a global
cut pool.

The cut pool is a collection of globally valid LP rows augmented by a hash table
to avoid multiple insertions of the same row. The rows in the cut pool are checked for
violation during the price-and-cut loop of the node processing, see Section 3.2.8. If
violated rows are found, they are added as ordinary cutting planes to the separation
storage. In order to limit the size of the cut pool and the associated expenses for
processing the rows during separation, we delete rows from the pool if they are
not violated for cutagelimit consecutive violation checks. This parameter is set to
cutagelimit = 100 by default.

Besides the global cut pool, the user can use additional cut pools for his own
purposes. He can add and delete cuts from a pool, he can inspect the current
contents of a pool, and he can separate the rows stored in the pool. Furthermore,
the cutagelimit parameter can be set individually for each cut pool.

3.3.11 Solution Pool

In a simple branch-and-bound scheme as explained in Section 2.1, we only have
to store the current best primal solution, the so-called incumbent solution. The
incumbent is only used for pruning subproblems by bounding and to have the final
optimal solution available when the search is completed.

For particular purposes, however, it is useful to have different feasible solutions
at hand, even if some of them have worse objective values than others. For example,
in many applications it is not completely clear which is the desired objective function
for the model. In this situation, a user might want to obtain a larger set of “good”
feasible solutions, which he can evaluate and compare based on his knowledge and
experience with the underlying real-world problem.

Despite this practical reason, suboptimal solutions can also help to speed up
the solving process. For example, a node selection strategy (see Section 3.1.7)
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might want to consider regions of the search tree first, that are close to a number of
feasible solutions. The hope is to find more and even better solutions in this region.
A branching rule (see Section 3.1.6) might want to branch on variables first that are
set to the same value in all feasible solutions found so far. If the subproblem becomes
infeasible in the opposite branching direction, the variable can be fixed. The most
important benefits of a large pool of different feasible solutions, however, are primal
heuristics, see Section 3.1.8 and Chapter 9. In particular the improvement heuristics
consider also suboptimal solutions as a starting point from which improved solutions
can be found.

SCIP stores the best maxsol solutions with respect to the objective value in a
sorted array which is called the solution pool. The first element of this array is the
incumbent solution. In the default settings, the size of the solution pool is restricted
to maxsol = 100.

3.3.12 Memory Management

The internal memory management of SCIP provides three different memory alloca-
tion techniques:

⊲ standard memory management,

⊲ block memory management, and

⊲ memory buffers.

Depending on the type of data object and its life cycle, one of the three techniques
should be selected to allocate the necessary memory.

Standard Memory Management

Standard memory management denotes the allocation and deallocation of memory
with the standard methods malloc() and free() of the C programming language.
In fact, in optimized compilation mode, SCIP’s methods for standard memory man-
agement are only synonyms for these C methods. In debugging mode, however, stan-
dard memory management includes the maintenance of a list of currently allocated
memory regions together with the source code lines at which each memory region
was allocated. At the end of the program execution the list contains the memory
regions that were not deallocated and can therefore detect memory leaks.

Block Memory Management

During a typical run of SCIP to solve a CIP instance, many data objects of the same
type are allocated and deallocated from the memory heap of the system process. For
example, there may exist thousands of cutting plane data structures or millions of
branch-and-bound nodes. Using the standard malloc() and free() methods can
lead to a substantial overhead caused by the free list management of this allocator
and the operating system.

A common way of improving runtime performance in memory management is to
replace the standard memory allocator with a program specific allocation method. A
thorough review of allocator strategies can be found in Wilson et al. [215]. The block
memory management of SCIP implements a suballocator (see [191]) using a segre-
gated free lists scheme with exact lists (see Comfort [67]). For each memory block
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Figure 3.8. Histograms of block sizes allocated after processing 1 000 000 branch-and-bound nodes
of the MIP instances arki001 and markshare1.

size, a single-linked list of free memory blocks is maintained. The lists themselves
are stored in a hash map referenced by the block size. If a memory block of a certain
size is allocated, the first element in the corresponding free list is unlinked from the
list and returned to the user. If the free list is empty, a new chunk of memory is
allocated by calling malloc(). The chunk is split into blocks of the corresponding
size, which are added to the free list. The sizes of the chunks grow exponentially
with the number of chunks allocated for a given block size. Thereby, the number of
malloc() calls is logarithmic in the maximal number of simultaneously live blocks.

If a memory block is no longer needed, the user has to call the deallocation
method of the block memory allocator, which has to add the block to the free list
of the corresponding block size. Therefore, the allocator has to know the size of
the freed block. Many existing memory allocators for C replace the malloc() and
free() calls by own implementations. This has the advantage that the user does
not need to modify the source code. Since free() does not provide the size of
the freed memory block as a parameter, the allocator has to retrieve the size by
different means. Usually, the size of a block is recorded in a header field, which is
an additional word located in front of the actual data block. This means, that the
memory consumption is increased by one word per memory block.

Figure 3.8 shows typical memory allocation histograms as they appear during the
solving process of MIP instances. Note that both axes are logarithmically scaled.
The instance arki001 is a medium sized MIP with 1388 variables and 1048 con-
straints. One can see that most memory blocks are of small size: 78 % of the
allocated blocks are smaller or equal than 44 bytes, which is the size of the branch-
and-bound node data structure in SCIP on a 32-bit processor. The average block
size is 101.3 bytes. For the very small instance markshare1 with 62 variables and 6
constraints, the allocation histogram shows an even larger tendency towards small
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Figure 3.9. Extract of memory buffer allocation trace during processing the MIP instance arki001.

block sizes. Here, 99 % of the blocks are of size up to 44 bytes, and the average block
size is 24.6 bytes. In this case, an overhead of one word (i.e., 4 bytes on a 32-bit
processor) for the blocks would increase the memory consumption by 16 %.

For this reason, we did not implement the block memory allocator as a direct
replacement of malloc() and free(). Instead, the user has to provide the deal-
location method with the size of the memory block to be freed. This was never a
problem in the whole implementation of SCIP, since the sizes of the data objects
were always known, even for dynamically allocated arrays. In contrast, this redun-
dancy helps to detect errors when dealing with dynamically growing data arrays,
since in debug mode it is checked whether a freed block is actually a member of a
memory chunk of the given block size.

Memory Buffers

It is very common that subroutines in SCIP or in user plugins need a certain amount
of temporary memory for internal calculations that can be discarded after the sub-
routine exits. Often the size of the temporary memory depends on the problem
instance or on dynamically changing parameters. For example, a branching rule
might want to calculate preference values for all integer variables with a fractional
value in the current LP solution and therefore needs a data array of length at least
equal to the number of fractional variables. Such a memory area cannot be allocated
statically on the stack, since its size is not known at compile time. Therefore, one
has to dynamically allocate memory from the heap.

Since many subroutines are called very often during the solving process, it can
be inefficient to allocate and deallocate the memory in each call with malloc()

and free(). Instead, temporary memory should be allocated by using SCIP’s
memory buffers. Memory buffers are allocated or enlarged to fit the needs of an
allocation request, but they are not returned to the operating system with a call to
free(). Instead, SCIP keeps the unused buffers allocated to satisfy later requests
for temporary memory.

The buffers are organized as a stack, which matches the typical allocation and
deallocation behavior of temporary memory. Figure 3.9 shows an extract of the
memory buffer allocation trace, which is generated during the solving process of
the MIP instance arki001. The x axis counts the number of buffer operations,
i.e., either allocations or deallocations. The height of a bar denotes the total size
of the temporary memory that is currently in use. The color partitioning of a bar
shows how large the individual buffers are. One can see that most of the time, the
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Figure 3.10. Total size of buffer memory allocated during processing the MIP instance arki001.

buffers are allocated in the same order and with the same size. This is because
nested subroutines are always called in the same order. At buffer operation 135832,
one set of nested subroutines was finished such that all buffers were deallocated.
Afterwards, the program entered a different subroutine which produced a different
buffer allocation scheme.

Figure 3.10 illustrates the progression of the total size of the memory buffers
in the beginning of the solving process. Presolving is finished after 14 902 buffer
operations using a total of 85 418 bytes in memory buffers. Afterwards, the branch-
and-bound search and cutting plane generation starts, which drives the total size of
the buffers to 562 473 bytes. In the remaining solving process, the buffers are never
enlarged again, which means that no additional memory allocation with malloc()

or realloc() has to be performed.

Table 3.1 gives a summary of the performance impact of block memory allocation
and memory buffers; compare also the detailed Tables B.1 to B.10 in Appendix B,
and see Appendix A for a description of the test sets and the computational envi-
ronment. Column “no block” shows the results with disabled block memory, “no
buffer” with disabled memory buffers, and “none” with both disabled. A disabled
technique is replaced by standard malloc() and free() calls.

One can see that enabling both block memory and memory buffers yields the
best performance on almost all of the test sets. While the speedup due to memory
buffers does not seem to be significant, block memory allocation gives a substantial
runtime improvement of up to 11 %.

test set no block no buffer none

ti
m

e

miplib +8 +3 +6

coral +10 0 +11

milp +7 −1 +7

enlight +3 −1 +7

alu +4 +1 +6

fctp +5 +4 +3

acc +2 0 +2

fc +3 +3 +5

arcset +9 +1 +8

mik +11 +1 +11

total +8 +1 +8

Table 3.1. Performance effect of different memory management techniques for solving MIP in-
stances. The values denote the percental changes in the geometric mean of the runtime compared to
the default settings with both memory management techniques enabled. Positive values represent
a slowdown.
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Two interesting cases are the enlight and alu testsets, in which most instances
are quite small in size but require many branching nodes to solve. Thus, a com-
parably large fraction of the time is spent on memory operations. One can see
that disabling block memory allocation yields a small slowdown of 3 % and 4 %,
respectively, on these two test sets, but disabling memory buffers does not make
any significant difference. The comparison of columns “no block” and “none” shows,
however, that with block memory turned off, memory buffers do have an impact
on the performance. A possible explanation might be that with block memory, the
buffer memory allocations are almost the only remaining memory operations left,
and that the standard allocator of malloc() and free() behaves very similar to
the memory buffer strategy. Without using block memory, temporary and long-term
memory allocations with malloc() are interleaved, which might negatively influence
the performance of the standard allocator.
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Chapter 4

Introduction

Integer programming and mixed integer programming emerged in the late 1950’s and
early 1960’s when researchers realized that the ability to solve mixed integer pro-
gramming models would have great impact for practical applications (see Markowitz
and Manne [156] and Dantzig [74]). Gomory [104] and Martin [161] discovered the
first algorithms that can solve integer programs to optimality in a finite number
of steps. Further details on the history of integer programming can be found in
Gomory [105].

Mixed integer programming has applications in a large variety of domains, in-
cluding scheduling, project planning, public transport, air transport, telecommuni-
cations, economics and finance, timetabling, mining, and forestry. Many of these
examples can be found in Heipcke [114].

As there is a lot of commercial interest in solving MIPs, it is not surprising that
the development of MIP solvers soon became itself a commercial endeavor. Today’s
best tools for mixed integer programming are developed by commercial vendors,
including Cplex [118], Lingo [148], and Xpress [76]. The source code of these
solvers is proprietary, which imposes some difficulties for academic researchers to
evaluate new ideas by computations within a state-of-the-art environment. Despite
its integration of CP and SAT techniques into MIP solving, the development of
SCIP can be seen as an attempt to provide the MIP research community with a
freely available software, which is (almost) comparable to the current commercial
codes in terms of performance. A benchmark comparison of Cplex and SCIP can
be found in Appendix C.

In this part of the thesis we investigate the key ingredients of branch-and-bound
based MIP solvers, discuss a number of different approaches and algorithms for each
component, and present some new ideas. Chapter 5 evaluates different branching
rules and subsumes a number of well-known strategies under a new and very general
parameterized rule, the reliability branching rule. Chapter 6 presents and compares
different strategies to select the next subproblem from the search tree to be processed.
The selected node is then subject to the domain propagation algorithms, which are
discussed in Chapter 7. A very brief overview of various cutting plane separation
algorithms to strengthen the LP relaxation of the node is given in Chapter 8.

During the node solving process, primal heuristics are called at different points
in order to generate feasible MIP solutions. A huge amount of proposals for MIP
heuristics can be found in the literature. Chapter 9 presents the ones that are im-
plemented in SCIP. Chapter 10 explains the presolving techniques that are used
to simplify the problem instance and to extract additional information about the
instance before the actual solving process commences. Finally, Chapter 11 gener-
alizes the idea of conflict analysis in SAT solvers to mixed integer programming.
Besides its value for mixed integer programming, we will see in Part III of the thesis
that conflict analysis is a very important tool for solving the chip design verification
problem by constraint integer programming.
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Each chapter presents computational results to compare the effectiveness of the
discussed algorithms and strategies. The test set of MIP instances that we used and
the computational environment in which the experiments have been performed are
described in Appendix A.

We conclude this introduction by recapitulating the basic definitions of mixed
integer programming as they have been introduced in Section 1.3.

A mixed integer program (MIP) is defined as follows.

Definition (mixed integer program). Given a matrix A ∈ Rm×n, vectors b ∈
Rm, and c ∈ Rn, and a subset I ⊆ N = {1, . . . , n}, the mixed integer program
MIP = (A, b, c, I) is to solve

(MIP) c⋆ = min {cTx | Ax ≤ b, x ∈ Rn, xj ∈ Z for all j ∈ I} .

The vectors in the set XMIP = {x ∈ Rn | Ax ≤ b, xj ∈ Z for all j ∈ I} are called
feasible solutions of MIP. A feasible solution x⋆ ∈ XMIP of MIP is called optimal if
its objective value satisfies cTx⋆ = c⋆.

The bounds of the variables are denoted by lj ≤ xj ≤ uj with lj , uj ∈ R∪{±∞}.
Formally, they are part of the constraint system Ax ≤ b, but in practice they are
treated outside the coefficient matrix. Depending on the integrality status and
the bounds of the variables, we define the following subsets of the variable indices
N = {1, . . . , n}:

binary variables: B := {j ∈ I | lj = 0 and uj = 1}

integer variables: I

continuous variables: C := N \ I

Specializations of MIPs are

⊲ linear programs (LPs) with I = ∅,

⊲ integer programs (IPs) with I = N ,

⊲ mixed binary programs (MBPs) with B = I, and

⊲ binary programs (BPs) with B = I = N .

If we remove the integrality restrictions from an MIP, we obtain its LP relaxation:

Definition (LP relaxation of an MIP). Given a mixed integer program MIP =
(A, b, c, I), its LP relaxation is defined as

(LP) č = min {cTx | Ax ≤ b, x ∈ Rn} .

XLP = {x ∈ Rn | Ax ≤ b} is the set of feasible solutions of the LP relaxation. An
LP-feasible solution x̌ ∈ XLP is called LP-optimal if cT x̌ = č.

The solution set of the LP relaxation defines a polyhedron P = XLP. This LP
polyhedron is a superset of its integer hull PI ⊆ P , which is the convex hull

PI = conv{P ∩ (ZI × RN\I)} = conv{XMIP}

of the MIP feasible solutions.



Chapter 5

Branching

Most of this chapter is joint work with Thorsten Koch and Alexander Martin. Parts
of it were published in Achterberg, Koch, and Martin [5].

Since branching is in the core of any branch-and-bound algorithm, finding good
strategies was important to practical MIP solving right from the beginning, see Béni-
chou et al. [39] or Mitra [165]. We refrain from giving details of all existing strategies,
but concentrate on the most popular rules used in todays MIP solvers, in particular
the ones that are available in SCIP. For a comprehensive study of branch-and-bound
strategies we refer to Land and Powell [139], Linderoth and Savelsbergh [146], Fü-
genschuh and Martin [90], and the references therein.

The only way to split a problem Q within an LP based branch-and-bound al-
gorithm is to branch on linear inequalities in order to keep the property of having
an LP relaxation at hand. The easiest and most common inequalities are trivial
inequalities, i.e., inequalities that split the feasible interval of a singleton variable,
compare Figure 2.2 on page 17. To be more precise, if xj , j ∈ I, is some integer
variable with a fractional value x̌j in the current optimal LP solution, we obtain
two subproblems: one by adding the trivial inequality xj ≤ ⌊x̌j⌋ (called the left
subproblem or left child, denoted by Q−j ) and one by adding the trivial inequality

xj ≥ ⌈x̌j⌉ (called the right subproblem or right child, denoted by Q+
j ). This proce-

dure of branching on trivial inequalities is also called branching on variables, because
it only requires to change the bounds of variable xj . Branching on more compli-
cated inequalities or even splitting the problem into more than two subproblems
are rarely incorporated into general MIP solvers, even though it can be effective
in special cases, see, for instance, Borndörfer, Ferreira, and Martin [51], Clochard
and Naddef [62], or Naddef [169]. SCIP supports general branching on constraints
with an arbitrary number of children, but all of the branching rules included in the
distribution branch on variables and create a binary search tree.

The basic algorithm for variable selection may be stated as follows:

Algorithm 5.1 Generic variable selection

Input : Current subproblem Q with an optimal LP solution x̌ /∈ XMIP.

Output : An index j ∈ I of an integer variable xj with fractional LP value x̌j /∈ Z.

1. Let F = {j ∈ I | x̌j /∈ Z} be the set of branching candidates.

2. For all candidates j ∈ F , calculate a score value sj ∈ R.

3. Return an index j ∈ F with sj = maxk∈F{sk}.

In the following we focus on the most common variable selection rules, which are
all variants of Algorithm 5.1. The difference is how the score in Step 2 is computed.

The ultimate goal is to find a computationally inexpensive branching strategy
that minimizes the number of branch-and-bound nodes that need to be evaluated.
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62 Branching

Since no global approach is known, one tries to find a branching variable that is at
least a good choice for the current branching. One way to measure the quality of
a branching is to look at the changes in the objective function of the LP relaxations
of the two children Q−i and Q+

i compared to the relaxation of the parent node Q.
Recently, Patel and Chinneck [185] proposed to favor branchings that result in LP
solutions x̌Q

−
j

and x̌Q
+

j
with a large Euclidean distance to the current LP solution

x̌Q. However, we follow the traditional way of trying to improve the dual bound.

In order to compare branching candidates, for each candidate the two objective
function changes ∆−j := čQ−

j
− čQ and ∆+

j := čQ+

j
− čQ or estimates of these values

are mapped on a single score value. This is typically done by using a function of the
form

score(q−, q+) = (1− µ) ·min{q−, q+}+ µ ·max{q−, q+}, (5.1)

see, for instance, Linderoth and Savelsbergh [146]. The score factor µ is some
number between 0 and 1. It is usually an empirically determined constant, which is
sometimes adjusted dynamically through the course of the algorithm (in SCIP we
use a static value of µ = 1

6
, which is also used in SIP [159]). In addition, SCIP

features a new idea which is to calculate the score via a product

score(q−, q+) = max{q−, ǫ} ·max{q+, ǫ} (5.2)

with ǫ = 10−6. This product is the default score function in SCIP, and the com-
putational results in Section 5.11 show its superiority to the weighted sum of Equa-
tion (5.1). Bounding the values by ǫ is necessary to be able to compare two pairs
(∆−j ,∆

+
j ) and (∆−k ,∆

+
k ) where one of the values is zero for each pair. There are

a lot of MIP instances where such a behavior can be observed, typically for the
downwards changes ∆−.

In the forthcoming explanations all cases are symmetric for the left and right
subproblem. Therefore we will only consider one direction most of the time, the
other will be analogous.

5.1 Most Infeasible Branching

This still very common rule chooses the variable with fractional part closest to 0.5,
i.e., sj = φ(x̌j) = min{x̌j −⌊x̌j⌋, ⌈x̌j⌉− x̌j}. The heuristic reason behind this choice
is that this selects a variable where the least tendency can be recognized to which
“side” (up or down) the variable should be rounded. Unfortunately, as the numerical
results in Section 5.11 indicate, the performance of this rule is in general not much
better than selecting the variable randomly.

5.2 Least Infeasible Branching

In contrast to the most infeasible branching rule, the least infeasible branching strat-
egy prefers variables that are close to integrality: sj = max{x̌j − ⌊x̌j⌋, ⌈x̌j⌉ − x̌j}.
Like most infeasible branching , this strategy yields a very poor performance.
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5.3 Pseudocost Branching

This is a sophisticated rule in the sense that it keeps a history of the success of
the variables on which already has been branched. This rule goes back to Bénichou
et al. [39]. In the meantime various variations of the original rule have been proposed.
In the following we present the one used in SCIP and SIP [159]. For alternatives
see Linderoth and Savelsbergh [146].

Let ς−j and ς+j be the objective gains per unit change in variable xj at node Q
after branching in the corresponding direction, that is

ς−j =
∆−j

f−j
and ς+j =

∆+
j

f+
j

(5.3)

with f+
j = ⌈x̌j⌉ − x̌j and f−j = x̌j − ⌊x̌j⌋. Let σ+

j denote the sum of ς+j over all
problems Q, where xj has been selected as branching variable and the LP relaxation
of Q+

j has already been solved and was feasible. Let η+
j be the number of these

problems, and define σ−j and η−j to be the analogue values for the downwards branch.
Then the pseudocosts of variable xj are calculated as the arithmetic means

Ψ−j =
σ−j

η−j
and Ψ+

j =
σ+

j

η+
j

. (5.4)

Using sj = score(f−j Ψ−j , f
+
j Ψ+

j ) in Algorithm 5.1 yields what is called pseudocost
branching .

Observe that at the beginning of the algorithm σ−j = η−j = σ+
j = η+

j = 0 for
all j ∈ I. We call the pseudocosts of a variable j ∈ I uninitialized for the upward
direction, if η+

j = 0. Uninitialized upward pseudocosts are set to Ψ+
j = Ψ+

∅
, where

Ψ+
∅

is the average of the initialized upward pseudocosts over all variables. This
average number is set to 1 in the case that all upward pseudocosts are uninitialized.
We proceed analogously with the downward direction. The pseudocosts of a variable
are called uninitialized if they are uninitialized in at least one direction.

5.4 Strong Branching

The idea of strong branching was developed in the context of the traveling salesman
problem, see Applegate et al. [14]. Soon, it became a standard ingredient in mixed
integer programming codes like Cplex. Strong branching means to test which of
the fractional candidates gives the best progress in the dual bound before actually
branching on any of them. This test is done by temporarily introducing an upper
bound xj ≤ ⌊x̌j⌋ and subsequently a lower bound xj ≥ ⌈x̌j⌉ for variable xj with
fractional LP value x̌j and solving the linear relaxations.

If we choose as candidate set the full set F = {j ∈ I | x̌j 6∈ Z} and if we solve
the resulting LPs to optimality, we call the strategy full strong branching . In other
words, full strong branching can be viewed as finding the locally (with respect to
the given score function) best variable to branch on. We will see in Section 5.11
that selecting this locally best variable usually works very well in practice w.r.t. the
number of nodes needed to solve the problem instances.

Unfortunately the computation times per node of full strong branching are high.
Accordingly, most branching rules presented in the literature, including pseudocost
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branching , may be interpreted as an attempt to find a (fast) estimate of what full
strong branching actually measures.

One possibility to speed up full strong branching , is to restrict the candidate set
in some way, e.g., by considering only a subset F ′ ⊆ F of the fractional variables.
Another idea that can be found in the literature is to only perform a few simplex
iterations to estimate the changes in the objective function for a specific branching
decision. This seems reasonable, because usually the change of the objective func-
tion per iteration in the simplex algorithm decreases with an increasing number of
iterations. Thus, the parameters of strong branching to be specified are the maximal
size κ of the candidate set F ′, the maximum number γ of dual simplex iterations
to be performed for each candidate variable, and a criterion according to which the
candidate set is selected.

In SCIP as well as in SIP, the size of the candidate set is not fixed in advance
to a specific (small) value, but the candidates are evaluated with a “look ahead”
strategy: if no new best candidate was found for λ = 8 successive candidates, the
evaluation process is stopped. By processing variables with largest pseudocost scores
first, only the most promising candidates are evaluated. A maximum of κ = 100
strong branching candidate evaluations is imposed as a safeguard to avoid very
expensive computations in exceptional situations.

The iteration limit for strong branching evaluations is set to γ = 2γ̄ with a
minimal value of 10 and a maximal value of 500 iterations, where γ̄ is the average
number of simplex iterations per LP needed so far. Note that for small or medium
sized instances this number only protects from unexpected long simplex runs, and
the candidate LPs will usually be solved to optimality. We observed that using such
a large iteration limit typically does not produce a significant overhead. Instead, it
often helps to produce better branching decisions or to derive variable fixings due
to infeasible strong branching LPs.

5.5 Hybrid Strong/Pseudocost Branching

Even with the speedups indicated at the end of Section 5.4, the computational
burden of strong branching is high, and the higher the speedup, the less precise the
decisions are.

On the other hand, the weakness of pseudocost branching is that at the very
beginning there is no information available, and sj basically reflects only the frac-
tionalities φ(x̌j) for all variables j ∈ F . Many of the early nodes are located in
the upper part of the search tree where the decisions have the largest impact on the
structure of the tree and the subproblems therein. With pseudocost branching , these
decisions are taken with respect to pseudocost values that are not useful yet.

To circumvent these drawbacks the positive aspects of pseudocost and strong
branching are put together in the combination hybrid strong/pseudocost branching ,
where strong branching is applied in the upper part of the tree up to a given depth
level d. For nodes with depth larger than d, pseudocost branching is used. This
branching rule is available for example in Lingo [148]. In our implementation, we
use d = 10.
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Algorithm 5.2 Reliability branching

Input : Current subproblem Q with an optimal LP solution x̌ /∈ XMIP.

Output : An index j ∈ I of an integer variable xj with fractional LP value x̌j /∈ Z.

1. Let F = {j ∈ I | x̌j /∈ Z} be the set of branching candidates.

2. For all candidates j ∈ F , calculate the score sj = score(f−j Ψ−j , f
+
j Ψ+

j ) and
sort them in non-increasing order of their pseudocost scores.

For at most κ candidates j ∈ F with min{η−j , η
+
j } < ηrel:

(a) Perform a number of at most γ dual simplex iterations on subproblem
Q−j and Q+

j , respectively. Let ∆̃−j and ∆̃+
j be the resulting gains in the

objective value.

(b) Update the pseudocosts Ψ−j and Ψ+
j with the gains ∆̃−j and ∆̃+

j .

(c) Update the score sj = score(∆̃−j , ∆̃
+
j ).

(d) If the maximum score s⋆ = maxk∈F{sk} has not changed for λ consecutive
score updates, goto Step 3.

3. Return an index j ∈ F with sj = maxk∈F{sk}.

5.6 Pseudocost Branching with
Strong Branching Initialization

The decisions of pseudocost as well as the ones of hybrid strong/pseudocost branching
in the lower part of the tree are potentially based on uninitialized pseudocost values,
leading to an inferior selection of branching variables.

The idea to avoid this risk, which goes back to Gauthier and Ribière [93] and
which was further developed by Linderoth and Savelsbergh [146], is to use strong
branching for variables with uninitialized pseudocosts and to use the resulting strong
branching estimates to initialize the pseudocosts. In contrast to the fixed depth level
of hybrid strong/pseudocost branching , this rule uses strong branching in a more
dynamic way.

5.7 Reliability Branching

We generalize the idea of pseudocost branching with strong branching initialization
by not only using strong branching on variables with uninitialized pseudocost values,
but also on variables with unreliable pseudocost values. The pseudocosts of a vari-
able xj are called unreliable, if min{η−j , η

+
j } < ηrel, with ηrel being the “reliability”

parameter. We call this new branching rule reliability branching.

An outline of the selection of a branching variable with reliability branching is
given in Algorithm 5.2 which implements Step 2 of Algorithm 5.1.

As in the strong branching rule we set the maximal number of strong branch-
ing initializations to κ = 100 and the maximal number of simplex iterations per
subproblem to γ = 2γ̄, bounded by γ ≥ 10 and γ ≤ 500.

The reliability parameter is usually set to ηrel = 8, but it is dynamically adjusted
to control the total number of strong branching simplex iterations γ̂SB compared
to the total number of regular node LP simplex iterations γ̂LP. In the default
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parameter settings our goal is to restrict the strong branching simplex iterations to
a maximum of γ̂max

SB = 1
2 γ̂LP + 100000. If they exceed γ̂SB > γ̂max

SB , the reliability
value is reduced to ηrel = 0 which turns off strong branching initializations such that
reliability branching becomes equivalent to pseudocost branching . Within the interval
γ̂SB ∈

[
1
2
γ̂max

SB , γ̂max
SB

]
ηrel is linearly decreased from 8 to 1, with the extreme case

ηrel = 1 corresponding to pseudocost branching with strong branching initialization.
On the other hand, if γ̂SB is very small, namely γ̂SB < 1

2 γ̂LP, ηrel is increased

proportionally to γ̂LP

γ̂SB
such that reliability branching resembles strong branching in

the limiting case of ηrel →∞.

5.8 Inference Branching

In a CSP or SAT instance where no objective function is available it does not make
sense to base the branching decision on the change in the LP relaxation’s objective
value. Therefore one has to use a different measure to estimate the impact of a
variable to the given problem instance. One idea is to select a branching variable
that, after tightening its domain, produces the largest number of deductions on other
variables.

Like with LP objective value based branching rules, the impact of a variable in
terms of deductions can either be calculated directly in a strong branching fashion
by explicitly propagating the bound changes of the branching candidates, or by
collecting historical information similar to the pseudocost values. For example, the
SAT solver SatZ [143, 144] takes the former approach. The inference branching rule
of SCIP uses the latter idea.

The inference value of a variable xj , j ∈ I, is defined analog to the pseudocosts
of Equation (5.4) as

Φ+
j =

ϕ+
j

ν+
j

(5.5)

where ϕ+
j is the total number of all inferences deduced after branching upwards

on variable xj , and ν+
j is the number of corresponding subproblems Q+

j for which

domain propagation has already been applied. Note that ν+
j is very similar to

the pseudocost counter η+
j , but it needs not to be the same since there may be

subproblems for which only domain propagation or only LP solving is applied.
Additionally, pseudocosts are also collected by strong branching evaluations, while
the inference history can be populated by probing and other presolving techniques,
see Chapter 10.

Like pseudocost branching , the inference branching rule suffers from the fact that
the most crucial decisions at the top of the search tree are based on very little in-
formation, since the inference values are collected during the search. Obviously, one
could overcome this issue by combining explicit inference calculations and historical
information analog to the pseudocost branching with strong branching initialization
or even the reliability branching rule. However, we do not take this approach in
SCIP. For general integer variables we define an uninitialized inference value to be
zero. For (the usually more important) binary variables we use the information
of the implication graph and clique table, see Section 3.3.5, to define replacements
for uninitialized inference values. Let D = (V,A) be the current implication graph
as defined in Definition 3.9 and let Q(xj = 1) be the set of cliques the variable is
contained in as positive literal. Now, if an inference value of a binary variable is
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uninitialized, i.e., ν+
j = 0, we define

Φ+
j =

∣
∣δ−D(xj = 1)

∣
∣+ 2 ·

∣
∣Q(xj = 1)

∣
∣.

Note that the factor 2 applied to the number of cliques is an underestimate of the
actual implications represented by the cliques since all cliques in the clique table are
at least of cardinality 3.

If probing is used as a presolver, see Section 10.6, the implication graph gets
populated by all implications of binary variables. Therefore, one can see probing in
this regard as a strong branching initialization of the inference values at the root
node for all binary variables. In this sense, our approach of dealing with uninitial-
ized inference values is very similar to pseudocost branching with strong branching
initialization.

5.9 Hybrid Reliability/Inference Branching

The hybrid reliability/inference branching rule combines the selection criteria of reli-
ability branching and inference branching . Additionally, in the presence of conflict
analysis, see Chapter 11, we include the score values of a variable state independent
decaying sum (VSIDS) branching strategy as it is used in SAT solvers, see Moskewicz
et al. [168]. This rule prefers variables that have been used in the conflict graph
analysis to produce recent conflict constraints. Finally, we include a score value
which is based on the number of infeasible or bound-exceeding subproblems (i.e.,
the number of cutoffs) that have been generated due to branching on the respective
variable.

Let sreli
j , sinfer

j , sconf
j , and scutoff

j be the individual score values for the reliabil-
ity branching , inference branching , conflict branching, and cutoff branching rules,
respectively. The problem with combining these values into a single score is that
they operate on completely different scales. In particular, the scale of sreli is highly
dependent on the problem instance, namely the objective function. Therefore one
has to apply a normalization step to transform the individual score values onto a
unified scale, for which we use the function

g : R≥0 → [0, 1), g(x) =
x

x+ 1
.

As one can see in Figure 5.1 the function g(·) has its dynamic range roughly in the
region between 0 and 4. It seems reasonable to first scale the different score values
such that they are mapped into the dynamic range of g(·) and apply g(·) afterwards.
Therefore, we combine the four values with the formula

sj = ωrelig

(

sreli
j

sreli
∅

)

+ ωinferg

(

sinfer
j

sinfer
∅

)

+ ωconfg

(

sconf
j

sconf
∅

)

+ ωcutoffg

(

scutoff
j

scutoff
∅

)

in which the s∅ values are the current average values over all variables in the problem
instance. The weights are set to ωreli = 1, ωinfer = ωcutoff = 10−4, and ωconf = 10−2.

Besides the different calculation of the score values, the hybrid reliability/infe-
rence branching rule is equal to reliability branching as shown in Algorithm 5.2.
Thus, one can view reliability branching as a special case of hybrid reliability/infe-
rence branching with ωreli = 1 and ωinfer = ωconf = ωcutoff = 0. Since g(·) is strictly
monotone, the application of g(·) to sreli does not modify the branching variable
selection.
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Figure 5.1. Function g : R≥0 → [0, 1) to map branching scores into the unit interval.

5.10 Branching Rule Classification

Some of the proposed branching rules can be adjusted with parameter settings. All
of the strategies using strong branching include the simplex iteration limit γ and the
look ahead value λ. The hybrid strong/pseudocost branching exhibits an additional
depth parameter d, while the reliability branching comes along with the reliability
parameter ηrel.

It is interesting to note that depending on the parameter settings, the branching
rules have interrelations as illustrated in Figure 5.2.
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Figure 5.2. Interrelations between branching rules and their parameters.
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test set random most inf least inf pseudocost full strong strong hybr strong psc strinit reliability inference
ti

m
e

miplib +139 +139 +266 +16 +92 +38 +20 +5 −1 +101

coral +332 +314 +575 +40 +97 +59 +27 +2 +7 +177

milp +81 +86 +109 +23 +107 +44 +43 +9 +6 +20

enlight +115 −40 +149 −27 +45 +11 +9 +27 +5 −70

alu +1271 +1991 +1891 +619 +180 +13 +11 +55 +36 −35

fctp +288 +267 +379 +35 +36 +25 +4 +14 +2 +187

acc +52 +85 +138 −41 +174 +82 +153 +11 +84 −24

fc +912 +1152 +837 +98 +14 +18 +14 −5 −2 +188

arcset +1276 +1114 +1296 +106 +112 +72 +38 +18 −1 +317

mik +10606 +10606 +9009 +102 +59 +8 +11 +35 +2 +5841

total +226 +219 +341 +33 +95 +44 +30 +8 +6 +95

n
o

d
es

miplib +475 +341 +1096 +87 −65 −62 −18 +13 −7 +269

coral +694 +517 +1380 +79 −79 −68 −12 +18 +16 +329

milp +194 +187 +306 +71 −72 −59 +41 +40 +7 +76

enlight +163 −29 +219 +3 −83 −85 +1 +23 −8 −49

alu +6987 +5127 +9084 +1659 −60 −78 −31 +120 +17 +6

fctp +511 +443 +931 +103 −73 −68 +6 +39 0 +364

acc +393 +513 +1422 +88 −95 −52 +392 +31 +404 +33

fc +5542 +5060 +6039 +603 −81 −73 −28 +54 0 +1137

arcset +3219 +2434 +3573 +248 −60 −51 −6 +37 0 +742

mik +8994 +7397 +9195 +123 −90 −86 +1 +32 −1 +4652

total +543 +428 +976 +98 −75 −65 +3 +27 +9 +217

Table 5.1. Performance effect of different branching rules for solving MIP instances. The values
denote the percental changes in the shifted geometric mean of the runtime (top) and number
of branching nodes (bottom) compared to the default hybrid reliability/inference branching rule.
Positive values represent a deterioration, negative values an improvement.

Hybrid strong/pseudocost branching with d = 0 as well as reliability branching
with ηrel = 0 coincide with pure pseudocost branching . With a static value of
ηrel = 1, reliability branching is equal to pseudocost branching with strong branching
initialization. If the depth d and the reliability ηrel are increased, the number of
strong branching evaluations also increases, and with d = ηrel =∞, both strategies
converge to pure strong branching . Additionally, if the look ahead parameter is set
to λ = ∞ and the maximal number of simplex iterations and candidates are also
chosen as γ = κ =∞, strong branching becomes full strong branching .

5.11 Computational Results

Table 5.1 summarizes the performance impact of the different branching rules pre-
sented in this Chapter. More detailed results can be found in Tables B.11 to B.20 in
Appendix B. The test sets and the experimental setup is described in Appendix A.

The least infeasible branching rule gives the worst results, both for the time and
the number of nodes. It is even worse than random branching . This suggests that
most infeasible branching should be much better than random branching , but this
is not the case. Since pseudocost branching has almost the same computational
overhead but yields much better results, there is no reason at all to employ most
infeasible branching for general mixed integer programming.

Full strong branching and strong branching need by far the smallest number of
branching nodes over all strategies. One reason for this is that the solving of the
strong branching sub-LPs is sometimes able to detect an infeasibility and can thereby
tighten the bound of the corresponding variable. This infeasibility detection is not
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counted as a search node in the statistics. Nevertheless, the results show that the
“local greedy” procedure of full strong branching is a good strategy to produce a
small search tree.

Unfortunately, the node reductions achieved by the extensive use of strong branch-
ing do not justify the runtime costs: on the diverse test sets miplib, coral, and
milp, full strong branching is around 100 % slower while strong branching is still 50 %
slower than hybrid reliability/inference branching. Although not that prominent, the
effect is clearly visible on the other test sets as well, which consist of instances of a
single problem class each.

Out of the strategies that combine pseudocosts and strong branching, namely
hybrid strong/pseudocost branching (“hybr strong”), pseudocost branching with strong
branching initialization (“psc strinit”), and reliability branching, the latter is the
most successful on our test sets. Hybrid strong/pseudocost branching usually needs
fewer nodes, but this cannot compensate the higher computational costs of strong
branching applied up to depth d = 10 of the search tree. In contrast, in reliability
branching the node reduction due to the more extensive use of strong branching
pays off: compared to pseudocost branching with strong branching initialization, it
also leads to a reduction in the runtime for most of the test sets.

The inference branching rule is usually inferior to reliability branching. However,
it is the winner on the enlight, alu, and acc instances. The enlight test set
consists of instances of a combinatorial game, in which the objective function does
not play a significant role. The chip verification instances of the alu test set only
contain a completely artificial objective function. The instances of the acc test
set model a basketball scheduling problem (see Nemhauser and Trick [173]) which
basically is a pure feasibility problem without objective function. In all cases, it
is not surprising that pseudocosts do not yield a good evaluation of the branching
candidates and that the number of inferences is a better choice. At least for the
alu and acc instances, the incorporation of the inference history into the reliability
branching rule is able to transfer some of the benefits of inference branching to the
default hybrid reliability/inference branching rule. On the other test sets, reliability
branching performs equally well.

Branching Score Function

Table 5.2 summarizes the benchmarks to compare various branching score functions
of type (5.1) against the default SCIP product score function (5.2). Detailed results
can be found in Tables B.21 to B.30 in Appendix B.

Using the weighted sum score function

score(q−, q+) = (1− µ) ·min{q−, q+}+ µ ·max{q−, q+},

with a weight of µ = 0 as suggested by Bénichou et al. [39] and Beale [37] means to
choose a branching variable for which the minimum of the two individual score values
q− and q+ is as large as possible. In the default hybrid reliability/inference branching
rule, the largest contribution to the total score comes from the pseudocost estimates
∆̃− = f−j Ψ−j and ∆̃+ = f+

j Ψ+
j . Thus, using the weight µ = 0 basically means

to select a branching variable for which the smaller estimated objective increase is
maximal. The idea behind this choice is to balance the search tree and to improve
the global dual bound as fast as possible.

The other extreme case is to use µ = 1. The rationale behind this setting is to
drive one of the two children to infeasibility as fast as possible in order to restrict
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test set min (µ = 0) weighted (µ = 1
6

) weighted (µ = 1
3

) avg (µ = 1
2

) max (µ = 1)
ti

m
e

miplib +26 +12 +28 +30 +53

coral +25 +20 +27 +49 +113

milp +18 +10 +36 +35 +58

enlight +34 −19 −1 −9 +115

alu +88 +66 +85 +101 +187

fctp +72 −2 +6 +26 +56

acc +43 +70 +29 +41 +50

fc +58 −7 −6 −4 −2

arcset +35 +11 +22 +32 +62

mik +134 +13 +31 +52 +169

total +29 +14 +29 +37 +75

n
o

d
es

miplib +24 +21 +46 +73 +92

coral +25 +48 +53 +102 +199

milp +19 +26 +69 +68 +97

enlight +12 −13 +15 +2 +116

alu +85 +104 +96 +165 +357

fctp +71 +8 +12 +34 +68

acc +100 +390 +222 +235 +391

fc +147 −12 −6 −35 −10

arcset +57 +20 +37 +60 +109

mik +131 +16 +34 +63 +193

total +31 +34 +54 +76 +130

Table 5.2. Performance effect of different branching score functions for solving MIP instances.
The values denote the percental changes in the shifted geometric mean of the runtime (top) and
number of branching nodes (bottom) compared to the default product score function (5.2). Positive
values represent a deterioration, negative values an improvement.

the growth of the search tree. In the best case, one child turns out to be infeasible
which means that we have avoided the node duplication for this branching step.

The results for the two settings (columns “min” and “max”) show that improving
the global dual bound and balancing the tree with µ = 0 is much more successful
than the infeasibility idea of µ = 1. The “min” approach is also superior to using
the average value as shown in column “avg”, which was proposed by Gauthier and
Ribière [93]. However, the best setting for the weight µ is located between 0 and 1

2 ,
which was also reported in earlier computational studies, see Linderoth and Savels-
bergh [146]. They found the value of µ = 1

3
to be the most successful. In contrast,

the value µ = 1
6 that Martin [159] used in SIP seems to be the best choice for SCIP

on the considered test sets.
Although we tried several values for the weight µ, none of them can compete

against the product score function (5.2), which is the default strategy in SCIP. The
product is clearly superior to all variants of the weighted sum score function. Even
the best of them is outperformed by more than 10 %. As to the author’s knowledge,
using a product based score function is a new idea that has not been proposed
previously in the literature.





Chapter 6

Node Selection

After a subproblem has been processed, the solving process can continue with any
subproblem that is a leaf of the current search tree. The selection of the subproblem
that should be processed next has two usually opposing goals within the MIP branch-
and-bound search:

1. finding good feasible MIP solutions to improve the primal (upper) bound,
which helps to prune the search tree by bounding, and

2. improving the global dual (lower) bound.

Besides by employing primal heuristics, feasible MIP solutions can be found as so-
lutions to LP relaxations of subproblems that happen to be integral. It can be
observed, see for example Linderoth and Savelsberg [146], that integral LP solutions
are typically found very deep in the search tree. Therefore, to quickly identify feas-
ible solutions of a MIP instance, strategies like depth first search seem to be the
most natural choice. The second goal, however, is completely disregarded by depth
first search, since the nodes with the best (i.e., smallest) lower bound are usually
close to the root node of the search tree. To improve the global dual bound as fast
as possible, one should use best first search which is to always select a leaf with the
currently smallest dual objective value. Trying to achieve both goals at the same
time leads to a mixture of the two strategies, which is called best first search with
plunging.

A variant of best first search is the so-called best estimate search. This strat-
egy does not select the node with the best dual bound, but the one with the best
estimated objective value of the feasible solutions contained in the corresponding
subtree. The estimate is calculated from the dual bound and the fractionalities and
pseudocost values of the variables (see Section 5.3). The goal of best estimate search
is to find a good, preferably optimal feasible solution as soon as possible. Natu-
rally, this strategy can also be combined with depth first search, which leads to best
estimate search with plunging. Finally, one can combine all the three strategies into
hybrid versions, for example by applying the selection rules in an interleaving fashion
or by using weighted combinations of the individual node selection score values.

In the following sections, we will take a closer look at the different strategies and
evaluate them by computational experiments.

6.1 Depth First Search

Depth first search was proposed by Little et al. [149] for the traveling salesman
problem and by Dakin [71] for mixed integer programming. This node selection rule
always chooses a child of the current node as the next subproblem to be processed.
If the current node is pruned and therefore has no children, the search backtracks

to the most recent ancestor that has another unprocessed child left and selects one

73
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of its children. Thus, one selects always a node from the leaf queue with maximal
depth in the search tree.

Depth first search is the preferred strategy for pure feasibility problems like SAT
or CSP. Since these problems do not have an objective function, the solving process
is solely focused on finding a feasible solution, and there is no need to increase a
lower objective bound. But besides its ability to identify feasible solutions, depth
first search has a second advantage: the next subproblem to be processed is almost
always very similar to the current one. Therefore, the subproblem management is
reduced to a minimum. In particular, only very small changes have to be applied to
the LP relaxation. If the branching is performed on variables by splitting a bound of
an integer variable into two parts, the only update in the LP is one bound change of
a single variable. This can be done very efficiently in simplex solvers. Most notably,
the current basis matrix factorization remains valid for the child problem, thereby
saving the time for basis refactorization.

A third advantage of depth first search is its small memory consumption. If the
current node is in depth d, then the search tree consists of at most b · d + 1 nodes
that are not yet pruned, where b is the maximal number of children of a node.
This means, the number of nodes we have to store for a 2-way branching scheme
never exceeds 2dmax +1, with dmax being the maximal depth of the search tree. For
binary or mixed binary programs, the maximal depth is bounded by dmax ≤ |B| if we
branch on variables, which means the memory consumption for node data structures
is linear in the number of binary variables.

Using depth first search as node selection strategy leaves open only one additional
choice, namely which of the unsolved children of the current node should be processed
first. SAT solvers like BerkMin [100] try to use this freedom of choice to balance
their conflict clause databases (see Chapter 11) with respect to the appearance of
the branching variable and its negation in the conflict clauses. This is basically
achieved by first selecting the fixing of the branching variable that appears in the
larger number of conflict clauses, since new conflict clauses derived in this subtree
can only contain the negation of the branching variable.

The idea of Martin [159] for mixed integer programming (using the usual branch-
ing on integer variables with fractional LP value) is to select the branch that pushes
the LP value of the variable further away from its value in the root node’s LP so-
lution. Say, for example, that we branched on variable xj with current LP solution
x̌j = 2.3, which has an LP solution value of (x̌R)j = 2.6 in the root node’s relaxation.
Martin’s idea is that on the path to the current node the value of the variable has
the tendency to be pushed towards 2, and that the branch xj ≤ 2 should therefore
be inspected first. Although we did not verify this by thorough computational stud-
ies, we experienced that this child selection strategy yields very good results and
therefore adopted it in SCIP.

6.2 Best First Search

Best first search aims at improving the global dual bound as fast as possible by
always selecting a subproblem with the smallest dual bound of all remaining leaves
in the tree. As a side-effect, this strategy leads to a minimal number of nodes
that need to be processed, given that the branching rule is fixed. Note that best
first search is not uniquely defined as there may be multiple nodes with equal dual
bound.
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Proposition 6.1. Given an instance of a constraint integer program and a fixed
branching strategy in the branch-and-bound Algorithm 2.1, there exists a node se-
lection strategy of best first search type which solves the instance in a minimal
number of nodes.

Proof. Due to the fixed branching strategy, the search tree is uniquely defined, in-
cluding all nodes that could be pruned by bounding if the optimal solution value c⋆

was known. A node selection strategy σ defines an order of the nodes in the tree
such that for all nodes Qi with parent p(Qi) we have σ(p(Qi)) < σ(Qi). Let čQi

be
the lower bound of node Qi before it is processed. Certainly, čQi

≥ čp(Qi) with čQ
being the optimal value of a relaxation Qrelax of subproblem Q, for example, the LP
relaxation of Q.

Let σ⋆ be an optimal node selection strategy with respect to the number of
nodes that have to be processed. Assume that σ⋆ is not of best first search type.
Then there are node indices i, j with σ(Qi) < σ(Qj) and čQi

> čQj
. Since Qi is

processed in the optimal node selection strategy, the optimal value for the CIP must
be c⋆ ≥ čQi

> čQj
. Therefore, Qj cannot be pruned by bounding and must also be

processed. Thus, we can exchange Qi and Qj in the node selection order without
increasing the number of processed nodes. By iteratively applying this exchange
procedure, σ⋆ can be converted into a best first search node selection strategy that
is still optimal.

Note. Although there always exists an optimal best first search node selection strat-
egy, not every best first search rule processes a minimal number of nodes. As an
example, assume that L = {Q1, Q2} is the current list of open subproblems, and
both subproblems have a lower bound of čQ1

= čQ2
= č < ĉ with ĉ being the value

of the current incumbent solution. Furthermore, suppose that we apply a best first
node selection strategy that picks Q1 as the next subproblem. If after the processing
of Q1 the relaxation value is čQ1

> čQ2
, but processing of Q2 leads to čQ2

= čQ2

and the detection of a solution with value c⋆ = čQ2
, then we have processed Q1

unnecessarily: if we had processed Q2 first, we would have found the solution and
pruned Q1 due to čQ1

≥ c⋆ without processing it.

The best first node selection strategy can be efficiently implemented by storing
the leaves of the search tree in a priority queue, see Section 3.3.6. The question
remains which node one should select if there are multiple nodes that have dual
bounds equal to the global dual bound. In order to find good feasible solutions
early, we select the node with better estimate, see Section 6.4 below. If there are
still ties left, we try to stay close to the previous subproblem and favor child nodes
of the current node over its siblings, and siblings over the remaining leaves of the
tree.

6.3 Best First Search with Plunging

As said in the introduction of this chapter, best first search leads to a small number
of processed nodes, while depth first search tends to produce feasible solutions earlier
and speeds up the node solving process due to the closer resemblance of successive
subproblems. The idea of plunging is to mix both strategies in order to combine
their benefits. As long as the current node has unprocessed children, one of them
is selected as the next node. Otherwise, plunging continues with one of the current
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node’s siblings. If no more unprocessed children or siblings are available, the current
plunge is completed, and a leaf from the tree with best dual bound is selected.

The branching tree data structures of SCIP are specifically tailored to support
this strategy, see Section 3.3.6. The children and the siblings of the current node
are stored separately from the remaining leaves and can therefore easily be accessed
and identified. The remaining leaves are stored in a priority queue which enables
efficient access to the best node corresponding to a certain ordering. For best first
search the ordering is defined by the dual bounds of the leaves.

Again, the question remains which child or sibling should be processed next
during plunging. Usually, the child nodes inherit the dual bound of their parent
node, which means that they cannot be differentiated with respect to their dual
bounds. As plunging is mainly focused on finding feasible solutions, we apply—as
in depth first search—the LP solution guided rule of Martin [159]. We use Martin’s
rule even if strong branching (see Section 5.4) produced different dual bounds for
the child nodes, which would enable a best first selection.

The largest disadvantage of depth first search is its high risk of processing su-
perfluous nodes that would have been pruned if a good solution was known earlier.
Plunging has the same property, although to a much smaller extent, since after
each plunge the search continues with a node of smallest lower bound. Neverthe-
less, it might be profitable to prematurely abort a plunge if the local lower bound
approaches the primal bound. This would avoid the processing of some of the su-
perfluous nodes, but the disadvantage is that one may miss small improvements in
the primal bound.

The strategy of SCIP is to mainly use plunging for its effect of faster node
processing due to close resemblance of subproblems. The identification of primal
solutions is left to the primal heuristics, namely the diving heuristics which basically
continue the plunging outside the branching tree, but apply different variable and
value selection rules that are particularly tailored for finding feasible solutions; see
Chapter 9 for an overview of the primal heuristics included in SCIP. During each
plunge, we perform a certain minimal number of plunging steps, but we abort the
plunging after a certain total number of steps or if the local relative gap

γ(Q) =
čQ − č

ĉ− č

of the current subproblem Q exceeds the threshold γmax = 0.25. Here, čQ is the
lower bound of the subproblem, č is global lower bound, and ĉ is the global upper
bound, i.e., the value of the incumbent solution or infinity. The minimal and maximal
number of plunging steps are adjusted dynamically to be equal to 0.1 · dmax and
0.5 · dmax, respectively, with dmax being the maximum depth of all processed nodes.
This means that in the beginning of the search almost no plunging is performed, but
the extent of plunging is increased during the course of the algorithm.

6.4 Best Estimate Search

The nodes selected by best first search have good dual bounds, but their LP solutions
are usually far away from integrality. Depth first search quickly leaves the region of
good objective values but might be able to find feasible solutions faster. Therefore,
none of the two node selection rules aims at finding good solutions. This is addressed
by best estimate search. This rule calculates estimate values eQ for the feasible
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solutions that might be contained in the subtrees represented by the leaves Q of
the tree, and it selects a node that minimizes this estimate. The estimate combines
information about the dual bound and the integrality of the LP solution.

The literature basically proposes two different estimate schemes. The best
projection criterion of Bénichou et al. [39] calculates an estimate

eproj
Q = čQ +

(
ĉ− čR
φ(x̌R)

)

φ(x̌Q),

in which čQ is the dual bound of the current subproblem, čR the dual bound of the
root node, ĉ the incumbent solution value, x̌Q the current LP solution, and x̌R the
LP solution at the root node. The fractionality φ(x̌) of a vector x̌ ∈ Rn is defined as
φ(x̌) =

∑n
j=1 φ(x̌j) with φ(x̌j) = min{x̌j − ⌊x̌j⌋, ⌈x̌j⌉ − x̌j}. The interpretation of

the best projection estimate is that one calculates the objective value increase per
unit decrease in the fractionality of the LP solution for the root node and assumes
that the current LP solution can be driven to integrality with the same objective
value increase per unit of fractionality. Note that the best projection method needs
a globally valid upper bound.

The best estimate rule of Forrest et al. [88] employs the pseudocost values of
the variables (see Section 5.3) to estimate the increase in the objective value. This
pseudocost-based estimate is defined as

eQ = čQ +
∑

j∈I

min
{
Ψ−j f

−
j ,Ψ

+
j f

+
j

}

with f−j = x̌j − ⌊x̌j⌋ and f+
j = ⌈x̌j⌉− x̌j being the distances to the nearest integers

for the current LP solution value x̌j for variable xj , and Ψ−j and Ψ+
j being the

pseudocost values of variable xj for rounding downwards and upwards, respectively.
Assuming that the pseudocosts are reliable indicators for the per unit objective
value increase for shifting a variable downwards or upwards, the best estimate rule
calculates the estimated minimum value of a rounded solution.

Linderoth and Savelsbergh [146] give computational indication that the best es-
timate rule is superior to the best projection rule. Therefore, we only implemented
the best estimate rule.

6.5 Best Estimate Search with Plunging

As for the best first search node selection, we can combine best estimate search with
depth first search by a plunging strategy. Again, child or sibling nodes are selected
until either all of them have been pruned or the plunge is aborted due to the criteria
presented in Section 6.3. As before, the goal is to transfer the node processing
speedup of depth first search regarding the closely resembled successive subproblems
to the more sophisticated best estimate search strategy.

6.6 Interleaved Best Estimate/Best First Search

The aim of best estimate search is to quickly find good feasible solutions. After
an optimal solution has been found, the node selection strategy has (despite its
interaction with other solver components) no more impact on the number of nodes
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that have to be processed, since the remaining nodes of the tree, defined by the
branching strategy, have to be processed anyway and the order does not matter. Due
to time restrictions, however, the user might not want to wait until the optimality of
the solution has been proven, but is already satisfied with a given quality guarantee.
Therefore, the progression of the global dual bound plays a significant role. In this
regard, best estimate search can perform very poor. Suppose the node with the best
dual bound has a large fractionality measure. That would lead to a rather large
estimate for the node, which means that the node is not processed for a very long
time. The global dual bound would stay at the same level as long as this node is
not touched.

The solution to this problem is to interleave best first and best estimate search
and combine this with plunging. The resulting strategy proceeds as best estimate
search with plunging, but every bestfreq plunge we choose a node with the best
dual bound instead of one with a best estimate as the next subproblem. We use
bestfreq = 10 as default value in our implementation.

6.7 Hybrid Best Estimate/Best First Search

A second approach of increasing the importance of the global dual bound in the best
estimate node selection rule is to calculate the node selection score as a weighted
sum of the best estimate and best first scores. In this rule we are selecting a node Q
that minimizes

ω eQ + (1− ω)čQ (6.1)

with ω ∈ [0, 1]. Again, this node selection strategy is combined with plunging. We
chose ω = 0.1 as the default, which means that a larger weight is put on the dual
bound and the estimate eQ is only influencing the decision among nodes with very
similar dual bounds.

6.8 Computational Results

In this section we present computational results to compare the various node selec-
tion strategies on several sets of mixed integer programming instances. The test sets
are described in Appendix A. Detailed results can be found in Tables B.31 to B.40
in Appendix B.

Table 6.1 summarizes the benchmark results. As expected, pure best first search
(“bfs”) yields the smallest search trees. Note, however, that Proposition 6.1 cannot
be applied since the branching strategy is affected by the order in which the nodes
are processed. In particular, the pseudocosts at a certain node will vary for different
node selection rules. Thus, it is not always the case that best first search needs the
fewest branching nodes.

The second expected behavior can also be clearly observed: depth first search
(“dfs”) produces much larger search trees than best first search but can compensate
this disadvantage by a faster node processing time. Overall, the performances of
best first and depth first search are roughly similar.

The column labeled “bfs/plunge” shows that combining best first search and depth
first search into the best first search with plunging strategy indeed yields the desired
result: although not as small as for pure best first search, the search trees are much
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test set dfs bfs bfs/plunge estimate estim/plunge hybrid
ti

m
e

miplib +22 +28 +3 +14 −3 +8

coral +49 +38 +2 +19 −3 −5

milp +12 +20 +1 +8 +5 +3

enlight +53 +74 +53 0 −11 +25

alu −40 +101 +25 +113 +25 +3

fctp +59 +25 +9 +22 −2 +7

acc +102 −7 −7 −7 +8 +7

fc −4 +14 +2 +6 +1 +5

arcset +152 +53 +11 +42 +5 +13

mik −7 +44 +3 +39 −2 +6

total +28 +30 +4 +16 0 +3

n
o

d
es

miplib +64 −18 +3 −15 −3 +7

coral +143 −28 0 −9 +3 −9

milp +41 −12 +2 −9 +9 +8

enlight +109 +16 +36 +2 +7 +13

alu −43 +50 +29 +87 +17 +6

fctp +74 −6 +2 −5 −3 +2

acc +425 −30 −7 −29 +25 +27

fc −9 −31 +9 −32 +9 +12

arcset +249 +6 0 +19 +7 +3

mik +19 +3 −4 +6 +2 0

total +78 −17 +3 −9 +4 +2

Table 6.1. Performance effect of different node selection strategies for solving MIP instances.
The values denote the percental changes in the shifted geometric mean of the runtime (top) and
number of branching nodes (bottom) compared to the default interleaved best estimate/best first
search strategy. Positive values represent a deterioration, negative values an improvement.

smaller than for depth first search. Since most of the speedup of depth first search
for processing the nodes carries over to plunging, the combined node selection rule
is superior to the individual strategies.

The best estimate search rule (“estimate”) turns out to be slightly faster than
pure best first search. A possible explanation is that best estimate search implicitly
follows the idea of plunging: usually, nodes Q that are located deeper in the tree
have a smaller fractionality φ(x̌Q) and, related to that, a smaller “estimate penalty”
eQ− čQ. Therefore, it is more likely than for best first search that a child or sibling
of the previous node is selected as next subproblem. Nevertheless, performing
the plunging explicitly as in best first search with plunging is superior to the implicit
plunging of best estimate search. This can also be seen in the column “estim/plunge”:
best estimate search with plunging is much faster than pure best estimate search.
Even more, it slightly outperforms best first search with plunging.

As indicated by the mostly positive values in the table, the default interleaved
best estimate/best first search is the best overall strategy. It needs fewer nodes
than best estimate search with plunging and achieves very similar runtimes. On the
alu testset, however, it performs much better. The reason might be that the alu
instances are infeasible MIPs, and estimate based node selection rules, which are
tailored to find feasible solutions earlier, are therefore not suited for these instances.

Like the default interleaved node selection rule, hybrid best estimate/best first
search (“hybrid”) combines all three ideas, depth first, best first, and best estimate
search. It is, however, slower than the interleaved approach and can only achieve a
performance similar to best first search with plunging. As in best estimate search
and its plunging variant, processing of a node with a dual bound equal to the global
dual bound might be delayed very long with the hybrid rule. This can slow down
the decrease of the optimality gap, and the user has to wait longer until a specified
solution quality is proven. Therefore, interleaved best estimate/best first search
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seems to be the better choice even though it might be possible to improve the
performance of hybrid best estimate/best first search by altering the weight ω ∈ [0, 1]
in Equation (6.1).

Note. In the version of SCIP used in this thesis, there is a significant performance
bottleneck associated with long leaf queues and node selection rules that are not
based on best first search. Thus, the performance of best estimate, best estimate
with plunging, hybrid best estimate/best first search, and the default interleaved best
estimate/best first search suffers from that issue on instances that take many nodes
and produce large leaf queues during the run. In particular, many of the instances
in enlight, alu, and mik are of this type. Therefore, the “true” performance of
the estimate based node selection rules on these test sets would be better than the
values in Table 6.1 indicate.

Child Selection

As the default node selection strategy involves plunging, we have to define a child
selection rule in order to decide which of the two children of the current node should
be processed next. The main goal of the child selection is to pick a direction which
leads to the finding of a feasible solution, preferably of small objective value. We
compare the following strategies:

⊲ Downwards selection always chooses the downwards branch xj ≤ ⌊x̌j⌋.

⊲ Upwards selection always chooses the upwards branch xj ≥ ⌈x̌j⌉.

⊲ Pseudocost selection prefers the direction that yields a smaller pseudocost esti-
mate f−j Ψ−j or f+

j Ψ+
j for the LP objective value deterioration, see Section 5.3.

The idea is to guide the search into the area of better objective values.

⊲ LP value selection means to round the branching variable xj to the integer that
is closer to its current LP solution value x̌j . Thus, it selects the downwards
branch if f−j = x̌j − ⌊x̌j⌋ ≤

1
2

and the upwards branch otherwise.

⊲ Root LP value selection denotes the idea of Martin [159] which we already
mentioned in Section 6.1. It compares the current LP value x̌j of the branching
variable to its LP value (x̌R)j in the root node and supports the movement
of the value in its current direction: if x̌j ≤ (x̌R)j , the variable is branched
downwards. Otherwise, the upwards branch is inspected first.

⊲ Inference selection chooses the direction in which the branching variable has
a larger inference history value Φ−j or Φ+

j . These values denote the average
number of deductions derived from branching the variable into the respective
direction (see Section 5.8). The hope is that the branch with larger infer-
ence history value produces more domain propagations and thus a smaller
subproblem for which it is easier to either find a feasible solution or prove the
infeasibility.

⊲ Hybrid inference/root LP value selection is a combination of the inference and
root LP value selection rules. It chooses the downwards branch if

(Φ−j + ǫ) · ((x̌R)j − x̌j + 1) ≥ (Φ+
j + ǫ) · (x̌j − (x̌R)j + 1) (6.2)
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test set down up pseudocost LP value root LP value inference
ti

m
e

miplib +23 0 +12 +7 0 +4

coral +10 −11 +6 −2 −5 −4

milp +14 −5 +10 +12 −8 −5

enlight −1 +3 −2 −11 −8 +3

alu −12 −3 +11 +5 +41 −12

fctp +4 −7 +4 +6 −6 −2

acc −19 −1 +20 −15 +13 −7

fc +1 −3 −5 −3 −4 −1

arcset −2 +3 +6 +1 +6 +4

mik −8 +8 +19 +17 +2 −1

total +11 −5 +9 +4 −3 −2

n
o

d
es

miplib +18 −1 −8 +1 −2 −4

coral +14 −19 −1 −9 −14 +1

milp +8 −9 +10 +15 −9 −12

enlight −4 +20 −3 −9 −3 +7

alu −6 −20 +27 +3 +29 +6

fctp +2 −11 −2 −1 −9 −2

acc −13 +35 +64 −18 +21 +27

fc +4 −1 −9 +1 −7 +3

arcset +5 −2 +5 0 +7 +3

mik +13 −5 +12 +20 +12 −5

total +10 −9 +2 +1 −6 −3

Table 6.2. Performance effect of different child selection strategies for solving MIP instances. The
values denote the percental changes in the shifted geometric mean of the runtime (top) and number
of branching nodes (bottom) compared to the default hybrid inference/root LP value selection.
Positive values represent a deterioration, negative values an improvement.

and the upwards branch otherwise. Here, Φ−j ,Φ
+
j ∈ R≥0 are the inference

history values for the downwards and upwards direction, respectively, and
ǫ = 10−9 is the zero tolerance. The selection Inequality (6.2) means that a
variable that has moved at least by one unit downwards or upwards from the
root node to the current subproblem will be pushed further into that direction,
independent from the inference values. On the other hand, the inference values
dominate the selection for variables with current LP values x̌j that are close
to their root LP values (x̌R)j .

Table 6.2 depicts a summary of the experiments. Appendix B provides detailed
results in Tables B.41 to B.50. The comparison of the pure downwards (“down”)
and upwards (“up”) preferences shows that consequentially branching upwards is
clearly superior, both in the solving time and the number of branching nodes. A
possible explanation is that most MIP instances contain binary variables that rep-
resent decisions for which the “yes” case (i.e., setting xj = 1) has a much larger
impact on the model as the “no” case (i.e., xj = 0). It seems natural that taking the
crucial decisions early by fixing a variable to xj = 1 gives better chances to end up
with a feasible solution. In contrast, postponing the crucial decisions by first ruling
out some options with xj = 0 most probably leads to a situation in which we cannot
satisfy all constraints with the remaining alternatives.

The bad performance of the pseudocost selection rule (“pseudocost”) is somewhat
surprising as it seems to be the natural choice in the spirit of best first and best
estimate search. On the other hand, many MIP models have costs associated to
setting a binary variable to xj = 1. Thus, upwards pseudocosts tend to be larger
than downwards pseudocosts, such that the pseudocost selection rule is more similar
to downwards selection than to upwards selection. Therefore, the above explanation
for the inferior performance of downwards selection also applies to the pseudocost
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based rule.
The LP value selection, although better than pseudocost and downwards selec-

tion, is also inferior to the upwards selection rule. In contrast, the root LP value
selection strategy of Martin [159] is comparable to upwards selection but has the
advantage that it is insensitive against complementation: if we complement all inte-
ger variables of a model by setting x′j := lj + uj − xj for j ∈ I (assuming that the
bounds are finite), the upwards selection rule would turn into the inferior downwards
selection while the root LP value selection strategy would produce the same results
as before—at least if all other components of the solver would behave equivalently
in the complemented variable space.

The inference selection rule is another alternative to upwards selection of similar
performance. As the root LP value selection, it is invariant under variable com-
plementation. However, it is more tailored to pure feasibility problems without
meaningful objective function since the inference values are based on feasibility ar-
guments. In contrast, the LP solution values include both feasibility and optimality
considerations. The effect can be seen on the alu and acc instances. The alu
test set consists of infeasible MIPs with an artificial objective function, while acc is
a collection of basically pure feasibility problems without objective function. Here,
inference selection performs much better than root LP value selection. For the other
test sets, however, inference selection is slightly inferior to root LP value selection.

The default strategy, hybrid inference/root LP value selection, also achieves simi-
lar performance as upwards selection, root LP value selection, and inference selection.
As one can see from the negative values in the columns of the other three rules, how-
ever, it is slightly inferior. The attempt to combine the positive effects of root LP
value selection and inference selection did not succeed. It might be that a different
way to combine the two ideas results in an improved performance. In particular, it
seems that Inequality (6.2) is biased too much towards the inference history values
Φ−j and Φ+

j . Therefore, one should increase the summand ǫ in the inequality to a
much larger value in order to put more weight on the root LP value difference.



Chapter 7

Domain Propagation

Domain propagation denotes the task of tightening the domains of variables by
inspecting the constraints and the current domains of other variables at a local
subproblem in the search tree. In the MIP community, this process is usually called
node preprocessing. In fact, one can see domain propagation as a restricted version
of presolving, see Chapter 10. The main restriction for the operations applied to
local nodes is that they must not modify the constraints. In particular, the deletion
of variables is not allowed. Instead, one only tightens the domains of the variables,
since this can be done without a large bookkeeping and LP management overhead.

Since the LP relaxation is not able to handle holes inside a domain, MIP solvers
are only using bound propagation, i.e., one tries to deduce tighter lower and upper
bounds for the variables.

Besides the integrality restrictions, there is only one type of constraints in a
mixed integer program, namely the linear constraints. Therefore, the domain
propagation methods implemented in the linear constraint handler are a superset
of the methods for the more specialized constraint classes like the knapsack or the
set covering constraints. The structure of these specific constraints can, however, be
exploited in order to implement more efficient domain propagation algorithms.

In addition to the constraint based (primal) domain propagation techniques,
SCIP features two dual domain reduction methods that are driven by the objective
function, namely the objective propagation and the root reduced cost strengthening.

7.1 Linear Constraints

In SCIP we treat linear constraints in the form

β ≤ aTx ≤ β

with the left and right hand sides β, β ∈ R∪{±∞} and a ∈ Rn being the coefficients
of the constraint. Obviously, equations can be modeled by β = β. For inequalities
one has typically either β = −∞ or β = +∞, but so-called ranged rows with both
sides being finite and β < β are also possible.

Bound propagation for linear constraints in SCIP is performed as explained in
the “basic preprocessing techniques” of Savelsbergh [199]. The main idea is very sim-
ple, but the implementation gets a little more involved if infinite bounds, numerical
issues, and runtime performance have to be considered.

The most important notion in this regard is the concept of activity bounds:

Definition 7.1 (activity bounds). Given a linear constraint β ≤ aTx ≤ β, let

α := min{aTx | l̃ ≤ x ≤ ũ} and α := max{aTx | l̃ ≤ x ≤ ũ}

be the minimal and maximal activity aTx of the linear constraint with respect to
the local bounds l̃ ≤ x ≤ ũ of the current subproblem Q. The values α and α are

83
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called activity bounds. Furthermore, let

αj := min{aTx− ajxj | l̃ ≤ x ≤ ũ} and αj := max{aTx− ajxj | l̃ ≤ x ≤ ũ}

be the activity bound residuals for the scalar product aTx over all variables but xj .

The activity bounds and the residuals can be easily calculated by inserting the
lower or upper bounds of the variables into the product aTx, depending on the sign
of the coefficients aj . Note that they can be infinite if the local bounds l̃, ũ of the
variables are infinite.

The propagations are based on the following observations:

1. If β ≤ α, the left hand side is redundant and can be replaced by −∞ without
changing the set of feasible solutions in the subproblem or worsening the dual
bound of the LP relaxation.

2. If α ≤ β, the right hand side is redundant and can be replaced by +∞.

3. If β ≤ α and α ≤ β, the constraint is redundant and can be removed.

4. If β > α or α > β, the constraint cannot be satisfied within the local bounds
and the current subproblem is infeasible.

5. For all j = 1, . . . , n we have

β − αj

aj

≤ xj ≤
β − αj

aj

if aj > 0 and

β − αj

aj

≤ xj ≤
β − αj

aj

if aj < 0,

and we can tighten the bounds of xj accordingly. If xj is an integer variable,
j ∈ I, the lower bounds can be rounded up and the upper bounds can be
rounded down.

Inside domain propagation, we only apply Reductions 3 to 5. Despite removing
some degeneracies in the LP there is no benefit in relaxing the constraint sides,
but the additional management overhead would be considerable. The redundancy
detection of Reduction 3, however, is useful since we can completely ignore such
constraints in future propagations within the whole subtree defined by the current
subproblem.

It is easy to see that the repeated application of Reductions 4 and 5 suffices to
obtain bound consistency, see Definition 2.7 on page 22. Although it is very likely
that the following propositions are old results, we did not find them in the literature.
Therefore, we provide proofs.

Proposition 7.2. A linear constraint β ≤ aTx ≤ β on variables x ∈ Rn, xj ∈ Z for

j ∈ I, with bounds l̃ ≤ x ≤ ũ, l̃j , ũj ∈ R, l̃j , ũj ∈ Z for j ∈ I, is bound consistent if
and only if Reductions 4 and 5 cannot be applied to detect infeasibility or to tighten
a variable’s domain.

Proof. Since all domains of the variables are non-empty, bound consistency implies
that there is a vector x̂ ∈ [l̃, ũ] with β ≤ aT x̂ ≤ β. Therefore, β ≤ aT x̂ ≤ α and
α ≤ aT x̂ ≤ β, which means that Reduction 4 cannot be applied. Assume that bound
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consistency holds, but Reduction 5 can be applied on variable xj . Consider the case

aj > 0 and (β − αj)/aj > l̃j . Bound consistency yields a feasible solution x̂ with

x̂j = l̃j . Then we have

aj l̃j < β − αj ≤ β − (aT x̂− aj x̂j) = β − aT x̂+ aj l̃j ≤ aj l̃j ,

which is a contradiction. The other three cases can be shown analogously.
Now suppose that neither Reduction 4 nor Reduction 5 can be applied. In order

to prove bound consistency, we have to show that for each bound l̃j , ũj , j ∈ N , there

exists a (potentially fractional) support vector x̂ ∈ [l̃, ũ] with x̂j = l̃j or x̂j = ũj ,
respectively, that satisfies the constraint. Consider variable xj with aj > 0 and its

lower bound l̃j . Let

xmin
k :=







l̃j if k = j

l̃k if ak ≥ 0

ũk if ak < 0

and xmax
k :=







l̃j if k = j

ũk if ak ≥ 0

l̃k if ak < 0

.

Since Reduction 4 is not applicable, we have

aTxmin = aj l̃j + αj = α ≤ β,

and because Reduction 5 is not applicable, it follows

aTxmax = aj l̃j + αj ≥ β.

If one of xmin or xmax is contained in [β, β], it is a valid support vector for l̃j , and
we are done. Otherwise, the only remaining possibility is

aTxmin < β ≤ β < aTxmax.

In this case, consider the affine linear function

α(t) = aT (xmin + t(xmax − xmin)).

This is a continuous function α : [0, 1] → R with α(0) < β ≤ β < α(1). Therefore,
there exists t⋆ ∈ (0, 1) with β ≤ α(t⋆) ≤ β, and the vector

x⋆ = xmin + t⋆(xmax − xmin)

is a valid support vector for l̃j . The other cases for upper bounds ũj and negative
coefficients aj follow with analogous reasoning.

In the case that one of the constraint sides β or β is infinite, we can even achieve
the stronger notion of interval consistency by applying Reductions 4 and 5:

Corollary 7.3. A linear constraint β ≤ aTx or aTx ≤ β on variables x ∈ Rn,
xj ∈ Z for j ∈ I, with bounds l̃ ≤ x ≤ ũ, l̃j , ũj ∈ R, l̃j , ũj ∈ Z for j ∈ I, is interval
consistent if and only if Reductions 4 and 5 cannot be applied to detect infeasibility
or to tighten a variable’s domain.

Proof. In the proof of Proposition 7.2 the case

aTxmin < β ≤ β < aTxmax

cannot appear. If β = −∞, the vector xmin is integral for j ∈ I and supports l̃j . If

β = +∞, the vector xmax is integral for j ∈ I and supports l̃j .
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Unfortunately, there is little hope for an efficient algorithm to achieve interval
consistency in the general case of linear constraints:

Proposition 7.4. Deciding interval consistency for linear constraints of the form
β ≤ aTx ≤ β on variables xj ∈ [lj , uj ] and xj ∈ Z for j ∈ I is NP-complete.

Proof. We provide a reduction from the subset sum problem which is NP-complete
(see Garey and Johnson [92]). Given a set of integers aj ∈ Z>0, j = 1, . . . , n, and
an integer b ∈ Z, the task of the subset sum problem is to decide whether there is a
subset S ⊆ N = {1, . . . , n} with

∑

j∈S aj = b. For b = 0 or b = aT
1, the instance

has the trivial solutions S = ∅ or S = N , respectively, and for b < 0 or b > aT
1, the

instance is obviously infeasible. Thus, we assume 0 < b < aT
1.

Given such an instance (a, b) of the subset sum problem, consider the linear
constraint

0 ≤ −by − (aT
1)z + aTx ≤ 0 (7.1)

with domains y, z, xj ∈ {0, 1}, j ∈ N . The vectors (y = 0, z = 0, x = 0) and (y =
0, z = 1, x = 1) are feasible integral solutions that support the lower bounds ly =
lz = lxj

= 0, j ∈ N , and the upper bounds uz = uxj
= 1, j ∈ N , respectively. Thus,

Constraint (7.1) is interval consistent if and only if there exists a feasible integral
solution (y⋆, z⋆, x⋆) with y⋆ = 1. Such a solution must have z⋆ = 0, because b > 0.
Therefore, interval consistency of Constraint (7.1) is equivalent to the existence of
x⋆ ∈ {0, 1}n with aTx⋆ = b, which in turn is equivalent to the existence of S ⊆ N
with

∑

j∈S aj = b.

Propositions 7.2 and 7.4 provide the basic theoretical background for domain
propagation of linear constraints. In the remaining part of the section, we will focus
on the implementational issues.

With respect to performance, the most crucial parts are to update the activity
bounds α and α instead of recalculating them from scratch at every node and to
only process those constraints where the activity bounds have been changed since
the last propagation round. In order to accomplish these goals, the linear constraint
handler interacts with an event handler (see Section 3.1.10) to update α and α and
to mark each constraint that is affected by a bound change of a variable.

The contributions of infinite bounds l̃j and ũj to α and α are accumulated in
separate counters. These counters are updated whenever a bound of a variable
switches between a finite and an infinite value. If the counter is positive, the actual
value stored in α or α is ignored and instead treated as infinity.

Tightened bounds deduced by one constraint are used in the domain propagation
of other constraints to deduce further bound tightenings. Due to this iterative na-
ture, numerical rounding errors can easily accumulate and produce wrong results, in
particular if coefficients of very different magnitude are involved in the calculations.
To avoid numerical errors, we slightly relax the newly calculated bounds l̃j and ũj

by using
l̃j ← 10−5⌊105l̃j + δ̂⌋ and ũj ← 10−5⌈105ũj − δ̂⌉ (7.2)

with δ̂ = 10−6 being the feasibility tolerance parameter. This operation rounds
(within the feasibility tolerance) the values to the five most significant digits after
the decimal point.

A risk of wasting time on iterated domain propagation originates from general
integer variables with large domains. Consider the artificial example

0.2 ≤ x− y ≤ 0.8



7.1. Linear Constraints 87
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Figure 7.1. Feasible region of the linear constraint 0.2 ≤ x− y ≤ 0.8 and bounds 0 ≤ x, y ≤ 5.

with two variables x, y ∈ {0, . . . , 1000}, and pretend that presolving did not find the
obvious reduction. The feasible region of the constraint (disregarding the integrality
conditions) is a larger version of the one that is illustrated in Figure 7.1. Using the
left hand side of the constraint, domain propagation would tighten the upper bound
of y to y ≤ 999. Afterwards, the right hand side can be used to deduce x ≤ 999,
which in turn leads to y ≤ 998 due to the left hand side. This can be continued until
the infeasibility of the problem is detected after 1000 iterations.

To avoid such long chains of small domain changes, we enforce a minimum size
for the interval that is cut off from the domain: bound changes l̃j → l̃′j and ũj → ũ′j
are only accepted if they change the bound from an infinite to a finite value or if
they satisfy

l̃′j > l̃j + 0.05 ·max
{

min
{
ũj − l̃j , |l̃j |

}
, 1
}

or

ũ′j < ũj − 0.05 ·max
{

min
{
ũj − l̃j , |ũj |

}
, 1
}

,
(7.3)

respectively. Note that this restriction still allows for bound changes on variables
with only one finite bound like the commonly used non-negative variables 0 ≤ xj ≤
+∞. The bound change is accepted as long as it is large enough relative to the
width of the domain or the magnitude of the bound.

The whole domain propagation procedure is summarized in Algorithm 7.1. Each
linear constraint possesses a “propagated” flag which is initially set to 0. It marks
constraints that have not been affected by bound changes since the last propagation
round. Consequently, if the flag is set to 1, we can skip the domain propagation for
this constraint in Step 1. Step 2 marks the constraint as propagated by setting the
“propagated” flag to 1. The flag will be automatically reset to 0 by the associated
event handler (see Algorithm 7.2) whenever a bound of a variable with a non-zero
coefficient aj 6= 0 is modified, in particular if the linear constraint propagation itself
modifies the bounds of the involved variables. Since the flag is set to 1 in Step 2
prior to the actual propagation of the constraint, it is possible that the propagations
of the constraint trigger another propagation round on the same constraint.

Step 3 performs the possible bound strengthenings for variables with positive
coefficient aj > 0 as described previously. Step 4 treats the variables with negative
coefficients. Finally, Steps 5 and 6 check for the infeasibility and redundancy of
the constraint.

As already said, the domain propagation of linear constraints closely interacts
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Algorithm 7.1 Domain Propagation for Linear Constraints

Input : Linear constraint β ≤ aTx ≤ β, current local bounds l̃ ≤ x ≤ ũ, and
current activity bounds α and α.

Output : Tightened local bounds for x.

1. If the constraint is already marked as propagated, abort.

2. Mark the constraint as propagated.

3. For all variables xj with aj > 0:

(a) Calculate residual activities αj := α− aj l̃j and αj := α− ajũj .

(b) If αj > −∞ and β < +∞:
i. Set ũ′j := (β − αj)/aj .

ii. Set ũ′j := 10−5⌈105ũ′j − δ̂⌉.

iii. If j ∈ I, set ũ′j := ⌊ũ′j + δ̂⌋.

iv. If ũ′j < ũj − 0.05 ·max
{

min
{
ũj − l̃j , |ũj |

}
, 1
}

, tighten ũj := ũ′j .

(c) If αj < +∞ and β > −∞:
i. Set l̃′j := (β − αj)/aj .

ii. Set l̃′j := 10−5⌊105l̃′j + δ̂⌋.

iii. If j ∈ I, set l̃′j := ⌈l̃′j − δ̂⌉.

iv. If l̃′j > l̃j + 0.05 ·max
{

min
{
ũj − l̃j , |l̃j |

}
, 1
}

, tighten l̃j := l̃′j .

4. For all variables xj with aj < 0:

(a) Calculate residual activities αj := α− aj ũj and αj := α− aj l̃j .

(b) If αj > −∞ and β < +∞:
i. Set l̃′j := (β − αj)/aj .

ii. Set l̃′j := 10−5⌊105l̃′j + δ̂⌋.

iii. If j ∈ I, set l̃′j := ⌈l̃′j − δ̂⌉.

iv. If l̃′j > l̃j + 0.05 ·max
{

min
{
ũj − l̃j , |l̃j |

}
, 1
}

, tighten l̃j := l̃′j .

(c) If αj < +∞ and β > −∞:
i. Set ũ′j := (β − αj)/aj .

ii. Set ũ′j := 10−5⌈105ũ′j − δ̂⌉.

iii. If j ∈ I, set ũ′j := ⌊ũ′j + δ̂⌋.

iv. If ũ′j < ũj − 0.05 ·max
{

min
{
ũj − l̃j , |ũj |

}
, 1
}

, tighten ũj := ũ′j .

5. If β > α or α > β, the current subproblem is infeasible.

6. If β ≤ α and α ≤ β, delete the constraint from the current subproblem.

with an event handler, which is shown in Algorithm 7.2. This event handler catches
all bound changes that are applied on variables that appear with non-zero coefficient
aj 6= 0 in the constraint. Whenever such a bound change was performed, the event
handler updates the activity bounds and marks the constraint such that it will be
propagated again in the next propagation round.
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Algorithm 7.2 Event Handler for Linear Constraints

Input : Linear constraint β ≤ aTx ≤ β, a variable xj for which the bounds have

been changed from [l̃j , ũj ] to [l̃′j , ũ
′
j ], and current activity bounds α and α.

Output : Updated activity bounds α and α.

1. If aj > 0:

(a) Update α := α+ aj(l̃
′
j − l̃j).

(b) Update α := α+ aj(ũ
′
j − ũj).

2. If aj < 0:

(a) Update α := α+ aj(ũ
′
j − ũj).

(b) Update α := α+ aj(l̃
′
j − l̃j).

3. Mark the constraint as not propagated.

7.2 Knapsack Constraints

Binary knapsack constraints are of the form

aTx ≤ β (7.4)

with a ∈ ZB
≥0, xj ∈ {0, 1} for j ∈ B, and β ∈ Z≥0. In common terminology, the

coefficients aj are called weights, and the right hand side β is the capacity of the
knapsack. The constraint requires to select a subset of the items xj such that their
total weight aTx does not exceed the capacity β.

As all other constraint types used in mixed integer programming, knapsack con-
straints are a special case of the linear constraints and could be treated by the
same algorithms. Since only binary variables are involved and the coefficients and
right hand side are integers, specialized data structures and algorithms can improve
the memory and runtime performance. In particular, the weights and capacity are
stored as integers instead of floating point values, and the calculations are executed
in integer arithmetic.

Note that knapsack constraints cover more general constraints than those of the
form given in Equation (7.4): every linear constraint with only one finite side that
consists of only binary variables and rational coefficients can be transformed into a
knapsack constraint by

⊲ multiplying the constraint with −1 if β > −∞ and β = +∞,

⊲ scaling it with the smallest common multiple of the coefficients’ denominators,

⊲ complementing variables with negative coefficients by x̄j := 1− xj , and

⊲ rounding down the right hand side.

SCIP automatically performs these transformations in the presolving of linear con-
straints, see Section 10.1, such that all knapsack constraints are represented in their
standard form (7.4).

The following observations help to improve the domain propagation for knapsack
constraints:
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Algorithm 7.3 Domain Propagation for Knapsack Constraints

Input : Knapsack constraint aTx ≤ β, current local bounds l̃ ≤ x ≤ ũ, and current
minimal activity α.

Output : Tightened local bounds for x.

1. If the constraint is already marked as propagated, abort.

2. Mark the constraint as propagated.

3. If α > β, the current subproblem is infeasible.

4. Make sure that the coefficients are sorted such that aj1 ≥ aj2 ≥ . . ..

5. Set w0 := 0.

6. For k = 1, . . . , |B|:

(a) If ajk
≤ β − α, break the loop.

(b) If l̃jk
= 0, set ũjk

:= 0 and w0 := w0 + ajk
.

7. If
∑

j∈B aj − w0 ≤ β, delete the constraint from the current subproblem.

1. The only propagation that can be applied is

l̃j = 0 ∧ α+ aj > β → ũj = 0.

2. If we cannot fix a variable xj with l̃j = 0 to zero, it is not possible to apply
propagations on variables xk with ak ≤ aj .

Due to Observation 1, we do not need to track the maximal activity α for knap-
sack constraints. The maximal activity can be used to detect redundancy of the
constraint, but this does not justify the additional overhead for tracking its value.
Observation 2 indicates that we should sort the variables by non-increasing weight
aj and stop the propagation process if we reach an index j where α + aj ≤ β.
Note that the propagation only fixes variables to zero and thus the minimal activity
α does not change during the propagation. Therefore, the propagation can be im-
plemented as a simple scan through the weights which fixes all variables to zero for
which l̃j = 0 and aj > β − α. It is shown in Algorithm 7.3.

Steps 1 and 2 check and set the “propagate” flag as in the linear constraint
propagation. Step 3 checks for infeasibility due to the exceedance of the capacity
by the variables currently fixed to one. Step 4 sorts the variables by non-increasing
weight. Usually, this has only to be performed once during the whole solving process.
It might, however, happen in presolving that some coefficients are modified, see
Section 10.2. Since domain propagation is called as a subroutine of the presolving
algorithm, the sorting may therefore be performed multiple times.

The local variable w0 sums up the weights of variables that are fixed to zero. It
is initialized in Step 5 and updated during the propagation loop in Step 6. Note,
however, that it is not calculated exactly if the loop is aborted prematurely. There-
fore, the redundancy detection in Step 7 can miss certain cases. The advantage of
this approach is that we usually can abort the propagation loop at the first iteration
and the work spent in the domain propagation algorithm is very low.

As the linear constraint handler, the knapsack constraint handler interacts with
an event handler that tracks the bound changes of the involved variables, see Algo-
rithm 7.4. In contrast to the event handler for linear constraints, it only needs
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Algorithm 7.4 Event Handler for Knapsack Constraints

Input : Knapsack constraint aTx ≤ β, a variable xj for which the lower bound has

been changed from l̃j to l̃′j , and current minimal activity α.

Output : Updated minimal activity α.

1. Update α := α+ aj(l̃
′
j − l̃j).

2. Mark the constraint as not propagated.

to catch changes on the lower bounds, because all weights are non-negative and
the maximal activity does not need to be updated. The event handler updates the
minimal activity as usual and marks the constraint as not being propagated.

7.3 Set Partitioning and Set Packing Constraints

Set partitioning and set packing constraints are used to model restrictions in which
from a certain set of items exactly one or at most one, respectively, has to be
selected. Such constraints are very common in several applications, for example to
model the graph coloring problem (see Mehrotra and Trick [163], or Hansen, Labbé,
and Schindl [113]). They can be stated as

∑

j∈S

xj = 1 (set partitioning)

and ∑

j∈S

xj ≤ 1 (set packing),

with binary variables xj ∈ {0, 1}, j ∈ S, and S ⊆ B. As for knapsack constraints,
scaling of the equation or inequality and complementing some of the binary variables
may help to convert a general linear constraint into the form of a set partitioning or
set packing constraint.

As they are specializations of linear constraints, set partitioning and set packing
constraints could be dealt with by the linear constraint handler. However, since all
coefficients of included variables are 1 and the left and right hand sides are also fixed,
the constraint data only consists of the set of included variables and can therefore be
stored much more compactly than in the linear constraint handler. More important,
domain propagation can be implemented more efficiently.

In the set packing case, there is only one possibility of domain propagation,
namely

xk = 1 → ∀j ∈ S \ {k} : xj = 0.

For set partitioning, the additional propagation rule

∀j ∈ S \ {k} : xj = 0 → xk = 1

has to be considered. In order to apply these rules, we only have to count the number
of variables currently fixed to zero and one, respectively. This is done with the help
of an event handler. Having these numbers at hand, the propagation is very easy,
as can be seen in Algorithm 7.5.
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Algorithm 7.5 Domain Propagation for Set Partitioning/Packing Constraints

Input : Set partitioning constraint
∑

j∈S xj = 1 or set packing constraint
∑

j∈S xj ≤ 1, current local bounds l̃ ≤ x ≤ ũ, current number of vari-
ables xj , j ∈ S, fixed to zero (F0) and one (F1).

Output : Tightened local bounds for x.

1. If F1 ≥ 2, the current subproblem is infeasible.

2. If F1 = 1, fix all variables j ∈ S with l̃j = 0 to zero by assigning ũj := 0.

3. If the constraint is of set partitioning type:

(a) If F0 = |S|, the current subproblem is infeasible.

(b) If F0 = |S| − 1, fix the variable j ∈ S with ũj = 1 to one by assigning

l̃j := 1.

4. If F1 = 1, delete the constraint from the current subproblem.

A safeguard against useless propagations as in the linear and knapsack constraint
handers is unnecessary, since the checks for propagation potential in Steps 1 to 4 are
not time consuming anyway. For both, set partitioning and set packing constraints,
two variables fixed to one render the constraint infeasible and the subproblem can
be pruned. If exactly one of the involved variables is fixed to one, all others must
be zero. The corresponding propagations are applied in Step 2. As said before,
set partitioning constraints yield an additional propagation rule, which is applied in
Step 3: if all variables are fixed to zero, the constraint is infeasible; if all but one of
the variables are fixed to zero, the remaining one can be fixed to one. Finally, if now
exactly one variable is fixed to one, the constraint is redundant and can be deleted
from the current subproblem in Step 4.

Algorithm 7.6 illustrates the associated event handler. It just updates the F0

and F1 counters depending on the changing of the local bounds.

Algorithm 7.6 Event Handler for Set Partitioning/Packing Constraints

Input : Set partitioning constraint
∑

j∈S xj = 1 or set packing constraint
∑

j∈S xj ≤ 1, a variable xj , j ∈ S, for which the local bounds have been

changed from [l̃j , ũj ] to [l̃′j , ũ
′
j ], and current number of variables fixed to

zero (F0) and one (F1).

Output : Updated minimal activity α.

1. If l̃′j > l̃j , increase F1 := F1 + 1.

2. If l̃′j < l̃j , decrease F1 := F1 − 1.

3. If ũ′j < ũj , increase F0 := F0 + 1.

4. If ũ′j > ũj , decrease F0 := F0 − 1.
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7.4 Set Covering Constraints

Set covering constraints are the third type of subset selection constraints, namely
the one that demands that from a set of items at least one has to be selected. It can
be represented as

∑

j∈S

xj ≥ 1

with binary variables xj ∈ {0, 1}, j ∈ S, and S ⊆ I. Again, scaling and complemen-
tation may be applied to reach this standard form.

The only propagation rule that can be used for set covering constraints is

∀j ∈ S \ {k} : xj = 0 → xk = 1.

This rule already appeared in Section 7.3 for set partitioning constraints. We treat
set covering constraints in a separate section, since their propagation mechanism
substantially differs from the one used for set partitioning and set packing con-
straints. It is specifically tailored to efficiently handle large numbers of constraints.
These can, for example, result from the use of conflict analysis, see Chapter 11.

Set covering constraints are equivalent to clauses ℓ1∨ . . .∨ℓ|S| of the satisfiability
problem, see Definition 1.3 on page 10. Moskewicz et al. [168] invented a simple
and efficient scheme to propagate SAT clauses, which they called two watched literals
scheme. The main observation is that an implication can be derived from a clause
only if all but one of the literals are fixed to 0. Thus, a clause only needs to be
considered for domain propagation after the number of literals fixed to 0 increased
from |S| − 2 to |S| − 1. If this is the case, the remaining unfixed literal is implied
and can be fixed to 1.

Instead of using a counter F0 for the number of variables fixed to zero as we did
for the set partitioning and set packing constraints, it suffices for SAT clauses (and
thus for set covering constraints) to only watch the state of two arbitrarily chosen
literals of the constraint. As long as both literals remain unfixed, we do not need to
process the constraint since no propagation can be applied. If one of the watched
literals is fixed to 0, we inspect the other literals of the clause. If at least one of the
other literals is fixed to 1, the constraint is redundant and can be removed from the
subproblem. If at least one of them is unfixed, we stop watching the fixed literal
and instead use the unfixed literal as new watched literal. After this switch we have
again two watched literals, which are unfixed. Finally, if all literals except the other
watched literal are fixed to 0, the other watched literal is implied and can be fixed
to 1.

Moskewicz et al. report a significant speedup for their SAT solver Chaff com-
pared to the then state-of-the-art solvers Grasp [157] and Sato [223]. Besides
a different branching rule, the two watched literals scheme is the key element for
the performance improvements of Chaff. The main advantage of this propagation
scheme is that—particularly for long clauses—one can simply ignore most of the
fixings applied to the involved variables. Despite the inspection of the literals after
a watched literal was fixed to 0, the runtime of the domain propagation procedure
is independent from the length of the clause. Another advantage is that we do not
have to perform any bookmarking when the search backtracks to an ancestor of the
current node, i.e., a more global subproblem. If the two watched literals are un-
fixed in the local subproblem, they remain unfixed in the more global subproblem.
If one or both watched literals are fixed in the local subproblem, they will be the
first literals for which the fixings will be undone on the backtracking path to the
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more global subproblem. Therefore, there is no need to switch the watched variables
during backtracking.

We implemented the two watched literals scheme for set covering constraints
in SCIP using an event handler. The difference to the event handler for set
partitioning and set packing constraints is that we do not catch the bound change
events for all variables contained in the constraint, but only for two watched variables
xw1

, xw2
, w1, w2 ∈ S. As explained above, the selection of the watched variables

changes during the course of the search.

If a watched variable is fixed to zero, we have to search for a replacement, i.e.,
a variable of the constraint that is unfixed. Here, we can select any of the unfixed
variables as new watched variable. An obvious choice would be to just select the
first unfixed variable that is found, since then we can immediately abort the search
loop over the variables. We performed computational experiments which, however,
indicate that a different strategy yields a better overall performance. The rationale
of this strategy is to select a variable such that we do not have to search for another
watched variable replacement as long as possible. Inside a search tree traversed in
a breadth first fashion like with the best first or best estimate node selection rule
(see Chapter 6) we have a good indication of which bound changes will be applied
in the future, namely the branchings that have been performed on the processed
subproblems and which of these branchings already generated offspring. It makes
sense to avoid variables for which the down branch (i.e., the fixing to zero) has
already been evaluated frequently, since in any subtree defined by this branching
the variable is fixed to zero and we will have to search for a replacement for the
watched variable whenever we enter such a subtree.

Algorithm 7.7 summarizes the domain propagation for set covering constraints.
The initial Step 1 disables the further propagation of the constraint. It will be
reenabled by the associated event handler, see Algorithm 7.8 below. Steps 2 and 3
examine the local bounds of the watched variables. If one of the variables is fixed
to one, the constraint is redundant. If both variables are unfixed, nothing has to
be done. Step 4 initializes the indices w′1 and w′2 of the new watched variables. If
one of the watched variables is still unfixed, we keep it as watched variable in order
to reduce the event swapping overhead, and by setting the number of branchings
βi := −1, we make sure that it is not overwritten in the following search loop. If
xw2

is unfixed but xw1
is fixed, we swap the indices such that we start the loop with

β1 ≤ β2.

In the search loop of Step 5, we check the remaining variables for potential use
as watched variable. The cases of fixed variables are treated in Steps 5a and 5b. If
we encounter an unfixed variable, we make sure that our current watched variable
candidates w′1 and w′2 are the unfixed variables with the least number of processed
downwards branchings β.

After the search loop the result is evaluated. Step 6 detects infeasibility of the
current subproblem if all variables of the constraint are fixed to zero. If all but one
of the variables are fixed to zero, the according propagation is applied at Step 7. If
we found at least two unfixed variables, we apply the event swapping in Step 8 such
that the associated event handler presented in Algorithm 7.8 now reacts to bound
change events for xw′

1
and xw′

2
.

The event handler for set covering constraints as shown in Algorithm 7.8 is very
simple: it just reactivates the propagation for the constraint if one of the watched
variables is fixed to zero.
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Algorithm 7.7 Domain Propagation for Set Covering Constraints

Input : Set covering constraint
∑

j∈S xj ≥ 1, current local bounds l̃ ≤ x ≤ ũ,
current watched variable indices w1, w2 ∈ S, w1 6= w2.

Output : Tightened local bounds for x, new watched variables w1, w2.

1. Disable the propagation of the constraint.

2. If l̃w1
= 1 or l̃w2

= 1, the constraint is redundant and can be removed from
the current subproblem.

3. If ũw1
= 1 and ũw2

= 1, stop.

4. If ũw1
= 1, set w′1 := w1 and β1 := −1. Else, set w′1 := −1 and β1 :=∞.

If ũw2
= 1, set w′2 := w1 and β2 := −1. Else, set w′2 := −1 and β2 :=∞.

If β2 < β1, swap w′1 and w′2, and swap β1 and β2.

5. For all j ∈ S \ {w′1, w
′
2}:

(a) If l̃j = 1, the constraint is redundant and can be removed from the current
subproblem. Stop.

(b) If ũj = 0, continue Loop 5 with the next j.

(c) Let β be the current number of evaluated downwards branchings on xj .

(d) If β1 ≤ β < β2, set w′2 := j and β2 := β.

(e) If β < β1, set w′2 := w′1, β2 := β1, w′1 := j, and β1 := β.

6. If w′1 = −1, the current subproblem is infeasible.

7. If w′2 = −1, fix xw1
to one by assigning l̃w1

:= 1.

8. If w′1, w
′
2 ≥ 0, switch the watched variables to be w1 := w′1 and w2 := w′2.

7.5 Variable Bound Constraints

Variable bound constraints in SCIP are defined as

β ≤ xi + ajxj ≤ β

with xj ∈ Z, aj ∈ R \ {0}, and β, β ∈ R ∪ {±∞}. This is a generalization of
the common variable upper bounds xi ≤ u′ixj and variable lower bounds xi ≥ l′ixj

with xj ∈ {0, 1}. Variable upper bounds are a well-known tool to model fixed
charge problems like the fixed charge network flow problem, see, e.g., Padberg, Roy,
and Wolsey [181]. For general mixed integer programs they are computationally
important as they can be used to derive complemented mixed integer rounding cuts
(see Marchand and Wolsey [155]) and flow cover inequalities (see Gu, Nemhauser,
and Savelsbergh [110]). See Wolter [218] for the details on the implementation of
these cutting plane separators in SCIP.

The domain propagation method applied to variable bound constraints is ba-

Algorithm 7.8 Event Handler for Set Covering Constraints

Input : Set covering constraint
∑

j∈S xj ≥ 1, a watched variable xj , j ∈ S, for
which the local upper bound has been changed from ũj = 1 to ũ′j = 0.

1. Enable the propagation of the constraint.
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sically the same as for the general linear constraints of Section 7.1. As for the
previously described specializations of linear constraints, the advantage of an indi-
vidual constraint handler for variable bound constraints is the possibility of a more
compact data representation and an easier and faster propagation method.

The following propagations are applied:

xi ≥ β − ajũj for aj > 0 and xi ≥ β − aj l̃j for aj < 0, (7.5)

xi ≤ β − aj l̃j for aj > 0 and xi ≤ β − aj ũj for aj < 0, (7.6)

xj ≥
⌈β − ũi

aj

⌉

for aj > 0 and xj ≤
⌊β − ũi

aj

⌋

for aj < 0, (7.7)

xj ≤
⌊β − l̃i

aj

⌋

for aj > 0 and xj ≥
⌈β − l̃i

aj

⌉

for aj < 0. (7.8)

Since these calculations are not as involved as the ones for general linear constraints,
we do not need to apply a conservative rounding as in Equation (7.2) on page 86 for
the propagation of linear constraints. However, the risk of numerous iterated small
tightenings of domains of general integer or continuous variables is also present
for variable bound constraints. Therefore, we use the same limits on the minimal
fraction to cut off from domains as for linear constraints, see Inequalities (7.3).

Algorithm 7.9 recapitulates the propagation procedure for variable bound con-
straints. As for linear constraints, a propagation mark controls whether the con-
straint has to be considered again for propagation. This mark is reset by the asso-
ciated event handler as can be seen in Algorithm 7.10.

7.6 Objective Propagation

The propagations described in the previous sections are based on primal feasibility
reasoning: a bound is tightened because setting a variable to a value outside the
tightened bounds leads to an infeasible subproblem. The objective propagation of
this section and the root reduced cost strengthening of the following section take the
dual point of view. They infer bounds that are valid due to optimality considerations:
if the variable takes a value outside the tightened bounds, the solution cannot be
better than the current incumbent.

Let ĉ = cT x̂ be the objective value of the current incumbent solution x̂ ∈ Rn, i.e.,
the smallest objective value of all feasible solutions found so far. Then, the objective
function can be used to rule out inferior solutions by propagating

∑

j∈N

cjxj ≤ ĉ− δ̌ (7.9)

with δ̌ ∈ R>0 being the dual feasibility tolerance or optimality tolerance. This
objective constraint is a regular linear constraint, and we can use Algorithm 7.1 to
propagate it.

The objective cutoff, i.e., the right hand side ĉ of Inequality (7.9), can be tightened
if the objective function value is always integral. A sufficient condition for objective
integrality is that

⊲ all objective coefficients are integral: cj ∈ Z for all j ∈ N , and

⊲ all objective coefficients for continuous variables are zero: cj = 0 for all j ∈ C.
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Algorithm 7.9 Domain Propagation for Variable Bound Constraints

Input : Variable bound constraint β ≤ xi + ajxj ≤ β and current local bounds

xi ∈ [l̃i, ũi] and xj ∈ [l̃j , ũj ].

Output : Tightened local bounds for xi and xj .

1. If the constraint is already marked as propagated, abort.

2. Mark the constraint as propagated.

3. Set l̃′i := l̃′j := −∞ and ũ′i := ũ′j := +∞.

4. If β > −∞:

(a) If aj > 0, set l̃′i := β − aj ũj and l̃′j := (β − ũi)/aj .

(b) If aj < 0, set l̃′i := β − aj l̃j and ũ′j := (β − ũi)/aj .

5. If β < +∞:

(a) If aj > 0, set ũ′i := β − aj l̃j and ũ′j := (β − l̃i)/aj .

(b) If aj < 0, set ũ′i := β − aj ũj and l̃′j := (β − l̃i)/aj .

6. If i ∈ I, round l̃′i :=
⌈
l̃′i
⌉

and ũ′i := ⌊ũ′i⌋.

Round l̃′j :=
⌈
l̃′j
⌉

and ũ′j := ⌊ũ′j⌋.

7. If l̃′i > l̃i + 0.05 ·max
{

min
{
ũi − l̃i, |l̃i|

}
, 1
}

, tighten l̃i := l̃′i.

If ũ′i < ũi − 0.05 ·max
{

min
{
ũi − l̃i, |ũi|

}
, 1
}

, tighten ũi := ũ′i.

If l̃′j > l̃j + 0.05 ·max
{

min
{
ũj − l̃j , |l̃j |

}
, 1
}

, tighten l̃j := l̃′j .

If ũ′j < ũj − 0.05 ·max
{

min
{
ũj − l̃j , |ũj |

}
, 1
}

, tighten ũj := ũ′j .

8. If both constraint sides are redundant, i.e.,

(a) β = −∞, or aj > 0 and l̃i + aj l̃j ≥ β, or aj < 0 and l̃i + aj ũj ≥ β, and

(b) β = +∞, or aj > 0 and ũi + aj ũj ≤ β, or aj < 0 and ũi + aj l̃j ≤ β,

then the constraint can be deleted from the current subproblem.

Besides this automatic detection, SCIP provides a method to set the integrality sta-
tus of the objective function. This is useful for models where the objective integrality
is implicit and cannot be determined directly from the objective coefficients.

If we know that the objective value is always integral, we can apply integral cutoff
tightening and propagate

∑

j∈N

cjxj ≤ ĉ− (1− δ̌).

Furthermore, if the objective coefficients for continuous variables are zero and the
ones for integer variables are rational numbers with reasonably small denominators,

Algorithm 7.10 Event Handler for Variable Bound Constraints

Input : Variable bound constraint β ≤ xi + ajxj ≤ β, a variable xk, k ∈ {i, j}, for
which a bound has been changed.

1. Mark the constraint as not propagated.
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Algorithm 7.11 Root Reduced Cost Strengthening

Input : Current incumbent value ĉ, root node LP objective čR, solution x̌R, and
reduced costs řR, and global bounds l ≤ x ≤ u.

Output : Tightened global bounds for x.

1. If ĉ has not changed since the last call, stop.

2. For all variables xj with (řR)j > 0:

(a) Set u′j := (x̌R)j + (ĉ− čR)/(řR)j .

(b) If j ∈ I, set u′j := ⌊u′j + δ̂⌋.

(c) If u′j < uj , tighten uj := u′j .

3. For all variables xj with (řR)j < 0:

(a) Set l′j := (x̌R)j + (ĉ− čR)/(řR)j .

(b) If j ∈ I, set l′j := ⌈l′j − δ̂⌉.

(c) If l′j > lj , tighten lj := l′j .

one can multiply Inequality (7.9) with the smallest common multiple of the denom-
inators, divide the resulting integral values by their greatest common divisor, and
subtract 1 − δ̌ from the resulting right hand side. Note that this rational cutoff
tightening is new in SCIP 0.90i and not included in version 0.90f which we used for
the MIP benchmarks.

7.7 Root Reduced Cost Strengthening

In the design of SCIP, the well-known reduced cost strengthening procedure (see
Nemhauser and Wolsey [174]) is implemented as a cutting plane separator, compare
Section 8.8. It tightens the local bounds l̃ ≤ x ≤ ũ of the variables by comparing
their reduced cost values ř in the current LP solution with the objective value ĉ of
the incumbent solution and the objective value č of the LP relaxation:

xj ≥ l̃j +
ĉ− č

řj
if řj > 0,

xj ≤ ũj +
ĉ− č

řj
if řj < 0.

The root reduced cost strengthening propagator introduced in this section pro-
vides the same reasoning for global bounds which are tightened using root node LP
information. If the root node LP has been solved, we store the final objective value
čR, the LP solution vector x̌R, and the reduced cost vector řR. Then, each time
when a new incumbent solution has been found we reapply root node reduced cost
strengthening in order to tighten the global bounds.

The procedure is illustrated in Algorithm 7.11. Step 1 checks whether the
incumbent solution has been improved since the last application of the propagator.
If this is the case, Steps 2 and 3 reapply the reduced cost strengthening at the root
node. Note that the calculations of the new bounds in Steps 2a and 3a do not
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test set none aggr linear no obj prop no root redcost
ti

m
e

miplib +6 +3 −3 −2

coral +15 −8 −4 −7

milp +13 −3 +5 +1

enlight +104 −42 0 −1

alu +222 −36 0 +1

fctp −7 0 0 0

acc +31 −18 −1 −1

fc +42 +3 +40 +3

arcset +13 +1 +1 0

mik +19 −15 +21 +1

total +17 −6 +1 −2

n
o

d
es

miplib +1 0 −4 −3

coral +12 −10 −5 −8

milp +20 −9 +15 0

enlight +183 −59 +2 0

alu +283 −24 0 0

fctp −5 −2 0 0

acc +25 −5 0 0

fc +75 0 +63 +4

arcset +10 +2 +1 −4

mik +66 −34 +38 −1

total +20 −9 +4 −3

Table 7.1. Performance effect of domain propagation techniques for solving MIP instances. The
values denote the percental changes in the shifted geometric mean of the runtime (top) and number
of branching nodes (bottom) compared to the default settings in which all domain propagators are
called at every node except the linear propagation, which is only applied at every fifth depth level.
Positive values represent a deterioration, negative values an improvement.

depend on the current global bounds.1 Therefore, there is no risk of iterated small
reductions as in the linear constraint propagation (compare Figure 7.1 on page 87),
and we can safely accept even small domain reductions.

7.8 Computational Results

We ran benchmarks to asses the impact of applying domain propagation techniques
to the local subproblems of a MIP search tree. Table 7.1 gives a summary of the
results. Further details can be found in Tables B.51 to B.60 in Appendix B. The
test instances and the computational environment are described in Appendix A.

The column “none” shows the performance change for deactivating all local do-
main propagation algorithms. One can see that domain propagation is able to reduce
the runtime on all test sets except fctp. The most notable effect can be observed for
the enlight and alu instances, for which the runtime doubles and triples, respec-
tively, if domain propagation is turned off. As already mentioned in Sections 5.11
and 6.8, these two problem classes are of a combinatorial type and their objective
functions are not very important or, in the case of alu, completely artificial. This
suggests that for such instances, LP based techniques are not that strong and CP
algorithms are more important. The computational results support this hypothesis.

During the development of the domain propagation algorithms, our impression
was that the propagation of linear constraints as given in Algorithm 7.1 is too expen-
sive to be applied at every node in the search tree. Therefore, the default settings

1Actually, for a variable with non-zero reduced costs, the root LP solution (x̌R)j is equal to the
global lower or upper bound as they have been set at the time the root LP was solved.
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are to invoke the algorithm only at every fifth depth level. The column “aggr linear”
shows the effect of applying the linear domain propagation at every node. It turns
out that our concerns are unjustified: applying linear domain propagation at every
node improves the performance on almost all test sets. Again, the largest speedup
can be observed on the enlight and alu instances.

The columns “no obj prop” and “no root redcost” demonstrate the impact of
the two dual propagation methods included in SCIP. Both techniques have only
a very small effect. However, the objective propagation considerably improves the
performance on the fc and mik test sets. As can be seen in Table B.58, the runtime
increases by at least 10 % for 13 out of the 20 fc instances if objective propagation
is disabled. In contrast, not a single instance in this test set can be solved faster
without objective propagation.



Chapter 8

Cut Separation

Cutting planes for integer and mixed integer programming have been studied since
the late 1950’s. One of the most fundamental work in this area has been conducted
by Gomory [102, 103, 104] who proved that integer programs with rational data can
be solved in a finite number of steps by a pure cutting plane approach without any
branching. Unfortunately, numerical issues in Gomory’s approach prevented pure
cutting plane methods from being effective in practice.

With the work of Balas et al. [31] in 1996 and finally with the release of Cplex 6.5
in 1999, it became clear that cutting planes, in particular Gomory mixed integer
cuts, are very efficient if combined with branch-and-bound. The resulting algorithm
is called cut-and-branch or branch-and-cut, depending on whether cutting planes are
only generated at the root node or also at local subproblems in the search tree, see
Section 2.2. Bixby et al. [46] report a speed-up of a factor of 22.3 from Cplex 6.0
to Cplex 6.5, with cutting planes providing a major contribution to this success.

Since the theory of cutting planes is very well covered in the literature (see, e.g.,
a recent survey by Klar [132]), this chapter focuses on the cutting plane separation
methods that are available in SCIP. We will, however, only briefly sketch the al-
gorithms and the underlying theory. A detailed description, including the theory
and computational experiments that compare various SCIP parameter settings and
different implementations, can be found in the diploma thesis of Wolter [218]. Addi-
tional information about computationally important cutting planes can, for example,
be found in Marchand et al. [154] and in Fügenschuh and Martin [90].

Some of the results presented here, namely the sections about knapsack cover
cuts, mixed integer rounding cuts, strong Chvátal-Gomory cuts, implied bound cuts,
and clique cuts are joint work with Kati Wolter. The implementation of Gomory
mixed integer cuts, knapsack cover cuts, and reduced cost strengthening is based
on Alexander Martin’s implementation of SIP [159]. The SCIP algorithms for flow
cover cuts have been implemented by Kati Wolter.

8.1 Knapsack Cover Cuts

The knapsack polytope is one of the most thoroughly studied polyhedrons in mathe-
matical programming, see for instance Balas [28], Hammer, Johnson, and Peled [112],
Padberg [179, 180], Wolsey [216], Balas and Zemel [35, 36], Weismantel [212], or Mar-
tin and Weismantel [160]. Knapsack cover cuts, which are a particular family of valid
inequalities for the knapsack polytope, are probably one of the first cutting planes
that have been incorporated into commercial MIP solvers. For example, they are
available in Cplex since version 3.0. Crowder, Johnson, and Padberg [70] were the
first to successfully apply lifted knapsack cover inequalities to solve several binary
programs that were, at the time, considered to be intractable.

In its most basic version, the knapsack cover cut can be derived as follows.

101
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Definition 8.1 (knapsack cover). Consider a knapsack inequality aTx ≤ β with
a ∈ ZB

≥0, β ∈ Z≥0, and binary variables x ∈ {0, 1}B . Then, V ⊆ B is called cover if
∑

j∈V aj > β. A cover V is called minimal cover if
∑

j∈V \{k} aj ≤ β for all k ∈ V .

Knapsack covers directly lead to valid inequalities for the binary knapsack poly-
tope PK := conv(XK) with XK :=

{
x ∈ {0, 1}B | aTx ≤ β

}
, see [28, 112, 179, 216]:

Proposition 8.2. Given a cover V , the corresponding cover inequality

∑

j∈V

xj ≤ |V | − 1 (8.1)

is valid for the knapsack polytope PK . Furthermore, if V is a minimal cover, In-
equality (8.1) is facet defining for P ′K := conv

(
XK ∩ {x | xj = 0 for all j ∈ B \V }

)
.

In order to convert the facet defining cover inequality (8.1) of the lower dimen-
sional P ′K into an inequality which defines a facet or a high dimensional face of PK ,
we have to lift the variables in B \ V , see Padberg [179]. Lifting is a technique that
may introduce non-zero coefficients dj for j ∈ B \ V to Inequality (8.1), such that
the resulting cut

∑

j∈V

xj +
∑

j∈B\V

djxj ≤ |V | − 1

is still valid for PK .
In addition to this up-lifting step, Wolsey [216] observed that one can also apply

a down-lifting procedure. He proposed to partition the binary variables into three
sets B = V ∪ L0 ∪ L1, such that V is a minimal cover for

∑

j∈V

ajxj ≤ β −
∑

j∈L1

aj .

The resulting cover inequality (8.1) is facet defining for

P ′′K := conv
(
XK ∩ {x | xj = 0 for all j ∈ L0} ∩ {x | xj = 1 for all j ∈ L1}

)
,

but in general invalid for the original knapsack polytope PK . Down-lifting can be
applied to the variables j ∈ L1 to convert it into a valid inequality for PK , and
up-lifting for j ∈ L0 can be used to strengthen the cutting plane. Note that every
lifting sequence results in a valid cut, but the coefficients dj of the cut depend on the
order in which the variables are lifted. Thus, this type of lifting is called sequence
dependent lifting. Using so-called superadditive functions, one can also perform
sequence independent lifting, see Gu, Nemhauser, and Savelsbergh [111].

SCIP generates lifted knapsack cover cuts within the knapsack constraint han-
dler. The procedure is sketched in Algorithm 8.1. The variables xj that have a
value of x̌j = 1 in the current LP solution are selected for down-lifting and put to
L1 in Step 1. Then, in Step 2 we calculate a minimal cover on the reduced knap-
sack inequality. Using dynamic programming techniques (see, for example, Keller
et al. [129]), we can find a most violated minimal cover in pseudo-polynomial time,
with the runtime depending on the capacity β −

∑

j∈L1
aj of the reduced knapsack.

If this capacity is too large, we revert to the greedy heuristic of Dantzig [74]. It may
happen that we do not find a violated cover inequality, in which case we have to
abort the separation.
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Algorithm 8.1 Separation of Lifted Knapsack Cover Cuts

Input : Knapsack constraint aTx ≤ β and current LP solution x̌.

Output : Cutting planes dTx ≤ γ.

1. Set L1 := {j ∈ B | x̌j = 1}.

2. Calculate a minimal cover V ⊆ B \ L1 for the knapsack constraint

∑

j∈B\L1

ajxj ≤ β −
∑

j∈L1

aj .

If β −
∑

j∈L1
aj ≤ 10000, find a most violated minimal cover inequality by

dynamic programming. Otherwise, use a greedy heuristic. If no violated cover
inequality can be found, stop.

3. Set L0 := (B \ L1) \ V . Sort V and L0 by non-increasing solution value x̌j ,
breaking ties by non-increasing weight aj .

4. While V 6= ∅:

(a) Let xk, k ∈ V , be a variable with smallest LP solution value x̌k. Set
V := V \ {k} and L0 := L0 ∪ {k}.

(b) Generate the trivial cardinality inequality

∑

j∈V

xj ≤ |V |. (8.2)

(c) Strengthen Inequality (8.2) by up-lifting the variables j ∈ L0 with x̌j > 0.

(d) Make Inequality (8.2) valid for PK by down-lifting the variables j ∈ L1.

(e) Strengthen Inequality (8.2) by up-lifting the variables j ∈ L0 with x̌j = 0.

(f) If the resulting inequality is violated by x̌, add it to the separation storage.

The initial up-lifting candidates L0 consist of the remaining variables, which are
neither in the down-lifting set L1 nor in the cover V . Starting with this initial
partition, Loop 4 performs the actual lifting and cutting plane generation. In fact,
we do not only generate lifted minimal cover inequalities but also lifted extended
weight inequalities as introduced by Weismantel [212].

The first Step 4a removes an item with smallest LP value from the cover and
moves it to the up-lifting candidates. Then, we start with the trivial cardinality
inequality (8.2) and lift in the variables of L0 and L1 as indicated in Steps 4c to 4e.
The variables are lifted ordered by non-increasing LP value x̌j with ties broken by
non-increasing weight aj . In the first round of Loop 4, this means that the removed
cover variable xk immediately gets a lifting coefficient of dk = 1 since the initial
set V was a cover. Thereby, we restore the cover inequality and obtain a lifted cover
inequality after the subsequent lifting of the remaining variables. In the successive
rounds of the loops, we generate lifted extended weight inequalities.

Cutting plane separation for the knapsack polytope can also be applied on general
linear constraints Ci : β ≤ aTx ≤ β with a ∈ Rn and x ∈ ZI × RC by relaxing the
constraint into a binary knapsack constraint. This relaxation is performed in the
separation method of the linear constraint handler, and Algorithm 8.1 is called as a
subroutine. For the relaxation, we have various options. In the default settings, we



104 Cut Separation

proceed as follows.
If the dual solution of Ci is y̌i < 0, we generate cuts for the right hand side

inequality aTx ≤ β. If y̌i > 0, we generate cuts for the left hand side inequality
−aTx ≤ −β. If y̌i = 0, we ignore the constraint for cut separation. This reflects the
fact that the left and right hand sides of the constraint restrain the LP objective
value if the dual solution is y̌i > 0 or y̌i < 0, respectively.

Afterwards, we replace all continuous and general integer variables xj , j ∈ N \B,
with binary variables or constants: if possible, we substitute them for variable lower
bounds xj ≥ sxk + d or variable upper bounds xj ≤ sxk + d involving binary
variables xk, depending on the sign of their coefficients aj , see Section 3.3.5. If no
suitable variable bound is available, we substitute the non-binary variables for their
global bounds lj or uj .

Finally, we produce a rational representation of the resulting coefficients and
multiply the relaxed constraint with the smallest common multiple of the denomi-
nators to obtain integral coefficients. In the conversion of the floating point values
to rational numbers, we allow to relax the coefficients by 10 % in order to get smaller
denominators.

8.2 Mixed Integer Rounding Cuts

Mixed integer rounding cuts (MIR cuts) as introduced by Nemhauser and Wolsey [175]
can be formulated as follows:

Proposition 8.3 (MIR inequality). Given a linear constraint aTx ≤ β on vari-
ables x ∈ ZI

≥0 × RC
≥0, the mixed integer rounding inequality

∑

j∈I

(

⌊aj⌋+
max{fj − f0, 0}

1− f0

)

xj +
∑

j∈C

min{aj , 0}

1− f0
xj ≤ ⌊β⌋ (8.3)

with fj := aj − ⌊aj⌋ and f0 := β − ⌊β⌋ is valid for the mixed knapsack polyhedron
PMK := conv(XMK) with XMK :=

{
x ∈ ZI

≥0 × RC
≥0 | a

Tx ≤ β
}

.

Marchand [153] and Marchand and Wolsey [155] applied the MIR procedure to
separate complemented mixed integer rounding cuts for mixed integer programs. The
implementation of this separator in SCIP, which is depicted in Algorithm 8.2, is very
similar to the approach of Marchand and Wolsey.

The aggregation heuristic of Step 1 calculates a score value for each row in the
LP, which depends on the dual solution, the density, and the slack of the row. Only
rows with a maximal density of 5 % and a maximal slack of 0.1 are considered. Then,
the rows are sorted by non-increasing score value, and they are successively used as
starting row for the aggregation until certain work limits have been reached.

Given a starting row, the aggregation procedure adds other rows to the starting
row in order to eliminate continuous variables. In particular, we try to remove
continuous variables with an LP solution x̌j that is far away from the bounds lj
and uj . Under those variables that have approximately the same distance to their
bounds, we prefer variable eliminations that can be achieved by adding a row with
large score value. In every iteration of the aggregation loop, the current aggregation
is passed to Steps 2 to 5 in order to generate a cutting plane. The aggregation loop
for the current starting row is aborted if a violated cut has been found or six rows
have been aggregated, including the starting row.
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Algorithm 8.2 Separation of Complemented MIR Cuts

Input : LP relaxation Ax ≤ b of MIP, global bounds l ≤ x ≤ u, and current LP
solution x̌.

Output : Cutting planes dTx ≤ γ.

1. Aggregate linear constraints to obtain a single linear inequality aTx ≤ β.

2. Transform the variables to the canonical form x′ ≥ 0 by either

⊲ shifting to their lower bound xj ≥ lj : x′j := xj − lj ,

⊲ complementing to their upper bound xj ≤ uj : x′j := uj − xj ,

⊲ substituting with a variable lower bound xj ≥ sxk + d, k ∈ I:
x′j := xj − (sxk + d), or

⊲ substituting with a variable upper bound xj ≤ sxk + d, k ∈ I:
x′j := (sxk + d)− xj .

3. Divide the resulting inequality a′Tx′ ≤ β′ by δ = ±1, δ = ±max{|a′j | | j ∈ I},
and δ ∈ {±a′j | j ∈ I and 0 < x̌′j < u′j}, and generate the corresponding MIR
inequalities (8.3). Choose δ⋆ to be the δ for which the most violated MIR
inequality has been produced.

4. In addition to δ⋆, check whether the MIR inequalities derived from dividing
a′Tx′ ≤ β′ by 1

2δ
⋆, 1

4δ
⋆, and 1

8δ
⋆ yield even larger violations.

5. Finally, select the most violated of the MIR inequalities, transform it back into
the space of problem variables x, substitute slack variables, and add it to the
separation storage.

The bound substitution in Step 2 always selects the bound that is closest to the
current LP solution x̌j . If the LP value of a variable bound is at least as close as
the global bound, we prefer variable bounds over global bounds.

Marchand and Wolsey [155] propose to augment the cutting plane separation
procedure with a final step of additional variable complementation in order to find
an even more violated cut. This complementation would be performed after Step 4.
We do not follow this approach, since it turned out to be inferior in early benchmark
tests. Instead, we slightly extend the bound substitution heuristic of Step 2: if the
resulting right hand side β′ is integral, we complement one additional variable or
uncomplement one of the complemented variables to obtain a fractional right hand
side.

8.3 Gomory Mixed Integer Cuts

Besides lift-and-project cuts (see Balas, Ceria, and Cornuéjols [29, 30]), Gomory
mixed integer cuts (GMI cuts) have been the first general purpose cutting planes
that were successfully employed within a branch-and-cut framework to solve mixed
integer programs, see Balas et al. [31]. They have been discovered by Gomory [103,
104] in 1960, but despite their theoretical value, namely providing a method to solve
integer programs with rational data, they have been regarded as computationally
useless. This reputation changed with the work of Balas et al., and nowadays GMI
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cuts seem to be one of the most important cutting planes employed in mixed integer
solvers, see Bixby et al. [46].

Gomory mixed integer cuts can be stated as follows [103, 31]:

Proposition 8.4 (Gomory mixed integer cuts). Let B ⊆ N be an optimal
simplex basis for the LP relaxation of a MIP in equality form

c⋆ = min{cTx | Ax = b, x ≥ 0, xj ∈ Z for all j ∈ I ⊆ N},

and let N := N \ B denote the index set of non-basic variables. Furthermore, let
ā = (A−1

B A)i · be row i of the simplex tableau, ā0 = (A−1
B b)i be the right hand side

of this tableau row, and fj = āj − ⌊āj⌋ be the fractional parts of the tableau row
entries, j ∈ N ∪{0}. Then, if xi, i ∈ B∩ I, is a basic integer variable with fractional
LP solution x̌i = ā0 /∈ Z, the Gomory mixed integer cut

∑

j∈N∩I

min
{fj

f0
,
1− fj

1− f0

}

xj +
∑

j∈N∩C

max
{ āj

f0
,
−āj

1− f0

}

xj ≥ 1 (8.4)

is valid for the MIP and cuts off the fractional LP solution x̌.

The following proposition shows that GMI cuts are a subclass of MIR cuts and
can be derived by employing the MIR procedure of Proposition 8.3 to the simplex
tableau equation.

Proposition 8.5. The Gomory mixed integer cut (8.4) is equivalent to the mixed
integer rounding cut (8.3) applied to the simplex tableau row

xi +
∑

j∈N

ājxj = ā0 (8.5)

for a non-basic integer variable xi, i ∈ N ∩ I, with fractional ā0 /∈ Z.

Proof. Multiplying the GMI cut (8.4) by −f0 yields the equivalent constraint

∑

j∈N∩I

max
{

−fj ,−f0
1− fj

1− f0

}

xj +
∑

j∈N∩C

min
{

−āj ,
ājf0

1− f0

}

xj ≤ −f0. (8.6)

Adding Inequality (8.6) to the feasible Equation (8.5) yields

xi +
∑

j∈N∩I

max
{

āj−fj , āj−f0
1− fj

1− f0

}

xj +
∑

j∈N∩C

min
{

0, āj +
ājf0

1− f0

}

xj ≤ ā0−f0,

which is equivalent to

xi +
∑

j∈N∩I

(

⌊āj⌋+ max
{

0,
fj − f0
1− f0

})

xj +
∑

j∈N∩C

min
{

0,
āj

1− f0

}

xj ≤ ⌊ā0⌋.

This final inequality is exactly same as the MIR cut for the tableau row (8.5) in the
direction xi +

∑

j∈N ājxj ≤ ā0.

Following Proposition 8.5, the Gomory mixed integer cut separator of SCIP
just applies Steps 1, 2, and 5 of the c-MIR cut separation Algorithm 8.2. For each
fractional integer basic variable xi, the aggregation of Step 1 is performed using the
weights given by the corresponding row (A−1

B )i · in the basis inverse, such that the
aggregation produces Equation 8.5, which may include slack variables. The bound
substitution of Step 2 only complements those variables that are at their upper
bounds.
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8.4 Strong Chvátal-Gomory Cuts

Letchford and Lodi [142] proposed a method to strengthen Chvátal-Gomory cuts [60],
which are closely related to Gomory fractional cuts [102]. Given a linear inequality
aTx ≤ β on non-negative integer variables xj ∈ Z≥0, j ∈ I = N , the Chvátal-
Gomory cut (CG cut) can be derived by rounding down the coefficient vector and
the right hand side:

∑

j∈I

⌊aj⌋x ≤ ⌊β⌋. (8.7)

It is easy to see that this inequality is valid, since after rounding down the coefficients
of the inequality the activity is always integral, which also allows for rounding down
the right hand side. One way to obtain a stronger cut is to instead apply the mixed
integer rounding procedure given in Inequality (8.3). The MIR cut always dominates
the CG cut, since their right hand sides are equal and the coefficients of the MIR
cut are greater or equal to the coefficients of the CG cut. Additionally, the MIR
procedure can be applied to constraints that include continuous variables.

Letchford and Lodi suggest a different strengthening of the CG cut for inequalities
containing only integer variables, which is given by the following theorem [142]:

Theorem 8.6 (strong Chvátal-Gomory cut). Consider the inequality aTx ≤ β
on non-negative integer variables xj ∈ Z≥0, j ∈ I = N . Suppose that f0 = β−⌊β⌋ >
0 and let k ≥ 1 be the unique integer such that 1

k+1 ≤ f0 <
1
k

. Partition N into
classes N0, . . . ,Nk as follows. Let N0 = {j ∈ N | fj ≤ f0} and, for p = 1, . . . , k, let
Np = {j ∈ N | f0 + 1

k
(p− 1)(1− f0) < fj ≤ f0 + 1

k
p(1− f0)}. The inequality

k∑

p=0

∑

j∈Np

(

⌊aj⌋+
p

k + 1

)

xj ≤ ⌊β⌋ (8.8)

is valid for PMK := conv(XMK) with XMK :=
{
x ∈ ZN

≥0 | a
Tx ≤ β

}
and dominates

the CG cut (8.7).

Note. There is no dominance relation between strong CG cuts and MIR cuts.

In the same way as Gomory mixed integer cuts are MIR cuts for a row of the
simplex tableau, Gomory fractional cuts are CG cuts for a tableau row. Following
this similarity, our implementation of the strong CG cut separator generates cuts of
type (8.8) for simplex tableau rows that belong to fractional integer variables. Thus,
our strong CG cuts are actually “strong Gomory fractional cuts”.

As for the MIR cuts, we have to perform a bound substitution and complemen-
tation step in order to achieve the standard form x ≥ 0 for the bounds. Since strong
CG cuts cannot handle continuous variables, we have to choose the complementation
of continuous variables in such a way that their resulting coefficient in the base in-
equality is non-negative. If this is possible, we can relax the inequality by removing
the continuous variables. If this is not possible, no strong CG cut can be generated.

Note. Both the MIR procedure of Proposition 8.3 and the strong CG procedure of
Theorem 8.6 can be expressed as the application of a superadditive function to a
linear inequality. They only differ in the shape of this function.

As Gomory mixed integer cuts are special types of MIR cuts, the “strong Gomory
fractional cuts” produced by our strong CG cut separator are special types of the
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more general strong CG cuts. Thus, it might make sense to also generate strong
CG cuts in the fashion of the c-MIR separator in Algorithm 8.2 by applying an
aggregation heuristic that tries to eliminate continuous variables. Overall, instead
of having three different separators, one probably should combine the strong CG
cut separator with the MIR and GMI cut separators. The combined strong CG and
MIR cut separator would generate both the MIR and strong CG inequality in Steps 3
and 4 of Algorithm 8.2 and keep the one with larger violation. In the same fashion,
the combined strong Gomory fractional and GMI cut separator would generate both
type of cuts for each simplex tableau row belonging to a fractional integer variables
and keep the more violated one.

8.5 Flow Cover Cuts

Flow cover cuts are based on the polyhedral study of the 0-1 single node flow problem.
They have been introduced by Padberg, van Roy, and Wolsey [181] and generalized
by van Roy and Wolsey [208]. Later, Gu, Nemhauser, and Savelsbergh [110] applied
a lifting procedure to strengthen flow cover cuts. Marchand [153] showed that by
applying complemented mixed integer rounding on a particular mixed knapsack
relaxation of the 0-1 single node flow set, one can obtain cuts that are equivalent to
the lifted flow cover cuts.

The 0-1 single node flow set is defined as

XSNF :=
{
(x, y) ∈ {0, 1}n×Rn

≥0 |
∑

j∈N+

yj−
∑

j∈N−

yj ≤ β, yj ≤ sjxj for all j ∈ N
}
.

This structure can be typically found in fixed charge network flow problems, which
was the actual origin for the flow cover cuts [181]. In this application, the continuous
variables yj correspond to the flow over arcs j of maximal capacity sj , and a non-zero
flow over an arc entails a fixed charge cost that is triggered by the binary variable
xj . The sets N+ and N− consist of the incoming and outgoing arcs of a node,
respectively. Then, the single node flow set imposes a constraint on the flow balance
in the node.

Despite their very specific origin, flow cover inequalities are a class of cutting
planes that can be applied to general mixed integer programs, because one can
convert any constraint of a mixed binary program into the required form. General
integer variables of a MIP have to be relaxed to continuous variables.

Given a single node flow set XSNF , a flow cover is defined as a pair (V +, V −)
with V + ⊆ N+, V − ⊆ N−, and

∑

j∈V +

sj −
∑

j∈V −

sj = β + λ

with λ > 0. Thus, a flow cover is the continuous analogon to a knapsack cover,
compare Definition 8.1. It reflects a configuration in which not all of the continuous
variables can take their maximum value, i.e., not all arcs of the flow cover can be
used with full capacity. The flow cover cuts that can be derived basically state that
one has to either use fewer in-flow or more out-flow. For further details, we refer to
the literature mentioned above and to the diploma thesis of Kati Wolter [218].

The SCIP version of the flow cover cut separator is an implementation of Mar-
chand’s c-MIR approach [153]. We convert each individual row of the LP relaxation
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into a single node flow set and try to find a flow cover that will lead to a violated
flow cover inequality. Then, following Marchand’s suggestions, we try different sub-
set selections and scaling factors, apply the c-MIR procedure for each of the choices,
and add the most violated cut to the separation storage. The details of the imple-
mentation are described by Wolter [218].

8.6 Implied Bound Cuts

Implied bound cuts have been first used by Savelsbergh [199] and incorporated in
Minto [172, 171]. The cut separator inspects the implication graph (see Sec-
tion 3.3.5) and produces cutting planes to enforce implications that are violated by
the current LP relaxation. Since the implications are consequences of the linear
constraints and the integrality conditions, they can only be violated by the current
LP solution if they contain an integer variable with fractional value. Therefore, we
only have to scan a small part of the implication graph, which makes the implied
bound cut separator very fast.

The most prominent application of the implied bound cut separator is the “on-
demand” disaggregation of aggregated precedence relations, as it is shown in the
following example.

Example 8.7. Consider the linear constraint

x1 + x2 + x3 + x4 + x5 − 5y ≤ 0 (8.9)

with binary variables xj , y ∈ {0, 1}, j = 1, . . . , 5. This encodes the implications
y = 0 → xj = 0 for all j = 1, . . . , 5. However, the direct representation of these
implications as a system of linear inequalities

xj − y ≤ 0 for all j = 1, . . . , 5 (8.10)

yields a strictly stronger LP relaxation. For example, the fractional basic solution
x1 = . . . = x4 = 1, x5 = 0, y = 0.8 is feasible for the aggregated Inequality (8.9)
but violates System (8.10). The main disadvantage of System (8.10) is that it
contains five instead of only one inequality, which usually slows down the LP solving.
Therefore, the common approach is to initially use the aggregated Inequality (8.9)
and let violated inequalities of System (8.10) be separated as implied bound cuts.

8.7 Clique Cuts

In the same paper where he introduced the implied bound cuts, Savelsbergh [199]
proposed to derive clique inequalities to strengthen the LP relaxation of a MIP.
The theoretical foundation of clique inequalities are described in Johnson and Pad-
berg [125].

A clique inequality has the form
∑

j∈Q

xj ≤ 1

with Q ⊆ B∪ B̄ being a subset of the binary variables B ⊆ I ⊆ N and their comple-
ments B̄. It expresses the logical constraint that at most one of the (complemented)
variables in Q must be set to 1.



110 Cut Separation

In order to separate clique inequalities one considers a stable set relaxation of
the MIP. This consists of a graph G = (V,E) with V = B ∪ B̄ and edges euv for
all pairs of (complemented) binary variables for which we know that they cannot
be both set to 1 at the same time. This graph is commonly called conflict graph in
the MIP community, see for instance Atamtürk, Nemhauser, and Savelsbergh [24].

It is constructed during presolving, in particular by probing, see Section 10.6.
Each clique in the conflict graph gives rise to a clique inequality, which is valid for
the associated stable set polytope and thus also valid for the MIP. Other valid
inequalities for the stable set polytope like, for example, odd-hole inequalities can
also be used to strengthen the LP relaxation of the MIP, but it turned out that in
practice, only the clique inequalities are generally useful for general mixed integer
programming.

For the separation of violated clique inequalities one uses the LP values of the
binary variables as weights for the nodes V in the conflict graph and searches for
cliques with total weight larger than 1. Since the maximum weighted clique problem
is NP-hard [92], one has to resort to heuristics in order to efficiently separate clique
cuts.

SCIP stores the knowledge about the incompatibility of pairs of (complemented)
binary variables in the implication graph and in the clique table, see Section 3.3.5.
Violated clique cuts are separated using the TClique algorithm of Borndörfer and
Kormos [52]. This is a branch-and-bound based method that uses a list coloring
relaxation for the bounding step. TClique is an exact algorithm and therefore able
to find the most violated clique cut. However, we use it only in a heuristic fashion
and do not enumerate the full branch-and-bound search tree to decrease the running
time of the clique separator.

8.8 Reduced Cost Strengthening

A simplex based LP solver provides reduced cost values for each column, which yield
a lower bound on the change in the objective value for a unit change in the column’s
solution value. This information can be used for non-basic columns to tighten the
opposite bound, a procedure that is called reduced cost strengthening (see Nemhauser
and Wolsey [174]).

Since it does not cut off the current fractional LP solution, reduced cost streng-
thening is not a cutting plane separation method in its classical sense. However,
as the point in time when the strengthening is applied is exactly the same as for
cutting plane separators, namely after the solving of an LP relaxation, it is treated
as a separator plugin in SCIP.

The procedure is very simple. Let x̌ ∈ Rn be an optimal solution to the current
LP relaxation with value č = cT x̌, and let ř be the associated reduced cost vector.
Furthermore, suppose an incumbent solution x̂ ∈ ZI × RC with value ĉ = cT x̂ is
available. Then we can tighten the bounds for non-basic variables xj , j ∈ N , as
follows:

⊲ If rj > 0 we have xj = l̃j and we can deduce xj ≤ l̃j + 1
rj

(ĉ− č).

⊲ If rj < 0 we have xj = ũj and we can deduce xj ≥ ũj + 1
rj

(ĉ− č).

⊲ If j ∈ I, we can round down the upper bound and round up the lower bound.
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Note that the tightened bounds are only valid for the current subproblem Q and the
underlying subtree. Global reduced cost fixing can only be applied at the root node.
Since improved incumbent solutions found during the search can yield tighter global
bounds due to additional root node reduced cost strengthening, the procedure is
repeated for the root node each time a new incumbent has been found. This is the
task of the root reduced cost strengthening propagator of Section 7.7.

An issue with the locally valid domain reductions produced by the reduced cost
strengthening separator is the additional bookkeeping overhead. Since it does not
cut off the current LP solution, reduced cost strengthening has no direct effect on the
dual bound and often restricts only an “uninteresting” part of the problem. Useful
consequences can only follow from subsequent domain propagations that exploit the
integrality information. Therefore, we install the new bound only if the variable is of
integer type or if at least 20 % of the local domain of a continuous variable is cut off.
Additionally, we demand for continuous variables that the new bound cuts off parts
of the “active region” of the variable, which is the smallest interval that contains all
LP solution values x̌j that have ever been produced during the branch-and-bound
search.

8.9 Cut Selection

Almost as important as the finding of cutting planes is the selection of the cuts that
actually should enter the LP relaxation. In early years of cutting plane algorithms,
one passed the cuts one by one to the LP and immediately resolved the LP after
the addition of each cut. This was inspired by Gomory’s algorithm [102] for solving
integer programs by a pure cutting plane approach. Nowadays, we know that it is
much better to add cutting planes in rounds, see for instance Balas et al. [31]. This
means, after the solving of one LP we generate many different cuts which all cut off
the current fractional LP solution. However, as the computational experiments of
Section 8.10 show, adding all of these cuts to the LP does not yield the best overall
performance. Therefore, a selection criterion is needed in order to identify a “good”
subset of the generated cuts.

Balas, Ceria, and Cornuéjols [30] and Andreello, Caprara, and Fischetti [13]
proposed to base the cut selection on efficacy and orthogonality. The efficacy
is the Euclidean distance of the cut hyperplane to the current LP solution, and
an orthogonality bound makes sure that the cuts added to the LP form an almost
pairwise orthogonal set of hyperplanes. SCIP follows these suggestions. The detailed
procedure to select the cuts is described in Section 3.3.8 on page 48.

8.10 Computational Results

In the previous sections we outlined the SCIP implementation of various cutting
plane separation algorithms. In this section we evaluate their performance impact
by computational experiments. Following the analysis of Bixby et al. [46], we in-
vestigate three different situations: first, we compare the default cut-and-branch
algorithm to pure branch-and-bound without cutting plane separation in order to
measure the overall impact of cutting planes. Second, we disable only one of the
separators at a time and compare each of these settings to the defaults in which all
cutting plane separators are enabled. This shows the contribution of the individual
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test set none no knap no c-MIR no Gom no SCG no flow no impl no cliq no rdcost cons Gom
ti

m
e

miplib +443 +5 +35 −15 −5 −9 +1 −6 +21 −6

coral +51 +4 +3 +12 −3 −1 −12 +2 +1 −15

milp +6 +4 +18 −4 −7 −4 −9 −7 +5 −5

enlight −47 +51 −33 −40 −13 −30 −49 −3 −1 −4

alu −21 +4 −16 −17 +16 −6 −34 −15 +11 −16

fctp +152 +12 +9 −5 −1 +14 0 +3 0 −8

acc +26 −1 −2 −28 +13 −2 +38 +150 −6 +8

fc +2433 +11 +99 −17 +5 +22 +5 0 +1 −9

arcset +104 −2 +50 +17 +1 −5 +12 0 +11 +9

mik +10606 0 +131 +46 +6 +32 +24 −2 +404 +17

total +117 +5 +18 −4 −4 −3 −7 −1 +11 −8

n
o

d
es

miplib +2958 +13 +157 −1 −2 +3 +10 +7 +20 +2

coral +290 +6 +15 +54 +1 +6 −19 +12 +3 0

milp +81 +9 +48 +3 −5 −3 −4 +5 +12 −4

enlight +34 +108 −21 −18 +13 −15 −31 0 +6 +19

alu +7 −13 −14 −25 +4 +18 −50 −14 +14 −27

fctp +898 +28 +25 +21 −2 +26 0 0 +3 +10

acc +164 0 0 −22 +31 0 +98 +304 +9 +45

fc +81239 +39 +855 −7 +16 +169 +17 0 +1 −11

arcset +717 0 +141 +96 +4 −9 +28 0 +27 +57

mik +8575 0 +211 +64 +5 +39 +32 0 +237 +23

total +526 +10 +63 +16 0 +5 −4 +10 +14 +2

Table 8.1. Performance effect of disabling individual cutting plane separators for solving MIP
instances. The values denote the percental changes in the shifted geometric mean of the runtime
(top) and number of branching nodes (bottom) compared to the default settings in which all cut
separators are enabled. Positive values represent a deterioration, negative values an improvement.

cuts to the performance of cut-and-branch. Third, we enable only one of the sepa-
rators and measure the difference to pure branch-and-bound in order to assess the
power of the cut separators in an isolated environment.

Table 8.1 shows the summary for the first two experiments. Detailed results
can be found in Tables B.61 to B.70 in Appendix B. Column “none” gives the
performance ratios for disabling all separators. One can see that cutting planes
yield an overall performance improvement of more than a factor of 2. The largest
deterioration can be observed for the mik instances. Here, the solving time increases
by more than a factor of 100 if cutting plane separation is disabled. In fact, none
of the 41 instances in the mik test set can be solved by pure branch-and-bound
within the time limit of one hour, while the total time to solve all 41 instances with
cut-and-branch is only 44 minutes with a geometric mean of 30 seconds per instance.

The only test sets for which cutting planes increase the solving time are the
enlight and alu instances. As noted earlier, they are basically pure feasibility
problems with unimportant or artificial objective functions. Cutting planes focus on
the region in the LP polyhedron where the LP solver has located an optimal solution.
If they can only cut off a relatively small part of the polyhedron, they are usually
not of much use for instances with artificial objective function since there would
be almost no gain in driving the LP solution to a different region. An exception
would be the case that the new LP solution is integral, but since there are only very
few feasible solutions in the enlight instances and no solutions at all in the alu
instances, this is unlikely or impossible, respectively. Hence, it is no surprise that
cutting planes deteriorate the performance, because they increase the size of the LP
relaxations that are solved in the subproblems.

The remaining columns, except “cons Gom”, show the outcomes of the second
experiment which is to disable individual cut separators while leaving the other sep-
arators active. The first observation is that the sum of the changes in the runtime is
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much smaller than the deterioration arising from disabling all separators. The same
holds for the number of branching nodes. This means, the strengths of the individual
cuts overlap: the deactivation of one class of cutting planes can be compensated by a
different cut separator. This behavior is supported by theoretical observations. For
example, Nemhauser and Wolsey [175] showed that the elementary closures of mixed
integer rounding cuts and Gomory mixed integer cuts are identical. Cornuéjols and
Li [69] provide a detailed overview of this and other relations between elementary
closures. Another example for the overlap of cutting plane classes are the flow cover
cuts of SCIP, which are generated as a special case of complemented mixed integer
rounding. Nevertheless, such a “special case” cut separation algorithm is not neces-
sarily superfluous since most of the cuts, in particular c-MIR cuts, are separated in
a heuristic fashion.

The second observation is that disabling any of the separators except the im-
plied bound and strong CG cut separators leads to an overall increase in the number
of branching nodes. This does not, however, come along with an increase in the
runtime in every case. By looking at the individual columns in Table 8.1 one can
observe that the performance degrades only for disabling knapsack cuts (“no knap”),
c-MIR cuts (“no c-MIR”), and reduced cost strengthening (“no rdcost”). Although
for disabling each of the other cuts there is a test set with moderate or large deteri-
oration, the totals show a small improvement compared to the default settings with
all cut separators enabled. The most surprising result is the one for the Gomory
mixed integer cuts (“no Gom”). Bixby et al. [46] detected these cuts to be the most
effective in Cplex 6.5 with a sizable winning margin to knapsack cover cuts. At this
time, however, Cplex did not contain complemented mixed integer rounding cuts.

Wolter [218] observed that the implementation of Gomory cuts in an earlier
version of SCIP was inferior to the one of Cplex and CBC with respect to the
objective gap closed at the root node. Therefore, we adjusted the parameter settings
of the Gomory cut separator to be more aggressive and to produce more cuts, which
resolved the issue of the inferior root node objective gap. However, the results
of Table 8.1 show that we overshot the mark: replacing the aggressive Gomory cut
separator of the default settings by a more conservative version (“cons Gom”), which
adds only those cuts that appear to be numerically stable, yields a performance
improvement that goes beyond the one of just deactivating the aggressive Gomory
cut separation (“no Gom”).

Table 8.2 comprises the summary of the third benchmark, which is to compare
pure branch-and-bound with activating a single cutting plane separator. Detailed
results can be found in Tables B.71 to B.80 in Appendix B. It is noticeable that
all cutting plane classes help to reduce the number of branching nodes and also—
with the exception of the clique cuts—to improve the runtime performance. As in
the previous experiment, the complemented mixed integer rounding cuts are the
clear winner. The Gomory and flow cover cuts, however, come in second and third
place in Table 8.2 although their activation slightly deteriorates the overall perfor-
mance if they are combined with all other separation algorithms, see Table 8.1. We
take this as another evidence for their functionality being sufficiently covered by the
c-MIR cuts. The conservative Gomory cut separator (“cons Gom”) yields, if used
in an isolated fashion, a similar performance improvement as its more aggressive
variant (“Gomory”). Nevertheless, we already saw in Table 8.1 that this situation
changes considerably if all cut separators are used simultaneously. Here, the conser-
vative version improves the overall performance, while the aggressive variant leads
to a deterioration.
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test set knapsack c-MIR Gomory strong CG flow cover impl bds clique redcost cons Gom
ti

m
e

miplib −35 −72 −50 −28 −40 −16 0 −20 −48

coral +15 −18 −25 +13 +7 −5 −1 −5 −27

milp +5 −12 +4 +2 −4 −2 +11 −2 +8

enlight 0 −65 +52 −35 −50 +2 0 +30 +9

alu −3 −10 +16 −25 −7 0 −14 +8 −32

fctp −52 −22 +15 +2 −57 +1 +2 +1 −3

acc −1 +2 +54 −15 0 −43 −39 −3 +9

fc −90 −95 −7 +2 −55 +1 +2 −2 −7

arcset −2 −38 −36 −28 +7 0 −2 +17 −45

mik 0 0 −69 0 −65 0 0 −44 −67

total −11 −40 −22 −6 −18 −7 +1 −7 −24

n
o

d
es

miplib −51 −89 −70 −44 −57 −23 −7 −24 −61

coral +15 −39 −49 +19 −10 −15 −11 −15 −36

milp +2 −29 −5 −4 +2 −8 −4 −8 −1

enlight 0 −53 −7 −61 −41 0 0 +14 −30

alu −14 −39 −21 −57 −2 −17 −30 +4 −54

fctp −75 −45 −10 0 −82 0 0 0 −15

acc 0 0 +22 −50 0 −58 −50 −8 +2

fc −95 −99 −38 0 −75 −1 −1 −5 −25

arcset +1 −56 −66 −51 −6 0 +1 −11 −64

mik −1 +2 −69 −3 −62 +1 +2 −19 −66

total −21 −62 −44 −16 −29 −15 −9 −14 −36

Table 8.2. Performance effect of enabling individual cutting plane separators for solving MIP
instances. The values denote the percental changes in the shifted geometric mean of the runtime
(top) and number of branching nodes (bottom) compared to a pure branch-and-bound approach
for which all cut separators are disabled. Positive values represent a deterioration, negative values
an improvement.

Generating Cuts at Local Nodes

The default settings turn SCIP into a cut-and-branch algorithm, which means that
cuts are only generated at the root node. The advantage of this approach is the
smaller subproblem LP management overhead: in switching from one subproblem to
the next, we only have to update the bounds of the columns in the LP while the rows
stay untouched. There is, however, one exception: the reduced cost strengthening.
Since this separator is a very special case that only produces bound changes, it does
not introduce significant overhead to the LP management and is therefore called at
every node in the tree.

In the following we evaluate a branch-and-cut approach for which the local LP
relaxations are extended by additional cutting planes. Apart from the bound changes
due to reduced cost strengthening, all separated cuts are globally valid. We consider
six different settings and provide a summary of the benchmarks in Table 8.3. The
details can be found in Tables B.81 to B.90.

The column labeled “all (1)” gives the results for calling all cut separators at
every local node. Indeed, this gives a large reduction of 70 % in the average number
of branching nodes needed to solve the instances. However, the runtime overhead
is significant: overall, the average time to solve the instances is more than twice as
large as for the default cut-and-branch.

In order to reduce the overhead in the runtime, we experimented with alternative
parameter settings for which cuts are only separated at a local node if the node’s
dual bound is equal to the global dual bound. The idea is that for these nodes it
is most important to improve the dual bound since they are defining the current
global dual bound. Note that with the best first search node selection, this approach
would also generate cutting planes at every local node. However, since the default
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test set all (1) all (1⋆) all (10⋆) impl bds (1⋆) knapsack (1⋆) impl/knap (1⋆)
ti

m
e

miplib +162 +45 +7 −4 −3 −3

coral +171 +28 +2 −1 −3 −7

milp +95 +37 +17 −1 0 +1

enlight +136 +66 +11 −18 −13 −6

alu +196 +29 +2 −13 −25 +14

fctp +123 +21 +8 +1 −5 −5

acc +9 +9 −1 +28 −2 +25

fc +62 +6 +1 0 +1 +6

arcset +631 +69 +6 +1 +7 +8

mik +56 −29 −12 +2 −23 −18

total +137 +33 +7 −2 −3 −2

n
o

d
es

miplib −63 −29 −7 −7 −5 −10

coral −73 −45 −13 −5 −5 −12

milp −70 −38 −10 0 −4 −5

enlight −95 −53 +5 −33 −11 −30

alu −47 +1 +3 −17 −16 +21

fctp −72 −22 −1 0 −9 −8

acc −45 −41 −23 +43 0 +43

fc −78 −36 −2 −4 −7 −9

arcset −45 −11 −6 −1 −3 −4

mik −91 −69 −30 0 −42 −43

total −70 −38 −10 −4 −6 −9

Table 8.3. Performance effect of separating cuts at local nodes. The values denote the percental
changes in the shifted geometric mean of the runtime (top) and number of branching nodes (bottom)
compared to the default cut-and-branch approach in which cuts are only separated at the root node.
Positive values represent a deterioration, negative values an improvement.

node selection rule performs plunging (see Chapter 6), cuts are separated to a lesser
extent. The results are shown in column “all (1⋆)”. As one can see, some of the
node reduction could be preserved, but the runtime overhead is much smaller than
for “all (1)”. Unfortunately, branch-and-cut with this more conservative local cut
generation is still inferior to cut-and-branch.

Column “all (10⋆)” denotes the setting in which we produce cuts at a local node
if its dual bound is equal to the global dual bound and its depth in the search tree
is divisible by 10. This yields an even smaller degree of local cut generation, but as
before, the results remain unsatisfactory.

Finally, we investigate the generation of only one type of cuts at local nodes
instead of calling all separation algorithms simultaneously. In particular, we applied
the relatively cheap implied bound cut (“impl bds (1⋆)”) and knapsack cover cut
separation (“knapsack (1⋆)”) at the local nodes defining the global dual bound.
Here, the results are much more promising: for both separators applied individually,
the number of nodes and the runtime is slightly smaller than with pure cut-and-
branch. Unfortunately, separating both types of cutting planes simultaneously at
local nodes, as shown in column “impl/knap (1⋆)”, does not combine their benefits:
although the number of nodes decreases, the average solving time is not smaller than
for calling only one of the two cut separators alone.

Cut Selection

After having investigated the impact of the individual cutting plane separators, we
now focus on the cut selection.

Cutting planes are generated in rounds, see Section 3.2.8, and all cuts of a single
round cut off the current LP solution. Then, some of these cuts are added to the
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test set one per round take all no obj paral no ortho
ti

m
e

miplib +97 +105 +4 +28

coral +98 +38 −8 +19

milp +27 +45 −7 +11

enlight +85 −17 −3 +8

alu −3 +1 +18 −16

fctp +7 +69 +6 +17

acc +1853 +351 −22 +313

fc +80 +694 +7 +102

arcset +35 +49 +6 +1

mik +247 +676 +7 +8

total +79 +71 −3 +22

n
o

d
es

miplib +3 −8 +2 −7

coral +3 −7 −9 −3

milp −4 −1 −8 −21

enlight +95 −29 −2 +10

alu −13 −24 +18 −25

fctp −10 −7 +10 +2

acc +258 +128 −32 +85

fc +140 −24 +6 +11

arcset +50 −42 +12 0

mik +312 +27 +4 −6

total +11 −5 −5 −8

Table 8.4. Performance effect of different cutting plane selection strategies for solving MIP in-
stances. The values denote the percental changes in the shifted geometric mean of the runtime (top)
and number of branching nodes (bottom) compared to the default procedure given in Section 3.3.8.
Positive values represent a deterioration, negative values an improvement.

LP, and the modified LP is solved afterwards, followed by the next round of cutting
plane separation.

The task of the cutting plane selection is to decide which of the cuts of a single
separation round should enter the LP and which should be discarded. Algorithm 3.2
on page 49 shows the procedure that is employed by SCIP. The computational
results for some variants of cutting plane selection can be found in the summary
Table 8.4 and in the detailed Tables B.91 to B.100.

The columns “one per round” and “take all” denote the trivial strategies of adding
only the most violated (in the Euclidean norm) or all of the generated cuts, respec-
tively. As the results show, both rules are clearly inferior to the more involved
selection that is applied in the default settings. The columns “no obj paral” and
“no ortho” evaluate the two supplementary criteria objective parallelism and orthog-
onality of the cut selection Algorithm 3.2. In the former settings, we disabled the
parallelism measurement by setting wp = 0. For the latter, we set wo = 0 and
minortho = 0. One can see that the parallelism to the objective function does not
play a significant role; disabling this criterion even yields a slight performance im-
provement. In contrast, the orthogonality within the set of selected cuts seems to
be crucial: selecting the cuts in this way improves the overall performance by 22 %.
The largest impact can be seen on the acc and fc instances, for which the runtimes
quadruple and double, respectively, if the orthogonality calculation is disabled.



Chapter 9

Primal Heuristics

The branch-and-bound algorithm to solve mixed integer programs is a so-called
complete procedure. This means, apart from numerical issues, it is guaranteed to
find the optimal solution for every problem instance in a finite amount of time.
However, it is a very expensive method and has a worst case runtime which is
exponential in the size of the problem instance.

In contrast, primal heuristics are incomplete methods. They try to find feasible
solutions of good quality in a reasonably short period of time, but there is no guar-
antee that they will succeed in finding a solution, least of all an optimal solution.
Nevertheless, primal heuristics have a significant relevance as supplementary proce-
dures inside a complete MIP solver: they help to find good feasible solutions early
in the search process. An early discovering of a feasible solution has the following
advantages:

⊲ It proves that the model is feasible, which is an indication that there is no
error in the model.

⊲ A user may already be satisfied with the quality of the heuristic solution, such
that he can abort the solving process at an early stage.

⊲ Feasible solutions help to prune the search tree by bounding, thereby reducing
the work of the branch-and-bound algorithm.

⊲ The better the current incumbent is, the more reduced cost fixing and other
dual reductions can be applied to tighten the problem formulation, see Sec-
tions 7.6 and 7.7.

There exists a large variety of mixed integer programming heuristics proposed in
the literature, including Hillier [116], Balas and Martin [33], Saltzman and Hillier [197],
Glover and Laguna [95, 96, 97], Løkketangen and Glover [150], Glover et al. [98],
Nediak and Eckstein [170], Balas et al. [32, 34], Fischetti and Lodi [85], Fischetti,
Glover, and Lodi [84], Bertacco, Fischetti, and Lodi [40], Danna, Rothberg, and
Le Pape [72], and Achterberg and Berthold [2]. Some of the heuristics available in
SCIP are direct implementations of ideas found in the literature, some are variations
of the proposals, and some of them are newly developed techniques.

The primal heuristics of SCIP can be grouped into four categories:

⊲ Rounding heuristics try to round the fractional values of an LP solution such
that the rounded integral vector stays feasible for the constraints.

⊲ Diving heuristics start from the current LP solution and iteratively fix an
integer variable to an integral value and resolve the LP.

⊲ Objective diving heuristics are similar to diving heuristics, but instead of fixing
the variables by modifying the bounds, they drive the variables into a desired
direction by modifying their objective coefficients.

117
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⊲ Improvement heuristics consider one or more primal feasible solutions that
have been previously found and try to construct an improved solution with
better objective value.

We describe the individual heuristics contained in these classes only very briefly
in Sections 9.1 to 9.4 and present computational results in Section 9.5. Detailed
descriptions of the algorithms and an in-depth analysis of their computational impact
can by found in the diploma thesis of Timo Berthold [41].

RENS, Octane, and all of the improvement heuristics in Section 9.4 have been
implemented by Timo Berthold. The implementation of the feasibility pump is joint
work with Timo Berthold. The remaining heuristics have been implemented by the
author of this thesis.

9.1 Rounding Heuristics

Rounding heuristics start with a fractional vector x̌ ∈ Rn that satisfies the linear
constraints ATx ≤ b and bounds l ≤ x ≤ u of the MIP but violates some of the
integrality restrictions. Usually, we take the optimal solution of the LP relaxation
QLP of the current subproblem Q as starting point. Now, the task of a classical
rounding heuristic is to round the fractional values x̌j , j ∈ F := {j ∈ I | x̌j /∈ Z} ⊆ I,
of the integer variables down or up such that the final integral vector x̃ ∈ ZI × RC

still satisfies all linear constraints. More involved heuristics of this type also modify
continuous variables or integer variables that already have integral values in order
to restore linear feasibility which has been lost due to the rounding of fractional
variables.

9.1.1 RENS

Let x̌ ∈ Rn be an optimal solution of the current subproblem’s LP relaxation, and
let F ⊆ I be the set of integer variables with fractional value. Then, there are
2|F | possible roundings of x̌. The relaxation enforced neighborhood search (RENS)
heuristic, which was invented by Berthold [41], constructs a sub-MIP

(MIP′) c⋆ = min {cTx | Ax ≤ b, x ∈ Rn, xj ∈ {⌊x̌j⌋, ⌈x̌j⌉} for all j ∈ I}

and solves it with SCIP in order to find the best possible feasible rounding if one
exists. Note that in this sub-MIP all integer variables with integral values are fixed,
and the ones with fractional values are restricted to be rounded down or up. This
means, we can convert all integer variables into binary variables during presolving,
see Section 10.5, to obtain a mixed binary program.

The issue with RENS is that the sub-MIP might still be very expensive to solve.
Therefore, we only apply RENS at the root node of the search tree and abort the
sub-MIP solving process after either a total of 5000 nodes has been processed or no
improvement of the sub-MIP incumbent has been found for 500 consecutive nodes.
Additionally, we skip the heuristic if |F | > 1

2
|I| since this suggests that the sub-

MIP is not sufficiently easier than the original MIP. Apart from the number of
integral variables, which is an indicator for the “IP complexity” of the model, the
total number of variables is also relevant for the solving speed of the sub-MIP since
it gives a hint of the “LP complexity” of the instance. Therefore, we compare the
total number of variables of the sub-MIP after presolving to the total number of
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variables in the presolved version of the original instance. We only proceed with
the sub-MIP solving process if the number of variables has been reduced by at least
25 %.

9.1.2 Simple Rounding

As the name suggests, simple rounding is a very simple and fast heuristic to round
a fractional solution to a feasible integral vector. The idea is based on the variable
lock numbers, see Definition 3.3 on page 38. Consider a variable xj , j ∈ F ⊆ I, with
fractional LP solution x̌j . If ζ−j = 0, we can safely set x̃j := ⌊x̌j⌋ without violating

any linear constraint. On the other hand, if ζ+
j = 0, we can set x̃j := ⌈x̌j⌉. The

heuristic will succeed if all fractional variables j ∈ F have either ζ−j = 0 or ζ+
j = 0.

Since the simple rounding heuristic is very fast, it is applied after the solving
of every LP. This includes the intermediate LPs in the cutting plane separation
loop and the LPs that are solved by other heuristics such as the diving heuristics of
Section 9.2.

9.1.3 Rounding

The rounding heuristic is more involved than the simple rounding heuristic, but the
solutions found by rounding are a superset of the ones that can be found by simple
rounding. The rounding is applied to all fractional variables j ∈ F , even if this leads
to an infeasibility in the linear constraints. After having generated an infeasibility it
tries to select the rounding of the next variable such that the infeasibility is reduced
or eliminated.

In a first step, the heuristic sets x̃ := x̌ and calculates the activities αi(x̃) =
(ai)T x̃ of the linear constraints. Then, it iterates over the set F of fractional vari-
ables. If the current activity vector is feasible, i.e., β ≤ α(x̃) ≤ β, we select a
fractional variable with the largest number of variable locks max{ζ−j , ζ

+
j } and round

it into the “more feasible” direction, i.e., downwards if ζ−j ≤ ζ
+
j and upwards other-

wise. The rationale behind this choice is to avoid the roundings that can break the
feasibility of many constraints.

If the current activity vector violates one or more constraints, we select one of the
constraints and try to find a fractional variable that can be rounded in a direction
such that the violation of the constraint is decreased. If there is a choice, we select
a variable with a minimum number of variable locks in the corresponding direction
in order to decrease the feasibility of as few other constraints as possible. If no
rounding can decrease the violation of the infeasible constraint, we abort.

In the default settings, rounding is also called after the solving of every LP in
the search tree, but not on the LPs that are solved inside other heuristics.

9.1.4 Shifting

The shifting heuristic is equal to the rounding heuristic, but it tries to continue in the
case that no rounding can decrease the violation of an infeasible constraint. In this
case, we shift the value of a continuous variable or an integer variable with integral
value in order to decrease the violation of the constraint. In the process, we have
to make sure to not run into a cycle. Therefore, we penalize the repeated shifting
in opposite directions of a variable, we randomize the selection of the infeasible row



120 Primal Heuristics

for which the violation should be reduced, and we abort after 50 successive shiftings
have been performed without decreasing the number of violated rows or the number
of fractional variables.

As shifting is already quite time consuming, we only call it in every 10’th depth
level of the search tree.

9.1.5 Integer Shifting

Integer shifting is closely related to shifting, but it deals differently with continuous
variables. The first step is to relax all constraints in order to remove the continuous
variables. For each individual constraint aTx ≤ β the minimal contribution ajxj

of the continuous variables xj , j ∈ C, is moved to the right hand side. This is
performed by substituting the variable with its lower bound lj if aj ≥ 0 and with
its upper bound uj if aj < 0.

Then, we apply the shifting heuristic in order to find an integer solution for the
relaxed inequality system. If this was successful, we go back to the original MIP,
fix all integer variables to their values in the solution for the relaxed system, and
solve the resulting LP to get optimal values for the continuous variables. If the LP
is feasible, we have found a feasible solution for the original MIP.

9.1.6 Octane

Octane is a heuristic for pure binary programs which is due to Balas et al. [32]. The
name is an acronym for “octahedral neighborhood search”. The idea is to associate
every vertex of the hypercube [0, 1]n with the corresponding facet of the hypercube’s
dual polytope, the n-dimensional octahedron. Then, starting from the point in the
octahedron that corresponds to the LP solution, rays are shot in various directions,
and it is tested whether one of the facet defining hyperplanes that are hit by some
ray corresponds to a feasible point x̃ ∈ {0, 1}n, Ax̃ ≤ b. It can be exploited that
successive facet hyperplanes hit by a ray correspond to 0/1 vectors that only differ
in one entry, which makes the updating procedure in the ray tracing algorithm very
efficient.

As Balas et al. proposed, we apply Octane only on the fractional subspace RF ,
i.e., all variables xj , j ∈ I \ F , with integral value are fixed to their current val-
ues. This approach significantly speeds up the computations without decreasing the
heuristic’s ability to find good solutions too much. Applying Octane only on the
fractional variables means to search for a rounded solution x̃ of x̌. Therefore, this
version of Octane is indeed a rounding heuristic in the classical sense.

9.2 Diving Heuristics

The general principle of diving heuristics is illustrated in Algorithm 9.1. Starting
with an optimal solution of the current subproblem’s LP relaxation, we round a
fractional variable, propagate the bound change, and resolve the LP. Since the LP
basis stays dual feasible after changing the bounds of the variables, the resolve can be
efficiently conducted using the dual simplex algorithm. The rounding and resolving
procedure is iterated until either the LP becomes infeasible or an integral solution
is found. One level of backtracking may optionally be applied in Step 8.

Of course, we use additional conditions to control the termination of the diving
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Algorithm 9.1 Generic Diving Heuristic

Input : Optimal LP solution x̌ of current subproblem.

Output : If available, one or more feasible integral solutions.

1. Set x̃ := x̌.

2. If F := {j ∈ I | x̃j /∈ Z} = ∅, stop and return the feasible integral solution x̃.

3. Apply the simple rounding heuristic of Section 9.1.2 on x̃ to potentially produce
an intermediate feasible integral solution.

4. Choose a fractional variable xj , j ∈ F , and a rounding direction.

5. If down rounding is selected, tighten ũj := ⌊x̃j⌋. Otherwise, tighten l̃j := ⌈x̃j⌉.

6. Call domain propagation to propagate the tightened bound.

7. Resolve the LP relaxation with the new bounds.

8. (optional) If the LP is infeasible, undo the previous propagations, apply the
opposite rounding, propagate, and resolve the LP again.

9. If the LP is still infeasible, stop with a failure. Otherwise, let x̃ be the new
optimal solution and goto Step 2.

loop in order to avoid too expensive dives. In SCIP, the main abort criterion is
based on the total number of simplex iterations used for the LP resolves in Steps 7
and 8. For most heuristics we demand that this number must stay below 5 % of the
current total number of simplex iterations used for solving the regular LP relaxations
of the branch-and-bound nodes.

The only difference in the following implementations of the generic diving heuris-
tic is how the selection in Step 4 is conducted. A common feature that is shared
by all diving heuristics is that variables xj are avoided in the selection that have
ζ−j = 0 or ζ+

j = 0, since they can be rounded to integral values anyway by the simple
rounding heuristic in Step 3. Additionally, we usually prefer binary variables over
general integer variables, since in most MIP models the binary variables represent
the most crucial decisions.

9.2.1 Coefficient Diving

Coefficient Diving selects a variable xj in Step 4 of Algorithm 9.1 that minimizes
min{ζ−j , ζ

+
j } but, as noted above, has min{ζ−j , ζ

+
j } ≥ 1. The variable is rounded

in the direction of the smaller variable lock number. As a tie breaker, we chose a
variable that has the smallest distance from its fractional value to the rounded value.

The rationale behind this selection is that this rounding reduces the feasibility
of only a small number of constraints and thereby hopefully leads to a small number
of violated constraints that have to be fixed by the LP resolve.

9.2.2 Fractionality Diving

In fractionality diving we select a variable with minimal fractionality φ(x̃j) = min{x̃j−
⌊x̃j⌋, ⌈x̃j⌉ − x̃j}, which is rounded to the nearest integer. This selection rule seems
to be a very natural choice as it tries to produce a rounding that stays close to the
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LP solution.

9.2.3 Guided Diving

Guided diving was invented by Danna, Rothberg, and Le Pape [72]. As it needs a
feasible integral solution as input, it can also be viewed as an improvement heuristic.
However, it perfectly fits into the generic diving scheme of Algorithm 9.1 and is
therefore presented here.

Danna et al. propose to use guided diving inside the branch-and-bound search
tree as a child selection rule during a plunge, compare Chapter 6: the variable to
branch on is selected by the regular branching rule, but the child to process next is
chosen such that the value of the branching variable is driven into the direction of
the variable’s value x̂j in the current incumbent solution. The hope is that there
are more feasible solutions in the vicinity of the current incumbent, and therefore,
the search should be guided to that area.

In contrast, guided diving as implemented in SCIP works outside the tree just
like all other diving heuristics. Therefore, we have the additional choice of selecting
the variable to round. Similar to fractionality diving, we select the variable that is
closest to its value in the incumbent solution.

9.2.4 Line Search Diving

The line search diving heuristic converts the child selection idea of Martin [159], see
Section 6.1, into a diving heuristic: if a variable xj with value (x̌R)j in the root node
of the search tree has now a value x̃j < (x̌R)j , the value of the variable seems to be
pushed downwards on the path from the root node to the current node. Therefore,
the idea is to further reinforce this pushing by rounding the variable down.

The geometric interpretation is as follows. We connect the root node LP solution
x̌R with the current solution x̃ by a line and extend this line until we hit an integer
value for one of the fractional integer variables. The first variable for which this
happens is rounded into the corresponding direction. Algebraically spoken, we round

the variable which has the smallest distance ratio
x̃j−⌊x̃j⌋
(x̌R)j−x̃j

for x̃j < (x̌R)j and
⌈x̃j⌉−x̃j

x̃j−(x̌R)j
for x̃j > (x̌R)j .

9.2.5 Pseudocost Diving

In Step 4 of Algorithm 9.1, pseudocost diving selects the variable with respect to the
pseudocost values Ψ−j and Ψ+

j that have been collected during the search process.
The pseudocosts give an estimate for each integer variable xj on how much the LP
objective value increases per unit change of the variable, see Section 5.3.

For each fractional variable xj , j ∈ F , we decide whether we want to round it
down or up. The primary criterion is similar as in the line search diving heuristic:
if the difference of the current value x̃j to the root LP value (x̌R)j gives a strong
indication that the variable is pushed to a certain direction, we select this direction
for the rounding. To be more specific, if x̃j < (x̌R)j − 0.4, we choose downwards
rounding, if x̃j > (x̌R)j + 0.4, we select upwards rounding. If the difference to the
root solution does not yield a decision, we look at the fractional part of the variable.
If x̃j − ⌊x̃j⌋ < 0.3 we round down, if x̃j − ⌊x̃j⌋ > 0.7, we round up. If this still does
not lead to a conclusion, we round down if Ψ−j < Ψ+

j and round up otherwise.
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After having decided for each variable in which direction it should be rounded,
we select a variable for the actual rounding that maximizes

√

⌈x̃j⌉ − x̃j ·
1 + Ψ+

j

1 + Ψ−j
(downwards) or

√

x̃j − ⌊x̃j⌋ ·
1 + Ψ−j

1 + Ψ+
j

(upwards),

respectively. This measure combines the fractionality of the variable with a pseudo-
cost ratio. It prefers variables that are close to their rounded value and for which
the estimated objective change per unit is much smaller in the selected direction
than in the opposite direction.

9.2.6 Vector Length Diving

The vector length diving heuristic is specifically tailored towards set covering and set
partitioning models, although it can also be applied to general MIPs. The idea is to
choose a rounding that covers the largest number of constraints with the smallest
possible objective value deterioration. The rounding direction for each variable is
selected to be opposite to the objective function direction, i.e., we round up if cj ≥ 0
and down otherwise. Since set covering or partitioning models usually have c ≥ 0
we will always fix the binary variables in these models to 1.

In order to decide which fractional variable we want to round, we look at the
ratio

f−j cj

|A·j |+ 1
(downwards) or

f+
j cj

|A·j |+ 1
(upwards)

of the direct objective increase and the number of constraints the variable is con-
tained in. Since we always round up for set covering or partitioning models, the
objective increase would be f+

j cj , and the length of the sparse column vector |A·j |
indicates how many constraints would be covered by the fixing of the variable to 1.
Therefore, we select a variable with smallest ratio in order to minimize the costs per
covered constraint.

9.3 Objective Diving Heuristics

In contrast to the “hard rounding” of diving heuristics that is conducted by tight-
ening a bound of a variable, objective diving heuristics apply “soft rounding” by
increasing or decreasing the objective coefficient of the variable in order to push it
into the desired direction without actually forcing it to the rounded value. Such a
soft rounding does not entail the risk of obtaining an infeasible LP. The downside
is that we can no longer apply domain propagation, and that the size of the LP is
not implicitly reduced as it is in regular diving due to the fixings of variables to
their lower or upper bounds. Furthermore, we have to deactivate the objective limit
imposed by the current incumbent, because the objective function does no longer
coincide with the objective of the MIP. Additionally, we have to find means to avoid
cycling.

The general approach to objective diving is similar to Algorithm 9.1 for regular
diving. In Step 5, the tightening of the local bounds is replaced by a corresponding
change in the objective function, the domain propagation of Step 6 and the back-
tracking of Step 8 are skipped, and the infeasibility of the LP is no longer an abort
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criterion. Note that the LPs can be resolved efficiently with the primal simplex al-
gorithm, since a change in the objective function does not destroy primal feasibility
of a previously optimal simplex basis.

9.3.1 Objective Pseudocost Diving

Objective pseudocost diving shares the ideas of pseudocost diving but primarily
uses soft rounding via the objective function instead of hard rounding with bound
changes. The variable and direction are selected according to the same criterion
as in pseudocost diving. If the variable xj should be rounded down, we change its
objective coefficient to cj := 1000(d+1) · |cj| with d being the current diving depth,
i.e., the number of LP resolves that have been performed during the dive. If the
variable should be rounded up, we use the negative of this value.

For each variable, we remember whether it was already soft-rounded downwards
or upwards. If a variable should be rounded a second time, we apply a hard rounding
into the other direction by changing its lower or upper bound. The rationale behind
this approach is the following: if a variable could not be driven, for example, to its
lower bound by dramatically increasing its objective coefficient, we take this as an
indication that fixing it to its lower bound would probably generate an infeasible
LP. Therefore, we apply a hard rounding into the opposite direction and round the
variable upwards.

After imposing a bound change, we resolve the LP with the dual simplex algo-
rithm. In this case, it may happen that the modified LP turns out to be infeasible,
which leads to the termination of the heuristic.

9.3.2 Root Solution Diving

The root solution diving is the objective diving analogon to the line search diving
heuristic. As in objective pseudocost diving we augment the soft roundings with hard
roundings in order to avoid cycling. However, the approach to combine the objective
and bound changes is slightly different.

In each iteration, we scale the current objective function with a factor of 0.9,
thereby slowly fading out the original objective coefficients. A soft rounding is
applied by increasing or decreasing the objective coefficient of the rounding variable
by 0.1 · max{|č|, 1}, with č being the objective value of the LP solution at the
subproblem where the dive was started. We count the number of downwards and
upwards soft roundings for each variable, and if the difference of these counters
becomes larger or equal to 10, we permanently apply a hard rounding into the
preferred direction by modifying the lower or upper bound of the variable. If at
any time a variable that has already been soft-rounded becomes integral, we fix the
variable to this value by changing both of its bounds.

9.3.3 Feasibility Pump

The feasibility pump is a sophisticated objective diving heuristic that was invented
by Fischetti, Glover, and Lodi [84] for pure integer programs and generalized by
Bertacco, Fischetti, and Lodi [40] to mixed integer programs. Achterberg and
Berthold [2] proposed a slight modification of the heuristic which they call objective
feasibility pump and that yields feasible solutions of better objective value.

Starting as usual from the optimal solution x̌ of the current subproblem’s LP
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relaxation, the solution is rounded to a vector x̃ = [x̌], with [ · ] defined by

[x]j :=

{
⌊xj + 0.5⌋ if j ∈ I
xj if j ∈ C = N \ I.

(9.1)

If x̃ is not feasible, an additional LP is solved in order to find a new point in the LP
polyhedron

P := {x ∈ Rn | Ax ≤ b, l ≤ x ≤ u}

which is, w.r.t. the integer variables I, closest to x̃, i.e., that minimizes

∆(x, x̃) :=
∑

j∈I

|xj − x̃j |.

The procedure is iterated by using this point as new solution x̌ ∈ P . Thereby,
the algorithm creates two sequences of points: one with points x̌ that fulfill the
inequalities, and one with points x̃ that fulfill the integrality requirements. The
algorithm terminates if the two sequences converge or if a predefined iteration limit
is reached.

In order to determine a point

x̌ := argmin{∆(x, x̃) | x ∈ P} (9.2)

in P , which is nearest to x̃, the following LP is solved:

min
∑

j∈I:x̃j=lj

(xj − lj) +
∑

j∈I:x̃j=uj

(uj − xj) +
∑

j∈I:lj<x̃j<uj

dj

s.t. Ax ≤ b

d ≥ x− x̃

d ≥ x̃− x

l ≤ x ≤ u.

(9.3)

The auxiliary variables dj are introduced to model the nonlinear function dj =
|xj − x̃j | for integer variables xj , j ∈ I, that are not equal to one of their bounds in
the rounded solution x̃.

The implementation of the feasibility pump in SCIP is slightly different from the
one proposed by Bertacco, Fischetti, and Lodi [40]. First, it involves the modifica-
tions proposed in [2] to better guide the search into the area of solutions with good
objective value. Second, it does not add auxiliary variables dj as in System (9.3)
for general integer variables, because adding and deleting columns produces over-
head for the LP solving. Instead, we set the objective coefficient to +1, −1, or 0,
depending on whether we want to round the variable down or up, or leave it on its
integral value. Of course, such an objective modification may lead to overshooting
the rounded value, and an objective of 0 does not necessarily mean that the vari-
able will stay at its current value. As a third modification, we skip the expensive
enumeration phase which is performed in stage 3 of the original feasibility pump
algorithm.

9.4 Improvement Heuristics

Starting from one or more feasible solutions, the goal of improvement heuristics is to
find feasible solutions with a better objective value. Besides the one opt heuristic,
all improvement heuristics implemented in SCIP are solving a sub-MIP.
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The first to use sub-MIP solves inside a MIP heuristic have been Fischetti and
Lodi [85] with their local branching, although they did not think of it as a heuris-
tic but as a different way of branching which is influenced by the current incum-
bent. Danna, Rothberg, and Le Pape [72] adopted the idea of solving sub-MIPs for
heuristic purposes and invented the relaxation induced neighborhood search (RINS)
method, which they integrated into Cplex. Rothberg [194] continued to pursue this
approach and developed mutation and crossover, which form the basis of Cplex’
very successful “solution polishing”. Crossover was independently developed by
Timo Berthold who implemented this heuristic in SCIP.

From the improvement heuristics, only one opt and crossover are active by de-
fault. Berthold [41] observed that local branching deteriorates, but any of RINS,
crossover, and mutation improves the performance of SCIP. However, combina-
tions of these heuristics produce worse results on his test set. In total, crossover
turned out to be the most effective of the four individual sub-MIP improvement
heuristics.

9.4.1 One Opt

The idea of one opt is very simple: given a feasible solution x̂, the value of a variable
xj can be decreased for cj > 0 or increased for cj < 0 if the resulting solution x̃ is
still feasible, i.e., Ax̃ ≤ b and l ≤ x̃ ≤ u. The modified solution would then have an
improved objective value.

The version of one opt as implemented in SCIP first calculates a value δj ∈
Z≥0 for each variable xj with j ∈ I and cj 6= 0. This value denotes how far the
variable can be shifted into the desired direction. If more than one variable can be
shifted, they are sorted by non-decreasing objective improvement capability |cjδj |
and consecutively shifted until no more improvements can be obtained. Finally, the
integer variables are fixed to their resulting values, and an LP is solved to obtain
best possible values for the continuous variables.

9.4.2 Local Branching

Local branching was proposed by Fischetti and Lodi [85]. It is based on the observa-
tion that often primal feasible solutions have additional solutions in their vicin-
ity. Therefore, Fischetti and Lodi implemented a branching scheme on top of
a MIP solver that would produce the case distinction

∑

j∈I |xj − x̂j | ≤ k and
∑

j∈I |xj − x̂j | ≥ k + 1, k ∈ Z>0, with the former case being enumerated first.
By dropping the requirement that the branch

∑

j∈I |xj − x̂j | ≤ k has to be
enumerated exhaustively, the local branching scheme can be easily converted into
a primal improvement heuristic. However, some control of the neighborhood size
k is necessary. The SCIP implementation of local branching starts with k = 18.
This value is increased by 50 % if a sub-MIP has been enumerated completely and
does not contain a better solution than the current incumbent. The neighborhood
is decreased by 50 % if the sub-MIP solve was aborted due to the node limit that
was applied.

9.4.3 RINS

The relaxation induced neighborhood search (RINS) solves sub-MIPs that are de-
fined by the current incumbent solution x̂ and the LP optimum x̌ of the current
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subproblem. RINS was invented by Danna, Rothberg, and Le Pape [72].
The sub-MIP that is solved in RINS is defined as

min{cTx | Ax ≤ b, l ≤ x ≤ u, xj ∈ Z for all j ∈ I,

xj = x̂j for all j ∈ I with x̂j = x̌j},

which means that an integer variable is fixed if both the incumbent and the current
LP solution agree on a common value. As in the local branching heuristic, the
difficult part is to control the calling frequency and the sub-MIP node limit that
is applied to avoid spending too much time on the heuristic. Similar to the diving
heuristics, the general approach in SCIP is to avoid spending more than a certain
fraction (10 % in the case of RINS) of the total number of branching nodes for solving
the sub-MIPs.

9.4.4 Mutation

Mutation and crossover are the two building blocks of a genetic algorithm. Roth-
berg [194] applied this idea to mixed integer programming to develop an improve-
ment heuristic, which he calls solution polishing. The mutation part as proposed
by Rothberg is to start from a feasible solution and fix a certain fraction of the
general integer variables to their values. The actual variables to fix are selected ran-
domly. Then, a sub-MIP is solved to identify the optimal values for the remaining
variables. Rothberg proposes to adjust the fixing rate dynamically. However, the
current implementation in SCIP chooses a static fixing rate of 80 %.

9.4.5 Crossover

A crossover of two or more feasible solutions is performed by fixing all integer vari-
ables on which the solutions agree to their specific values and leaving the other
variables free in their global bounds. Thus, the more solutions participate in the
crossover, the fewer variables become fixed and the larger is the subspace that will
be enumerated in the sub-MIP. Like mutation, crossover was developed by Roth-
berg [194]. Independently, it was invented by Berthold [41] and implemented in
SCIP.

The crossover implementation of SCIP uses three solutions to define the sub-
MIPs. By default, SCIP keeps the best 100 feasible solutions in a solution pool
sorted by non-decreasing objective value. After a solution has been found that takes
one of the first three slots in the pool, the crossover is performed on the best three
solutions. In the subsequent calls, a random selection of three solutions is used which
is biased towards the solutions of better objective value.

9.5 Computational Results

The following computational results assess the impact of the various primal heuristics
presented in the previous sections. We discuss the benchmarks only briefly, since a
very detailed computational study of the MIP heuristics of SCIP can be found in
Berthold [41].

In the default parameter settings, all primal heuristics except Octane, local
branching, RINS, and mutation are enabled. Table 9.1 yields the results for disabling
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test set none no round no diving no objdiving no improvement
ti

m
e

miplib +39 +10 +5 +17 0

coral −9 −4 −3 −6 −3

milp +7 +5 +2 +3 +2

enlight −8 −2 −13 +14 +1

alu −13 −1 −2 +3 0

fctp +3 +1 +4 −2 +4

acc +35 −3 −9 +62 −2

fc +82 +21 +3 −1 0

arcset +2 +1 −1 +1 +1

mik +481 +23 +2 +4 +2

total +14 +3 0 +4 0

n
o

d
es

miplib +111 +26 −3 +30 −1

coral +18 −3 −1 −3 −6

milp +42 +9 +5 +9 +3

enlight −13 0 −17 +19 0

alu −12 0 −3 −4 0

fctp +84 +35 0 −2 +4

acc +151 0 −5 +158 0

fc +774 +139 −2 −2 −10

arcset +53 +10 +5 +4 +1

mik +379 +24 +10 0 +1

total +59 +11 0 +11 −1

Table 9.1. Performance effect of different classes of primal heuristics for solving MIP instances.
The values denote the percental changes in the shifted geometric mean of the runtime (top) and
number of branching nodes (bottom) compared to the default settings in which all heuristics except
Octane are enabled. Positive values represent a deterioration, negative values an improvement.

all heuristics of a certain category: for the values in column “no round”, we disabled
all rounding heuristics, for column “no diving” we disabled all diving heuristics, col-
umn “no objdiving” shows the results for disabling the objective diving heuristics,
and for column “no improvement”, we disabled the improvement heuristics. More
detailed results can be found in Tables B.101 to B.110 in Appendix B.

As one can see, the performance impact of the heuristics is rather small. Even if
all heuristics are turned off (column “none”), the average solving time only increases
by 14 %. The numbers for disabling individual heuristic classes reveal a similar
behavior as the one that we already observed for cutting plane separation, see Sec-
tion 8.10: the sum of the degradations is significantly smaller than the performance
degradation for turning off all heuristics. A possible explanation is that the same
solution can be found by different heuristics, and thus, the absence of one class of
heuristics can be compensated by the remaining heuristics.

Tables 9.2, 9.3, and 9.4 show the results for disabling individual heuristics. Addi-
tionally, column “octane” of Table 9.2 indicates the results for enabling Octane, and
column “no backtrack” of Table 9.3 shows the impact of disabling the backtracking
Step 8 in the diving Algorithm 9.1.

The totals show that the most important heuristics are the feasibility pump,
RENS, and line search diving with performance impacts of 7 %, 6 %, and 4 %, re-
spectively. The other heuristics have almost no impact on the overall solving time,
although they can influence the performance on individual test sets. Paradoxically,
large differences for the diving (Table 9.3) and objective diving (Table 9.4) heuris-
tics can be observed on the enlight, alu, and acc test sets, although none of the
heuristics finds a solution to any of these instances. Still, the heuristics implicitly
modify the path of the search since their application can, for example, lead to a dif-
ferent alternative optimal LP solution at the current node, thereby influencing the
branching decision. Additionally, diving heuristics gather pseudocost and inference
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test set no RENS no simple rnd no rounding no shifting no int shifting octane
ti

m
e

miplib +2 −2 −2 −1 +2 +2

coral +6 0 −1 −2 −2 0

milp +10 0 −2 −5 +1 0

enlight −2 −1 −2 −2 −1 −2

alu +1 −1 0 −1 +1 +2

fctp +4 +12 +2 0 +3 0

acc 0 −1 −1 −2 0 −2

fc +21 +3 0 −3 0 +1

arcset +3 +2 +1 +4 +2 0

mik +9 +9 0 0 +2 0

total +6 0 −1 −2 0 +1

n
o

d
es

miplib +19 −1 −1 +1 +3 −1

coral +11 0 +2 −4 −6 0

milp +17 +1 0 −9 +3 0

enlight 0 0 0 0 0 0

alu 0 0 0 0 0 0

fctp +34 +13 0 0 +1 0

acc 0 0 0 0 0 0

fc +149 +8 +3 −6 −11 0

arcset +18 −1 +2 0 −1 0

mik +13 +1 0 0 −1 0

total +17 0 +1 −4 −1 0

Table 9.2. Performance effect of individual rounding heuristics for solving MIP instances. The
values denote the percental changes in the shifted geometric mean of the runtime (top) and number
of branching nodes (bottom) compared to the default settings in which all heuristics except Octane
are enabled. Positive values represent a deterioration, negative values an improvement.

statistics, see Section 5.3, which further affects the branching variable selection.
Table 9.5 compares the improvement heuristics. The columns “no oneopt” and

“no crossover” correspond to disabling the respective heuristics. The other three
columns show the results for replacing crossover by local branching, RINS, or muta-
tion, respectively. This means, we disabled crossover in these settings and enabled
the respective non-default improvement heuristic. It turns out that none of the
heuristics has a significant impact on the average performance on our test sets, with
the exception that applying local branching slows down the solving of the milp,
fctp, and fc instances, while RINS seems to help a little on the coral test set.

Finding Solutions Early

Although we have seen that primal heuristics do not help much to reduce the time to
solve MIP instances to optimality, their application may have a significant benefit:
heuristics can help to find good feasible solutions early in the search process.

In order to study the contribution of primal heuristics in this regard, we con-
ducted another computational experiment. Instead of measuring the time until an
optimal solution has been found and its optimality has been proven, we terminate
a run if a certain solution quality has been achieved. We quantify the quality of a
solution by the primal-dual gap

γ =







0 if |ĉ − č| ≤ ǫ,

(ĉ− č) / |č| if ĉ · č > 0,

∞ otherwise,

with ĉ being the objective value of the current incumbent and č being the current
global dual bound. All of our previous benchmark runs have been executed until
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test set no coef no frac no guided no linesearch no pscost no veclen no backtrack
ti

m
e

miplib 0 −6 −2 −1 −4 −3 −4

coral −8 0 −6 +4 −3 −7 −3

milp −2 +1 +10 +6 0 +2 +3

enlight +4 −4 +2 +13 +18 +9 +19

alu +36 −1 0 +8 −2 +5 −5

fctp −3 +4 −3 +2 +1 0 −2

acc +19 +13 −2 +15 +42 +16 +12

fc −1 0 0 0 +1 +1 0

arcset +5 −3 +1 +1 +10 −5 +6

mik +2 +1 0 +4 +2 0 +2

total −2 −1 0 +4 0 −2 0

n
o

d
es

miplib +1 −3 0 0 −3 −3 −6

coral −13 0 −4 +4 −5 −7 +2

milp −7 +4 +16 +10 0 +2 +5

enlight +3 +6 +2 +13 +19 +12 +11

alu +52 +3 0 +22 +6 +11 −2

fctp −3 +1 −4 0 +1 −2 −3

acc +72 +48 0 +48 +73 +50 +26

fc −2 −1 0 0 +1 +1 −1

arcset +6 −6 0 +2 +8 −8 +11

mik 0 0 0 0 −1 −2 +4

total −4 +1 +3 +6 0 −1 +2

Table 9.3. Performance effect of individual diving heuristics for solving MIP instances. The values
denote the percental changes in the shifted geometric mean of the runtime (top) and number of
branching nodes (bottom) compared to the default settings in which all heuristics except Octane
are enabled. Positive values represent a deterioration, negative values an improvement.

test set no obj pscost diving no rootsol diving no feaspump

ti
m

e

miplib −3 +1 +19

coral −4 −3 0

milp +6 +2 −1

enlight +15 +4 +3

alu +15 +13 +10

fctp −1 0 +2

acc +9 +15 +107

fc −1 0 0

arcset +6 +8 +8

mik −1 +2 +1

total +1 +1 +7

n
o

d
es

miplib −1 +3 +37

coral −1 −3 −3

milp +12 +7 −2

enlight +10 +1 +5

alu +18 +19 +17

fctp −2 +1 0

acc +24 +28 +239

fc 0 0 0

arcset +6 +7 +9

mik 0 −1 0

total +4 +3 +10

Table 9.4. Performance effect of individual objective diving heuristics for solving MIP instances.
The values denote the percental changes in the shifted geometric mean of the runtime (top) and
number of branching nodes (bottom) compared to the default settings in which all heuristics except
Octane are enabled. Positive values represent a deterioration, negative values an improvement.
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test set no oneopt no crossover local branching RINS mutation
ti

m
e

miplib −1 −4 0 −1 −1

coral +1 −2 +1 −5 −3

milp 0 +1 +5 +2 +1

enlight −3 −1 +1 +1 −2

alu −1 0 −1 0 0

fctp +3 +2 +6 −1 0

acc −2 −1 −1 −2 −1

fc 0 +1 +12 +2 +2

arcset +3 −4 −1 +4 +1

mik +3 −4 +2 −1 +3

total 0 −1 +2 −1 −1

n
o

d
es

miplib −4 −2 −4 −1 −2

coral −1 −4 −4 −9 −4

milp +2 +2 +1 0 +1

enlight 0 0 0 0 0

alu 0 0 0 0 0

fctp 0 +3 +3 −5 +3

acc 0 0 0 0 0

fc −10 +1 +1 +1 +1

arcset −1 −1 −1 −3 −1

mik 0 −1 −1 −1 −1

total −1 −1 −2 −3 −1

Table 9.5. Performance effect of individual improvement heuristics for solving MIP instances.
The values denote the percental changes in the shifted geometric mean of the runtime (top) and
number of branching nodes (bottom) compared to the default settings in which all heuristics except
Octane are enabled. Positive values represent a deterioration, negative values an improvement.

γ = 0. In contrast, Table 9.6 shows the average time and number of nodes needed
to reach γ = 0.05 and γ = 0.20, respectively. We compare both enabling and
disabling the default primal heuristics with solving the instances to optimality using
the default settings.

The first observation is that a user who only wants to get a solution with a
value that is guaranteed to be at most 5 % or 20 %, respectively, worse than the
optimal solution value receives his answer much faster: to reach 5 % gap, the average
runtime with enabled heuristics (“all (5 %)”) reduces by 57 %, and to reach 20 % gap
(“all (20 %)”), the reduction is even 74 %. This means, the average time to find a
solution and to prove that its value is within 20 % of the optimal value is only one
fourth of the time needed to solve the instances to optimality.

In this experiment, the primal heuristics show their potential. If they are disabled
(columns “none”), the runtime reduction drops from 57 % to 41 % for 5 % gap, and
from 74 % to 56 % gap for reaching 20 % gap. Thus, the average time to reach the
desired solution quality increases by 37 % and 69 %, respectively. The effect gets even
more prominent by looking at the average number of nodes: many of the values in
the “all (20 %)” column are close or equal to −100, which indicates that for many
or all of the instances of these test sets, the required gap is already achieved at the
root node. In contrast, this is not the case if the heuristics are disabled.
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test set all (5 %) none (5 %) all (20 %) none (20 %)
ti

m
e

miplib −62 −34 −72 −48

coral −59 −57 −73 −65

milp −48 −36 −75 −62

enlight 0 −10 −2 −11

alu +1 −14 −1 −14

fctp −65 −56 −95 −70

acc +1 +34 −3 +37

fc −29 +51 −52 +43

arcset −77 −57 −89 −62

mik −96 −41 −98 −67

total −57 −41 −74 −56

n
o

d
es

miplib −89 −39 −95 −64

coral −83 −64 −93 −78

milp −51 −27 −88 −75

enlight 0 −13 −3 −18

alu 0 −12 0 −12

fctp −82 −25 −100 −54

acc 0 +151 0 +151

fc −69 +571 −100 +531

arcset −97 −73 −100 −82

mik −100 −57 −100 −80

total −80 −41 −94 −68

Table 9.6. Impact of primal heuristics for reaching a gap of 5 % or 20 %, respectively. The values
denote the percental changes in the shifted geometric mean of the runtime (top) and number of
branching nodes (bottom) compared to solving the instances to optimality with the default settings.
Positive values represent a deterioration, negative values an improvement.



Chapter 10

Presolving

Presolving is a way to transform the given problem instance into an equivalent in-
stance that is (hopefully) easier to solve. Since many MIP instances appearing in
practice1 contain lots of irrelevant data that only slow down the solving process,
all existing competitive MIP solvers feature some form of presolving. The most
fundamental presolving concepts for mixed integer programming are described in
Savelsbergh [199]. Additional information can be found in Fügenschuh and Mar-
tin [90].

The task of presolving is threefold: first, it reduces the size of the model by
removing irrelevant information such as redundant constraints or fixed variables.
Second, it strengthens the LP relaxation of the model by exploiting integrality in-
formation, e.g., to tighten the bounds of the variables or to improve coefficients in
the constraints. Third, it extracts information such as implications or cliques
from the model which can later be used, for example for branching or cutting plane
separation.

Applying the domain propagation of Chapter 7 to the global problem instance R
already yields a simple form of presolving, namely the tightening of the variables’
global bounds l ≤ x ≤ u. In addition to this, presolving employs more sophisticated
rules, which may alter the structure of the problem.

We distinguish between primal and dual presolving reductions. Primal reduc-
tions are solely based on feasibility reasoning, while dual reductions consider the
objective function. The latter may exclude feasible solutions from the problem in-
stance, as long as at least one optimal solution remains.

Sections 10.1 to 10.4 describe the presolving algorithms that are specialized to a
certain type of constraints. These are implemented in the constraint handlers. Af-
terwards in Sections 10.5 to 10.8, we deal with general purpose presolving algorithms
that can be applied to any constraint integer program independently from the type
of the involved constraints. Section 10.9 presents restarts, a technique applied in
SAT solvers that is new for the MIP community. The computational experiments
of Section 10.10 evaluate the impact of presolving on the overall solving process.

10.1 Linear Constraints

Recall that linear constraints in SCIP are defined as

β ≤ aTx ≤ β

with the left and right hand sides β, β ∈ R ∪ {±∞} and coefficients a ∈ Rn.
The presolving of linear constraints is depicted in Algorithm 10.1. It commences

in Step 1 by looking at the individual constraints one at a time. For each constraint,

1in particular those that have been automatically generated, for example using a modeling
language such as Ampl [89] or Zimpl [133, 134]
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Algorithm 10.1 Presolving for Linear Constraints

1. For all linear constraints β ≤ aTx ≤ β:

(a) Normalize the constraint using Algorithm 10.2.

(b) If aj ∈ Z for all j ∈ N and aj = 0 for all j ∈ C, set β := ⌈β⌉ and β := ⌊β⌋.

(c) Tighten the bounds of the variables by calling domain propagation Algo-
rithm 7.1.

(d) If α > β or α < β, the problem instance is infeasible.
If α ≥ β, set β := −∞.
If α ≤ β, set β := +∞.
If β = −∞ and β = +∞, delete the constraint.

(e) If the constraint is a set partitioning constraint
∑

j∈S xj = 1 or a set
packing constraint

∑

j∈S xj ≤ 1, xj ∈ {0, 1} for all j ∈ S, add clique S
to the clique table.

(f) For all j ∈ I with aj > 0, α+ aj ≥ β, and α− aj ≤ β:

i. Set a′j := max{β − α,α − β}.

ii. Set β := β − (aj − a
′
j)lj and β := β − (aj − a

′
j)uj .

iii. Set aj := a′j .

For all j ∈ I with aj < 0, α− aj ≥ β, and α+ aj ≤ β:

i. Set a′j := min{α− β, β − α}.

ii. Set β := β − (aj − a
′
j)uj and β := β − (aj − a

′
j)lj .

iii. Set aj := a′j .

(g) If the constraint or the bounds of the variables have been modified in
Steps 1a to 1f, and if this loop has not already been executed 10 times,
goto Step 1a.

(h) If the constraint is an equation, i.e., β = β, call Algorithm 10.3.

(i) Call the dual aggregation Algorithm 10.4.

2. If no reductions have been found yet in the current presolving round, call the
constraint pair presolving Algorithm 10.5.

3. If no reductions have been found yet in the current presolving round, call the
dual bound reduction Algorithm 10.6.

4. If no reductions have been found yet in the current presolving round, call
Algorithm 10.7 for each linear constraint to upgrade it into a constraint of a
more specific constraint type.

the first operation is the constraint normalization of Step 1a as illustrated in Algo-
rithm 10.2. In the normalization, we remove fixed variables by subtracting their
contribution to the activity aTx of the constraint from the left and right hand sides.
Aggregated and multi-aggregated variables xk

⋆=
∑

j∈N sjxj + d are substituted for
their defining affine linear expression, again subtracting the constant akd from the
left and right hand sides. Afterwards, we multiply the constraint by +1 or −1 in
order to reach a standard form, which simplifies the upgrading of the constraint into
a more specialized constraint type, see below.

In the next step of the normalization, we try to scale the constraint to obtain
integral coefficients. Since we are dealing with floating point arithmetic, this scaling
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Algorithm 10.2 Normalization of Linear Constraints

Input : Linear constraint β ≤ aTx ≤ β and global bounds l ≤ x ≤ u.

Output : Normalized constraint.

1. Remove fixed variables: if lj = uj , set β := β−ajlj , β := β−ajlj , and aj := 0.

2. Replace aggregated and multi-aggregated variables by their representing affine
linear sum of active problem variables.

3. Multiply the constraint with +1 or −1 using the following rules in the given
order until the sign is uniquely determined (i.e., if neither or both signs would
satisfy the rule, proceed with the next rule):

(a) non-negative right hand side: β ≥ 0,

(b) finite right hand side: β <∞,

(c) larger absolute value of right hand side: |β| > |β|,

(d) more positive coefficients: |{j | aj > 0}| > |{j | aj < 0}|,

(e) use the sign +1.

4. Identify a rational representation of the coefficients. If the smallest common
multiple of the denominators is not too large, scale the constraint to obtain
integral coefficients.

5. If all coefficients are integral, divide them by their greatest common divisor.

involves numerical issues. First, the identification of the rational representation of
each coefficient is performed using the Euclidean algorithm, but in order to avoid too
large factors we restrict it to only succeed if a rational number

pj

qj
, pj ∈ Z, qj ∈ Z>0,

can been found with |pj

qj
− aj | ≤ ǫ := 10−9, |pj | ≤ pmax = 106, and qj ≤ qmax :=

δ̂
ǫ

= 1000. Second, the constraint is multiplied with the smallest common multiple
of the denominators qj , but this is only performed if s := scm(q1, . . . , qn) ≤ qmax

and max{|s · aj |} ≤ pmax. Finally, if the coefficients have already been integral or
if the multiplication with the smallest common multiple of the denominators was
successful, we divide the integral coefficients by their greatest common divisor.

After the normalization has been performed, we proceed with Step 1b of the
presolving Algorithm 10.1, which is to tighten the left and right hand sides: if all
coefficients aj are integral and all variables xj with aj 6= 0 are of integer type, we
can round up a fractional left hand side and round down a fractional right hand
side. This may already lead to the detection of infeasibility if β > β after rounding.

Step 1c applies the domain propagation algorithm of Section 7.1 in order to
tighten the global bounds of the variables. Afterwards, we can sometimes detect
infeasibility or redundancy in Step 1d by inspecting the final constraint activity
bounds α = min{aTx | l ≤ x ≤ u} and α = max{aTx | l ≤ x ≤ u}: if the constraint
cannot be satisfied within the activity bounds, the whole instance is infeasible. If
one of the sides can never be violated, it can be removed by setting it to infinity. If
both sides have been removed, the constraint is redundant and can be deleted from
the problem instance.

Step 1e checks whether the constraint has the special form of a set partitioning
or set packing constraint. Note that this form can sometimes be achieved by com-
plementing binary variables. If the constraint is a set partitioning or set packing
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constraint, we add the corresponding clique
∑

j∈S xj ≤ 1 to the clique table, see
Section 3.3.5. It may be possible to extract cliques from other constraints as well,
but this has not yet been implemented in SCIP.

The coefficient tightening of Step 1f aims to modify the constraint such that the
set of feasible integral solutions to the constraint stays unchanged, but the set of
fractional solutions is reduced. The reduction considers integer variables for which
the sides of the constraint become redundant if the variable is not on its lower or
upper bound, respectively. If this is the case, we can reduce the coefficient aj of the
variable and the sides β and β in order to obtain the same redundancy effect if the
variable is not on its bounds and the same restriction on the other variables if the
variable is set to one of its bounds.

Steps 1a to 1f are repeated as long as they modify the constraint or 10 rounds
of the loop have been executed. One could refrain from executing the above steps
in a loop and rely on the fact that all presolving methods are called cyclical by the
outer presolving loop anyway, see Section 3.2.5. However, we perform this internal
loop for performance reasons: since the data for the constraint and its variables
are currently stored in the first or second level cache of the CPU, it makes sense
to continue working on them immediately. The limit of 10 iterations is imposed to
ensure that we do not get stuck in a series of very small changes, while a different
presolving method could find a large reduction in one step.

10.1.1 Presolving of Equations

For linear equations, we can apply further presolving techniques, which are given
in Algorithm 10.3. We consider two cases: equations with two coefficients and
equations with more than two coefficients. In the case of two coefficients, Step 1
tries to represent one variable xk as an affine linear term of the other variable xj ,
i.e., as

xk :
⋆
= −

aj

ak

xj +
β

ak

. (10.1)

If xk is a continuous variable this is performed in Step 1a. Note that aggregating a
variable xk with xk : ⋆= sxj +d means to delete the variable xk from the set of active
problem variables and to update the bounds of xj :

⊲ If s > 0, update lj := max{lj ,
lk−d

s
} and uj := min{uj ,

uk−d
s
}.

⊲ If s < 0, update lj := max{lj ,
uk−d

s
} and uj := min{uj ,

lk−d
s
}.

⊲ If j ∈ I, set lj := ⌈lj⌉ and uj := ⌊uj⌋.

The tightened bounds of xj can then be used to further tighten the bounds of xk.
If xk is of integer type, the process can be iterated as long as the rounding provides
further strengthening.

We can also perform Aggregation (10.1) if both variables are integers and
aj

ak
∈ Z,

see Step 1b; in this case, the integrality of xk is implied by the integrality of xj .
The bound strengthening loop of the aggregation procedure that is provided as

infrastructure method of SCIP will automatically detect infeasibility if β
ak

/∈ Z.

Steps 1c to 1g deal with the case that both variables are integers but
aj

ak
/∈ Z.

This means the simple aggregation of Steps 1a and 1b does not work since the
integrality of xk would not be a consequence of the integrality of xj and still has
to be enforced. Therefore, xk cannot be removed from the set of active problem
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Algorithm 10.3 Presolving of Linear Equations

Input : Linear equation aTx = β and global bounds l ≤ x ≤ u.

1. If there are exactly two non-zero coefficients aj , ak 6= 0, j, k ∈ N , j 6= k, try to
aggregate one of the variables in the equation ajxj + akxk = β (roles of j and
k can be reversed):

(a) If k ∈ C, aggregate xk : ⋆= − aj

ak
xj + β

ak
and stop. Otherwise, j, k ∈ I.

(b) If
aj

ak
∈ Z, aggregate xk : ⋆= −

aj

ak
xj + β

ak
and stop.

(c) If aj /∈ Z or ak /∈ Z, stop.

(d) If β /∈ Z, the constraint is infeasible. Stop.

(e) Find a solution (x0
j , x

0
k) ∈ Z2 to the equation ajxj + akxk = β, which

does not necessarily have to respect the bounds of xj and xk.

(f) Generate a new integer variable y ∈ Z, initially with infinite bounds.

(g) Aggregate xj : ⋆= −aky + x0
j and xk : ⋆= ajy + x0

k.

2. If the constraint has more than two non-zero coefficients, if there exists a
variable xk with ak 6= 0 that does not appear in any other constraint, and if

⊲ k ∈ C, or

⊲
aj

ak
∈ Z for all j ∈ N , and aj = 0 for all j ∈ C,

then multi-aggregate xk : ⋆= β
ak
−
∑

j∈N\{k}
aj

ak
xj and replace the linear con-

straint by

⊲ β − akuk ≤
∑

j∈N\{k} ajxj ≤ β − aklk, if ak > 0, or

⊲ β − aklk ≤
∑

j∈N\{k} ajxj ≤ β − akuk, if ak < 0.

If β
ak

/∈ Z, the constraint is infeasible.

variables which is the purpose of aggregating variables. Instead we try to find values
a′j , a

′
k, x

0
j , x

0
k ∈ Z and create a new integer variable y ∈ Z, such that xj : ⋆= −a′ky+x0

j

and xk : ⋆= a′jy + x0
k are valid aggregations, which also yields a net reduction of one

variable.
Note that usually the constraint normalization Algorithm 10.2 has already scaled

the constraint to obtain integer coefficients aj , ak ∈ Z. If this is not the case (because
normalization failed due to numerical reasons), we have to stop. If both coefficients
are integral but the right hand side is fractional, the constraint proves the infeasibility
of the problem instance and we can abort in Step 1d.

Otherwise, all involved values are integers and we are searching in Step 1e for
an integral solution (x0

j , x
0
k) to the integral equation ajxj + akxk = β, i.e., we have

to solve a linear Diophantine equation. Note that x0
j and x0

k do not need to satisfy
the bounds of xj and xk. Since aj and ak are relatively prime due to Step 5 of the
normalization Algorithm 10.2, such a solution always exists and can easily be found
using the extended Euclidean algorithm.

Finally, we generate the new integer variable in Step 1f and perform the aggre-
gation in Step 1g. Because aj and ak are relatively prime, the set of all integral
solutions to the homogeneous equation ajxj + akxk = 0 is given by

(xj , xk) ∈
{
y · (−ak, aj)

∣
∣ y ∈ Z

}
.
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Hence, the aggregated variables xj : ⋆= −aky+x0
j and xk : ⋆= ajy+x0

k cover all integral

solutions of the inhomogeneous equation ajxj + akxk = β for y ∈ Z. Note that the
bounds of xj and xk are automatically transformed into bounds of the new variable
y during the aggregation.

The following example illustrates the reduction of Steps 1c to 1g:

Example 10.1 (aggregation of equations with two integer variables). Con-
sider the equation 3x1 + 8x2 = 37 with integer variables x1, x2 ∈ {0, . . . , 5}. Nei-
ther Step 1a nor 1b of Algorithm 10.3 can be applied. We find the initial solution
(x0

1, x
0
2) = (7, 2) and aggregate x1 : ⋆= −8y + 7 and x2 : ⋆= 3y + 2. During the first

aggregation we calculate bounds [7
8
− 1

8
· 5, 7

8
− 1

8
· 0] = [1

4
, 7

8
] for the integer variable

y which can be rounded to the infeasible bounds 1 ≤ y ≤ 0. Thus, we have detected
the infeasibility of the constraint within the domains x1, x2 ∈ {0, . . . , 5}.

Step 2 handles the case that the linear equation has more than two non-zero co-
efficients. Of course, we could also represent one of the variables as an affine linear
combination of the others and remove it from the problem instance—at least if the
variable is continuous or the affine linear combination is always integral. However,
aggregating a variable means that we have to substitute it with its defining affine lin-
ear combination in all other constraints. This would add non-zero coefficients to the
other constraints and make the coefficient matrix of the LP relaxation more dense,
which is usually not beneficial in terms of LP solving performance and numerical
stability.

Therefore, we perform such a multi-aggregation (an aggregation with more than
one variable in the defining affine linear combination) only if the aggregated variable
does not appear in other constraints. The typical case for such a substitution are
slack variables that have been explicitly added to the model, as can been seen in the
following example.

Example 10.2 (slack elimination). Consider the equation 4x1+7x2+3x3+s = 20
with s ≥ 0, and assume that s does not appear in other constraints. Then, Step 2
of Algorithm 10.3 would multi-aggregate s : ⋆= 20− 4x1 − 7x2 − 3x3 and replace the
equation with the inequality 4x1 + 7x2 + 3x3 ≤ 20.

10.1.2 Dual Aggregation

Step 1i of the presolving Algorithm 10.1 for the current linear constraint performs
a dual reduction that is shown in Algorithm 10.4. The basic idea of this dual
reduction is the following: if a variable xk has an objective coefficient ck ≥ 0, and if
one side of the linear constraint is the only constraint which may block the setting of
the variable to its lower bound, this side of the constraint will always be satisfied with
equality. Therefore, we can multi-aggregate the variable if its bounds will always be
satisfied by the aggregation and if it is either a continuous variable or the integrality
condition will also always be satisfied. Analogously, the same can be applied for
variables with ck ≤ 0 and a single constraint that blocks the setting of the variable
to its upper bound.

Step 1 of Algorithm 10.4 treats the case in which we want to satisfy the left hand
side with equality. The preconditions for this reduction are that
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Algorithm 10.4 Dual Aggregation for Linear Constraints

Input : Linear constraint β ≤ aTx ≤ β.

1. If β > −∞ and there is a variable xk with

(a) β − αk ≥ min{aklk, akuk},

(b) β − αk ≤ max{aklk, akuk},

(c) with

⊲ k ∈ C or
⊲

aj

ak
∈ Z for all j ∈ N and aj = 0 for all j ∈ C,

(d) and with

⊲ ak > 0, ck ≥ 0, and ζ−k = 1, or
⊲ ak < 0, ck ≤ 0, and ζ+

k = 1,

aggregate xk : ⋆= β

ak
−
∑

j 6=k
aj

ak
xj and delete the constraint. If k ∈ I and

β

ak
/∈ Z, the constraint is infeasible.

2. If β < +∞ and there is a variable xk with

(a) β − αk ≥ min{aklk, akuk},

(b) β − αk ≤ max{aklk, akuk},

(c) with

⊲ k ∈ C or
⊲

aj

ak
∈ Z for all j ∈ N and aj = 0 for all j ∈ C,

(d) and with

⊲ ak > 0, ck ≤ 0, and ζ+
k = 1, or

⊲ ak < 0, ck ≥ 0, and ζ−k = 1,

aggregate xk : ⋆= β
ak
−
∑

j 6=k
aj

ak
xj and delete the constraint. If k ∈ I and

β
ak

/∈ Z, the constraint is infeasible.

1. the resulting aggregation

xk :
⋆
=

β

ak

−
∑

j 6=k

aj

ak

xj

satisfies the bounds of xk for all values of xj , j 6= k (Conditions 1a and 1b),

2. either the variable is continuous or the aggregation is always integral (Condi-
tion 1c), and

3. the constraint at hand is the only constraint that blocks the setting of the
variable to its best bound w.r.t. the objective function (Condition 1d).

Recall that the variable lock numbers ζ−k and ζ+
k queried in Condition 1d denote

the number of constraints that block the shifting of the variable in the respective
direction, compare Definition 3.3 on page 38. For β > −∞, the conditions ak > 0
and ak < 0 state that this constraint locks the variable in the corresponding direction
and is therefore the reason for ζ−k = 1 or ζ+

k = 1, respectively.
Step 2 treats the case where we want to satisfy the right hand side of the con-

straint with equality. It applies the same reasoning as Step 1.
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10.1.3 Presolving of Constraint Pairs

After the individual constraint presolving in Step 1 of Algorithm 10.1 has been ap-
plied, the presolving continues with processing pairs of linear constraints as depicted
in Algorithm 10.5. Since this pairwise comparison of constraints is quite expensive
with its worst case runtime of O(nm2) for dense coefficient matrices, we only apply
it if no presolving method in the current presolving round found a reduction. The
first step of the pairwise presolving algorithm is to calculate positive and negative
signatures for all constraints. These are defined as follows:

Definition 10.3 (constraint signatures). Let Ci : β ≤ aTx ≤ β be a linear
constraint. Then, the bit vectors sig+

i , sig
−
i ∈ {0, 1}

64 with

(sig+
i )k =

{

1 if ∃j ∈ N : max{ajlj , ajuj} > 0 ∧ (j mod 64) = k,

0 otherwise

(sig−i )k =

{

1 if ∃j ∈ N : min{ajlj , ajuj} < 0 ∧ (j mod 64) = k,

0 otherwise

for k = 0, . . . , 63 are called positive and negative signatures of constraint Ci.

The signatures are used in the remaining algorithm to quickly rule out unin-
teresting pairs of constraints where no presolving reduction can be applied. Note
that they can be stored in 64 bit registers, and fast bit instructions can be used to
compare the signature vectors of two constraints. Our experience is (although not
supported with detailed computational results) that—with deactivated constraint
aggregation, see below—this signature filter suffices to discard almost all constraint
pairs on which no presolving can be applied, which significantly reduces the running
time of the algorithm.

After calculating the signatures, we proceed with the pairwise comparison loop
in Step 2. We perform a bookkeeping on the constraint modifications which allows
us to skip pairs for which none of the two constraints has been altered since the last
call to the comparison algorithm.

Step 2a compares the signatures and the sides of the constraints to check whether
reductions are possible. This is the case if the constraint coefficients are equal
(potentially after multiplying one of the constraints with−1), if one of the constraints
dominates one of the sides, or if at least one of the constraints is an equation, which
may yield the possibility to aggregate the constraints. If the positive and negative
signatures of the constraints differ, the coefficients cannot be equal. If the positive
signature of one constraint differs from the negative signature of the other constraint,
the coefficients cannot be negated versions of each other. The domination of the left
and right hand sides is defined as follows:

Definition 10.4 (domination of constraint sides). Let Cp : βp ≤ (ap)Tx ≤ βp

and Cq : βq ≤ (aq)Tx ≤ βq be a pair of linear constraints defined on variables
x ∈ [l, u], l, u ∈ R∪{±∞}. Then we say that the left hand side of Cp dominates the
the left hand side of Cq, if

βp ≥ βq and ∀j ∈ N ∀xj ∈ [lj , uj ] : ap
jxj ≤ a

q
jxj .

The right hand side of Cp dominates the right hand side of Cq, if

βp ≤ βq and ∀j ∈ N ∀xj ∈ [lj , uj ] : ap
jxj ≥ a

q
jxj .
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Algorithm 10.5 Pairwise Presolving of Linear Constraints

1. For all linear constraints Ci calculate the signature vectors sig+
i , sig

−
i ∈ {0, 1}

64.

2. For all pairs (Cp, Cq), p < q, of linear constraints where at least one of the two
has been modified since the last call to Algorithm 10.5:

(a) Compare the signatures to check whether reductions are possible:

coefseq := (sig+
p = sig+

q )∧ (sig−p = sig−q )

coefsneg := (sig+
p = sig−q )∧ (sig−p = sig+

q )

lhsdomp := (βp ≥ βq) ∧ (sig+
p ≤ sig+

q )∧ (sig−p ≥ sig+
q )

lhsdomq := (βp ≤ βq) ∧ (sig+
p ≥ sig+

q )∧ (sig−p ≤ sig+
q )

rhsdomp := (βp ≤ βq) ∧ (sig+
p ≥ sig+

q )∧ (sig−p ≤ sig+
q )

rhsdomq := (βp ≥ βq) ∧ (sig+
p ≤ sig+

q )∧ (sig−p ≥ sig+
q )

aggr := (βp = βp) ∨ (βq = βq)

If all of these Boolean values are 0, continue Loop 2 with the next pair.

(b) For all j ∈ N , as long as one of the Boolean values of Step 2a is 1:

i. If ap
j 6= aq

j , set coefseq := 0.
ii. If ap

j 6= −a
q
j , set coefsneg := 0.

iii. If ap
j > aq

j and lj < 0 set rhsdomp := 0 and lhsdomq := 0.
iv. If ap

j > aq
j and uj > 0 set lhsdomp := 0 and rhsdomq := 0.

v. If ap
j < aq

j and lj < 0 set lhsdomp := 0 and rhsdomq := 0.
vi. If ap

j < aq
j and uj > 0 set rhsdomp := 0 and lhsdomq := 0.

(c) If lhsdomp = 1, set βq := −∞. Else, if lhsdomq = 1, set βp := −∞.
If rhsdomp = 1, set βq := +∞. Else, if rhsdomq = 1, set βp := +∞.

(d) If βp = −∞ and βp = +∞, delete Cp and continue Loop 2.
If βq = −∞ and βq = +∞, delete Cq and continue Loop 2.

(e) If coefseq = 1, set βp := max{βp, βq}, βp := min{βp, βq}, delete Cq, and
continue Loop 2.
If coefsneg = 1, set βp := max{βp,−βq}, βp := min{βp,−βq}, delete Cq,
and continue Loop 2.

(f) If βp = βp, select k ∈ N to minimize

ω⋆ := min

{

ω
(

aq −
aq

k

ap
k

ap
)

| k ∈ N : ap
k, a

q
k ∈ Z \ {0}

}

.

If ω⋆ < ω(aq) and
∥
∥aq

j −
a

q

k

a
p

k

ap
∥
∥
∞
≤
∥
∥aq

j

∥
∥
∞

, replace Cq with Cq −
a

q

k

a
p

k

Cp,

i.e., with

βq −
aq

k

ap
k

βp ≤
(

aq −
aq

k

ap
k

ap
)T

x ≤ βq −
aq

k

ap
k

βp.

(g) If βp 6= βp and βq = βq, perform an analogous calculation as in Step 2f

to replace Cp with Cp −
a

p

k

a
q

k

Cq.
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The following is a simple reformulation of the domination definition:

Observation 10.5. For constraints defined as in Definition 10.4 the following holds:

1. βp dominates βq if and only if βp ≥ βq and

∀j ∈ N :
(
(lj < 0→ ap

j ≥ a
q
j) ∧ (uj > 0→ ap

j ≤ a
q
j )
)
.

2. βp dominates βq if and only if βp ≤ βq and

∀j ∈ N :
(
(lj < 0→ ap

j ≤ a
q
j) ∧ (uj > 0→ ap

j ≥ a
q
j )
)
.

The purpose of identifying constraint side dominations is to remove a redundant
side by applying the following proposition:

Proposition 10.6. Let Cp and Cq be defined as in Definition 10.4. Let C−∞q :

−∞ ≤ (aq)Tx ≤ βq and C+∞q : βq ≤ (aq)Tx ≤ +∞ be relaxations of Cq, and define
C := {Cp, Cq}, C−∞ := {Cp, C

−∞
q }, and C+∞ := {Cp, C

+∞
q }. Then the following

holds:

1. If βp dominates βq, then C(x) = C−∞(x) for all x ∈ [l, u].

2. If βp dominates βq, then C(x) = C+∞(x) for all x ∈ [l, u].

Proof. Recall that the function C(x) : Rn → {0, 1} maps to 1 if and only if x satisfies
all constraints C ∈ C. Thus, in order to prove Statement 1 we have to show that the
set of vectors which satisfy both constraints does not change if the left hand side of
Cq is replaced by −∞. Since C−∞ is a relaxation of C, C(x) = 1 implies C−∞(x) = 1
for all x ∈ [l, u]. To show the other direction, consider an arbitrary vector x ∈ [l, u]
with C−∞(x) = 1. Then,

∑

j∈N

aq
jxj ≥

∑

j∈N

ap
jxj ≥ βp ≥ βq

holds as a direct consequence of Definition 10.4. Therefore, Cq is satisfied and we
have C(x) = 1. Statement 2 can be shown analogously.

The constraint signatures may give a simple proof for the non-dominance of the
sides: if there is a potentially positive summand ajxj in Cp for which the corres-
ponding summand in Cq is always non-positive, or if there is a potentially negative
summand in Cq for which the corresponding summand in Cp is always non-negative,
constraint Cp cannot dominate the left hand side. Analogous reasoning applies to
the other domination relations.

If the signatures allow for a reduction, we proceed with Step 2b, which compares
the individual coefficients in the constraint to check exactly whether one of the
possible reductions can be applied. If applicable, the removal of redundant sides is
performed in Step 2c. If this resulted in a constraint with both sides being infinite,
the constraint is deleted in Step 2d. If the coefficients of the constraints are either
pairwise equal or pairwise negated, we can replace the two constraints by a single
constraint. This means in particular that equations and ranged rows that have been
disaggregated by the modeler are aggregated again into a single constraint.
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Algorithm 10.6 Dual Bound Reduction for Linear Constraints

1. Calculate redundancy bounds redlj and reduj for all j ∈ N .

2. For all variables j ∈ N :

(a) If cj ≥ 0 and xj is only down-locked by linear constraints, update uj :=
min{uj , redlj}.

(b) If cj ≤ 0 and xj is only up-locked by linear constraints, update lj :=
max{lj , reduj}.

Steps 2f and 2g add an equation to the other constraint in order to reduce the
weighted support of the constraint. We define the weighted support of a linear
constraint to be

ω(a) =
∣
∣{j ∈ B | aj 6= 0}

∣
∣

+4
∣
∣{j ∈ I \B | aj 6= 0}

∣
∣

+8
∣
∣{j ∈ C | aj 6= 0}

∣
∣,

i.e., each binary variable in the constraint counts as 1, each general integer variable
as 4, and each continuous variable counts as 8. The goal is to reduce the number
of non-zero entries, in particular the ones that belong to non-binary variables. This
can be useful to upgrade the constraint to a more specific type in Step 4 of Algo-
rithm 10.1. The additional hope is that it also helps the aggregation heuristic of
the complemented mixed integer rounding cut separator to find more cuts, and to
enable the generation of flow cover cuts, see Sections 8.2 and 8.5.

For numerical reasons, we restrict the aggregation to apply the coefficient elimi-
nation only on those variables where both coefficients ap

k and aq
k have integral values.

Additionally, we do not want the maximum norm of the coefficient vector to increase,
since this may also lead to numerical issues, in particular after many aggregations
applied to the same constraint. Note, however, that this aggregation of constraints
is disabled in the default settings of SCIP. Without aggregation, Algorithm 10.5
can usually be executed much faster, since then we can ignore the aggr variable in
Step 2a, which makes it more likely to skip the constraint pair.

10.1.4 Dual Bound Reduction

In Step 3 of the presolving Algorithm 10.1 for linear constraints, we perform an-
other dual reduction that can be applied to all variables that only appear in linear
constraints. Algorithm 10.6 illustrates the procedure.

Step 1 calculates so-called redundancy bounds for each variable j ∈ N , which are
defined as follows:

Definition 10.7 (redundancy bounds). Given a set C = {C1, . . . , Cm} of linear
constraints Ci : βi ≤ (ai)Tx ≤ βi, the values redlj , reduj ∈ R ∪ {±∞} defined as

redlj := min{xj ∈ R | αi
j + ai

jxj ≥ βi for all Ci with ai
j > 0 and

αi
j + ai

jxj ≤ βi for all Ci with ai
j < 0}

reduj := max{xj ∈ R | αi
j + ai

jxj ≥ βi for all Ci with ai
j < 0 and

αi
j + ai

jxj ≤ βi for all Ci with ai
j > 0}
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are called redundancy bounds of variable j w.r.t. the linear constraints C. Here, αi
j

and αi
j are the activity bound residuals of (ai)Tx w.r.t. xj , see Definition 7.1 on

page 83.

The purpose of calculating these values becomes clear with the following simple
proposition:

Proposition 10.8. Let C be a set of linear constraints that only have one finite side
β or β each, and let j ∈ N . Then the following holds:

1. All constraints Ci ∈ C that down-lock variable xj are redundant if xj ≥ redlj .

2. All constraints Ci ∈ C that up-lock variable xj are redundant if xj ≤ reduj .

Proof. Consider the inequality β ≤ aTx and assume aj > 0. Then, this constraint
down-locks variable xj , compare Definition 3.3 on page 38. For xj ≥ redlj we have
αj + ajxj ≥ β by Definition 10.7. This is equivalent to

∀{x ∈ [l, u] | xj ≥ redlj} : aTx ≥ β,

which means that the constraint is redundant if xj ≥ redlj . The remaining cases
can be shown analogously.

Proposition 10.8 is applied in Step 2 of Algorithm 10.6. If the objective coeffi-
cient cj is non-negative and all constraints that become “less feasible” by decreasing
xj are already redundant for xj ≥ redlj , then there is no reason to set xj to a larger
value than redlj . In other words, if the problem instance is feasible and bounded,
there is always an optimal solution x⋆ with x⋆

j ≤ redlj . Therefore, we can tighten
the upper bound in Step 2a and still preserve at least one optimal solution. Step 2b
is analogous.

10.1.5 Upgrading of Linear Constraints

The final Step 4 of the main presolving Algorithm 10.1 is to upgrade linear con-
straints into constraints of a more specific type. For this, the linear constraint
handler provides a callback mechanism which other constraint handlers can use to
take over linear constraints and convert them into equivalent constraints of their own
type. The linear constraint handler calculates certain statistics for each constraint
in order to simplify the upgrading process for the other constraint handlers. This is
shown in Algorithm 10.7.

First, we call the normalization Algorithm 10.2 another time, since the constraint
might have been modified since the last normalization in Step 1a of Algorithm 10.1.
Then, we calculate a number of statistical values for the constraint, namely the num-
ber of positive and negative coefficients for binary, general integer, and continuous
variables, the number of ±1 coefficients, and the number of positive and negative
integral and fractional coefficients. Finally, the upgrade methods of the constraint
handlers that are hooked to the linear constraint upgrading mechanism are called in
a specified order, see below. The first constraint handler that calls for the constraint
transforms it into one of its own type, and the linear representation of the constraint
is deleted.

The upgrade methods of other constraint handlers can use the calculated statis-
tics, but can also consider the coefficient vector and left and right hand sides directly.
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Algorithm 10.7 Upgrading of Linear Constraints

Input : Linear constraint β ≤ aTx ≤ β.

1. Call Algorithm 10.2 to normalize the constraint.

2. Calculate the following statistics:

nvars := |{j ∈ N | aj 6= 0}|

nposbin := |{j ∈ B | aj > 0}|

nnegbin := |{j ∈ B | aj < 0}|

nposgenint := |{j ∈ I \B | aj > 0}|

nneggenint := |{j ∈ I \B | aj < 0}|

nposcont := |{j ∈ C | aj > 0}|

nnegcont := |{j ∈ C | aj < 0}|

nposcoefone := |{j ∈ N | aj = 1}|

nnegcoefone := |{j ∈ N | aj = −1}|

nposcoefint := |{j ∈ N | aj ∈ Z>0 \ {1}}|

nnegcoefint := |{j ∈ N | aj ∈ Z<0 \ {−1}}|

nposcoeffrac := |{j ∈ N | aj ∈ R>0 \ Z}|

nnegcoeffrac := |{j ∈ N | aj ∈ R<0 \ Z}|

3. Call all registered constraint handlers in the given priority order until one of
them took over the constraint. If successful, delete the linear constraint.

However, all constraint handlers for special types of linear constraints available in
SCIP can decide the membership of the constraint to their class by inspecting the
statistics only. They are called in the following order and verify the given statis-
tics. Note that the tests check whether it is possible to reach the standard form
of the constraint by complementing some of the binary variables and optionally by
multiplying the constraint with −1.

1. set covering constraints:
∑

j∈S xj ≥ 1 with S ⊆ B

⊲ nposbin + nnegbin = nvars,

⊲ nposcoefone + nnegcoefone = nvars,

⊲ β = 1− nnegcoefone or β = nposcoefone− 1, and

⊲ β = −∞ or β = +∞.

2. set packing constraints:
∑

j∈S xj ≤ 1 with S ⊆ B

⊲ nposbin + nnegbin = nvars,

⊲ nposcoefone + nnegcoefone = nvars,

⊲ β = nposcoefone− 1 or β = 1− nnegcoefone, and

⊲ β = −∞ or β = +∞.

3. set partitioning constraints:
∑

j∈S xj = 1 with S ⊆ B
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⊲ nposbin + nnegbin = nvars,

⊲ nposcoefone + nnegcoefone = nvars, and

⊲ β = β = nposcoefone− 1 or β = β = 1− nnegcoefone.

4. knapsack constraints: aTx ≤ β with aj ∈ Z≥0 for j ∈ B, aj = 0 for j ∈ N \B,
and β ∈ Z≥0

⊲ nposbin + nnegbin = nvars,

⊲ nposcoefone + nnegcoefone + nposcoefint + nnegcoefint = nvars, and

⊲ β = −∞ or β = +∞.

5. variable bound constraints: β ≤ xi + ajxj ≤ β with i ∈ N \B and j ∈ I

⊲ nvars = 2,

⊲ nposbin + nnegbin ≤ 1, and

⊲ nposcont + nnegcont ≤ 1.

Note that the knapsack constraint handler does not need to check whether the
resulting right hand side after transforming the coefficients into a ∈ Z≥0 is integral
and non-negative. This is already ensured by the presolving of linear constraints,
compare Steps 1b and 1d of Algorithm 10.1.

10.2 Knapsack Constraints

A binary knapsack constraint is a linear constraint

aTx ≤ β

with a ∈ ZB
≥0, xj ∈ {0, 1} for j ∈ B, and β ∈ Z≥0. The coefficients aj are called

weights, the right hand side β is called capacity of the knapsack.
To transform a linear inequality on binary variables with integral coefficients

into a knapsack constraint, it is sometimes necessary to complement some of the
binary variables using x̄j = 1 − xj . If we want to access or modify the weight of
a negated variable x̄j , we write aj̄ . In terms of the active problem variables, such
a “complemented” coefficient means to have a negative coefficient aj = −aj̄ and

an updated right hand side β − aj̄ . However, it is easier to think of xj and x̄j as
being two different variables with both having non-negative coefficients. For ease of
notation, we assume that there are no complemented variables in the initial form of
the knapsack constraint.

Presolving for knapsack constraints is much easier than for linear constraints.
On the one hand, we can usually rely on the fact that all presolving methods of the
linear constraint handler have already been applied and the constraint was upgraded
into a knapsack constraint afterwards. On the other hand, knapsack constraints are
much simpler, since they are pure inequalities that consist of only binary variables
and non-negative integral coefficients. There is one ingredient implemented in
the knapsack presolving algorithm, however, that is not available for general linear
constraints, at least not in the SCIP implementation: coefficient tightening and
lifting using clique information.
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Algorithm 10.8 Presolving for Knapsack Constraints

Input : Knapsack constraint aTx ≤ β with item set S := {j ∈ N | aj > 0}.

1. Remove fixed variables: if lj = uj , set β := β − aj lj , and aj := 0.

2. Calculate d := gcd(a), and set aj := aj/d and β := ⌊β/d⌋.

3. Tighten the bounds of the variables by calling the domain propagation Algo-
rithm 7.3. Remove variables from S that have been fixed to zero.

4. Sort the item set S = {j1, . . . , jp} by non-increasing weight aj1 ≥ . . . ≥ ajp
.

5. Let k be the largest position in S = {j1, . . . , jp} with ajk
+ ajk+1

> β. If k
exists, then do for all l = k + 1, . . . , p:

(a) If ajk
+ajl

> β add the clique xj1 + . . .+xjk
+xjl

≤ 1 to the clique table.

6. Let α := aT
1. For all k = 1, . . . , p:

(a) If αjk
:= α− ajk

≥ β, break the loop.

(b) Set ∆ := β − αjk
, ajk

:= ajk
−∆, β := β −∆, and α := α−∆.

7. Partition S into pairwise disjoint cliques S = Q1 ∪ . . . ∪ Qq using a greedy
algorithm. For each clique Ql let aQl

:= max{aj | j ∈ Ql} be the maximum
weight in the clique, and let αQ :=

∑q
l=1 aQl

be the sum of the maximum
clique weights. Sort the cliques by non-increasing aQl

. For all l = 1, . . . , q:

(a) If αQ
Ql

:= αQ − aQl
≥ β, break the loop.

(b) Set ∆ := β − αQ
Ql

, aj := max{aj −∆, 0} for all j ∈ Ql, β := β −∆, and

αQ := αQ −∆.

(c) If min{aj + ak | j, k ∈ Ql, j 6= k} ≤ β, add set packing constraint
∑

j∈Ql
xj ≤ 1 to the problem instance.

Update S to account for the coefficients which have been set to zero.

8. For all binary variables xk, k ∈ B, and values v ∈ {0, 1}:

(a) Calculate the clique residuals Cxk=v
l := Cl \ {j ∈ Cl | xk = v → xj = 0}

for all cliques Cl, l = 1, . . . , q, in the clique partition of S.

(b) Let aQ
xk=v

l
:= max{aj | j ∈ Q

xk=v
l } be the maximum weight in the clique

residual, and let αQxk=v

:=
∑q

l=1 aQ
xk=v

l
be the sum of the maximum

clique residual weights.

(c) If αQxk=v

< β, set q := q + 1, ∆ := β − αQxk=v

and

i. if v = 1, set ak := ak + ∆, Qq := {k}, and update S := S ∪ {k},
ii. if v = 0, set ak̄ := ak̄ + ∆, Qq := {k̄}, and update S := S ∪ {k̄} with

ak̄ being the coefficient for the complemented variable x̄k of xk.

9. For all pairs of complemented variables k, k̄ ∈ S:

(a) If ak > ak̄, set β := β − ak̄, ak := ak − ak̄, ak̄ := 0, and S := S \ {k̄}.

(b) If ak < ak̄, set β := β − ak, ak̄ := ak̄ − ak, ak := 0, and S := S \ {k}.

(c) If ak = ak̄, set β := β − ak, ak := 0, ak̄ := 0, and S := S \ {k, k̄}.

10. Sort item set S by non-increasing weight aj : S = {j1, . . . , jq}.
For all k = 1, . . . , q − 1:

(a) If ajk
+ ajq

≤ β, break the loop.

(b) Set ajk
:= β. If k = q − 1, set ajq

:= β.
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Algorithm 10.8 describes the proceeding of the presolving for a single knapsack
constraint, which is successively applied to all knapsack constraints of the problem
instance. Step 1 cleans up the constraint data by removing all fixed variables
from the constraint. If a variable is fixed to 1, its weight has to be subtracted from
the capacity. Note that additionally, all variables are replaced by their unique
representative, which is either an active problem variable xj , or the negation x̄j of
an active problem variable. In Step 2, the weights are divided by their greatest
common divisor. Of course, the capacity has to be divided by the same value, and
it can be rounded down afterwards.

In Step 3, we tighten the bounds of the variables by calling the domain propaga-
tion Algorithm 7.3 on page 90 and clean up the item set by removing the variables
that have been fixed to zero in the propagation.

10.2.1 Clique Extraction

As all constraints in SCIP, a knapsack constraint is internally represented in a sparse
fashion, i.e., only the non-zero coefficients and their corresponding indices are stored.
The set S denotes this index set, and we make sure in Step 4 that it is stored in an
order of non-increasing weights aj . Then in Step 5, it is easy to extract all maximal
cliques induced by the knapsack constraint in order to add them to the clique table
of SCIP: they always consist of the variables with the k largest coefficients and one
additional variable.

Definition 10.9 (maximal induced clique). Let C : Rn → {0, 1} be a constraint
on variables xj , j ∈ N , and let B ⊆ N be the subset of binary variables. Then,
Q ⊆ B is called induced clique of C if

C(x) = 1 ⇒
∑

j∈Q

xj ≤ 1.

An induced clique Q of C is called maximal induced clique of C if

C(x) = 1 6⇒
∑

j∈Q∪{q}

xj ≤ 1

for all q ∈ B \Q.

Proposition 10.10 (maximal induced cliques of knapsacks). Let aTx ≤ β be
a knapsack constraint on binary variables xj , j ∈ S := {1, . . . , p} ⊆ B, with positive
integral coefficients a1 ≥ . . . ≥ ap and a1 ≤ β. Then, Q ⊆ S with |Q| ≥ 2 is a
maximal induced clique of the knapsack constraint if and only if

1. Q = {1, . . . , k} ∪ {l} with 1 ≤ k < l ≤ p,

2. ak + al > β, and

3. k = p− 1 or ak+1 + ak+2 ≤ β.

Proof. Let Q = {1, . . . , k} ∪ {l}, 1 ≤ k < l ≤ p, with ak + al > β. Then, for all
i, j ∈ Q, i 6= j, we have

ai + aj ≥ ak + al > β,

which means that all variables in Q are pairwise contradictory and Q is a clique. If
k = p− 1 then Q = S, and the clique is maximal because due to a1 ≤ β no variable
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j ∈ B \ S (i.e., aj = 0) can be a member of an induced clique. Otherwise, assume
ak+1 + ak+2 ≤ β, and suppose that Q is not a maximal induced clique. Then, there
exists l′ ∈ S \Q with aj + al′ > β for all j ∈ Q. In particular, al + al′ > β. From
l′ ∈ S \Q and Q = {1, . . . , k} ∪ {l} it follows that either l = k + 1 and l′ ≥ k + 2 or
l ≥ k + 2 and l′ ≥ k + 1. In both cases we have

β < al + al′ ≤ ak+1 + ak+2 ≤ β,

which is a contradiction. This completes the proof of the maximality of clique Q.
To prove the other direction of the proposition, assume that Q is a maximal

induced clique of the knapsack constraint and there are more than two variables
after the first “hole” in the index set Q, i.e., there exist k ∈ S \Q and l, l′ ∈ Q with
k < l < l′. Since Q is an induced clique, we have aj + al′ > β for all j ∈ Q \ {l′}. It
follows that

aj + ak ≥ aj + al′ > β

for all j ∈ Q \ {l′} and
ak + al′ ≥ al + al′ > β.

Therefore, Q ∪ {k} is an induced clique, which contradicts the maximality of Q.
Thus, Condition 1 holds. Condition 2 holds because Q is a clique, and Condition 3
follows from the maximality of Q.

10.2.2 Coefficient Tightening

Steps 6 and 7 of Algorithm 10.8 tighten the weights of the knapsack constraint,
which means to modify the weights and the capacity such that the set of feasible
integral solutions to the knapsack constraint stays unaffected, but the LP relaxation
is improved.

Step 6 performs the easy modifications that are already justified only by the
weights and capacity. If the sum of all weights except ak is at most the capacity
β, the constraint is redundant for xk = 0. If this sum αk is smaller than β, we
can decrease the weight and the capacity by the difference ∆ = β − αk, since then,
the constraint is also redundant for xk = 0, and it has the same remaining capacity
β−ak for xk = 1. However, the LP relaxation becomes stronger: if all other variables
j 6= k are set to xj = 1, the LP value of xk is forced to be 0 instead of having the

possibility to be anywhere in
[
0, β−αk

ak

]
.

Example 10.11 (coefficient tightening for knapsacks). Consider the knapsack
constraint

12x1 + 10x2 + 7x3 + 7x4 + 5x5 + 4x6 + 3x7 + x8 ≤ 42.

The sum of all weights is α = 49. The maximal residual activity bound for x1 is
α1 = 49−12 = 37 < 42. Therefore, we can reduce a1 and β by 42−37 = 5 to obtain

7x1 + 10x2 + 7x3 + 7x4 + 5x5 + 4x6 + 3x7 + x8 ≤ 37

and an updated weight sum of α = 44. For the next item x2, the maximal residual
activity bound is α2 = 44− 10 = 34 < 37. We can reduce a2 and β by 37 − 34 = 3
to obtain

7x1 + 7x2 + 7x3 + 7x4 + 5x5 + 4x6 + 3x7 + x8 ≤ 34.

For x3 we have α3 = 41− 7 = 34 = β and the algorithm aborts.
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Step 7 applies the same reasoning as Step 6, but takes more information into
account, namely the clique table provided by SCIP. Thus, the reductions of Step 7
are a superset of the ones of Step 6. However, if the knapsack consists of more than
|S| > 1000 items, we skip Step 7 since it gets too expensive: the greedy algorithm
which is used to partition S into cliques has a worst case runtime of O(|S|2 · |Q|)
with Q being the set of cliques stored in the clique table.

The reasoning for coefficient tightening using a clique partition S = Q1∪ . . .∪Qq

is the following. First, it is clear that from each clique Ql only one variable can be set
to one. This means the maximum activity of the knapsack constraint is αQ, which is
the sum of the cliques’ maximum weights. If there is a clique Ql with residual activity
bound αQ

Ql
:= αQ − aQl

≤ β, the knapsack constraint becomes redundant if we do

not set any of the variables in Ql to one. As in Step 6, if αQ
Ql
< β, we can decrease

the weights of the clique elements and the capacity by the excess ∆ := β − αQ
Ql

in
order to tighten the LP relaxation. Note that this may reduce the weights of some
variables to negative values. These weights can be replaced by zero, which further
tightens the LP relaxation of the knapsack constraint.

Note that all reductions of Step 7 are only valid if the feasibility of the involved
cliques is enforced. For a technical reason, the membership of the clique in the clique
table does not suffice to ensure that it will not be violated by a solution. Therefore,
we have to manually add corresponding set packing constraints in Step 7c to enforce
cliques that are not implied anymore by the knapsack constraint itself. As the
following example shows, this may lead to the complete disaggregation of an aggre-
gated precedence constraint, which is usually not desirable in presolving: although
the disaggregation tightens the LP relaxation, it can produce lots of additional con-
straints, which slow down the LP solving process. Therefore, Step 7 can be disabled
via a parameter setting.

Example 10.12 (disaggregation of precedence constraints). Consider the
constraint qy + x1 + . . . + xq ≤ q with y, x1, . . . , xq ∈ {0, 1}. The cliques ex-
tracted from this constraint are {y, xl}, l = 1, . . . , q. In the first round of the main
presolving loop, Step 7 of Algorithm 10.8 partitions the indices into the cliques
Q1 = {y, x1}, Q2 = {x2}, . . . , Qq = {xq}. Note that the last q − 1 cliques are not

maximal. The algorithm determines that αQ
Q1

= q − 1 < q which leads to the
replacement of the knapsack constraint with

(q − 1)y + x2 + . . . + xq ≤ q − 1 and y + x1 ≤ 1.

This is repeated in the subsequent presolving rounds with the other cliques {y, xl}
such that, finally, the single knapsack constraint has been disaggregated into the q
set packing constraints y + xl ≤ 1, l = 1, . . . , q.

10.2.3 Clique Lifting

Step 8 of Algorithm 10.8 increases the weights of the knapsack items and lifts ad-
ditional variables into the knapsack, i.e., assigns positive weights to variables xj ,
j ∈ B \ S. This is performed by exploiting the implication graph and clique table
of SCIP, see Section 3.3.5, and using the clique partition S = Q1 ∪ . . . ∪Qq calcu-
lated in Step 7. As already said, calculating the clique partition can be expensive if
there are many items in the knapsack. Therefore, we skip this step if |S| > 1000.

For each binary variable xk, k ∈ B, and for their complements x̄k we propagate
the implications and cliques after tentatively fixing the (complemented) variable
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to 1. This means, we remove all items of the cliques Ql in the clique partition that
are implied to be 0 by xk = 1 or xk = 0, which yields the clique residuals Qxk=1

l

and Qxk=0
l , respectively. Thus, if xk = v ∈ {0, 1}, the maximum activity αQxk=v

of the knapsack constraint is equal to the sum of the maximum weights aQ
xk=v

l
in

the clique residuals. If this sum is smaller than the capacity β, we can increase the
weight of the (complemented) variable xk (x̄k) by ∆ := β − αQxk=v

in order to fill
up the slack of the redundant inequality.

Note that the modification of the weight affects the clique partition and the
maximum weights therein. For simplicity, we treat each modification as an addition
of a new item with weight ∆ to the knapsack and extend the clique partition by a new
clique Qq+1 = {k} or Qq+1 = {k̄}. Thus, a previously modified weight affects the
calculation of the subsequent weight liftings. Therefore, the procedure is sequence
dependent. Currently, we just use the ordering of the binary variables as it is given
in the data structures of SCIP.

Since the clique lifting of Step 8 might add complemented versions of variables
that are already contained in the knapsack, we should clean up the constraint in
the follow-up Step 9. A pair (xk, x̄k) of complemented variables will always con-
tribute with at least the minimum min{ak, ak̄} of their weights to the activity of the
knapsack. Therefore, we can subtract this minimum from the capacity and the two
weights, leaving at most one of the two items with positive weight in the knapsack.

Finally, Step 10 is a less expensive version of the clique lifting of Step 8, which
only considers the cliques implied by the knapsack constraint itself. If the selection
of one item forces all other variables in the knapsack to be zero, the weight of this
item can be increased to be equal to the capacity. This property is very easy to
verify, since we only have to check for each weight ajk

, k < q, whether ajk
+ajq

> β.
Due to the processing of the items in a non-increasing order of their weights, we can
immediately stop if the condition is no longer satisfied.

10.3 Set Partitioning, Set Packing, and Set Covering Con-
straints

Set partitioning, packing, and covering constraints (“sppc constraints”) model re-
strictions which demand that exactly one, at most one, or at least one item of a set
of items is selected. They are of the form

∑

j∈S

xj = 1 (set partitioning)

∑

j∈S

xj ≤ 1 (set packing)

∑

j∈S

xj ≥ 1 (set covering)

with S ⊆ B. As for knapsack constraints, some of the binary variables may be
complemented in order to achieve these standard representations.

The presolving possibilities for sppc constraints are rather limited, since the
structure of a single constraint is not very rich: the equation or inequality itself
defines the only non-trivial facet of the associated polyhedron. This is because
coefficient matrices A ∈ {0, 1}m×n with m ≤ 2 are always totally unimodular. It is,
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Algorithm 10.9 Presolving for Set Partitioning, Packing, and Covering Constraints

1. For all sppc constraints Ci :
∑

j∈Si
xj ⋄i 1, ⋄i ∈ {=,≤,≥}:

(a) Tighten the bounds of the variables by calling domain propagation Algo-
rithms 7.5 and 7.7.

(b) Remove the variables from S that have been fixed to zero.

2. For all sppc constraints Ci calculate the positive signature sig+
i ∈ {0, 1}

64.

3. For all pairs (Cp, Cq), p < q, of sppc constraints where at least one of the two
has been modified since the last execution of this loop:

(a) If sig+
p 6≤ sig+

q and sig+
p 6≥ sig+

q , continue with the next pair.

(b) If Sp = Sq:

i. If ⋄p = ⋄q, delete constraint Cq,
ii. else if ⋄p = “=”, delete constraint Cq,
iii. else if ⋄q = “=”, delete constraint Cp,
iv. else set ⋄p := “=” and delete constraint Cq.

(c) If Sp ⊂ Sq:

i. If ⋄p ∈ {=,≥} and ⋄q ∈ {=,≤}, set xj := 0 for all j ∈ Sq \ Sp.
Set ⋄p := “=” and delete constraint Cq.

ii. If ⋄p ∈ {=,≥} and ⋄q = “≥”, delete constraint Cq.
iii. If ⋄p = “≤” and ⋄q ∈ {=,≤}, delete constraint Cp.

(d) If Sp ⊃ Sq:

i. If ⋄p ∈ {=,≤} and ⋄q ∈ {=,≥}, set xj := 0 for all j ∈ Sp \ Sq.
Set ⋄q := “=” and delete constraint Cp.

ii. If ⋄p = “≥” and ⋄q ∈ {=,≥}, delete constraint Cp.
iii. If ⋄p ∈ {=,≤} and ⋄q = “≤”, delete constraint Cq.

however, still possible to combine several constraints in order to strengthen them or
to remove redundant constraints.

The presolving procedure is presented in Algorithm 10.9. The first step is
to call the domain propagation procedures of Algorithms 7.5 and 7.7 for each sppc
constraint, see pages 92 and 95. This will already identify and delete redundant
constraints from the problem instance. Afterwards, we remove variables from set S
that are fixed to zero.

For each sppc constraint Ci, Step 2 calculates a signature vector sig+
i ∈ {0, 1}

64,
see Definition 10.3 on page 140. These signature vectors help to speed up the pairwise
presolving loop of Step 3. Namely, if neither sig+

p ≤ sig+
q nor sig+

p ≥ sig+
q , none of

the two index sets Sp and Sq is included in the other, and we can skip the pair in
Step 3a. Otherwise, we perform a complete comparison of the index sets in order to
decide whether they are equal, one of them is a proper subset of the other, or they
are not subsets of each other.

If the index sets are identical, we look at the type of the constraints in Step 3b.
If the constraints have the same type, they are completely identical, and one of them
can be discarded. If one of the constraints is a set partitioning constraint, it always
dominates the other, and the other constraint can be deleted. In the remaining
case, one is a set packing and the other is a set covering constraint, which means
that they can be combined to a set partitioning constraint.

If Sp ⊂ Sq, we check for the constraint types in Step 3c. If Cp is a set
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Algorithm 10.10 Presolving for Variable Bound Constraints

Input : Variable bound constraint β ≤ xi + ajxj ≤ β.

1. Tighten the bounds of the variables by calling domain propagation Algo-
rithm 7.9.

2. If j ∈ B, β > −∞, and β = +∞:

(a) If aj > 0 and li > β − aj , set aj := β − li.

(b) If aj < 0 and li > β, set aj := aj + li − β and β := li.

3. If j ∈ B, β = −∞, and β < +∞:

(a) If aj < 0 and ui < β − aj , set aj := β − ui.

(b) If aj > 0 and ui < β, set aj := aj + ui − β and β := ui.

4. Add the variable bounds xi ≥ −ajxj + β and xi ≤ −ajxj + β to the variable
bounds data structure of SCIP.

partitioning or set covering constraint, then at least one of the variables in Sp must
be set to 1. This means we can fix the remaining variables in Sq to 0 if Cq is a
set partitioning or set packing constraint. On the other hand, if Cq is a set covering
constraint, it is redundant and can be deleted. In the case that Cp is a set packing
constraint and Cq is of partitioning or packing type, constraint Cp is dominated by
Cq and can be removed from the problem instance. Finally, Step 3d performs the
same reductions as Step 3c with reversed roles of Cp and Cq.

10.4 Variable Bound Constraints

Linear constraints of the form

β ≤ xi + ajxj ≤ β

with xj ∈ Z, aj ∈ R\{0}, and β, β ∈ R∪{±∞} are called variable bound constraints.
The most common incarnation is the variable upper bound xi ≤ u

′
i xj with continuous

or integral xi and binary xj . A brief overview of the uses of such constraints can be
found in Section 7.5.

As for the set partitioning, packing, and covering constraints, there are not many
presolving opportunities for variable bound constraints. SCIP only applies the
very basic domain propagation and coefficient tightening procedures as shown in
Algorithm 10.10. Although it might be useful, we even refrain from comparing pairs
of variable bound constraints, since such a pairwise comparison has usually already
been performed by the linear constraint handler.

Step 1 calls the domain propagation Algorithm 7.9 to tighten the bounds of the
involved variables. If the bounding variable xj is binary and only one of the sides
is finite, we can tighten the bounding coefficient aj and the constraint side β or β
in Steps 2 and 3, respectively. Namely, if the constraint is dominated by the global
bounds of xi in the non-restricting case of xj , we can modify the coefficient and side
to yield exactly the bound of xi in the non-restricting case, but to behave unchanged
in the restricting case.

Finally, Step 4 adds the variable bound information to the data structures of
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Algorithm 10.11 Integer to Binary Conversion

1. For all general integer variables xj , j ∈ I \B, with uj = lj + 1:

(a) Create a new binary variable y ∈ {0, 1}.

(b) Aggregate xj : ⋆= y + lj .

SCIP, see Section 3.3.5. This information can be useful for other components, for
example the complemented mixed integer rounding or the flow cover cut separator,
see Chapter 8.

10.5 Integer to Binary Conversion

Binary variables are more favorable than general integer variables for certain com-
ponents of a MIP solver. For example, the probing of the following Section 10.6 is
only applied to binary variables, and most of the specializations of linear constraints
like the knapsack constraint deal with binary variables only and can therefore carry
out their specialized algorithms only if all variables of the constraint are of binary
type. Other examples of modules that work exclusively or at least better for binary
variables are the flow cover cut separator of Section 8.5 and the conflict analysis
explained in Chapter 11. Thus, it seems to make sense to convert general integer
variables xj with bounds [lj , lj + 1] into binary variables by shifting them to the
interval [0, 1]. This is carried out in Algorithm 10.11.

Despite the positive effects discussed above, there is also a reason for not con-
verting general integer variables into binary variables: usually, the binary variables
of the model describe qualitative “yes/no” decisions like, for example, whether a
new factory should be built or not. On the other hand, general integers describe
integral quantities like how many machines should be allocated to a factory. Hence,
there is a structural difference between binary and general integer variables, which
is captured by their type, even if a quantitative decision has only two options. In
fact, many components like primal heuristics or branching rules consider the type of
the variables to guide their decisions. Usually, binary variables are treated as more
important and a decision on them is taken earlier. Thus, converting general inte-
ger variables into binary variables might “confuse” these components and thereby
deteriorate the overall solving process.

The computational studies of Section 10.10 investigate whether the integer to
binary conversion is useful. Unfortunately, it turns out that only very few instances
are affected by this presolving operation, such that a definite conclusion cannot be
drawn.

10.6 Probing

Probing denotes a very time-consuming but powerful preprocessing technique which
evolved from the IP community, see Savelsbergh [199]. It consists of successively
fixing each binary variable to zero and one and evaluating the corresponding sub-
problems by domain propagation techniques, see Chapter 7.

Let xk ∈ {0, 1}, k ∈ B, be a binary variable, and let xj ∈ [lj , uj ], j ∈ N ,
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denote some other (binary or non-binary) variable. Let l0j and u0
j be the lower and

upper bounds of xj that have been deduced from xk = 0. Let l1j and u1
j be the

corresponding bounds of xj deduced from xk = 1. The following observations can
be made:

⊲ If one of the fixings of xk leads to an infeasible subproblem, xk can be per-
manently fixed to the opposite value and removed from the problem instance.

⊲ If l0j = u0
j and l1j = u1

j , xj can be aggregated as xj : ⋆= l0j + (l1j − l
0
j )xk.

⊲ l′j := min{l0j , l
1
j } and u′j := max{u0

j , u
1
j} are valid global bounds of xj .

⊲ xk = 0 → l0j ≤ xj ≤ u0
j and xk = 1 → l1j ≤ xj ≤ u1

j are valid implications
that can be stored in the implication graph of SCIP, see Section 3.3.5, and
exploited during the solving process, e.g., in other preprocessing algorithms or
in the branching variable selection.

The problematic issue with probing is its runtime complexity. In its full version,
we have to execute the complete domain propagation loop twice for each binary
variable. In order to avoid spending too much time on probing, one usually employs
only a limited version of probing. One possible limitation is to restrict the number of
rounds in each domain propagation loop. This can be done in SCIP via a parameter
setting, but the default value of this parameter is to execute the domain propagation
loop with an unlimited number of rounds, i.e., until no more deductions have been
found.

Another possibility to speed up the algorithm is to not apply probing to all binary
variables, but only to a subset of promising candidates. This approach is used in
SCIP. The binary variables are sorted such that the most promising candidates
are evaluated first. If the probing does not produce any useful information for
some number of consecutive evaluated candidates, the probing algorithm is aborted.
Additionally, we interrupt the probing loop after fixings or aggregations have been
found in order to apply the other, less expensive presolving methods. The hope is
that they are able to further reduce the size of the problem instance and to increase
the chances for probing to find additional reductions. Afterwards, probing continues
with the next candidate in its sorted list of binary variables.

Algorithm 10.12 depicts the details of the probing procedure. Note with default
settings, probing is called in a “delayed” fashion, which means that it is skipped as
long as other presolving components found reductions that trigger another round of
presolving.

Step 1 of the algorithm checks whether the probing loop was aborted due to
excessive useless probings, compare Step 4f. If this is the case, and no relevant
changes have been applied to the instance by other presolving methods since the last
probing call, we exit again. Otherwise, we reduce the “useless” counters by 10 % in
Step 2 to allow for some more probings, even if the probing loop was aborted during
the last call due to too many successive useless probings.

If the binary variables have not already been sorted, this is performed in Step 3.
The score sj of a variable xj estimates the impact of fixing xj to 0 or 1. It considers
the following statistics:

⊲ the number of constraints ζ−j and ζ+
j that get “less feasible” by setting xj to

0 and 1, respectively (in a MIP, the sum ζ−j + ζ+
j is equal to the total number
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Algorithm 10.12 Probing

Input : Current values of counters startidx, nuseless, and ntotaluseless.

1. If probing was aborted in the last call, no variables have been fixed or aggre-
gated, and no domains have been tightened since the last call, abort.

2. Set nuseless := 0.9 · nuseless and ntotaluseless := 0.9 · ntotaluseless.

3. If not already performed, generate a sorted list S = {k1, . . . , kq} of the binary
variables xki

, ki ∈ B: sort variables by non-increasing score

sj = ζ−j + ζ+
j +

∣
∣δ−D(xj = 0)

∣
∣+
∣
∣δ−D(xj = 1)

∣
∣+ 5

∣
∣Q(xj = 0)

∣
∣+ 5

∣
∣Q(xj = 1)

∣
∣.

with D = (V,A) being the implication graph and Q being the clique table.

4. For i = startidx, . . . , q:

(a) If xki
has been fixed or aggregated, continue Loop 4 with the next can-

didate.

(b) For v = 0, 1:

i. Tentatively fix xki
:= v.

ii. Propagate implications δ−D(xki
= v) and cliques Q(xki

= v) to obtain

implied bounds [l̂v, ûv ] ⊆ [l, u].

iii. Call domain propagation to obtain implied bounds [l̃v, ũv] ⊆ [l̂v, ûv].
iv. Reset lki

:= 0, uki
:= 1, and undo all implied bound changes.

(c) If propagation of xki
= 0 deduced a conflict, fix xki

:= 1.
If propagation of xki

= 1 deduced a conflict, fix xki
:= 0.

(d) For all j = 1, . . . , n, j 6= ki:

i. Set lj := min{l̃0j , l̃
1
j } and uj := max{ũ0

j , ũ
1
j}.

ii. If l̃0j = ũ0
j and l̃1j = ũ1

j , aggregate xj : ⋆= l̃0j + (l̃1j − l̃
0
j )xki

.

iii. If l̃0j > l̂j , add xki
= 0→ xj ≥ l̃

0
j to the implication graph.

If ũ0
j < ûj , add xki

= 0→ xj ≤ ũ
0
j to the implication graph.

If l̃1j > l̂j , add xki
= 1→ xj ≥ l̃

1
j to the implication graph.

If ũ1
j < ûj , add xki

= 1→ xj ≤ ũ
1
j to the implication graph.

(e) Increase nuseless and ntotaluseless. If a variable has been fixed or aggre-
gated in Loop 4d, reset nuseless := 0 and ntotaluseless := 0. If a bound
has been tightened in Loop 4d, reset ntotaluseless := 0.

(f) If nuseless ≥ 2000 or ntotaluseless ≥ 100, abort Loop 4.

(g) If at least 50 variables have been fixed or aggregated in this probing call,
interrupt Loop 4.

5. Set startidx := i+ 1.
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of constraints the variable is contained in, counting equations and ranged rows
twice), see Definition 3.3 on page 38,

⊲ the number of implications that are triggered by xj = 0 and xj = 1, and

⊲ the number of cliques |Q(xj = v)| the variable is contained in as negative
(v = 0) or positive (v = 1) literal, see Section 3.3.5.

We count each clique as 5 implications, which means we estimate the average clique
size to be 6.

Step 4 represents the main probing loop in which the probing is applied to the
individual candidates xki

of the sorted candidate list S. At first, we check in Step 4a
whether the candidate is still an active variable. If it has been fixed or aggregated
since the candidate list was generated, we skip the candidate. Step 4b performs
the actual work of propagating the settings xki

= 0 and xki
= 1. Note that we

first propagate the known implications in the implication graph and clique table in
order to be able to identify unknown implications in the evaluation of Step 4(d)iii.
Otherwise, we would generate the same implications over and over again and waste
a considerable amount of time in the implication graph management. After having
performed the implication and clique propagation we propagate the constraints.

Steps 4c and 4d evaluate the results of the probing. If one of the tentative
fixings lead to an infeasibility, the probing variable can be fixed to the other value
in Step 4c. If both probing directions produced a conflict, we conclude that the
instance is infeasible and can abort the solving process. Note that if xki

has been
fixed to xki

:= v, we can immediately tighten the bounds of the other variables
to l := l̃v and u := ũv. Otherwise, we inspect the bound deductions in Loop 4d.
First, we can tighten the bounds of each variable xj as indicated in Step 4(d)i. If
this leads to a fixed variable lj = uj , we can skip the remaining steps and continue
Loop 4d with the next variable. If the variable xj is forced to one of its bounds in
both probing directions, we can aggregate it in Step 4(d)ii. Otherwise, we compare

the deduced bounds [l̃vj , ũ
v
j ] with the known implied bounds [l̂vj , û

v
j ] in Step 4(d)iii

and add previously unknown implications to the implication graph of SCIP.
Step 4e updates the nuseless and ntotaluseless counters. We call a probing useless

if it did not produce any fixings or aggregations of variables. If it even did not help to
tighten a bound of a variable, we call it totally useless. We abort the probing loop in
Step 4f if 2000 successive useless probings or 100 successive totally useless probings
have been conducted. As mentioned above, we interrupt the probing process in
Step 4g if it seems beneficial to further reduce the problem instance by applying
other, less expensive presolving techniques. In the default settings of SCIP, probing
is interrupted after a total number of 50 fixings or aggregations have been found in
Loop 4. Finally, in Step 5 we record the index of the candidate with which we want
to continue the probing loop in the next execution of the algorithm.

10.7 Implication Graph Analysis

As mentioned in the previous section, probing is a very time-consuming presolving
technique and is therefore delayed until all other presolving components failed to find
more reductions. Additionally, probing may be aborted prematurely. However, one
part of probing can be implemented much more efficiently, namely the extraction of
fixings and aggregations out of the implication graph. Therefore, this part of probing
is replicated in an additional presolving plugin: the implication graph analysis.
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Algorithm 10.13 Implication Graph Analysis

1. For all binary variables xk, k ∈ B, and all variables xj , j ∈ N , that are implied
variables in both implication lists, δ−D(xk = 0) and δ−D(xk = 1):

(a) If xk = 0→ xj ≥ l
0
j and xk = 1→ xj ≥ l

1
j , tighten lj := min{l0j , l

1
j }.

(b) If xk = 0→ xj ≤ u
0
j and xk = 1→ xj ≤ u

1
j , tighten uj := max{u0

j , u
1
j}.

(c) If xk = 0→ xj ≤ lj and xk = 1→ xj ≥ uj , aggr. xj : ⋆= lj + (uj − lj)xk.

(d) If xk = 0→ xj ≥ uj and xk = 1→ xj ≤ lj , aggr. xj : ⋆= uj − (uj − lj)xk.

The idea is to compare for each binary variable xk, k ∈ B, the list of implications
δ−D(xk = 0) and δ−D(xk = 1). Since these lists are sorted by the index of the implied
variable, they can be scanned in linear time w.r.t. the sum of their lengths in order
to identify variables xj that appear in both lists. The following conclusions can be
made, which are similar to Steps 4(d)i and 4(d)ii of the probing Algorithm 10.12:

xk = 0→ xj ≥ l
0
j ∧ xk = 1→ xj ≥ l

1
j ⇒ xj ≥ min{l0j , l

1
j}

xk = 0→ xj ≤ u
0
j ∧ xk = 1→ xj ≤ u

1
j ⇒ xj ≤ max{u0

j , u
1
j}

xk = 0→ xj = lj ∧ xk = 1→ xj = uj ⇒ xj
⋆
= lj + (uj − lj)xk

xk = 0→ xj = uj ∧ xk = 1→ xj = lj ⇒ xj
⋆
= uj − (uj − lj)xk

The procedure is summarized in Algorithm 10.13. Note that the implication
graph stores only non-redundant implications. This means the implied bounds are
always tighter than the global bounds, and we do not have to check whether the
minimum or maximum of the implied bounds used in Steps 1a and 1b is indeed
better than the current global bound lj or uj , respectively.

10.8 Dual Fixing

Despite a few steps in the linear constraint presolving, all presolving techniques
presented so far are so-called primal presolving algorithms. They are purely based on
feasibility arguments and are therefore valid independently of the objective function.

In contrast, the reasoning of dual presolving techniques is based on optimality
considerations. For example, if we can prove that for every optimal solution x⋆

there exists a solution x̂ with the same objective value c⋆ = cTx⋆ = cT x̂ in which
a certain variable xj has a specific value x̂j = v, we can fix xj := v. Thereby, we
may rule out a number of feasible solutions, but we are still sure that the feasibility
status of the instance does not change and that an optimal solution for the presolved
instance is also optimal in the original instance.

Dual presolving can be interpreted as primal presolving in the dual space. For
example, like for primal variables, bound tightening can also be applied in the dual
space for the dual variables and the reduced costs. If we find out that a dual
variable yi of a linear constraint Ci : aTx ≤ β is always negative, we can conclude by
the complementary slackness that the corresponding primal slack variable is always
zero and the inequality is always satisfied with equality, i.e., aTx = β. As an
additional example, if we can prove that a reduced cost rj is always positive, we
can again by the complementary slackness conclude that the primal variable xj will
always be at its lower bound, and we can fix xj := lj . Other dual reductions exploit
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Algorithm 10.14 Dual Fixing

1. For all variables xj , j ∈ N :

(a) If cj ≥ 0 and ζ−j = 0, fix xj := lj .

(b) If cj ≤ 0 and ζ+
j = 0, fix xj := uj .

(c) If the variable xj has been fixed to an infinite value and cj 6= 0, conclude
that the instance is either unbounded or infeasible.

column domination (which is the dual analogon of constraint domination, compare
Step 2d of the pairwise linear constraint presolving Algorithm 10.5 on page 141) and
symmetric sets of variables.

The common property of dual presolving algorithms is that they look at the
columns A·j of the coefficient matrix of the MIP. Unfortunately, the constraint
based approach of SCIP does not support such a dual view of the problem instance,
since the constraint data are stored in private data structures of the constraint han-
dlers. This means, the necessary problem information is not accessible via framework
methods, and even each constraint handler has only partial information about the
problem.

A small step to remedy this situation is that SCIP explicitly collects a limited
amount of dual information, which has to be provided by the constraint handlers, see
Section 3.3.3. This information exists in the form of variable locks, see Definition 3.3
on page 38. For a MIP with inequality system Ax ≤ b, the down-locks ζ−j count

the number of negative entries in the column A·j , while the up-locks ζ+
j are the

number of positive entries in A·j . More generally, for a constraint integer program
the variable locks ζ−j and ζ+

j count the number of constraints that get “less feasible”
by decreasing or increasing the value of xj , respectively.

Having this information at hand, we can perform the so-called dual fixing, which
means to fix a variable to its lower or upper bound whenever this is neither harm-
ful to the objective function value nor to the feasibility of the constraints. This
straightforward procedure is depicted in Algorithm 10.14.

For each variable xj , Step 1a checks whether we can safely fix the variable to
its lower bound without increasing the objective function value or increasing the
violation of a constraint. Step 1b applies the same reasoning for the upper bound.
It may happen that the variable gets fixed to an “infinite” value, since the bounds
do not need to be finite. From a practical point of view, this is not a big issue: we
just fix the variable to a very large value which is considered as infinity. Then, all
constraints will be deleted as redundant that contain this variable. If the objective
coefficient cj of such a variable is non-zero, however, we end up with an infinite
objective function value. This means, the instance is either unbounded or infeasible,
depending on whether there is a feasible solution for the remaining constraints and
variables. As other MIP solvers like Cplex [118] or Xpress [76], SCIP terminates
in this situation with the undecided status “infeasible or unbounded”. In order
to decide the feasibility status of the instance, one can solve the model without
objective function by setting c := 0.
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10.9 Restarts

Restarts are a well-known and very important ingredient of modern SAT solvers like
BerkMin [100], MiniSat [82], or zChaff [168]. Nevertheless, they have not been
used so far for solving MIPs. Restarts differ from the classical presolving methods in
that they are not applied before the branch-and-bound search commences. Instead,
restarting means to abort a running search process in order to reapply presolving and
to construct a new search tree from scratch. In the next solving pass, one exploits
the information gathered during the previous pass. In this sence, one can view the
previous search pass as a data collecting presolving step for the subsequent pass.

The most common implementation of restarts in SAT solvers is to interrupt each
search pass after a certain number of conflicts, i.e., infeasible subproblems, have been
detected. This number is increased after every restart, usually in an exponential
fashion.

Note that SAT solvers based on conflict analysis (see Chapter 11) and restarts
generate at least one conflict clause for each infeasible subproblem they encounter.
The conflict clauses capture the reason for the infeasibility and prevent the search
process from producing the same or a more general conflict again. Since SAT
solvers proceed in a depth first fashion, the conflict clause database contains all
information that are commonly represented as a search tree in branch-and-bound
algorithms. Hence, discarding the current search tree does not lead to a loss of
information: the knowledge about the search space that has already been inspected
is still available in the form of conflict clauses. Therefore, restarts are an effective
way to undo disadvantageous branching decisions and to increase the possibility to
detect so-called backdoor variables (see Williams, Gomes, and Selman [213, 214]).
These are variables which, if set to a fixed value, considerably reduce the difficulty
of the resulting subproblems.

MIP solvers, however, differ from SAT solvers in two important properties: first,
they process the nodes in a best first or similar order, thereby producing much longer
lists of open subproblems during the search than depth first search based SAT solvers.

Second, apart from the branching decisions and domain propagations, they store
the LP warm start information in the tree. These data are very expensive to obtain
since it requires the solving of the subproblems’ LP relaxations. Thus, by discarding
the search tree, MIP solvers waste much more information than SAT solvers, namely
all the warm start LP bases that have been stored for the open leaves of the tree.

Therefore, we doubt that an extensive use of restarts improves the average run-
time of a MIP solver. We performed preliminary computations which second this
hypothesis. On the other hand, it is often the case that cutting planes and strong
branching in the root node identify fixings of variables that have not been detected
during presolving. These fixings can trigger additional presolve reductions after a
restart, thereby simplifying the problem instance and improving its LP relaxation.
The downside is that we have to solve the root LP relaxation again, which can
sometimes be very expensive.

Nevertheless, the above observation leads to the idea of applying a restart directly
after the root node has been solved and if a certain fraction of the integer variables
have been fixed during the processing of the root node. In our implementation, a
restart is performed if at least 5 % of the integer variables of the presolved model
have been fixed.
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test set none no linear pairs aggreg linear pairs no knap disaggreg
ti

m
e

miplib +65 −2 +2 −1

coral +93 −3 −5 +10

milp +82 +4 +10 +8

enlight −7 −1 −2 −2

alu +248 −6 −10 −1

fctp +130 +3 +2 0

acc +112 +7 +16 +19

fc +372 +1 +1 0

arcset +72 +24 −1 +2

mik +458 +9 +2 −1

total +91 +1 +2 +5

n
o

d
es

miplib +163 +2 −2 +3

coral +126 −4 −6 +11

milp +128 +10 +14 +1

enlight +50 0 0 0

alu +398 −23 −43 0

fctp +402 0 0 0

acc +233 +35 +33 +62

fc +2589 −8 −4 0

arcset +114 +60 +8 0

mik +204 −1 0 0

total +162 +3 +1 +6

Table 10.1. Performance effect of various presolving methods for solving MIP instances. The
values denote the percental changes in the shifted geometric mean of the runtime (top) and num-
ber of branching nodes (bottom) compared to the default settings. Positive values represent a
deterioration, negative values an improvement.

10.10 Computational Results

In this section we present benchmarks that evaluate various aspects of MIP presolv-
ing. Table 10.1 and 10.2 show the effect of disabling particular presolving methods.
Detailed results can be found in Tables B.161 to B.180.

Column “none” of Table 10.1 yields the results for disabling presolving com-
pletely. Apart from the enlight instances, presolving significantly improves the
performance on all test sets. Overall, disabling presolving almost leads to a dou-
bling of the runtime and to an even larger increase in the number of branching nodes
that have to be processed.

The remaining columns of Table 10.1 deal with certain subroutines in the linear
and knapsack presolving. Disabling the presolving of pairs of linear constraints as
depicted in Algorithm 10.5 yields the average performance ratios shown in column
“no linear pairs”. Besides the arcset, mik, and acc test sets, the impact of this
method is rather weak.

The constraint aggregation Steps 2f and 2g of Algorithm 10.5 are disabled in
the default settings. This decreases the runtime overhead of the pairwise presolving
algorithm, since we can also rule out constraint pairs by the signature check in
Step 2a that include equations. Activating this rather expensive step yields the
results shown in column “aggreg linear pairs”. The constraint aggregation can only
improve the performance on the coral and alu instances by a significant amount,
even if we consider the number of nodes instead of the runtime. Overall, it leads to
a slight deterioration.

The column labeled “no knap disaggreg” shows the benchmarks for disabling the
knapsack clique disaggregation. This means, the coefficient tightening Step 7 of the
knapsack presolving Algorithm 10.8 is skipped. Although it has been argued by
other researchers, for example Bixby et al. [46] and Fügenschuh and Martin [90],
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test set no int to binary no probing full probing no impl graph no dual fixing
ti

m
e

miplib −3 +9 +16 −2 −1

coral −1 +20 +4 +5 +7

milp +1 +12 +5 0 +3

enlight +35 +3 0 −2 −2

alu −2 −2 −1 −22 −1

fctp 0 −4 0 +2 0

acc +1 +100 +36 +1 0

fc 0 +9 0 0 +4

arcset +7 −3 +2 +1 +7

mik −3 +28 +3 0 +2

total 0 +14 +8 0 +3

n
o

d
es

miplib −1 +16 −9 −2 +2

coral −1 +14 −17 +2 −6

milp +4 +52 +5 0 −5

enlight +27 +44 0 0 0

alu −2 −8 0 −37 0

fctp 0 −6 −1 0 0

acc 0 +286 +32 0 0

fc 0 +15 0 0 +10

arcset +5 +13 +7 0 +11

mik −2 +44 0 0 0

total +1 +28 −5 −1 −2

Table 10.2. Performance effect of generic presolving plugins for solving MIP instances. The
values denote the percental changes in the shifted geometric mean of the runtime (top) and num-
ber of branching nodes (bottom) compared to the default settings. Positive values represent a
deterioration, negative values an improvement.

that one should not disaggregate aggregated implied bound constraints and instead
separate them on demand, our results show that—at least for SCIP and on our
test sets—disaggregation of these constraints in the presolving improves the overall
performance by 5 %. A possible explanation is that SCIP in its default settings only
applies cutting plane separation at the root node and can therefore not generate
missing implied bound cuts at local nodes. Additionally, the stronger LP relaxation
due to immediate disaggregation leads to a more effective strong branching, since
cutting planes are not separated for the strong branching LPs.

Table 10.3 shows the summary of our experiments on restarts. More detailed
results can be found in Tables B.181 to B.190. As already said in Section 10.9,
we restart the solving process after the root node has been processed and if at least
5 % of the integer variables of the presolved model have been fixed due to root node
cuts or strong branching and the subsequent domain propagation. Note that for
the nodes statistics, we count the total of the branching nodes in all passes. In the
default settings, however, this results in only one additional node per restart since
the restart is applied directly after the processing of the root node.

The results in column “no restart” for disabling the restarts show that they yield
an average performance improvement of 8 %. An outstanding effect can be observed
on the mik instances for which disabling restarts multiplies the average runtime by
6. For most of these instances, the optimal solution can already be found at the
root node of the first solving pass. This yields a significant amount of reduced cost
strengthening and strong branching reductions, such that the subsequent presolving
reduces the size of the problem instance by a large amount. For example, the
instance mik.500-5-75.1 has 500 integer variables in its original formulation, and
the initial presolving can delete only one of them. After the primal heuristic RENS
found the optimal solution at the root node, 349 additional integer variables could
be fixed such that only 150 integer variables remained in the problem instance after
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test set no restart sub restart aggr sub restart
ti

m
e

miplib +3 +2 +4

coral −1 0 +2

milp +10 +12 +14

enlight −1 −1 −1

alu 0 +1 0

fctp +3 +2 +1

acc +3 −1 +1

fc +1 +1 +2

arcset +9 −1 +1

mik +500 0 +1

total +8 +4 +6

n
o

d
es

miplib −4 +3 +2

coral −4 +3 +2

milp +19 +15 +21

enlight 0 0 0

alu 0 0 −13

fctp 0 0 0

acc 0 0 0

fc +8 −2 −8

arcset +4 −6 −3

mik +310 0 0

total +7 +6 +6

Table 10.3. Performance effect of using restarts for solving MIP instances. The values denote
the percental changes in the shifted geometric mean of the runtime (top) and number of branching
nodes (bottom) compared to the default settings. Positive values represent a deterioration, negative
values an improvement.

the restart. Additionally, the second presolving reduced the number of rows in the
LP from 324 to 249, although the dual bound at the root node improved.

We also experimented with applying a restart during the branch-and-bound
search after a certain fraction of the integer variables has been globally fixed.
Such global fixings can be identified, for example, by the root reduced cost streng-
thening, see Section 7.7, or if one of the two subtrees of the root node has been
processed completely and has therefore been cut off from the tree.

Unfortunately, the results are inferior to the default settings. Column “sub restart”
gives the results for applying an additional restart each time when the number of
globally fixed integer variables exceeded 10 % of the total number of integer vari-
ables in the presolved model. The settings used to produce the results of column
“aggr sub restart” are even more aggressive: here, the solving process is already
restarted if 5 % of the integer variables have been globally fixed. A cursory inspec-
tion of the log files indicates that global variable fixings happen very infrequently
during the processing of the subproblems, and if a significant amount of additional
variables has been globally fixed, the search is usually almost finished such that a
restart at this point is very disadvantegeous. Therefore, in order to make good use
of delayed restarts, one has to invent different criteria for their application.





Chapter 11

Conflict Analysis

The branch-and-bound algorithm to solve mixed integer programs divides the given
problem instance into smaller subproblems and iterates this process recursively until
an optimal solution of the respective subproblem can be identified or the subproblem
is detected to be infeasible or to exceed the primal bound. It seems that current
state-of-the-art MIP solvers like Cplex [118], Lingo [148], SIP [159], or Xpress [76]
simply discard infeasible and bound-exceeding subproblems without paying further
attention to them.

The satisfiability problem can also be solved by a branch-and-bound decompo-
sition scheme, which was originally proposed in this context by Davis, Putnam,
Logemann, and Loveland [77, 78], hence the name DPLL algorithm. In contrast to
MIP solvers, modern SAT solvers try to learn from infeasible subproblems, which
is an idea due to Marques-Silva and Sakallah [157]. The infeasibilities are ana-
lyzed in order to generate so-called conflict clauses. These are implied clauses that
help to prune the search tree. They also enable the solver to apply so-called non-
chronological backtracking.

The idea of conflict analysis is to identify a reason for the infeasibility of the
current subproblem and to exploit this knowledge later in the search. In SAT solving,
such a reason is a subset of the current variable fixings that already suffices to trigger
a chain of logical deductions that ends in a contradiction. This means, the fixing of
the variables of this conflict set renders the problem instance infeasible. The conflict
clause that can be learned from this conflict states that at least one of the variables
in the conflict set has to take the opposite truth value. This clause is added to
the clause database and can then be used at other subproblems to find additional
implications in domain propagation, thereby pruning the search tree.

A similar idea of conflict analysis are the so-called no-goods, which emerged
from the constraint programming community, see, e.g., Stallman and Sussman [201],
Ginsberg [94], and Jiang, Richards, and Richards [124]. They can be seen as a
generalization of conflict clauses to the domain of constraint programming.

In this chapter, we describe a generalization of conflict analysis to branch-and-
bound based mixed integer programming and constraint integer programming. The
same generalization was independently developed by Sandholm and Shields [198].
Parts of this chapter have been published in Achterberg [1].

Suppose a subproblem in the branch-and-bound search tree is detected to be
infeasible or to exceed the primal bound. We will show that this situation can be
analyzed with similar techniques as in SAT solving: a conflict graph is constructed
from which conflict constraints can be extracted. These constraints can be used
as cutting planes and in domain propagation to strengthen the relaxations of other
subproblems in the tree.

Note that the term “conflict graph” is used differently in the SAT and MIP
communities. In MIP solving, the conflict graph consists of implications between
two binary variables each, see e.g., Atamtürk, Nemhauser, and Savelsbergh [24]. It
represents a vertex-packing relaxation of the MIP instance and can, for instance,
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be used to derive cutting planes like clique cuts, see Section 8.7. In SAT solving,
and also in this chapter, the conflict graph represents the deductions that have been
performed in order to prove the infeasibility of the current subproblem.

There are two main differences of MIP and SAT solving in the context of conflict
analysis. First, the variables of an MIP need not to be of binary type; we also
have to deal with general integer and continuous variables. Furthermore, the
infeasibility of a subproblem in the MIP search tree usually has its sources in the
linear programming (LP) relaxation of the subproblem. In this case, we first have
to find a (preferably simple) reason for the LP’s infeasibility before we can apply
the SAT conflict analysis techniques for generating conflict constraints.

This chapter is organized as follows. Section 11.1 reviews conflict graph analysis
of SAT solvers. For an infeasible subproblem, it is shown how to generate the conflict
graph and how to extract valid conflict clauses out of this graph. Section 11.2
deals with the generalization of these techniques to mixed integer programming.
We explain how infeasible and bound-exceeding linear programs can be analyzed in
order to detect a conflict in the local bounds of the variables. This conflict is used
as starting point to construct the conflict graph from which conflict constraints can
be extracted with the techniques explained in Section 11.1. Additionally, we discuss
how we generalize the notion of the conflict graph in the presence of non-binary
variables. Experimental results in Section 11.3 demonstrate that conflict analysis
leads to savings in the average number of branching nodes and the average time
needed to solve MIPs. As the results of Chapter 17 show, conflict analysis is a key
ingredient for solving the chip design verification problem with our constraint integer
programming approach.

11.1 Conflict Analysis in SAT Solving

In this section we review the conflict analysis techniques used in SAT solving, see
e.g., Marques-Silva and Sakallah [157] or Zhang et al. [224]. We recapitulate the
definition of the satisfiability problem (SAT), see Section 1.2.

Definition (satisfiability problem). Let C = C1 ∧ . . . ∧ Cm be a logic formula
in conjunctive normal form (CNF) on Boolean variables x1, . . . , xn. Each clause
Ci = ℓi1∨. . .∨ℓ

i
ki

is a disjunction of literals. A literal ℓ ∈ L = {x1, . . . , xn, x̄1, . . . , x̄n}
is either a variable xj or the negation of a variable x̄j . The task of the satisfiability
problem (SAT) is to either find an assignment x⋆ ∈ {0, 1}n, such that the formula C

is satisfied, i.e., each clause Ci evaluates to 1, or to conclude that C is unsatisfiable,
i.e., for all x ∈ {0, 1}n at least one Ci evaluates to 0.

The DPLL-algorithm to solve SAT problems fixes one of the binary variables to
0 or 1 at each node in the search tree. Then, Boolean constraint propagation (BCP)
deduces further fixings by applying the domain propagation rule

∀j ∈ {1, . . . , ki} \ {p} : ℓij = 0 → ℓip = 1

on the clauses Ci = ℓi1 ∨ . . . ∨ ℓ
i
ki

, i = 1, . . . ,m, compare the domain propagation of
set covering constraints in Section 7.4. This rule is triggered if the deletion of false
literals reduces a still unsatisfied clause to a single literal, a so-called unit clause. In
this case, the remaining literal can be fixed to 1. BCP is applied iteratively until no
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more deductions can be found or a clause gets empty, i.e., all its literals are fixed
to 0. The latter case is called a conflict, and conflict analysis can be performed
to produce a conflict clause, which is explained in the following. Afterwards, the
infeasible subproblem is discarded and the search continues by backtracking to a
previous node and processing a different leaf of the branching tree.

11.1.1 Conflict Graph Analysis

The deductions performed in BCP can be visualized in a conflict graph G = (V,A).
The vertices V = {ℓ1, . . . , ℓk, λ} ⊂ L ∪ {λ} of this directed graph represent the
current value assignments of the variables, with the special vertex λ representing
the conflict. The arcs can be partitioned into A = A1 ∪ . . .∪AD ∪Aλ. Each subset
Ad, d = 1, . . . ,D, represents one deduction: whenever a clause Ci = ℓi1∨ . . .∨ ℓ

i
ki
∨ ℓir

became a unit clause in BCP with remaining unfixed literal ℓir, a set of arcs Ad =
{(ℓ̄i1, ℓ

i
r), . . . , (ℓ̄

i
ki
, ℓir)} is created in order to represent the deduction ℓ̄i1 ∧ . . . ∧ ℓ̄

i
ki
→

ℓir that is implied by Ci. The additional set of arcs Aλ = {(ℓ̄λ1 , λ), . . . , (ℓ̄λkλ
, λ)}

represents clause Cλ that detected the conflict (i.e., the clause that became empty
in BCP).

Example 11.1. Consider the CNF C = C1 ∧ . . . ∧ C18 with the following clauses:

C1 : x1 ∨ x2 C7 : x̄10 ∨ x11 C13 : x16 ∨ x18

C2 : x̄2 ∨ x̄3 C8 : x̄8 ∨ x12 ∨ x13 C14 : x̄17 ∨ x̄18

C3 : x̄2 ∨ x̄4 ∨ x̄5 C9 : x12 ∨ x14 C15 : x̄12 ∨ x19

C4 : x6 ∨ x̄7 C10 : x̄8 ∨ x̄13 ∨ x̄14 ∨ x15 C16 : x7 ∨ x̄19 ∨ x20

C5 : x3 ∨ x5 ∨ x7 ∨ x8 C11 : x̄8 ∨ x̄9 ∨ x̄15 ∨ x̄16 C17 : x15 ∨ x̄20 ∨ x21

C6 : x3 ∨ x̄8 ∨ x9 C12 : x̄15 ∨ x17 C18 : x̄8 ∨ x̄20 ∨ x̄21

Suppose the fixings x1 = 0, x4 = 1, x6 = 0, x10 = 1, and x12 = 0 were applied in
the branching steps of the DPLL procedure. This leads to a conflict generated by
constraint C14. The corresponding conflict graph is shown in Figure 11.1.

In the conflict graph, we distinguish between branching vertices VB and deduced
vertices V \ VB . Branching vertices are those without incoming arcs. Each cut
separating the branching vertices VB from the conflict vertex λ gives rise to one
distinct conflict clause (see Figure 11.1), which is obtained as follows.

Let V = Vr ∪ Vc, Vr ∩ Vc = ∅, be a partition of the vertices arising from a cut
with VB ⊆ Vr and λ ∈ Vc. Vr is called reason side, and Vc is called conflict side.
The reason side’s frontier Vf := {ℓp ∈ Vr | ∃(ℓp, ℓq) ∈ A, ℓq ∈ Vc} is called conflict
set. Fixing the literals in Vf to 1 suffices to produce the conflict. Therefore, the
conflict clause Cf =

∨

ℓj∈Vf
ℓ̄j is valid for all feasible solutions of the SAT instance

at hand.
Figure 11.1 shows different types of cuts (labeled ’A’ to ’D’), leading to different

conflict clauses. The cut labeled ’A’ produces clause CA = x1 ∨ x̄4 ∨ x6 ∨ x̄10 ∨ x12

consisting of all branching variables. This clause does not help to prune the search
tree, because the current subproblem is the only one where all branching variables
are fixed to these specific values. The clause will never be violated again. Cut ’D’
is not useful either, because clause CD = x̄17 ∨ x̄18 is equal to the conflict-detecting
clause Cλ = C14 and already present in the clause database. Therefore, useful cuts
must be located somewhere “in between”.
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Figure 11.1. Conflict graph of Example 11.1. The vertices in the top row are branching decisions,
the ones below are deductions. Each cut separating the branching vertices and the conflict vertex
(λ) yields a conflict clause.

There are several methods for generating useful cuts. Two of them are the so-
called All-FUIP and 1-FUIP schemes which proved to be successful for SAT solving.
These are explained in the following. We refer to Zhang et al. [224] for a more
detailed discussion.

Each vertex in the conflict graph represents a fixing of a variable that was applied
in one of the nodes on the path from the root node to the current node in the search
tree. The depth level of a vertex is the depth of the node in the search tree at
which the variable was fixed. In each depth level, the first fixing corresponds to a
branching vertex while all subsequent fixings are deductions. In the example shown
in Figure 11.1, there are 5 depth levels (excluding the root node) which are defined
by the successive branching vertices x̄1, x4, x̄6, x10, and x̄12.

Definition 11.2 (unique implication point). A unique implication point (UIP)
of depth level d is a vertex ℓdu ∈ V representing a fixing in depth level d, such that
every path from the branching vertex of depth level d to the conflict vertex λ goes
through ℓdu or through a UIP ℓd

′

u′ of higher depth level d′ > d. The first unique
implication point (FUIP) of a depth level d is the UIP ℓdu 6= λ that was fixed last,
i.e., that is closest to the conflict vertex λ.

Note that the UIPs of the different depth levels are defined recursively, starting
at the last depth level, i.e., the level of the conflict. UIPs can be identified in linear
time by a single scan through the conflict graph. In the example, the FUIPs of the
individual depth levels are x15, x11, x8, x̄5, and x̄3, respectively.

The 1-FUIP scheme finds the first UIP in the last depth level. All literals that
were fixed after this FUIP are put to the conflict side. The remaining literals and
the FUIP are put to the reason side. In the example shown in Figure 11.1, the FUIP
of the last depth level is x15. The 1-FUIP cut is the one labeled ’C’. It corresponds
to the conflict clause CC = x̄8 ∨ x̄9 ∨ x̄15.

The All-FUIP scheme finds the first UIP of every single depth level. From each
depth level, the literals fixed after their corresponding FUIP are put to the conflict
side. The remaining literals and the FUIPs are put to the reason side. In the
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Figure 11.2. The cut separating the branching vertices (top row) and a deduced vertex (x15)
yields the reconvergence clause x̄8 ∨ x12 ∨ x15.

example, this results in cut ’B’ and the conflict clause CB = x3 ∨ x̄8 ∨ x̄15.

11.1.2 Reconvergence Cuts

In the previous section it was shown that each cut separating the branching vertices
from the conflict vertex gives rise to a conflict clause, which contains the literals of
the reason side’s frontier. By dropping the requirement that the cut must separate
the conflict vertex from the branching vertices, we get a different class of cuts which
are called cuts not involving conflicts (see Zhang et al. [224]). These cuts can also
be used to derive valid clauses from the conflict graph. In order to apply non-
chronological backtracking, which is explained in Section 11.1.3, one has to generate
some of these cuts, in particular the UIP reconvergence cuts of the last depth level
(see below).

Figure 11.2 gives an example of a cut not involving conflicts. In conflict graph
analysis, the conflict vertex λ is substituted by an arbitrary vertex ℓu representing
a literal. In the example, ℓu = x15 was chosen, which is the first unique implication
point of the last depth level.

Each cut separating the branching vertices VB from the vertex ℓu by partitioning
the vertices V into Vr ⊇ VB and Vc ∋ ℓu gives rise to a clause Cu = (

∨

ℓi∈Vf
ℓ̄i) ∨ ℓu.

Again, Vf consists of the vertices at the reason side’s frontier of the cut. However,
such a clause is only useful if Vc ∪ Vf contains an ℓu-reconvergence, i.e., a vertex
ℓi ∈ Vc ∪Vf with two different paths from ℓi to ℓu. Otherwise, it can be proven that
all possible deductions of Cu can already be found by iterated BCP on the current
clause database.

The cut shown in Figure 11.2 is a UIP reconvergence cut, which connects the two
successive UIPs x̄12 and x15 of depth level 5: by applying all fixings of lower depth
levels, Cu = x̄8 ∨ x12 ∨ x15 reduces to the implication x̄12 → x15. Note that BCP
can now also deduce x̄15 → x12, which is not possible without using Cu.
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Figure 11.3. Reevaluation of the node in depth 3 after inserting conflict and reconvergence clauses
again leads to a conflict.

11.1.3 Non-chronological Backtracking

Suppose the conflict analysis procedure produced a clause with only one literal ℓdu
fixed at depth level d in which the conflict was detected. All other literals were fixed
at depth levels smaller or equal to d′ < d. If this clause had been known earlier, the
literal ℓdu could already have been fixed to the opposite value in depth d′. Suppose
the conflict analysis procedure also produced all reconvergence clauses necessary to
connect ℓdu to the branching vertex ℓdb of depth d. Then, also the branching variable
of depth d could have been fixed to the opposite value in depth d′.

Therefore, after having found such a conflict clause, the search tree’s node in
depth level d′ can be reevaluated to apply the deductions leading to the oppo-
site fixing of ℓdb . Further deductions may lead to another conflict, thus rendering
the whole subtree rooted in depth d′ infeasible without evaluating its remaining
leaves. Marques-Silva and Sakallah [157] empirically show that this so-called non-
chronological backtracking can lead to large reductions in the number of evaluated
nodes to solve SAT instances.

In our Example 11.1, the conflict analysis engine employed in SCIP produces
the conflict clauses CB = x3 ∨ x̄8 ∨ x̄15 and CC = x̄8 ∨ x̄9 ∨ x̄15. Additionally, the
reconvergence clause CR = x̄8∨x12∨x15 is added to the clause database. Evaluating
the node in depth 3 again, x15 = 0 (using CC) and x12 = 1 (using CR) can be deduced,
leading together with C15, . . . , C18 to another conflict (see Figure 11.3). Therefore,
the subtree with x1 = 0, x4 = 1, and x6 = 0 can be pruned without evaluating the
intermediate branching decisions (in this case x10 = 0 and x10 = 1).

11.2 Conflict Analysis in MIP

In this section we describe the generalization of the conflict analysis of Section 11.1
to mixed integer programming. Note that in this chapter we consider a mixed integer
program in the maximization version:

(MIP) max{cTx | Ax ≤ b, l ≤ x ≤ u, xj ∈ Z for all j ∈ I}
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with A ∈ Rm×n, b ∈ Rm, c, l, u ∈ Rn, and I ⊆ N = {1, . . . , n}. A branch-and-bound
based MIP solver decomposes the problem instance into subproblems typically by
modifying the bounds l and u of the variables. These branching decisions may entail
further deductions on the bounds of other variables, which are generated by domain
propagation, see Chapter 7.

Suppose we detected a subproblem in the branch-and-bound search tree to be
infeasible, either because a deduction leads to a variable with empty domain or
because the LP relaxation is infeasible. To analyze this conflict, we proceed in the
same fashion as in SAT solving: we construct a conflict graph, choose a cut in this
graph, and produce a conflict constraint which consists of the variables in the conflict
set, i.e., in the cut’s frontier. Because an MIP may contain non-binary variables, we
have to extend the concept of the conflict graph: it has to represent bound changes
instead of fixings of variables. This generalization is described in Section 11.2.1.

A conflict in SAT solving is always detected due to a single clause that became
empty during the Boolean constraint propagation process (see Section 11.1). This
conflict-detecting clause provides the links from the vertices in the conflict graph
that represent fixings of variables to the conflict vertex λ. In contrast, in an LP
based branch-and-bound algorithm to solve mixed integer programs, infeasibility of
a subproblem is almost always detected due to the infeasibility of its LP relaxation
or due to the LP exceeding the primal bound. In this case the LP relaxation as
a whole is responsible for the infeasibility. There is no single conflict-detecting
constraint that defines the predecessors of the conflict vertex in the conflict graph.
To cope with this situation, we have to analyze the LP in order to identify a subset of
the bound changes that suffices to render the LP infeasible or bound-exceeding. The
conflict vertex can then be connected to the vertices of this subset. Section 11.2.2
explains how to analyze infeasible LPs and how to identify an appropriate subset of
the bound changes. The case of LPs having exceeded the objective bound is treated
in Section 11.2.3.

Note that the LP analysis is related to the separation of Dantzig cuts, see Bowman
and Nemhauser [53] or Rubin and Graves [195], which are known to be computation-
ally ineffective. However, the latter include all non-basic variables of a fractional
LP solution, while the LP analysis selects only a (hopefully very small) subset of
the variables in an infeasible or bound-exceeding solution as starting point for the
conflict graph analysis.

After the conflict graph has been constructed, we have to choose a cut in the
graph in order to define the conflict set and the resulting conflict constraint. In the
case of a binary program, i.e., B = I = N , l = 0, u = 1, the conflict graph can be
analyzed by the same algorithms as described in Section 11.1 to produce a conflict
clause Cf =

∨

ℓj∈Vf
ℓ̄j . This clause can be linearized by the set covering constraint

∑

j:xj∈Vf

(1− xj) +
∑

j:x̄j∈Vf

xj ≥ 1, (11.1)

and added to the MIP’s constraint set. However, in the presence of non-binary
variables, the analysis of the conflict graph may produce a conflict set that contains
bound changes on non-binary variables. In this case the conflict constraint cannot be
linearized by the set covering constraint (11.1). Section 11.2.4 shows how non-binary
variables can be incorporated into the conflict constraints.
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11.2.1 Generalized Conflict Graph

If general integer or continuous variables are present in the problem, a bound on
a specific variable could have been changed more than once on the path from the
root node to the current subproblem in the search tree. A local bound change on
a non-binary variable can be both reason and consequence of a deduction, similar
to a fixing of a binary variable. Therefore, we generalize the concept of the conflict
graph: the vertices now represent bound changes instead of fixings. Note that there
can now exist multiple vertices corresponding to the same non-binary variable in the
conflict graph, each vertex representing one change of the variable’s bounds.

Example 11.3. Consider the following constraints of an integer program with vari-
ables x1, . . . , x7 ∈ {0, 1} and z1, . . . , z5 ∈ Z≥0.

2x1 + 3z1 +2z2 ≤ 9 (11.2)

+ 9x2 − z1 − 2z2 ≤ 0 (11.3)

− 3x2 + 5x3 − 3x4 ≤ 4 (11.4)

− 3x2 + 9x4 − 2z3 ≤ 6 (11.5)

+ 9x5 − z2 + 2z3 ≤ 8 (11.6)

− 4x6 − 7x7 + 2z3 ≤ 3 (11.7)

+ 5x7 − 2z2 ≤ 2 (11.8)

− x5 + 5x7 +4z2 − 5z3 ≤ 2 (11.9)

x1 − x2 + x3 − 2x5 + x6 − z1 − 2z2 + z3 − 2z4 + 4z5 ≤ 1 (11.10)

+ 2x2 − x4 + 3x5 − 2x6 − z1 +5z2 + z3 +2z4 − 6z5 ≤ 2 (11.11)

−2x1 − 2x3 + x4 + x5 + z1 +2z2 − 2z3 +2z4 − 2z5 ≤ 1 (11.12)

By the basic bound-strengthening techniques of Savelsbergh [199], see also Chapter 7,
we can deduce upper bounds z1 ≤ 3, z2 ≤ 4, z3 ≤ 6, z4 ≤ 23, and z5 ≤ 15
on the general integer variables. Assume we branched on x1 = 1. By applying
bound-strengthening on constraint (11.2) we can deduce z1 ≤ 2 and z2 ≤ 3 (see
Figure 11.4). Using constraint (11.3) and the new bounds on z1 and z2 it follows
x2 = 0. By inserting the bound on z2 into constraint (11.6) we can also infer z3 ≤ 5.
After branching on x3 = 1 and x6 = 0 and applying the deductions that follow from
these branching decisions we arrive at the situation depicted in Figure 11.4 with the
LP relaxation being infeasible. Note that the non-binary variables zi appear more
than once in the conflict graph. For example, the upper bound of z3 was changed
once and the lower bound was changed twice. The implications on variables z4 and
z5 are not included in the figure. The bounds of these variables can be tightened to
7 ≤ z4 ≤ 11 and 4 ≤ z5 ≤ 6.

We use the following notation in the rest of the chapter. Let BL = {B1, . . . , BK}
with hyperplanes

Bk = Lµk

jk
:= {x ∈ Rn | xjk

≥ µk} or

Bk = Uµk

jk
:= {x ∈ Rn | xjk

≤ µk},

with 1 ≤ jk ≤ n and ljk
≤ µk ≤ ujk

for k = 1, . . . ,K. The set BL corresponds to
the additional bounds imposed on the variables in the local subproblem. Thus, the
subproblem is defined as

(MIP′) max
{

cTx | Ax ≤ b, l ≤ x ≤ u, xj ∈ Z for all j ∈ I, x ∈
⋂

B∈BL

B
}
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Figure 11.4. Conflict graph of Example 11.3. After applying the branching decisions x1 = 1,
x3 = 1, x6 = 0, and all inferred bound changes, the LP relaxation becomes infeasible. The
implications on variables z4 and z5 are not included in the figure.

The vertices of the conflict graph correspond to the local bound changes BL. As
before, the arcs of the graph represent the implications.

11.2.2 Analyzing Infeasible LPs

In order to analyze the conflict expressed by an infeasible LP, we have to find a
subset BC ⊆ BL of the local bound changes that suffice to render the LP (together
with the global bounds and rows1) infeasible. If all these remaining bound changes
are fixings of binary variables, this already leads to a valid inequality of type (11.1).

Furthermore, even if bound changes on non-binary variables are present, such a
subset can be used like the conflict-detecting clause in SAT to represent the conflict in
the conflict graph. Analysis of this conflict graph may also lead to a valid inequality.

A reasonable heuristic to select BC ⊆ BL is to try to make |BC | as small as
possible. This would produce a conflict graph with the least possible number of
predecessors of the conflict vertex and thus (hopefully) a small conflict constraint.
Unfortunately, the problem of finding the smallest subset of BL with the LP still
being infeasible is NP-hard:

Definition 11.4 (minimal cardinality bound-IIS). Let A ∈ Rm×n, b ∈ Rm,
and F = {x ∈ Rn | Ax ≤ b}. Let BL = {B1, . . . , BK} be additional bounds with
Bk = {x ∈ Rn | xjk

≥ µk} or Bk = {x ∈ Rn | xjk
≤ µk}, 1 ≤ jk ≤ n, for

all k = 1, . . . ,K, such that F ∩ (
⋂

B∈BL
B) = ∅. Then, the minimal cardinality

bound-IIS2 problem is to find a subset BC ⊆ BL with

F ∩
( ⋂

B∈BC

B
)

= ∅ and |BC | = min
B⊆BL

{

|B|
∣
∣
∣ F ∩ (

⋂

B∈B

B) = ∅
}

.

1In a branch-and-cut framework, we have to either remove local cuts from the LP or mark the
resulting conflict constraint being only locally valid at the depth level of the last local cut remaining
in the LP. Removing local rows can of course render the LP feasible again, thus making conflict
analysis impossible.

2IIS: irreducible inconsistent subsystem (an infeasible subsystem all of whose proper subsystems
are feasible)
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Proposition 11.5. The minimal cardinality bound-IIS problem is NP-hard.

Proof. We provide a reduction from the minimal cardinality IIS problem, which is
NP-hard (see Amaldi, Pfetsch, and Trotter [11]). Given an instance F ′ = (A, b) of
the minimal cardinality IIS problem with {x ∈ Rn | Ax ≤ b} = ∅, the task is to find
a minimal cardinality subset of the rows of Ax ≤ b that still defines an infeasible
subsystem. Consider now the minimal cardinality bound-IIS problem instance

F = {(x, s) ∈ Rn+m | Ax+ s = b}

and BL = {B1, . . . , Bm} with Bi = {(x, s) | si ≥ 0} for i = 1, . . . ,m. Then, for
each subset B ⊆ BL, the row index set IB = {i | Bi ∈ B} defines an infeasible
subsystem of F ′ if and only if F ∩ (

⋂

B∈B B) = ∅. Hence, there exists a one-to-one
correspondence between the set of solutions of (F,BL) and the one of F ′. Because
|IB| = |B|, the optimal solution of (F,BL) defines an optimal solution of F ′.

There are various heuristics for minimal cardinality IIS (see Pfetsch [186]). These
can easily be specialized to the minimal cardinality bound-IIS problem. We imple-
mented a preliminary version of a heuristic based on one of these methods which
applies the Farkas lemma and works on the so-called alternative polyhedron, but
the overhead in running time was very large. Therefore, we employ very simple
heuristics using the LP information at hand, which are described in the following.

First, we will only consider the case with the global lower bounds l and local
lower bounds l̃ being equal to l = l̃ = 0. We further assume that each component
of the global upper bounds u was tightened at most once to obtain the local upper
bounds ũ ≤ u. Thus, the set of local bound changes BL consists of at most one
bound change for each variable.

Suppose the local LP relaxation

(P) max{cTx | Ax ≤ b, 0 ≤ x ≤ ũ}

is infeasible. Then its dual

(D) min{bTy + ũT r | ATy + r ≥ c, (y, r) ≥ 0}

has an unbounded ray, i.e., (y̌, ř) ≥ 0 with AT y̌ + ř ≥ 0 and bT y̌ + ũT ř < 0. Note
that the dual LP does not need to be feasible.

We can aggregate the rows and bounds of the primal LP with the non-negative
weights (y̌, ř) to get the following proof of infeasibility:

0 ≤ (y̌TA+ řT )x ≤ y̌T b+ řT ũ < 0. (11.13)

Now we try to relax the bounds as much as possible without loosing infeasibility.
Note that the left hand side of Inequality (11.13) does not depend on ũ. Relaxing
ũ to some û with ũ ≤ û ≤ u increases the right hand side of (11.13), but as long as
y̌T b+ řT û < 0, the relaxed LP

(P̂ ) min{cTx | Ax ≤ b, 0 ≤ x ≤ û}

is still infeasible with the same infeasibility proof (y̌, ř). This leads to the heuristic
Algorithm 11.1 to produce a relaxed upper bound vector û with the corresponding
LP still being infeasible.

In the general case of multiple bound changes on a single variable, we have to
process these bound changes step by step, always relaxing to the previously active
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Algorithm 11.1 Infeasible LP Analysis

Input : An infeasible LP max{cTx | Ax ≤ b, 0 ≤ x ≤ ũ ≤ u} with dual ray (y̌, ř).

Output : Relaxed upper bounds û ≥ ũ such that the LP is still infeasible.

1. Set û := ũ, and calculate the infeasibility measure d := y̌T b+ řT û < 0.

2. Select a variable j with ûj < uj and dj := d + řj(uj − ũj) < 0. If no such
variable exists, stop.

3. Set ûj := uj , update d := dj , and go to Step 2.

bound. In the presence of non-zero lower bounds the reduced costs r may also be
negative. In this case, we can split up the reduced cost values into r = ru − rl

with ru, rl ≥ 0. It follows from the Farkas lemma that ru · rl = 0. The infeasibility
measure d of the dual ray has to be defined in Step 1 as d := y̌T b+ (řu)T û+ (řl)T l̂.
A local lower bound l̃ can be relaxed in the same way as an upper bound ũ, where
u has to be replaced by l in the formulas of Steps 2 and 3.

Example 11.6 (continued from Example 11.3). After applying the deductions
on the bounds of the variables in Example 11.3, the LP relaxation is infeasible. Let
y(i) denote the dual variable of constraint (i) and rj the reduced cost value of variable
j. Then the dual ray y̌(11.10) = 2, y̌(11.11) = 1, y̌(11.12) = 1, řz1

= 2, řz2
= −3,

řz3
= −1, and the remaining coefficients set to zero proves the infeasibility of the

LP. In Step 1 of Algorithm 11.1 the infeasibility measure is calculated as

d = y̌(11.10)b(11.10) + y̌(11.11)b(11.11) + y̌(11.12)b(11.12) + řu
z1
ũz1
− řl

z2
l̃z2
− řl

z3
l̃z3

= 2 · 1 + 1 · 2 + 1 · 1 + 2 · 1 − 3 · 2 − 1 · 3

= −2.

In Step 2, all local bounds except the upper bound of z1 and the lower bounds of
z2 and z3 can be relaxed to the corresponding global bounds, because their reduced
cost values in the dual ray are zero. Additionally, the lower bound of z3 can be
relaxed from 3 to 2, which was the lower bound before z3 ≥ 3 was deduced. This
relaxation increases d by 1 to d = −1. No further relaxations are possible without
increasing d to d ≥ 0. Thus, the local bounds z1 ≤ 1, z2 ≥ 2, and z3 ≥ 2 are
identified as initial reason for the conflict, and the “global” arc from the LP to the
conflict vertex in Figure 11.4 can be replaced by three arcs as shown in Figure 11.5.
The 1-FUIP scheme applied to the resulting conflict graph yields the cut labeled

’A’ and the conflict constraint

(z2 ≤ 1) ∨ (z3 ≤ 1).

Note that the involved variables z2 and z3 are non-binary. Section 11.2.4 shows how
to proceed in this situation.

11.2.3 Analyzing LPs Exceeding the Primal Bound

In principle, the case of an LP exceeding the primal bound can be handled as in
the previous section by adding an appropriate objective bound inequality to the
constraint system. In the implementation, however, we use the dual solution directly
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Figure 11.5. Conflict graph of Example 11.3 after the infeasible LP was analyzed. Cut ’A’ is the
1-FUIP cut. Cut ’B’ was constructed by moving the non-binary variables of the conflict set of cut
’A’ to the conflict side.

as a proof of objective bound excess. Then, we relax the bounds of the variables
as long as the dual solution’s objective value stays below the primal bound. Again,
we describe the case with l = l̃ = 0 and with at most one upper bound change per
variable on the path from the root node to the local subproblem.

Suppose, the local LP relaxation

(P ) max{cTx | Ax ≤ b, 0 ≤ x ≤ ũ}

exceeds (i.e., falls below) the primal objective bound ĉ. Then the dual

(D) min{bTy + ũTr | ATy + r ≥ c, (y, r) ≥ 0}

has an optimal solution (y̌, ř) with bT y̌ + ũT ř ≤ ĉ. Note that the variables’ upper
bounds ũ do not affect dual feasibility. Thus, after relaxing the upper bounds ũ to
a vector û with ũ ≤ û ≤ u that also satisfies bT y̌+ ûT ř ≤ ĉ, the LP’s objective value
stays below the primal objective bound.

After relaxing the bounds, the vector (y̌, ř) is still feasible, but not necessarily
optimal for the dual LP. We may resolve the dual LP in order to get a stronger dual
bound which can be used to relax further local upper bounds.

Algorithm 11.2 summarizes this procedure. As for the analysis of infeasible LPs,
it is easy to generalize Algorithm 11.2 to be able to handle multiple bound changes
on a single variable and non-zero lower bounds. Again, multiple bound changes
have to be processed step by step, and non-zero lower bounds may lead to negative
reduced cost values.

11.2.4 Conflict Constraints with Non-binary Variables

Despite the technical issue of dealing with bound changes instead of fixings in the
conflict graph, there is also a principle obstacle in the presence of non-binary vari-
ables, which is the construction of the conflict constraint if non-binary variables
appear in the conflict set.

The conflict graph analysis yields a conflict set, which is a subset Bf ⊆ BL that
together with the global bounds l and u suffices to render the current subproblem
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Algorithm 11.2 Bound Exceeding LP Analysis

Input : A bound exceeding LP max{cTx | Ax ≤ b, 0 ≤ x ≤ ũ ≤ u}, a primal
objective bound ĉ, and a dual feasible solution (y̌, ř) with bT y̌ + ũT ř ≤ ĉ.

Output : Relaxed upper bounds û ≥ ũ such that the LP still exceeds the primal
objective bound.

1. Set û := ũ.

2. Calculate the bound excess measure d := bT y̌ + ûT ř − ĉ ≤ 0.

3. Select a variable j with ûj < uj and dj := d + řj(uj − ũj) ≤ 0. If no such
variable exists, go to Step 5.

4. Set ûj := uj , update d := dj , and go to Step 3.

5. (optional) If at least one upper bound was relaxed in the last iteration, resolve
the dual LP to get the new dual solution (y̌, ř), and go to Step 2.

infeasible. This conflict set leads to the conflict constraint

∨

L
µ
j ∈Bf

(xj < µ) ∨
∨

U
µ
j ∈Bf

(xj > µ).

Bounds on continuous variables xj , j ∈ C = N \ I, would remain strict inequalities
which cannot be handled using floating point arithmetics and feasibility tolerances.
Therefore, we have to relax the bounds on continuous variables by allowing equality
in the conflict constraint. This leads to the conflict constraint

∨

L
µ
j ∈Bf

j∈I

(xj ≤ µ− 1) ∨
∨

U
µ
j ∈Bf

j∈I

(xj ≥ µ+ 1) ∨
∨

L
µ
j ∈Bf

j∈C

(xj ≤ µ) ∨
∨

U
µ
j ∈Bf

j∈C

(xj ≥ µ). (11.14)

As shown in the introduction of Section 11.2, this constraint can be linearized
by the set covering constraint (11.1) if all conflict variables are binary. However,
if a non-binary variable is involved in the conflict, we cannot use such a simple
linearization. In this case, (11.14) can be modeled with the help of auxiliary variables
yµ

j , z
µ
j ∈ {0, 1}:

∑

L
µ
j ∈Bf

yµ
j +

∑

U
µ
j ∈Bf

zµ
j ≥ 1

xj − (µ− 1)yµ
j ≤ 0 for all Lµ

j ∈ Bf , j ∈ I

xj − (µ+ 1)zµ
j ≥ 0 for all Uµ

j ∈ Bf , j ∈ I

xj − µy
µ
j ≤ 0 for all Lµ

j ∈ Bf , j /∈ I

xj − µz
µ
j ≥ 0 for all Uµ

j ∈ Bf , j /∈ I

(11.15)

The question arises, whether the potential gain in the dual bound justifies the ex-
penses in adding system (11.15) to the LP. Many fractional points violating conflict
constraint (11.14) cannot even be separated by (11.15) if the integrality restrictions
on the auxiliary variables are not enforced through other cutting planes or branch-
ing. This suggests that system (11.15) is probably very weak, although we did not
verify this hypotheses by computational studies.
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We have the following two possibilities to avoid adding system (11.15) to the LP:
either we use conflict constraints involving non-binary variables only for domain
propagation but not for cutting plane separation, or we prevent the generation of
conflict constraints with non-binary variables. The former demands the possibility of
including non-linear constraints into the underlying MIP framework. This is possible
since SCIP provides support for arbitrary constraints. For the latter option we
have to modify the cut selection rules in the conflict graph analysis such that the
non-binary variables are not involved in the resulting conflict set. This can be
achieved by moving the bound changes on non-binary variables from the reason
side’s frontier to the conflict side of the cut. The following example illustrates this
idea.

Example 11.7 (continued from Examples 11.3 and 11.6). Figure 11.5 shows
the conflict graph of Example 11.3 after branching on x1 = 1, x3 = 1, and x6 = 0.
The analysis of the LP relaxation identified z1 ≤ 1, z2 ≥ 2, and z3 ≥ 2 as sufficient to
cause an infeasibility in the LP (see Example 11.6). The 1-FUIP cut selection scheme
leads to the cut labeled ’A’ in the figure. The corresponding conflict constraint is

(z2 ≤ 1) ∨ (z3 ≤ 1).

Because there are non-binary variables involved in the conflict constraint, it cannot
be linearized by the set covering constraint (11.1). To avoid the introduction of the
auxiliary variables of System (11.15), the bound changes z2 ≥ 2 and z3 ≥ 2 are put
to the conflict side, resulting in cut ’B’. Thus, the conflict constraint that is added
to the constraint database is

(x2 = 1) ∨ (x4 = 0) ∨ (x7 = 0),

which can be written as

x2 + (1− x4) + (1− x7) ≥ 1

in terms of a set covering constraint.

Since branching vertices must be located on the reason side, the bound changes
representing branching decisions on non-binary variables cannot be moved to the
conflict side. In this case, we can just remove the bound change from the conflict
set in order to obtain a set covering conflict constraint. However, we thereby destroy
the global validity of the resulting conflict clause. The clause can therefore only be
added to the local subtree which is rooted at the node where the bound change on
the non-binary variable was applied.

11.3 Computational Results

In the following, we present the computational experiments that we conducted in
order to assess the performance impact of conflict analysis on solving mixed integer
programs. With the parameter settings we used for the experiments, we produce one
FUIP conflict constraint for every depth level in the conflict graph, see Section 11.1.1.
This includes the 1-FUIP and All-FUIP schemes as extreme cases. In addition, we
generate all reconvergence constraints, see Section 11.1.2, that are needed to link the
FUIPs of the individual depth levels to the respective branching vertex. However, we



11.3. Computational Results 179

test set prop prop/inflp prop/inflp/age prop/lp all full
ti

m
e

miplib 0 +6 0 +12 +14 +24

coral −10 −1 −7 +2 +2 +8

milp −13 −26 −28 −31 −24 −18

enlight −11 −21 −49 −21 −26 −26

alu −28 −35 −11 −39 −39 −38

fctp +1 +2 +1 +23 +20 +41

acc +19 +21 +17 −2 −19 +5

fc +1 +1 −1 +9 +9 +18

arcset +1 −6 −6 −4 −1 +1

mik +7 +4 +7 −11 −15 −17

total −7 −8 −12 −8 −6 +1

n
o

d
es

miplib −6 −1 −9 −14 −10 −15

coral −20 −13 −29 −22 −27 −36

milp −16 −29 −36 −48 −45 −47

enlight −29 −48 −79 −49 −49 −49

alu −61 −74 −80 −75 −78 −77

fctp +1 0 0 +2 −3 −8

acc +51 +57 +52 +20 −21 +17

fc −1 −3 −3 +1 −15 −24

arcset −5 −16 −17 −29 −29 −34

mik +1 −5 −12 −53 −55 −60

total −14 −17 −28 −31 −32 −36

Table 11.1. Performance effect of different variants of conflict analysis for solving MIP instances.
The values denote the percental changes in the shifted geometric mean of the runtime (top) and
number of branching nodes (bottom) compared to disabling conflict analysis. Positive values rep-
resent a deterioration, negative values an improvement.

restrict the number of conflict constraints produced for a single infeasible subproblem
to be no larger than 10.

Conflict sets involving non-binary variables, see Section 11.2.4, are treated by
the non-linear bound disjunction constraints (11.14). We do not separate conflict
constraints as cutting planes, neither by linearizing bound disjunction constraints
into System (11.15), nor by adding set covering inequalities (11.1) for pure binary
conflict constraints to the LP relaxation. Instead, conflict constraints are solely used
for domain propagation.

If a conflict constraint implies a deduction at a search node that is an ancestor
of the infeasible subproblem, a non-chronological backtracking is triggered: the an-
cestor and all of its offspring are marked to be repropagated, which means that they
are again subject to domain propagation when they become a member of the active
path.3 It may happen that such a repropagation renders the node infeasible and
thereby cuts off the whole underlying subtree.

In order to avoid a large increase in the total number of constraints during the
solving process, we use an aging mechanism to delete conflict constraints that seem
to be useless: every time a conflict constraint is considered for domain propagation
and does not yield a deduction, its age counter is increased. If its age reaches a
certain limit, the constraint is discarded.

We carried out benchmarks with various settings that differ in the effort that is
spent on analyzing the infeasible subproblems. Table 11.1 shows a summary of the
results. More details can be found in Tables B.191 to B.200 in Appendix B.

For column “prop”, we only analyzed conflicts that have been generated by do-
main propagation, i.e., where the propagation of a constraint produced an empty

3The active path is the path in the search tree from the root node to the currently processed
node, see Section 3.3.6.
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domain for a variable. This already achieves a significant performance improvement
for most of the test sets. Most notably, the average number of branch-and-bound
nodes needed to prove the infeasibility of the alu instances reduces by more than
60 %, which translates into a runtime reduction of almost 30 %.

Column “prop/inflp” shows the results for applying Algorithm 11.1 to analyze
subproblems for which the LP relaxation was infeasible in addition to the propaga-
tion conflict analysis of column “prop”. The results are quite similar to using only
propagation conflict analysis: for some test sets, namely milp, enlight, alu, and
arcset, the performance improves, but one can observe a considerable deterioration
on the miplib and coral instances. The differences in the average number of nodes
for the “prop” and “prop/inflp” settings are strongly correlated to the differences
in the solving time. This indicates that the computational costs for the additional
analysis of infeasible LP relaxations are negligible.

The “prop/inflp/age” settings differ from the ones used in column “prop/inflp” in
the aging rule that is used to discard seemingly useless conflict constraints. Here,
conflict constraints are kept longer, which leads to a larger overhead in the constraint
management but also to more deductions in domain propagation. It turns out
that this less aggressive constraint removal policy does not only reduce the average
number of nodes but also the average solving time for almost all test sets. The only
counter-examples are the alu and mik instances. In particular for the alu test set,
the additional reduction in the number of nodes does not compensate the higher
costs for constraint management and propagation: the average number of nodes is
25 % smaller than for the default aging policy, but the average runtime is 37 % larger.

In addition to conflicting propagations and infeasible LP relaxations, the “prop/lp”
settings employ Algorithm 11.2 to analyze LPs that exceed the primal bound. For
each conflict, the optional LP resolving in Step 5 is executed at most twice, each
time performing at most 10 dual simplex iterations. Compared to the “prop/inflp”
settings, analyzing bound-exceeding LPs yields an even larger reduction in the aver-
age number of nodes to solve the instances. Unfortunately, it does not improve the
overall runtime performance.

The results on the alu instances deserve an explanation. As noted earlier, these
MIP instances are infeasible. Therefore, there will never be any incumbent solution
during the solving process, and it seems strange that the results differ if bound
exceeding LPs are analyzed. However, even though there is no feasible solution at
hand, SCIP sets a cutoff bound for the LP solver, namely the trivial bound

c⋆ ≤ max{cTx | l ≤ x ≤ u} =
∑

cj<0

cjlj +
∑

cj>0

cjuj .

Therefore, it may happen that the dual simplex algorithm hits the cutoff bound
before it detects the infeasibility of the LP relaxation.

The settings used in column “all” extend the conflict analysis of “prop/lp” to
infeasible or bound-exceeding LP relaxations encountered during the strong branch-
ing evaluation of branching candidates, see Section 5.4. Compared to “prop/lp”, a
notable difference in the number of branching nodes can only be observed for the
acc and fc instances. The average runtime performance gets slightly worse by using
strong branching LP conflict analysis, which is mostly due to the inferior result on
the milp test set.

Analyzing infeasible or bound-exceeding strong branching LPs involves a tech-
nical issue that is related to the API of Cplex. Strong branching is performed
by calling the special purpose method CPXstrongbranch(). Unfortunately, this
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method does not return the necessary dual information that is needed to analyze
an infeasible or bound-exceeding strong branching LP. Therefore, we have to solve
these LPs again with the regular CPXdualopt() method before we can analyze the
conflict. This imposes a small artificial runtime overhead, but it is unlikely that this
overhead influences the benchmark results in a significant way.

Finally, the “full” conflict analysis settings achieve the largest reduction in the
average number of branching nodes. In these settings, we produce conflict constraints
for conflicting domain propagations, infeasible and bound-exceeding LP relaxations,
and strong branching LPs. In Algorithm 11.2, which analyzes bound-exceeding LPs,
we apply the LP resolving Step 5 as often as possible and do not impose any limit
on the number of simplex iterations. Additionally, there is no limit on the number
of constraints produced for each conflict.

Compared to the “all” settings, this very aggressive use of conflict analysis in-
creases the average runtime on almost all test sets, with the most notable perfor-
mance deterioration on the miplib, fctp, acc, and fc instances. With the exception
of alu and acc, however, the average number of nodes needed to solve the instances
is reduced. This indicates that such an extensive use of conflict analysis is too time
consuming and leads to an unreasonable overhead in the constraint management.

We conclude from our experiments that conflict analysis is indeed a useful tool
to improve the performance of MIP solvers. The largest speedup can be achieved
for infeasible MIPs like the alu instances and models of combinatorial nature as the
ones in the enlight test set. The details of the implementation, however, have to be
considered carefully in order to avoid a large runtime overhead for the analysis and
the conflict constraint management. In particular, the policy to discard seemingly
useless conflict constraints seems to be an important factor.
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Chapter 12

Introduction

This part of the thesis addresses the property checking problem arising in the formal
verification of integrated circuit designs. This problem was treated in work pack-
age 1 of the BMBF1 project Valse-XT2 in cooperation with Infineon3, OneSpin
Solutions4, and TU Kaiserslautern5. The introduction is joint work with Raik
Brinkmann and Markus Wedler.

A recent trend in the semiconductor industry is to produce so-called Systems-
on-Chips (SoCs). These are circuits which integrate large parts of the functionality
of complete electronic systems. They are employed in cell phones, car controls,
digital televisions, network processors, video games, and many other devices (see,
e.g., Jerraya and Wolf [123]).

Due to the complexity of SoCs, it is a very challenging task to ensure the cor-
rectness of the chip design. The following quotation is taken from ITRS 2005 [120],
the International Technology Roadmap for Semiconductors:

Design verification is the task of establishing that a given design accu-
rately implements the intended behavior. Today, the verification of mod-
ern computing systems has grown to dominate the cost of electronic sys-
tem design, often with limited success, as designs continue to be released
with latent bugs. In fact, in many application domains, the verification
portion has become the predominant component of a project development,
in terms of time, cost and human resources dedicated to it. In current
projects verification engineers outnumber designers, with this ratio reach-
ing two or three to one for the most complex designs. Design conception
and implementation are becoming mere preludes to the main activity of
verification.

According to Infineon [207], 60 % to 80 % of the expenses in SoC chip design are
spent on verification. The goal of the Valse-XT project was to improve the current
state-of-the-art in chip design verification in order to cope with the ever increasing
complexity of integrated circuits.

SoCs are composed of several smaller circuit modules. It is a natural idea to
verify the correctness of the chip design in a hierarchical fashion. This imposes
very strong quality restrictions on the individual modules. For example, if the SoC
contains 100 modules with each of them behaving correctly on 99.9 % of the input
patterns, the behavior of the SoC as a whole is only correct in about 90 % of the
cases (at least if the modules fail on different inputs). Therefore, it is necessary to
prove the correctness of the individual modules, thereby showing 100 % correctness
of their input-output behavior.

1Bundesministerium für Bildung und Forschung, http://www.bmbf.de
2BMBF-Ekompass Project No. 01 M 3069 A, http://www.edacentrum.de/ekompass/
3http://www.infineon.com
4http://www.onespin-solutions.com
5http://www-eda.eit.uni-kl.de

185

http://www.bmbf.de
http://www.edacentrum.de/ekompass/
http://www.infineon.com
http://www.onespin-solutions.com
http://www-eda.eit.uni-kl.de


186 Introduction

Chip Design
Software

SimulationSimulation

Formal

Verification
Prototype

Hardware
Final Product

Figure 12.1. Chip manufacturing workflow.

Figure 12.1 sketches a typical work flow in the chip manufacturing process.
The chip design is usually developed in a hardware design language like Verilog,
VHDL, System-C, or System Verilog, which are very similar to ordinary im-
perative computer programming languages like C or Fortran. The design is tested
by software simulation, which consists of applying many different input patterns to
the input connectors of a virtual representation of the chip. If the computed output
does not match the expected output, the design is flawed and has to be corrected.

Since there are 2nT possible input patterns for a chip design with n input con-
nectors running for T clock cycles, it is practically impossible to test all patterns by
simulation in a reasonable amount of time. Therefore, an additional tool is needed
that can actually prove the correctness of the chip. This task can be accomplished
by formal verification, which is explained below. Again, if an erroneous situation
is detected, the design has to be revised. Otherwise, a hardware prototype of the
design is produced on which an additional round of input pattern simulation is ap-
plied. If the prototype passes this final test, the mass production of the circuit is
initiated, and the chips are delivered to the customers.

In order to produce a hardware prototype, the initial circuit design has to undergo
a chain of transformations via different representation levels. Figure 12.2 shows
these levels, starting with the high-level chip design and ending with a detailed
transistor level description, which can be used to produce a hardware prototype.

Chip Design

Register Transfer

Level
Gate Level Transistor Level Prototype

Figure 12.2. Chip design levels.

The chip design is implemented in a hardware programming language on the
register transfer level (RT level). Here, the internal and external variables are rep-
resented as multi-bit registers. Their interrelations are expressed by arithmetic and
logic operations. This representation is converted onto the gate level in which the
registers are disaggregated into single bits, and the multi-bit operations are repre-
sented by networks of logical gates, e.g., and, or, xor, and not gates. The tran-
sistor level implements the gate level by replacing the logical gates with appropriate
transistors.

The idea of formal verification is that the verification engineer completely de-
scribes the expected behavior of the chip by a set of properties, which are formal
relations between the inputs, outputs, and internal states of the circuit. Given these
properties, the following two problems have to be solved:

⊲ The property checking problem is to prove that the chip design satisfies a given
property. This problem has to be solved for each individual property in the
property set.

⊲ The equivalence checking problem is to prove that the individual representa-
tions of the circuit are equivalent with respect to their input-output behavior.
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The equivalence ensures that no errors are introduced during the transforma-
tion chain from chip design to transistor level.

If the chip design satisfies all of the given properties and all representations are
equivalent, the chip design and the transistor model of the hardware circuit are
provably correct. In the remainder of the thesis we focus on the property checking
problem.

Constraint Integer Programming Approach

Properties can be defined in a language similar to the ones used to design the chip.
Like the chip design, a property can be transformed to the different representation
levels shown in Figure 12.2. Given that the equivalence checking has already been
successfully accomplished, one can deal with the property checking problem at any
suitable representation level.

Current state-of-the-art property checking algorithms operate on the gate level
description. At this level, the design and the property can be converted into an
instance of the satisfiability problem (see Section 1.2), which is then solved by a
black-box SAT solver. In order to obtain a finite set of variables, one has to apply
bounded model checking (Biere et al. [42]), which means to define a sufficiently large
but finite time horizon T . Biere et al. fix the initial state at t = 0 to be the reset
state of the circuit. In contrast, we leave the initial state of the circuit undefined,
such that we can also identify errors that can only be reached after more than T
time steps from the reset stage. The disadvantage is that we may report errors that
result from an initial state t = 0, which is not reachable from the reset state and
that can therefore never appear.

The reduction of the property checking problem to a SAT instance facilitates
formal verification of industrial circuit designs far beyond the scope of classical
model checking techniques like BDD6 based approaches (see Biere et al. [43] or
Bjesse et al. [47]). However, it is well known that SAT solvers have problems when
dealing with instances derived from the verification of arithmetic circuits (as opposed
to logic oriented circuits). Hence, although SAT based property checking can often
be applied successfully to the control part of a design, it typically fails on data paths
with large arithmetic blocks.

This motivated the development of word level solvers using integer program-
ming (IP) [55, 83, 222] or constraint programming (CP) [221] that can be applied
at the register transfer level where the structure of the arithmetic operations is still
visible. Current IP and CP solvers, however, do not learn conflict clauses during the
search like SAT solvers (see Chapter 11). Therefore, they usually perform poorly on
the control part of a design. Moreover, in order to obtain highly optimized circuits
designers often implement arithmetic functions at the bit level such that word level
solvers are not adequate. Thus, a combination of word level and Boolean solvers has
to be developed. Two promising ways of integrating IP and SAT have been proposed
by Chai and Kuehlmann [59] and Audemard et al. [27]. Chai and Kuehlmann use
pseudo-Boolean constraints (PBCs) as clauses in a branch-and-bound based solver,
and Audemard et al. use linear equations as propositions. The reasoning of PBC
solvers, however, is still limited to the bit level and the benefit of the stronger search
space pruning due to learned PBCs usually does not justify the overhead for han-
dling these more complex constraints. On the other hand, using IP techniques at

6binary decision diagram, see Akers [8], Bryant [57], or Madre and Billon [152]
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the leaves of a decision tree without learning from infeasibilities sacrifices pruning
potential in the logic part of the circuit.

Recently two alternative approaches called DPLL(T) [91] and HDPLL [184, 183]
for integrating different theories into a unified DPLL7-style decision procedure have
been proposed. DPLL(T) combines the theory of Boolean logic with the theory of
uninterpreted functions with equality. In fact, there is no mechanism for learning
across theories in DPLL(T). It can handle only comparisons with equality, which
makes it currently unsuitable for RT level property checking. On the other hand,
HDPLL combines the DPLL algorithm with techniques from CP and IP, namely
domain propagation and Fourier-Motzkin elimination.

Like the mentioned word level solvers, we address the property checking problem
at the register transfer level and try to exploit the structural information therein.
Our approach differs from previous work in the techniques that are employed. We
formulate the problem as a constraint integer program (CIP) and utilize a highly
integrated combination of methods from CP, IP, and SAT solving, namely domain
propagation (see Section 2.3), linear programming (LP) based branch-and-cut (see
Sections 2.1 and 2.2), and generalized LP based conflict analysis (see Chapter 11).
For each RT operation, a specific domain propagation algorithm is applied, us-
ing both bit and word level representations. We also provide reverse propagation
algorithms to support conflict analysis at the RT level. In addition, we present
linearizations for most of the RT operators in order to construct the LP relaxation.

In HDPLL, Fourier-Motzkin elimination is only used as a last resort to check the
feasibility on the data path after all binary variables have been fixed. In contrast,
we solve an LP relaxation at every subproblem in the search tree. Using the dual
simplex algorithm the LPs can be resolved efficiently after applying changes to the
variables’ bounds. Due to the “global” view of the LP, infeasibilities of a subproblem
can be detected much higher in the search tree than with CP or SAT techniques
alone. In addition, a feasible LP solution can either yield a counter-example for the
property, or can be used to control the next branching decision, thereby guiding the
search (see Chapter 5).

The remaining part of the thesis is organized as follows. Chapter 13 gives a for-
mal definition of the property checking problem as a CIP. Chapter 14 discusses the
implementation of the different RT operators in detail. In particular, this includes
descriptions of the operator specific LP relaxations, domain propagation procedures,
and presolving algorithms. Chapter 15 explains additional global preprocessing tech-
niques, while Chapter 16 describes the branching and node selection strategy that we
employ. Finally, in Chapter 17 we give computational results on industrial bench-
marks provided by OneSpin Solutions and Infineon, which demonstrate the
effectiveness of our approach compared to state-of-the-art SAT based methods.

7Davis, Putnam, Logemann, and Loveland [77, 78]: branching algorithm for SAT, see Section 1.2.



Chapter 13

Formal Problem Definition

The property checking problem at register transfer level can be defined as follows:

Definition 13.1 (property checking problem). The property checking problem
PCP is a triple PCP = (C, P,D) with D = D1 × . . . ×Dn representing the domains
Dj = {0, . . . , 2βj−1} of register variables ̺j ∈ Dj with bit width βj ∈ N, j = 1, . . . , n,
C = {C1, . . . , Cm} being a finite set of constraints Ci : D → {0, 1}, i = 1, . . . ,m, de-
scribing the behavior of the circuit, and P : D→ {0, 1} being a constraint describing
the property to be verified. The task is to decide whether

∀̺ ∈ D : C(̺)→ P (̺) (13.1)

holds, i.e., to either find a counter-example ̺ satisfying C(̺) but violating P (̺) or
to prove that no such counter-example exists.

In order to verify Condition (13.1) we search for a counter-example using the
equivalence

∀̺ ∈ D : C(̺)→ P (̺) ⇔ ¬ (∃̺ ∈ D : C(̺) ∧ ¬P (̺)) . (13.2)

The right hand side of (13.2) is a finite domain constraint satisfaction problem
CSP = (C∪{¬P},D), see Definition 1.1. Every feasible solution ̺⋆ ∈ D of the CSP
corresponds to a counter-example of the property. Therefore, the property is valid
if and only if the CSP is infeasible.

13.1 Constraint Integer Programming Model

As shown in Proposition 1.7, any finite domain constraint satisfaction problem can
be modeled as a constraint integer program (CIP). In the property checking CSP,
the constraints Ci(r

i, xi, yi, zi) resemble circuit operations ri = opi(xi, yi, zi) with up
to three input registers xi, yi, zi, and an output register ri. We consider the circuit
operations shown in Table 13.1 (see Brinkmann [54]). Their semantics is explained
in detail in Chapter 14. Additionally, for each register variable ̺j , we introduce
single bit variables ̺jb ∈ {0, 1}, b = 0, . . . , βj − 1, for which linking constraints

̺j =

βj−1
∑

b=0

2b̺jb (13.3)

189



190 Formal Problem Definition

Operation Syntax Signature Semantics

Arithmetic Operations:

Unary Minus r = minus(x) [β]← [β] r = 2β − x

Addition r = add(x, y) [β]← [β]× [β] r = (x + y) mod 2β

Subtraction r = sub(x, y) [β]← [β]× [β] r = (x− y) mod 2β

Multiplication r = mult(x, y) [β]← [β]× [β] r = (x · y) mod 2β

Bit Operations:

Negation r = not(x) [β]← [β] rb = 1− xb for all b

Bitwise And r = and(x, y) [β]← [β]× [β] rb = xb ∧ yb for all b

Bitwise Or r = or(x, y) [β]← [β]× [β] rb = xb ∨ yb for all b

Bitwise Xor r = xor(x, y) [β]← [β]× [β] rb = xb⊕ yb for all b

Data → Control Interface:

Unary And r = uand(x) [1]← [β] r = x0 ∧ . . . ∧ xβ−1

Unary Or r = uor(x) [1]← [β] r = x0 ∨ . . . ∨ xβ−1

Unary Xor r = uxor(x) [1]← [β] r = x0⊕ . . .⊕xβ−1

Equality r = eq(x, y) [1]← [β]× [β] r = 1⇔ x = y

Less-than r = lt(x, y) [1]← [β]× [β] r = 1⇔ x < y

Control → Data Interface:

If-then-else r = ite(x, y, z) [β]← [1]× [β]× [β] r =

(

y if x = 1,

z if x = 0

Word Extension:

Zero Extension r = zeroext(x) [β]← [µ] rb =

(

xb if b < µ,

0 if b ≥ µ

Sign Extension r = signext(x) [β]← [µ] rb =

(

xb if b < µ,

xµ−1 if b ≥ µ

Concatenation r = concat(x, y) [β + µ]← [β]× [µ] rb =

(

yb if b < µ,

xb−µ if b ≥ µ

Subword Access:

Shift Left r = shl(x, y) [β]← [β]× [µ] rb =

(

xb−y if b ≥ y,

0 if b < y

Shift Right r = shr(x, y) [β]← [β]× [µ] rb =

(

xb+y if b + y < β,

0 if b + y ≥ β

Slicing r = slice(x, y) [β]← [µ]× [ν] rb =

(

xb+y if b + y < µ,

0 if b + y ≥ µ

Multiplex Read r = read(x, y) [β]← [µ]× [ν] rb =

(

xb+y·β if b + y · β < µ,

0 if b + y · β ≥ µ

Multiplex Write r = write(x, y, z) [β]← [β]× [µ]× [ν] rb =

(

zb−y·ν if 0 ≤ b− y · ν < ν,

xb otherwise

Table 13.1. Circuit operations. The domains in the signature are defined as [β] = {0, . . . , β−1}.

define their correlation to the register variable. Altogether, this yields the following
constraint integer program:

min cT̺

s.t. Ci(̺) for i = 1, . . . ,m

¬P (̺)

̺j =

βj−1
∑

b=0

2b̺jb for j = 1, . . . , n

0 ≤ ̺j ≤ 2βj−1 for j = 1, . . . , n

̺j ∈ Z for j = 1, . . . , n

̺jb ∈ {0, 1} for j = 1, . . . , n and b = 0, . . . , βj − 1

(13.4)
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Figure 13.1. Adder which accumulates input over time.

Since the property checking problem is a pure feasibility problem, the objective
function c is irrelevant and can be chosen arbitrarily. However, the choice of objective
function influences the solving process. We experimented with three choices, namely
c = 0, cjb = 1 for all register bits ̺jb, and cjb = −1 for all register bits. It turned out
that this choice does not have a large impact on the solving performance. Therefore,
we omit these benchmarks in the computational results of Chapter 17.

Example 13.2. Figure 13.1 shows a circuit A which adds up values that are given
in the input register xt at consecutive time steps t. The sum is accumulated in
the internal register variable yt, which is simultaneously used as the output of the
circuit. If the single bit input initt is set to 1, the accumulator yt is initialized with
the value of xt. Otherwise, xt is added to the previous sum yt−1.

We want to verify whether the addition performed by the circuit satisfies the
commutative law. To formulate this property, we create a copy A′ of the circuit
with register variables init′t, x

′
t, and y′t. In a first attempt we verify the property

constraint

init0 = init′0 = 1 ∧ x0 = x′1 ∧ x1 = x′0 → y1 = y′1. (13.5)

To verify the property, we have to consider two time steps t ∈ {0, 1}. This gives the
following constraint integer program, assuming that the widths of the registers are
all equal to β:

min 0

s.t. s0 = add(x0, y−1) s′0 = add(x′0, y
′
−1) init0 = 1

y0 = ite(init0, x0, s0) y′0 = ite(init′0, x
′
0, s
′
0) init′0 = 1

s1 = add(x1, y0) s′1 = add(x′1, y
′
0) x0 = x′1

y1 = ite(init1, x1, s1) y′1 = ite(init′1, x
′
1, s
′
1) x1 = x′0

y1 6= y′1

x0, x1, y−1, y0, y1, s0, s1 ∈ {0, . . . , 2
β − 1}

init0, init1 ∈ {0, 1}

x′0, x
′
1, y
′
−1, y

′
0, y
′
1, s
′
0, s
′
1 ∈ {0, . . . , 2

β − 1}

init′0, init′1 ∈ {0, 1}

(13.6)

The left block of equations corresponds to the circuit operations, the middle block
models the copy of the circuit, and the right block represents the negation of the
property using ¬(a → b) ⇔ a ∧ ¬b. Variables y−1 and y′−1 denote the value of the
register in the time step prior to t = 0.
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CIP (13.6) is feasible, for example with the input init0 = init′0 = init1 = init′1 = 1,
x0 = x′1 = 0, and x1 = x′0 = 1, and the initial internal state y−1 = y′−1 = 0, which
yields the values s0 = y0 = 0, s1 = y1 = 1, s′0 = y′0 = s′1 = 1, and y′1 = 0 for the
constrained variables. This proves that the circuit violates Property (13.5). However,
this does not necessarily mean that the circuit is flawed. In our case, the source of
the error is the incorrect model of the property. To verify the commutativity law,
we do not only have to fix init0 = init′0 = 1, but we also have to ensure that the init
register is 0 in the following time step. This yields the revised property

init0 = init′0 = 1 ∧ init1 = init′1 = 0 ∧ x0 = x′1 ∧ x1 = x′0 → y1 = y′1, (13.7)

which introduces the two additional fixings init1 = 0 and init′1 = 0 to System (13.6).
The modified CIP is infeasible, which proves the validity of Property (13.7).

13.2 Function Graph

The circuit operations link up to three input registers x, y, and z to an output
register r. The output is uniquely defined by the input, since the circuit operators
are well-defined mappings. In every circuit, each register can be the output of at
most one operation. Registers that are not output of any operation are the input
registers of the circuit, while the ones that are constrained by a circuit operation
are internal or output registers. Therefore, the circuit as a whole is a well-defined
mapping of input registers to internal and output registers.

This mapping can be represented as a function graph, which is a directed bipartite
graph G = (V̺ ∪ VC, A) with two different types of nodes, namely register nodes
V̺ = {̺1, . . . , ̺n} and constraint nodes VC = {C1, . . . , Cm}. The arc set is defined as

A = {(̺j , Ci) | register ̺j is input of circuit operation Ci}

∪ {(Ci, ̺j) | register ̺j is output of circuit operation Ci}.

As the graph represents a chip design and therefore a well-defined mapping of inputs
to outputs, it does not contain directed cycles.

If the input registers are fixed to certain values, the values of the internal and out-
put registers can easily be calculated by forward propagation of the registers through
the constraints, just like the chip would do in hardware. The property, however, may
restrict the domains of internal and output registers, add other constraints, and can
leave input registers unspecified. Therefore, an assignment of values to the unspeci-
fied input registers may result in conflicting assignments for the internal and output
variables.

Example 13.3. Figure 13.2 shows the function graph for the adder of Example 13.2
including the invalid negated Property (13.5), which corresponds to the CIP (13.6).
The left hand side part represents the time-expanded original circuit A, while the
right hand side part represents the copy A′. The property is included by fixing
the input init0 in both circuits to init0 = init′0 = 1 and adding the constraints
1 = eq(x0, x

′
1), 1 = eq(x1, x

′
0), and 0 = eq(y1, y

′
1).

The function graph contains the complete structure of the circuit and the prop-
erty. We use this concept in the irrelevance detection described in Section 15.2 to
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Figure 13.2. Function graph for adder of Example 13.2 expanded over two time steps t = 0, 1,
including the invalid negated Property (13.5) denoted by dashed lines.

identify subgraphs with a single output register, which is neither an input of an-
other operation nor constrained by the property restrictions. These subgraphs can
be eliminated from the model, since the values of the involved registers can easily be
calculated with forward propagation after a feasible solution for the remaining part
of the circuit has been found.





Chapter 14

Operators in Detail

We solve the property checking CIP (13.4) with our branch-and-bound based con-
straint integer programming framework SCIP. The problem instance is successively
divided into subproblems by splitting the domains of the register variables ̺ into two
disjunctive parts: either by fixing a certain bit of a register to ̺jb = 0 and ̺jb = 1,
respectively, or by introducing local upper bounds ̺j ≤ v and local lower bounds
̺j ≥ v + 1 on the individual registers.

At each node in the resulting search tree, we apply methods of constraint pro-
gramming (Section 1.1), SAT solving (Section 1.2), and integer programming (Sec-
tion 1.3) to tighten the local subproblem and to prune the search tree. This
includes domain propagation (Section 2.3), solving an LP relaxation with the op-
tional possibility to add cutting planes (Section 2.2), and applying conflict analysis
(Chapter 11) on infeasible subproblems.

The most important task in creating a SCIP application to solve a specific con-
straint integer programming model is to implement the constraint handlers (see
Section 3.1.1) for the individual constraint classes that can appear in the model.

In our case of property checking, these are the circuit operator constraints of
Table 13.1 and the bit linking constraints (13.3). Each constraint handler defines
the semantics, constructs the LP relaxation, and provides domain propagation and
reverse propagation algorithms for the constraint class for which it is responsible.
Additionally, presolving algorithms specialized to the individual constraint classes
reduce the complexity of the problem instance and detect inherent relations, which
can be exploited during the solving process.

In the following, we will take a detailed look at the different circuit operators
and describe the algorithms dealing with the corresponding constraints. For each
operator, we present the linear equations and inequalities that are used to model
the operator within the linear programming relaxation, and we describe the do-
main propagation and presolving algorithms. The presentation is rather detailed
and technical. It tries to convey the main algorithmic ideas to developers of chip
design verification tools. For those who are not interested in the very details of the
algorithms, it suffices to read the introduction paragraphs of the individual circuit
operator sections in which we explain the main issues and difficulties associated with
the respective constraint class.

Table 14.1 gives a summary of the linear relaxations used for the circuit opera-
tors. Very large coefficients like 2βr in the add linearization or in the bit linking
constraints (13.3) can lead to numerical difficulties in the LP relaxation. Therefore,
we split the register variables into words of W = 16 bits and apply the linearization
to the individual words. The linkage between the words is established in a proper
fashion. For example, the overflow bit of a word in an addition is added to the right
hand side of the next word’s linearization (see Section 14.3.1). The partitioning of
registers into words and bits is explained in detail in Section 14.1. The relaxation
of the mult constraint involves additional variables y〈l〉 and r〈l〉 which are “nibbles”
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Figure 14.1. Partitioning of a register x = ̺j into words and bits.

of y and r with L ≤ W
2

bits. An elaborate presentation of the mult linearization
can be found in Section 14.5.

14.1 Bit and Word Partitioning

In order to support constraints that operate on bit level, we partition the registers ̺j

into bits ̺jb, b = 0, . . . , βj − 1, with βj ∈ N being the width of the register. In our
property checking algorithm we employ “double modeling”: both the integer valued
register variables ̺j and the binary bit variables ̺jb are included in the model, such
that the different components of the solver can access the registers on bit or word
level as needed.

A register variable and its associated bit variables are linked by constraint (13.3).
However, as already discussed above, large bit widths βj would lead to huge coef-
ficients in these constraints and also in the linearizations of some circuit operators.
Therefore, the registers ̺j are split into ωj = ⌈βj/W ⌉ words ̺w

j , w = 0, . . . , ωj − 1,
of W := 16 bits, and the bit linking constraints are defined on word level:

̺w
j =

γw
j −1
∑

b=0

2b̺w
jb. (14.1)

Here, γw
j = min{W,βj − wW} is the width of word w of register ̺j , and ̺w

jb is the
b’th bit in word w of register ̺j , i.e.,

̺w
jb = ̺j,wW+b.

For ease of notation, we define ̺jb = 0 for b ≥ βj , ̺w
j = 0 for w ≥ ωj , and ̺w

jb = 0
for w ≥ ωj or b ≥ γw

j . Figure 14.1 illustrates the partitioning of a register x = ̺j

into bits xb and words xw, and the partitioning of the individual words into bits xw
b .

In the following, we also need to access subwords of a given register or other
non-negative integer values or variables:

Definition 14.1 (subword). Given a non-negative integer x ∈ Z≥0 with binary
representation x =

∑∞
b=0 2bxb, xb ∈ {0, 1} for all b, define

x[q, p] :=

q
∑

b=p

2b−pxb
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Operation Linearization

Arithmetic Operations:

r = minus(x) replaced by 0 = add(x, r)

r = add(x, y) r + 2βro = x+ y, o ∈ {0, 1}

r = sub(x, y) replaced by x = add(y, r)

r = mult(x, y) p
〈l〉
b ≤ uy〈l〉xb, p

〈l〉
b ≤ y〈l〉, p

〈l〉
b ∈ Z≥0,

p
〈l〉
b ≥ y〈l〉 − uy〈l〉(1 − xb),

o〈l〉 +
P

i+j=l

PL−1

b=0
2bp

〈j〉
iL+b = 2Lo〈l+1〉 + r〈l〉, o〈l〉 ∈ Z≥0

Bit Operations:

r = not(x) removed in preprocessing

r = and(x, y) rb ≤ xb, rb ≤ yb, rb ≥ xb + yb − 1

r = or(x, y) rb ≥ xb, rb ≥ yb, rb ≤ xb + yb

r = xor(x, y) xb − yb − rb ≤ 0, −xb + yb − rb ≤ 0, −xb − yb + rb ≤ 0, xb + yb + rb ≤ 2

Data → Control Interface:

r = uand(x) r ≤ xb, r ≥
Pβx−1

b=0
xb − βx + 1

r = uor(x) r ≥ xb, r ≤
Pβx−1

b=0
xb

r = uxor(x) r +
Pβx−1

b=0
xb = 2s, s ∈ Z≥0

r = eq(x, y) x− y = s− t, s, t ∈ Z≥0,

p ≤ s, s ≤ p(ux − ly), p ∈ {0, 1},

q ≤ t, t ≤ q(uy − lx), q ∈ {0, 1},

p+ q + r = 1

r = lt(x, y) x− y = s− t, s, t ∈ Z≥0,

p ≤ s, s ≤ p(ux − ly), p ∈ {0, 1},

r ≤ t, t ≤ r(uy − lx),

p+ r ≤ 1

Control → Data Interface:

r = ite(x, y, z) r − y ≤ (uz − ly)(1 − x), r − y ≥ (lz − uy)(1 − x),

r − z ≤ (uy − lz)x, r − z ≥ (ly − uz)x

Word Extension:

r = zeroext(x)

r = signext(x)

r = concat(x, y)

9

>

=

>

;

removed in preprocessing

Subword Access:

r = shl(x, y)

r = shr(x, y)

r = slice(x, y)

9

>

=

>

;

no linearization

r = read(x, y)
Puy

p=ly
p · ψp = y,

Puy

p=ly
ψp = 1, ψp ∈ {0, 1},

rb − xb+p·βr ≤ 1 − ψp, −rb + xb+p·βr ≤ 1 − ψp

r = write(x, y, z)
Puy

p=ly
p · ψp = y,

Puy

p=ly
ψp = 1, ψp ∈ {0, 1},

rb+p·βz − zb ≤ 1 − ψp, −rb+p·βz + zb ≤ 1 − ψp,

rb+p·βz − xb+p·βz ≤ ψp, −rb+p·βz + xb+p·βz ≤ ψp

Table 14.1. LP relaxation of the circuit operations. l̺ and u̺ denote the lower and upper bounds
of a register variable ̺.
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Algorithm 14.1 Bit and Word Partitioning Domain Propagation

Input : Word x = ̺w
j of width γ = γw

j with current local bounds [l̃x, ũx], and

contained bits xb = ̺w
jb with current local bounds [l̃xb

, ũxb
], b = 0, . . . , γ−1.

Output : Tightened local bounds [l̃x, ũx] and [l̃xb
, ũxb

].

1. Let l̃bits =
∑γ−1

b=0 2bl̃xb
and ũbits =

∑γ−1
b=0 2bũxb

be the word’s local bounds
calculated from the bit fixings.

2. For b = γ − 1, . . . , 0:

(a) If l̃bits[b, 0] > l̃x[b, 0], update l̃x[b, 0] := l̃bits[b, 0].

(b) If ũbits[b, 0] < l̃x[b, 0], update l̃x[b, 0] := l̃bits[b, 0] and l̃x := l̃x + 2b+1.

(c) If ũbits[b, 0] < ũx[b, 0], update ũx[b, 0] := ũbits[b, 0].

(d) If l̃bits[b, 0] > ũx[b, 0], update ũx[b, 0] := ũbits[b, 0] and ũx := ũx − 2b+1.

3. For b = γ − 1, . . . , 0:

(a) If ũxb
= 1 and ũbits − 2b < l̃x, fix l̃xb

:= 1.

(b) If l̃xb
= 0 and l̃bits + 2b > ũx, fix ũxb

:= 0.

(c) If still l̃xb
= 0 and ũxb

= 1, stop.

to be the subword of x ranging from bits p to q, p ≤ q. The subword assignment of
a value y ∈ Z≥0, y < 2p−q+1, to a subword x[q, p] is defined as

x
〈
[q, p] � y

〉
:= 2q+1x[∞, q + 1] + 2py + x[p− 1, 0].

If a subword is replaced by a different value in a procedural environment, we write

x[p, q] := y

as a short cut, which means that the new value of x is equal to x
〈
[q, p] � y

〉
. To

access single bits we define x[p] := x[p, p] and x
〈
[p] � y

〉
:= x

〈
[p, p] � y

〉
.

14.1.1 LP Relaxation

The LP relaxation of the bit/word partitioning constraints is directly given by equa-
tion (14.1). These equations are included in the initial LP relaxation of the property
checking CIP for all unfixed words ̺w

j , i.e., for all words with a global lower bound
l̺w

j
smaller than the global upper bound u̺w

j
.

14.1.2 Domain Propagation

Domain propagation is applied individually on each bit/word linking constraint (14.1).
For each word x = ̺w

j , the current local bounds [l̃x, ũx] can lead to local fixings of
the bits xb = ̺w

jb, b = 0, . . . , γw
j − 1, and vice versa.

Algorithm 14.1 shows the domain propagation procedure for a single word x =
̺w

j . Step 2 uses the local fixings of the bit variables to tighten the word’s local
bounds. The following lemma proves the validity of updates 2a and 2c:

Lemma 14.2. Let x ∈ Z≥0 be a non-negative integer with bit decomposition x =
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∑∞
b=0 2bxb. If l̃x ≤ x ≤ ũx and l̃xb

≤ xb ≤ ũxb
for all b, then

x ≥ l̃x
〈
[b, 0] � l̃bits[b, 0]

〉
and x ≤ ũx

〈
[b, 0] � ũbits[b, 0]

〉
for all b ∈ Z≥0

with l̃bits =
∑∞

b=0 2bl̃xb
and ũbits =

∑∞
b=0 2bũxb

being the integer values composed
of the bounds for the bits of x.

Proof. We prove the case for the lower bound. Due to x ≥ l̃x it follows x[∞, b+1] ≥
l̃x[∞, b + 1]. This leads to

x = 2bx[∞, b + 1] + x[b, 0]

≥ 2bl̃x[∞, b+ 1] + l̃bits[b, 0]

= l̃x
〈
[b, 0] � l̃bits[b, 0]

〉
.

The proof for the upper bound is analogous.

The reasoning in updates 2b and 2d is slightly different since they also include
the opposite bound:

Lemma 14.3. Let x ∈ Z≥0 be a non-negative integer with bit decomposition x =
∑∞

b=0 2bxb. If l̃x ≤ x ≤ ũx and l̃xb
≤ xb ≤ ũxb

for all b, then

ũbits[b, 0] < l̃x[b, 0] ⇒ x ≥ l̃x
〈
[b, 0] � l̃bits[b, 0]

〉
+ 2b+1

and
l̃bits[b, 0] > ũx[b, 0] ⇒ x ≤ ũx

〈
[b, 0] � ũbits[b, 0]

〉
− 2b+1

for all b ∈ Z≥0.

Proof. We prove the first implication. Let ũbits[b, 0] < l̃x[b, 0] and assume x[∞, b +
1] = l̃x[∞, b + 1]. From the bounds of the individual bits we know that x[b, 0] ≤
ũbits[b, 0]. Hence, x[b, 0] < l̃x[b, 0] which means x < l̃x, a contradiction. Therefore,
x[∞, b + 1] > l̃x[∞, b+ 1], which means

x ≥ 2b+1
(
l̃x[∞, b+ 1] + 1

)
= l̃x

〈
[b, 0] � 0

〉
+ 2b+1.

Lemma 14.2 yields

x ≥
(
l̃x
〈
[b, 0] � 0

〉
+ 2b+1

)〈
[b, 0] � l̃bits[b, 0]

〉

which is equivalent to

x ≥ l̃x
〈
[b, 0] � l̃bits[b, 0]

〉
+ 2b+1

since the addition of 2b+1 does not influence the lower significant bits 0 to b. The
proof of the second implication is analogous.

The following lemma shows that changes made in iteration b = b′ of Step 2 do
not enable further updates on the same or more significant bits b ≥ b′. Therefore,
the loop of Step 2 only needs to be executed once.

Lemma 14.4. After Step 2 of Algorithm 14.1 was performed for all bits b > b′,
subsequent bound changes deduced in Step 2 for bit b′ cannot enable additional
deductions of the types of Step 2 for bits b ≥ b′.
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Proof. Let b′ be the first (most significant) bit for which a deduction in Step 2 is
performed, and let l̃x ≤ x ≤ ũx and l̃xb

≤ xb ≤ ũxb
, b = 0, . . . , γ − 1, be the bounds

before iteration b = b′ of Step 2 is executed. Then, we have l̃bits[b, 0] ≤ l̃x[b, 0] ≤
ũbits[b, 0] and l̃bits[b, 0] ≤ ũx[b, 0] ≤ ũbits[b, 0] for all b > b′, because no deductions
were applied for b > b′. It follows that also for the subwords up to bit b′+1 we have

l̃bits[b, b
′ + 1] ≤ l̃x[b, b′ + 1] ≤ ũbits[b, b

′ + 1] for all b > b′ (14.2)

and
l̃bits[b, b

′ + 1] ≤ ũx[b, b′ + 1] ≤ ũbits[b, b
′ + 1] for all b > b′.

A deduction for b = b′ in Step 2a fixes l̃x[b′, 0] := l̃bits[b
′, 0]. This update has no

influence on deductions of type 2c and 2d, and due to (14.2), it also does not enable
any further deductions of type 2a for bits b ≥ b′. If no infeasibility is detected, after
the update we have l̃x[b, 0] = l̃bits[b, 0] ≤ ũbits[b, 0] for all b ≤ b′, and again due to
(14.2) no further deductions of type 2b are possible for b ≥ b′.

Now suppose that a deduction for b = b′ was applied in Step 2b. Again, the
updates on l̃x do not influence Steps 2c and 2d. If Step 2b can be applied at the
most significant bit b′ = γ − 1, the constraint is proven to be infeasible. Therefore,
it suffices to look at the case b′ < γ − 1.

At first, assume ũbits[b
′ + 1] ≤ l̃x[b′ + 1]. This implies that ũbits[b

′ + 1, 0] <
l̃x[b′ + 1, 0] would already have been satisfied in the previous iteration and Step 2b
would have been applied for bit b = b′+1. This contradicts the definition of b′ being
the first iteration for which a deduction is performed. Therefore, the assumption is
wrong and instead ũbits[b

′ + 1] > l̃x[b′ + 1] must hold which gives ũbits[b
′ + 1] = 1

and l̃x[b′ + 1] = 0.
It follows that even after adding 2b′+1 to l̃x, inequality (14.2) stays valid. Like

before, this shows that also the update of Step 2b cannot enable subsequent deduc-
tions for b ≥ b′. With analogous reasoning it can be shown that also the updates of
Steps 2c and 2d do not trigger additional deductions for b ≥ b′. The case that b′ is
not the first iteration for which an update was applied follows by induction.

Corollary 14.5. After Step 2 of Algorithm 14.1 was performed completely, a second
run of Step 2 would not produce any additional deductions. In particular, the bounds
satisfy l̃bits[b, 0] ≤ l̃x[b, 0] ≤ ũbits[b, 0] and l̃bits[b, 0] ≤ ũx[b, 0] ≤ ũbits[b, 0] for all
b = 0, . . . , γ − 1.

In Step 3 of Algorithm 14.1 we check whether a fixing of a bit to a certain value
would violate the word’s bounds, and in this case fix the bit to the opposite value.
If a bit remains unfixed, no more less significant bits can be fixed with the reasoning
of Steps 3a and 3b:

Lemma 14.6. If an unfixed bit xb was not fixed in Steps 3a or 3b of Algorithm 14.1,
the conditions ũbits − 2b′ < l̃x and l̃bits + 2b′ > ũx do not hold for all less significant
bits xb′ , b

′ < b.

Proof. First, suppose b′ is the most significant unfixed bit smaller than b. Since xb

was not fixed in Loop 3, we have l̃x ≤ ũbits− 2b and ũx ≥ l̃bits +2b. Because no new
fixings have been found since bit xb was processed, l̃x, ũx, l̃bits, and ũbits were not
changed at the time xb′ is considered. It follows

ũbits − 2b′ > ũbits − 2b ≥ l̃x and l̃bits + 2b′ < l̃bits + 2b ≤ ũx.

The case of an arbitrary position b′ < b follows by induction.
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Therefore, Loop 3 is executed from most significant to least significant bit and
aborted in Step 3c if a variable remained unfixed. We now show that Step 2 does
not need to be executed again, even if fixings were applied in Step 3:

Lemma 14.7. After Step 2 of Algorithm 14.1 was performed, subsequent bound
changes deduced in Step 3 cannot enable additional deductions of the types of Step 2.

Proof. Let l̃x ≤ x ≤ ũx, and l̃xb
≤ xb ≤ ũxb

, b = 0, . . . , γ − 1, be the bounds after
Step 2 was executed. Let b′ be the first (most significant) bit for which a bound
change was applied in Step 3. Due to Lemma 14.6 we know that all higher order
bits b > b′ were already fixed, i.e., l̃xb

= ũxb
for all b > b′, which is equivalent to

l̃bits[γ−1, b′+1] = ũbits[γ−1, b′+1]. This implies l̃x[γ−1, b′+1] = ũx[γ−1, b′+1] =
ũbits[γ − 1, b′ + 1] due to Steps 2a and 2c.

Suppose we performed Step 3a to increase l̃xb′
= 0 to 1. Further assume that

l̃x[b′] = 0. From the preconditions of Step 3a we know that ũxb′
= 1 and ũbits−2b′ <

l̃x. Since ũbits[γ−1, b′+1] = l̃x[γ−1, b′+1] and (ũbits−2b′)[b′] = l̃x[b′] = 0 it follows
that ũbits[b

′ − 1, 0] < l̃x[b′ − 1, 0], which is a contradiction to Step 2b. Therefore,
we have l̃x[b′] = 1. If no infeasibility was detected, this means that also ũx[b′] = 1,
and the subwords upto bit b′ of the bounds are identical after applying the fixing
l̃xb′

:= 1. It follows that after the fixing, deductions in Step 2 can be applied at bits
b ≥ b′ if and only if they can be applied at bit b = b′ − 1. Because all deductions
on lesser significant bits were already performed in Step 2, the deduction of Step 3a
did not enable an additional deduction in Step 2. The proof for the deduction of
Step 3b is analogous.

Corollary 14.8. If Algorithm 14.1 did not detect infeasibility by producing an
empty domain, the final bounds after applying the algorithm satisfy

l̃bits[b, 0] ≤ l̃x[b, 0] ≤ ũbits[b, 0] and l̃bits[b, 0] ≤ ũx[b, 0] ≤ ũbits[b, 0]

for all b = 0, . . . , γ − 1. In particular, this yields

l̃xb
= l̃bits[b] ≤ l̃x[b] ≤ ũbits[b] = ũxb

and l̃xb
= l̃bits[b] ≤ ũx[b] ≤ ũbits[b] = ũxb

for all individual bits b = 0, . . . , γ − 1.

Proof. This result follows from Corollary 14.5 and Lemma 14.7.

The following proposition shows that Algorithm 14.1 already achieves interval
consistency (see Definition 2.6):

Proposition 14.9. After applying Algorithm 14.1 on constraint (14.1), the con-
straint becomes interval consistent or at least one domain becomes empty.

Proof. Let x = ̺w
j be word w of register ̺j and let γ be the width of x. Suppose

Algorithm 14.1 did not detect infeasibility by reducing a domain to the empty set,
and let l̃x ≤ ũx and l̃xb

≤ ũxb
, b = 0, . . . , γ − 1, be the final lower and upper

bounds of the word and bit variables after applying the algorithm. In order to
show interval consistency we have to construct for each of the bounds a solution
x⋆ =

∑γ−1
b=0 2bx⋆

b with l̃x ≤ x⋆ ≤ ũx and l̃xb
≤ x⋆

b ≤ ũxb
, b = 0, . . . , γ − 1, which

satisfies constraint (14.1) and with the corresponding variable being equal to the
considered bound.
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Algorithm 14.2 Bit and Word Partitioning Presolving

1. For all active bit/word linking constraints x =
∑γ−1

b=0 xb:

(a) Replace aggregated bit and word variables by their representative coun-
terparts.

(b) If γ = 1, aggregate x : ⋆= x0 and delete the constraint.

(c) Apply domain propagation Algorithm 14.1 on the global bounds.

(d) Add implications xb = 0 → x ≤ 2γ − 1− 2b and xb = 1 → x ≥ 2b for all
b = 0, . . . , γ − 1 to the implication graph of SCIP.

2. For all pairs of different active bit/word linking constraints x =
∑γx−1

b=0 xb,

y =
∑γy−1

b=0 yb, with γx ≥ γy:

(a) If xb
⋆= yb for all b = 0, . . . , γy − 1 and xb = 0 for all b = γy, . . . , γx − 1,

aggregate x : ⋆= y and delete the constraint on y.

(b) If x ⋆= y, aggregate xb : ⋆= yb for all b = 0, . . . , γy − 1, fix xb := 0 for
b = γy , . . . , γx − 1, and delete the constraint on y.

First, we consider the lower bound l̃x of the word variable x. The value x⋆ = l̃x
with bit decomposition x⋆ =

∑γ−1
b=0 x

⋆
b satisfies constraint (14.1) by definition of the

bit decomposition. Inequality l̃xb
≤ x⋆

b = l̃x[b] ≤ ũxb
follows from Corollary 14.8.

The same reasoning can be applied to x⋆ = ũx.

Now consider a particular bit b′ with bounds l̃xb′
≤ xb′ ≤ ũxb′

. We construct

a solution x⋆ with x⋆
b′ = l̃xb′

. If l̃xb′
= l̃x[b′], the word’s lower bound x⋆ = l̃x

already has the desired properties, as shown above. From Corollary 14.8 we know
that l̃xb′

≤ l̃x[b′], such that only the case l̃xb′
= 0 and l̃x[b′] = 1 remains. Because

l̃x[b′] ≤ ũxb′
we also know that ũxb′

= 1, which means that xb′ is unfixed.

Let b̄ be the most significant unfixed bit, i.e., l̃bits[γ−1, b̄+1] = ũbits[γ−1, b̄+1],
l̃xb̄

= 0, and ũxb̄
= 1. Again from Corollary 14.8, it follows that also the bits of

the word’s bounds are fixed to the same value l̃x[γ − 1, b̄ + 1] = ũx[γ − 1, b̄ + 1] =
l̃bits[γ − 1, b̄ + 1] = ũbits[γ − 1, b̄ + 1]. Additionally, l̃x[b̄] = 0 and ũx[b̄] = 1 because
otherwise l̃xb̄

could have been increased to 1 in Step 3a. This implies b̄ > b′ due to

l̃x[b′] = 1.

Now we choose x⋆
b = ũxb

for b ≥ b̄ and x⋆
b = l̃xb

for b < b̄. In particular, this

yields x⋆
b′ = l̃xb′

, and the bounds on the bits l̃xb
≤ x⋆

b ≤ ũxb
, b = 0, . . . , γ − 1, are

satisfied. Because l̃x[γ − 1, b̄ + 1] = ũbits[γ − 1, b̄ + 1] = x⋆[γ − 1, b̄ + 1], l̃x[b̄] = 0,
and x⋆[b̄] = x⋆

b = ũxb
= 1, the lower bound l̃x ≤ x⋆ is also valid. Finally, we have

x⋆[γ−1, b̄] = ũbits[γ−1, b̄] = ũx[γ−1, b̄] and x⋆[b̄−1, 0] = l̃bits[b̄−1, 0] ≤ ũx[b̄−1, 0]
from Corollary 14.8, which proves x⋆ ≤ ũx.

A solution x⋆ with x⋆
b′ = ũxb′

for a given bit b′ can be constructed in the same
fashion.

14.1.3 Presolving

In each round of the presolving step of SCIP (see Chapter 3.2.5), Algorithm 14.2 is
applied as presolving method of the bit and word partitioning constraint handler.

In Step 1a the word variable and each bit variable is replaced by its equivalent
representative variable, i.e., a selected representative of the variable’s equivalence
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class, see Section 3.3.4. Thereby, the constraint is normalized and two equivalent
constraints would contain exactly the same variables. This property is needed for a
fast equivalence detection in Step 2.

If the word consists of only one bit, the word variable x is equivalent to the bit
variable x0 and they are aggregated in Step 1b. Thereby, the equivalence classes of
x and x0 are implicitly united, see again Section 3.3.4. Since after the aggregation,
the constraint x = x0 is always valid, we can delete the constraint from the problem
formulation.

Step 1c calls Algorithm 14.1 as a subroutine to perform domain propagation
on the global bounds. Afterwards, we enrich the implication graph of SCIP (see
Section 3.3.5) with the deductions on the word variable if a single bit is fixed to a
certain value.

In Step 2 all pairs of bit/word linking constraints are processed. If all bit
variables (counting non-existing ones as being fixed to zero) of the two constraints
are equivalent, the word variables can be aggregated since they are also equivalent.
If on the other hand the word variables are equivalent, the individual pairs of bit
variables can be aggregated, and the excessive bit variables of the wider word can be
fixed to zero. In both cases, one of the constraints can be deleted from the problem
formulation.

14.1.4 Equivalence of Registers

Within the framework of constraint integer programming, the bit/word linking con-
straints (14.1) are just ordinary constraints without any special meaning. In the
chip verification application, these constraints are tightly connected to the abstract
objects of registers. Although being constraints in the CIP context, the registers
appear as variables in the definitions of the circuit operations.

Like ordinary CIP variables, registers can be equivalent to each other, thereby
forming equivalence classes with each of them being represented by a unique repre-
sentative, see Section 3.3.4.

Definition 14.10 (equivalence of registers). We call two registers ̺i and ̺j

equivalent if the binary variables in their respective bit decomposition are pairwise
equivalent:

̺i
⋆
= ̺j ⇔ ∀b ∈ Z≥0 : ̺ib

⋆
= ̺jb (14.3)

with ̺ib = 0 if b ≥ βi and ̺jb = 0 if b ≥ βj . In an algorithmic environment, we
denote by

̺i :
⋆
= ̺j ⇔ ∀b ∈ Z≥0 : ̺ib :

⋆
= ̺jb

the aggregation of register ̺i to ̺j , which means to aggregate the individual pairs
of binary variables in the bit decompositions of the registers.

For example, if we already know that y = 0, the addition constraint r = add(x, y)
would detect that r and x are equivalent, which means that the individual word and
bit variables of r = ̺i are equivalent to their respective counterparts of x = ̺j .
Besides aggregating x : ⋆= r, we could in principle also identify the two register nodes
x and r in the function graph, see Section 13.2, and replace all occurrences of x by
r in the circuit constraints of the problem instance. Nevertheless, the identification
of register nodes in the function graph can destroy the structure of the graph. For
example, if two output registers are identified, the two operations producing these
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outputs receive an artificial connection through the unified output register that did
not exist in the original function graph. Consequently, loose ends of the graph,
which are identified by the irrelevance detection of Section 15.2, may get lost, and
the performance of the presolving deteriorates. For this reason, we do not replace
registers with the representative of their equivalence class in the circuit constraints
and in the function graph. Instead, equivalence of registers is always tested by
checking the individual bits for pairwise equivalence.

Just like detecting equivalences between registers it might happen that the global
inequality of two registers x and y is discovered. For example, if the constraint
r = eq(x, y) is included in the problem and we know already that r = 0, we can
conclude that x and y can never take the same value. We denote this fact by writing
x Y

⋆
= y:

Definition 14.11 (inequality of registers). We call two registers ̺i and ̺j un-
equal if for each feasible solution of the property checking CIP (13.4) there is at least
one pair of binary variables in the bit decomposition of the registers with opposite
values:

̺i Y
⋆
= ̺j ⇔ ∀̺⋆ : C(̺⋆) ∧ ¬P (̺⋆) ∃b ∈ Z≥0 : ̺⋆

ib 6= ̺⋆
jb (14.4)

with ̺⋆
ib = 0 if b ≥ βi and ̺⋆

jb = 0 if b ≥ βj .

For each register x we store the set of registers y with x Y
⋆
= y as a sorted list

on which a binary search can be performed. Note that for two registers x and y it
may neither x ⋆= y nor x Y

⋆
= y, since Y

⋆
= is not the negated relation of ⋆=. However,

x ⋆= y ∧ x Y
⋆
= y proves the infeasibility of the problem instance.

14.2 Unary Minus

The unary minus operator

minus : [β]→ [β], x 7→ r = minus(x)

calculates the two’s complement of input register x, which is defined as

r = minus(x) ⇔ r = 2β − x.

This is equivalent to r+x = 2β, and due to the truncation of the overflow in the add
operand, the constraint can be represented as 0 = add(x, r). This transformation
is applied in the presolving stage of SCIP, such that we do not need to implement
any specific algorithms for the minus operator.

14.3 Addition

The two’s complement addition of two numbers x, y ∈ {0, . . . , 2β − 1} is defined as

add : [β]× [β]→ [β], (x, y) 7→ r = add(x, y)

with
r = add(x, y) ⇔ r = (x+ y) mod 2β.
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To overcome the numerical difficulties caused by very large coefficients, the LP
relaxation of addition constraints is defined on word level. Each word addition pro-
duces an overflow that is passed to the next word’s calculations. The final overflow
is ignored, which models the modulus operation in the above definition of the add
operator.

The domain propagation is applied on bit level and exploits knowledge about
fixings and equivalences of the involved register bits. The word level and bit level
representations interact by means of the bit/word linking constraints (14.1). Pre-
solving operates on both representations simultaneously. In addition to the domain
propagation, it exploits global knowledge of equality or inequality of registers to
tighten the bounds of the bit and word variables. It also compares pairs of add
constraints to detect further problem simplifications.

14.3.1 LP Relaxation

Since for the input registers we have x, y ≤ 2β − 1, we know that the sum x + y is
bounded by x + y ≤ 2β. Therefore, the sum can be completely described by β + 1
bits, and the addition operand add just means to strip the most significant bit,
called overflow bit, from the result. The LP relaxation of the constraint could be
stated as

x+ y = r + 2βo with o ∈ {0, 1}, (14.5)

but for large bit widths β this would lead to numerical difficulties in the floating point
calculations. The default parameter value for the feasibility tolerance for floating
point operations in SCIP is δ̂ = 10−6. This value is also used for solving the LP
relaxations. Equality of floating point numbers in this sense is defined as

x
.
= y ⇔

|x− y|

max{|x|, |y|, 1}
≤ δ̂. (14.6)

This means, for example, that for β = 20, x = y = 219, r = 1, and o = 1 we have
x+ y = 220 6= 220 + 1 = r + 220o, but x+ y

.
= r + 220o because

|220 − (220 + 1)|

max{|220|, |220 + 1|, 1}
=

1

220 + 1
≈ 9.5 · 10−7 < δ̂ = 10−6.

Therefore, the invalid solution 1 = add(219, 219) would be accepted as feasible by
the LP solver.

In order to avoid these numerical difficulties, we restrict the coefficients in the
linear relaxation (14.5) to be not larger than 216, which can be achieved by splitting
the registers into words of W = 16 bits, as described in Section 14.1. For each word
w = 0, . . . , ω− 1, ω = ⌈β/W ⌉, of width γw = min{W,β−wW} we add the equation

xw + yw + ow = rw + 2γw

ow+1 with ow, ow+1 ∈ {0, 1} (14.7)

to the LP relaxation. Here, the overflow for a word is passed to the left hand side
of the next word’s equation. Note that the least significant overflow is fixed to
ow = 0. The system of equations (14.7) for all words w together with the bit/word
linking constraints (14.1) is equivalent to equation (14.5) but rules out invalid integer

solutions even if the floating point equality (14.6) with feasibility tolerance δ̂ = 10−6

is applied.
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o19 o18 o17 o16 o15 o14 o13 o12 o11 o10 o9 o8 o7 o6 o5 o4 o3 o2 o1 o0

r18 r17 r16 r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0

first input

second input

overflow

resultant

Figure 14.2. Bit level addition scheme.

14.3.2 Domain Propagation

Domain propagation for the addition operand is applied on bit level using the usual
bit level addition scheme depicted in Figure 14.2. For each bit b = 0, . . . , β − 1 we
propagate the equation

xb + yb + ob = rb + 2ob+1. (14.8)

Note that o0 = 0, since there is no overflow passed to the least significant column.
Observe also that the overflow ow of a word w in the LP relaxation (14.7) is always
equal to the bit overflow owW at the word boundary because wordwise addition and
bitwise addition are equivalent, which can be seen by adding up equations (14.8) for
a word w ∈ {0, . . . , ω − 1} of width γw:

xwW+0 + ywW+0 + 20owW+0 = rwW+0 + 2owW+1

∣
∣ · 20

. . .

xwW+γw−1 + ywW+γw−1 + owW+γw−1 = rwW+γw−1 + 2owW+γw

∣
∣ · 2γw−1

xw + yw +

γw−1
∑

b=0

2bowW+b = rw +

γw

∑

b=1

2bowW+b

which is equivalent to

xw + yw + owW = rw + 2γw

owW+γw .

Subtracting equation (14.7) yields

owW − o
w = 2γw

(owW+γw − ow+1),

and since the variables are binary and γw ≥ 1, it follows ow = owW and ow+1 =
owW+γw . Thus, we can aggregate

ow :
⋆
= owW for all words w = 0, . . . , ω − 1, (14.9)

and
oω :

⋆
= oβ (14.10)

for the most significant overflow.
Algorithm 14.3 illustrates the domain propagation method applied to add con-

straints. In fact, the deductions performed in Step 1 are just the usual bound
tightening operations for the linear constraint (14.8), and the deductions of Step 2
are equal to the ones for the linear constraint (14.7), see Section 7.1.
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Algorithm 14.3 Addition Domain Propagation

Input : Addition constraint r = add(x, y) on registers r, x, and y of width β
with current local word bounds l̃rw ≤ rw ≤ ũrw , l̃xw ≤ xw ≤ ũxw , and
l̃yw ≤ yw ≤ ũyw , and bit bounds l̃rb

≤ rb ≤ ũrb
, l̃xb

≤ xb ≤ ũxb
, and

l̃yb
≤ yb ≤ ũyb

.

Output : Tightened local bounds for words rw, xw, yw, and bits rb, xb, yb.

1. For b = 0, . . . , β − 1:

(a) If three out of the four variables xb, yb, ob, and rb in the addition column
b are fixed, the fourth variable and the overflow ob+1 can be deduced by
inspecting equation (14.8).

(b) If ũxb
+ ũyb

+ ũob
− l̃rb

≤ 1, deduce ob+1 = 0.

(c) If l̃xb
+ l̃yb

+ l̃ob
− ũrb

≥ 1, deduce ob+1 = 1.

(d) If ũob+1
= 0 and ũrb

= 0, deduce xb = yb = ob = 0.

(e) If l̃ob+1
= 1 and l̃rb

= 1, deduce xb = yb = ob = 1.

(f) If ũob+1
= 0 and one out of the three variables xb, yb, ob is fixed to one,

we can fix rb = 1 and the other two variables can be deduced to zero.

(g) If l̃ob+1
= 1 and one out of the three variables xb, yb, ob is fixed to zero,

we can fix rb = 0 and the other two variables can be deduced to one.

2. For w = 0, . . . , ω − 1: If ow+1 is fixed, deduce

l̃rw − ũyw − ũow + 2γw

ow+1 ≤ xw ≤ ũrw − l̃yw − l̃ow + 2γw

ow+1

l̃rw − ũxw − ũow + 2γw

ow+1 ≤ yw ≤ ũrw − l̃xw − l̃ow + 2γw

ow+1

l̃xw + l̃yw + l̃ow − 2γw

ow+1 ≤ rw ≤ ũxw + ũyw + ũow − 2γw

ow+1

Because the word overflow variables ow are aggregated with the bit overflow vari-
ables at the word boundaries, see (14.9) and (14.10), the propagations on the two
equations (14.8) and (14.7) can interact with each other. Additionally, the propa-
gations on the overflow bits of Step 1 can influence the previous and next column
in the addition scheme of Figure 14.2. Furthermore, fixings of the bits and tight-
enings of the words’ bounds can lead to even more implications in the propagation
Algorithm 14.1 for the bit/word linking constraints (14.1). SCIP exploits these
interdependencies automatically by iteratively calling the individual domain prop-
agation algorithms as long as additional deductions were found, see Section 3.1.4.
Therefore, we can refrain from iterating Steps 1 and 2 inside Algorithm 14.3.

14.3.3 Presolving

In the presolving stage of SCIP, Algorithm 14.4 is executed to process the active
addition constraints. Step 1a checks whether one of the two operands x and y
is fixed to zero, which means that the resultant can be aggregated with the other
operand. If on the other hand, one of the operands is proven to be non-zero, the
resultant cannot be equal to the other operand and the sets of unequal registers
for the resultant and the other operand can be extended in Step 1b. Consequently,
we can fix an operand to zero in Step 1c whenever the resultant is detected to be
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Algorithm 14.4 Addition Presolving

1. For all active addition constraints r = add(x, y):

(a) If x = 0, aggregate r : ⋆= y and delete the constraint.
If y = 0, aggregate r : ⋆= x and delete the constraint.

(b) If lxw ≥ 1 for any word w, deduce r Y
⋆
= y.

If lyw ≥ 1 for any word w, deduce r Y
⋆
= x.

(c) If r ⋆= x, fix y := 0 and delete the constraint.
If r ⋆= y, fix x := 0 and delete the constraint.

(d) If r Y
⋆
= x and ωy = 1, deduce y0 ≥ 1.

If r Y
⋆
= y and ωx = 1, deduce x0 ≥ 1.

(e) If x ⋆= y, replace the constraint by r = shl(x, 1).

(f) If β = 1, replace the constraint by r = xor(x, y).

(g) Apply domain propagation Algorithm 14.3 on the global bounds.

(h) If two of the binary variables in equation (14.8) are equivalent or negated
equivalent, the others can be aggregated as shown in Algorithm 14.5.

(i) Add implications on binary variables using Algorithm 14.6.

2. For all pairs of active addition constraints r = add(x, y) and r′ = add(x′, y′)
with βr ≥ βr′ :

(a) For all b = 0, . . . , βr′ :
If (χb, ψb, φb) and (χ′b, ψ

′
b, φ
′
b) are permutations of (xb, yb, ob) and

(x′b, y
′
b, o
′
b) such that χb

⋆= χ′b and ψb
⋆= ψ′b, and

i. if φb
⋆= φ′b, aggregate rb : ⋆= r′b and ob+1 : ⋆= o′b+1,

ii. if rb
⋆= r′b, aggregate φb : ⋆= φ′b and ob+1 : ⋆= o′b+1,

iii. if rb Y
⋆
= r′b or ob+1 Y

⋆
= o′b+1, aggregate φb : ⋆= 1− φ′b,

iv. if φb Y
⋆
= φ′b or ob+1 Y

⋆
= o′b+1, aggregate rb : ⋆= 1− r′b.

(b) If Steps 2(a)i or 2(a)ii were successfully applied to all bits b = 0, . . . , βr′ ,
delete constraint r′ = add(x′, y′).

(c) If βr = βr′ , x ⋆= x′, but r Y
⋆
= r′, deduce y Y

⋆
= y′.

If βr = βr′ , y ⋆= y′, but r Y
⋆
= r′, deduce x Y

⋆
= x′.

(d) If βr = βr′ , x ⋆= y′, but r Y
⋆
= r′, deduce y Y

⋆
= x′.

If βr = βr′ , y ⋆= x′, but r Y
⋆
= r′, deduce x Y

⋆
= y′.

always equal to the other operand. Step 1d deals with the backward implication of
Step 1a. If we know that the resultant is always unequal to one of the operands, we
can conclude that the other operand cannot be zero. However, it is impossible to
express an inequality like y ≥ 1 for a register y in terms of bounds of CIP variables,
since registers represent a collection of bit and word variables. We can only conclude
that at least one of the words and one of the bits must be non-zero. Therefore, we
are only able to deduce a bound change, if the register consists of a single word, i.e.,
ω = 1.

In the case that the two operands are always equal, we can replace the add
constraint in Step 1e by an shl constraint, because add(x, x) = mult(x, 2) =
shl(x, 1) for all x ∈ Z≥0. Of course, the presolving algorithm for the shl constraint
with the second operand fixed to one aggregates the bits to r0 := 0 and rb : ⋆= xb−1
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Algorithm 14.5 Addition Presolving – Bit Aggregation

Considering equation (14.8), we can apply the following aggregations:

1. If xb
⋆= yb aggregate ob : ⋆= rb and ob+1 : ⋆= xb.

2. If xb Y
⋆
= yb aggregate ob : ⋆= 1− rb and ob+1 : ⋆= ob.

3. If xb
⋆= ob aggregate yb : ⋆= rb and ob+1 : ⋆= xb.

4. If xb Y
⋆
= ob aggregate yb : ⋆= 1− rb and ob+1 : ⋆= yb.

5. If xb
⋆= rb aggregate ob : ⋆= yb and ob+1 : ⋆= yb.

6. If xb Y
⋆
= rb aggregate ob : ⋆= 1− yb and ob+1 : ⋆= xb.

7. If yb
⋆= ob aggregate xb : ⋆= rb and ob+1 : ⋆= yb.

8. If yb Y
⋆
= ob aggregate xb : ⋆= 1− rb and ob+1 : ⋆= xb.

9. If yb
⋆= rb aggregate ob : ⋆= xb and ob+1 : ⋆= xb.

10. If yb Y
⋆
= rb aggregate ob : ⋆= 1− xb and ob+1 : ⋆= yb.

11. If ob
⋆= rb aggregate xb : ⋆= yb and ob+1 : ⋆= yb.

12. If ob Y
⋆
= rb aggregate xb : ⋆= 1− yb and ob+1 : ⋆= ob.

13. If xb Y
⋆
= ob+1 aggregate yb : ⋆= ob+1, ob : ⋆= ob+1, and rb : ⋆= xb.

14. If yb Y
⋆
= ob+1 aggregate xb : ⋆= ob+1, ob : ⋆= ob+1, and rb : ⋆= yb.

15. If ob Y
⋆
= ob+1 aggregate xb : ⋆= ob+1, yb : ⋆= ob+1, and rb : ⋆= ob.

16. If rb
⋆= ob+1 aggregate xb : ⋆= rb, yb : ⋆= rb, and ob : ⋆= rb.

for b = 1, . . . , βr − 1, see Step 1e of Algorithm 14.28.
In the very special case that the registers are single bits, i.e., β = 1, truncated

addition is equivalent to exclusive or, such that the constraint r = add(x, y) can be
replaced by r = xor(x, y) in Step 1f. The bitwise exclusive or constraint described
in Section 14.9 comes with a stronger LP relaxation than equation (14.5) because
the introduction of the auxiliary binary overflow variable o can be avoided.

It may happen that two of the bit variables in equation (14.8) are equivalent
or negated equivalent. The latter means that the two bits always take opposite
values. For each bit b, there are

(
5
2

)
= 10 different pairs out of the five variables

involved in equation (14.8), which gives 20 combinations of potential equivalent or
negated equivalent binary variables. We can draw useful conclusions from 16 of
these relationships, as shown in Algorithm 14.5. For the remaining four, namely
xb

⋆= ob+1, yb
⋆= ob+1, ob

⋆= ob+1, and rb Y
⋆
= ob+1, we cannot deduce any further

equivalence or negated equivalence relations between two variables. For example, if
xb

⋆= ob+1, there are still the six solutions

(xb, yb, ob, rb, ob+1) ∈
{
(0, 0, 0, 0, 0), (0, 1, 0, 1, 0), (0, 0, 1, 1, 0),

(1, 1, 0, 0, 1), (1, 0, 1, 0, 1), (1, 1, 1, 1, 1)
}

possible, and none of yb
⋆= ob, yb

⋆= rb, ob
⋆= rb, yb Y

⋆
= ob, yb Y

⋆
= rb, and ob Y

⋆
= rb holds.

Note that Algorithm 14.5 would also find the fixings and aggregations of Steps 1a
and 1c of Algorithm 14.4. Thus, the only additional value of those steps is the
deletion of the constraint.

The final task for each bit b in Loop 1 of Algorithm 14.4 is to add implications
to the implication graph of SCIP, see Section 3.3.5. Algorithm 14.6 subsumes the
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Algorithm 14.6 Addition Presolving – Implications

Considering equation (14.8), we can add the following implications to the implication
graph of SCIP:

1. If xb = 0, add yb = 0→ ob+1 = 0 and ob = 0→ ob+1 = 0.

2. If xb = 1, add yb = 1→ ob+1 = 1 and ob = 1→ ob+1 = 1.

3. If yb = 0, add xb = 0→ ob+1 = 0 and ob = 0→ ob+1 = 0.

4. If yb = 1, add xb = 1→ ob+1 = 1 and ob = 1→ ob+1 = 1.

5. If ob = 0, add xb = 0→ ob+1 = 0 and yb = 0→ ob+1 = 0.

6. If ob = 1, add xb = 1→ ob+1 = 1 and yb = 1→ ob+1 = 1.

7. If ob+1 = 0, add xb = 1→ yb = 0, xb = 1→ ob = 0, and yb = 1→ ob = 0.

8. If ob+1 = 1, add xb = 0→ yb = 1 and xb = 0→ ob = 1, and yb = 0→ ob = 1.

implications that we can generate for each addition column, given that a certain bit
in the column is already fixed.

Step 2 of Algorithm 14.4 compares all pairs of active addition constraints r =
add(x, y) and r′ = add(x′, y′). Suppose two of the variables in {xb, yb, ob} are
pairwise equivalent to two of {x′b, y

′
b, o
′
b}. We call the remaining variables φb and φ′b,

respectively. Then, subtracting the bit equations (14.8) from each other yields

φb − φ
′
b = rb − r

′
b + 2(ob+1 − o

′
b+1).

Since all involved variables are binary, we can deduce the aggregations of Steps 2(a)i
to 2(a)iv. Note that 2(a)iii and 2(a)iv are just the inverse implications of 2(a)i
and 2(a)ii. If the equivalence of the bit equations (14.8) is detected for all bits
b = 0, . . . , βr′ by successful applications of Rules 2(a)i or 2(a)ii, the constraint on
the smaller or equally wide registers can be deleted in Step 2b, since its semantics
is already captured by the other constraint.

The trivial implications

βr ≥ βr′ ∧ (x
⋆
= x′) ∧ (y

⋆
= y′) → r[βr′ − 1, 0]

⋆
= r′ and

βr ≥ βr′ ∧ (x
⋆
= y′) ∧ (y

⋆
= x′) → r[βr′ − 1, 0]

⋆
= r′

are already covered by Step 2a. Steps 2c and 2d apply these implications in the
opposite direction to deduce inequalities of operands. Note that we can only conclude
that the operands are unequal if the resultants are of equal width. Otherwise, the
inequality of the resultants may result from the different truncation of the sum. An
alternative approach would be to check whether r[βr′ − 1, 0] Y

⋆
= r′, but we do not

store inequalities between subwords of registers in our data structures.

14.4 Subtraction

The subtraction operator

sub : [β]× [β]→ [β], (x, y) 7→ r = sub(x, y)

yields the difference of the two input registers x and y in the two’s complement
representation. It is defined as

r = sub(x, y) ⇔ r = (x− y) mod 2β.
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Because the integers modulo 2β together with the truncated addition and multipli-
cation form a ring, we have x = (r + y) mod 2β. Therefore, we can replace each
subtraction constraint by an equivalent addition constraint, which is performed in
the presolving stage of SCIP.

14.5 Multiplication

The multiplication operator

mult : [β]× [β]→ [β], (x, y) 7→ r = mult(x, y)

with

r = mult(x, y) ⇔ r = (x · y) mod 2β

is the most complex operator in terms of the algorithms involved to process the con-
straints. Our implementation contains more than 7000 lines of C source code, while
the implementation of the algorithms for addition, which is the second largest code,
consists of only around 3500 lines. This corresponds to the observation, that SAT
and BDD based techniques often fail on circuits that involve lots of multiplications,
which can also be seen in the computational results of Chapter 17.

The LP relaxation of multiplication constraints is quite involved. Like in written
multiplication learned in school, we multiply each digit of one operand by the digits of
the other operand and align the results with respect to the significance of the involved
digits. Afterwards, these partial products are added up to yield the resultant of the
multiplication constraint. Since a multiplication of two variables is a non-linear
operation, we cannot use it directly inside a linear relaxation. However, a product
of a binary variable with another variable can be linearized by three inequalities.
Therefore, the “digits” of one of the operands are given by its bit decomposition,
while for the “digits” of the other operand we use half-words, so called nibbles.
This asymmetric treatment of the two operands in a commutative operation raises
the question which operand should be split into bits and which should be split
into nibbles. This question is addressed in the presolving algorithm explained in
Section 14.5.3.

We employ three different types of domain propagation algorithms for mult
constraints. The first operates on the multiplication table of the LP relaxation and
the involved auxiliary variables, namely the partial products and overflows. The
second is applied on the bit level, again on a table similar to written multiplication.
It involves a second set of auxiliary variables and propagates fixings of register
bits and auxiliary variables. The third domain propagation algorithm constructs
the symbolic terms for the intermediate bits of the binary multiplication table and
simplifies them, exploiting fixings and equivalences of the register bits. This may
yield additional deductions that cannot be found by the standard bit level domain
propagation alone.

The presolving on mult constraints also uses both representations, the bit/nibble
and the bit/bit multiplication table. In addition to the domain propagation, it
performs aggregations and detects implications. In particular, the terms constructed
in the symbolic propagation are compared with each other, and the corresponding
variables are aggregated if the terms are equal.
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14.5.1 LP Relaxation

In order to express the multiplication r = mult(x, y) of two registers x and y with
linear constraints, we decompose x into the bits xb, b = 0, . . . , β − 1, and y and r
into half-words, or nibbles, of L = W/2 bits:

Definition 14.12 (nibble). A register ̺j =
∑βj−1

b=0 2b̺jb is subdivided into ηj =
⌈βj/L⌉ nibbles

̺
〈l〉
j = ̺j

[
δ
〈l〉
j − 1, lL

]
=

δ
〈l〉
j −1
∑

b=0

2b̺j,lL+b, l = 0, . . . , ηj − 1, (14.11)

of L bits with δ
〈l〉
j = min{L, βj − lL} being the width of nibble l.

We do not include the nibbles as additional problem variables into the CIP model.

Instead, we use ̺
〈l〉
j only as a shortcut for the subword expressed as a sum of bit

variables as in equation (14.11). Therefore, the bounds of the nibble ̺
〈l〉
j are also

only shortcuts for

l
̺
〈l〉
j

=

δ
〈l〉
j −1
∑

b=0

2bl̺j,lL+b
and u

̺
〈l〉
j

=

δ
〈l〉
j −1
∑

b=0

2bu̺j,lL+b
. (14.12)

We model the relevant partial products p
〈l〉
b = xb · y

〈l〉 of bits xb and nibbles y〈l〉

with the following system of linear inequalities:

p
〈l〉
b ≤ uy〈l〉 · xb (14.13)

p
〈l〉
b ≤ y

〈l〉 (14.14)

p
〈l〉
b ≥ y

〈l〉 − uy〈l〉 · (1− xb) (14.15)

Equation (14.13) enforces the implication xb = 0→ p
〈l〉
b = 0, while Equations (14.14)

and (14.15) are redundant for xb = 0, but ensure p
〈l〉
b = y〈l〉 for xb = 1. For every

integral solution (x, y) the above system of equations ensures p
〈l〉
b ∈ Z≥0 for all b

and l. Therefore, we do not need to include p
〈l〉
b ∈ Z≥0 as an additional integrality

restriction. Instead, we mark the partial product variables to be implicitly integral.
Such variables are not used as branching variables, but their integrality can be
exploited in presolving, domain propagation, and cutting plane separation.

In order to calculate the resultant r of the multiplication, we have to add up the
partial products as shown in Figure 14.3. A nibble r〈l〉 of the resultant is equal to

the sum of all partial products p
〈j〉
b with ⌊b/L⌋+ j = l and the overflow nibble o〈l〉 of

the previous addition column. In the example of Figure 14.3, we have to add up the
dark shaded partial products in their respective significance and the overflow o〈2〉 to
calculate r〈2〉 and the corresponding overflow o〈3〉. The summations are described by
the equation

o〈l〉 +
∑

i+j=l

δ〈i〉
x −1
∑

b=0

2bp
〈j〉
iL+b = 2Lo〈l+1〉 + r〈l〉 (14.16)

for l = 0, . . . , ηr − 1. The upper bound of the overflow variables can be calculated
recursively as follows:
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Figure 14.3. Multiplication table used in LP relaxation of r = mult(x, y). The first input
register x is split into bits xb, and the second input register y and the output register r are split
into nibbles y〈l〉 and r〈l〉.

Proposition 14.13. For the overflow variable o〈l+1〉 in equation (14.16) the recur-
sively defined value

uo〈l+1〉 =

⌊
uo〈l〉 + (l + 1)(2L − 1)2

2L

⌋

with uo〈0〉 = 0

is a valid upper bound.

Proof. From equation (14.16) it follows that

2Lo〈l+1〉 = o〈l〉 +
∑

i+j=l

δi
x−1
∑

b=0

2bp
〈j〉
iL+b − r

〈l〉 ≤ o〈l〉 +
∑

i+j=l

L−1∑

b=0

2b(2L − 1)

= o〈l〉 +
∑

i+j=l

(2L − 1)2 = o〈l〉 + (l + 1)(2L − 1)2,
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which, together with the integrality of o〈l+1〉, proves the claim.

Note. The upper bounds on the first seven overflow variables are u〈0〉 = 0, u〈1〉 = 254,
u〈2〉 = 509, u〈3〉 = 764, u〈4〉 = 1019, u〈5〉 = 1274, and u〈6〉 = 1529.

As a summary, the LP relaxation of a multiplication constraint r = mult(x, y)
is given by equations (14.13), (14.14), and (14.15) for all b and l with ⌊b/L⌋+ l < ηr,
and equation (14.16) for l = 0, . . . , ηr − 1. We have to introduce auxiliary variables

p
〈l〉
b ∈ R≥0 for ⌊b/L⌋ + l < ηr with bounds 0 ≤ p

〈l〉
b ≤ uy〈l〉 , and o〈l〉 ∈ Z≥0 for

l = 0, . . . , ηr with bounds 0 ≤ o〈l〉 ≤ uo〈l〉 as defined in Proposition 14.13.

14.5.2 Domain Propagation

The propagation of multiplication constraints r = mult(x, y) is performed in three
stages. The first stage applies domain propagation on the LP formulation stated

in Section 14.5.1 and its auxiliary variables p
〈l〉
b and o〈l〉. In the second stage, we

perform domain propagation on a multiplication table consisting of binary partial
products pij = xi · yj , i.e., on a formulation that can be expressed with binary
variables only. The third stage applies a symbolic propagation on this binary
multiplication table by using a term rewriting system.

Propagation on the LP Relaxation

In this stage of the propagation, we try to deduce tighter bounds for the bits xb, the

nibbles y〈l〉 and r〈l〉, and the auxiliary variables p
〈l〉
b and o〈l〉, which are used in the

LP relaxation presented in Section 14.5.1. Since it can yield tighter bounds for the
propagation, we also look at the current bounds of the partial bit product variables
pij = xi · yj ∈ {0, 1} that are used in the next stage of the domain propagation.

As already noted in Section 14.5.1, the bounds of the nibbles y〈l〉 and r〈l〉 are only
shortcuts for the sums of the corresponding bit bounds, see equation (14.12). These
bounds get strengthened in presolving and domain propagation whenever one of the
involved bits is fixed. Conversely, a strengthening of a nibble bound corresponds to
fixings of the involved bits. However, for given deduced nibble bounds l ≤ y〈l〉 ≤ u,
we can only fix the most significant bits ylL+b, namely ylL+b = 1 for bits b with
∑δ−1

i=0 2iuylL+i
−2buylL+b

< l, and ylL+b = 0 for bits b with
∑δ−1

i=0 2ilylL+i
−2blylL+b

+

2b > u. If we deduce l ≤ y〈l〉 ≤ u in an algorithm, we mean to fix as many bit
variables as possible in this fashion. The same holds for deduced nibble bounds on
r〈l〉. Note that variables o〈l〉 are actual problem variables for which the bounds can
be deduced normally.

Algorithm 14.7 shows how the deductions on the registers x, y, and r, and the
auxiliary variables of the LP relaxation are performed. Step 1 processes the partial

product equation p
〈l〉
b = xb · y

〈l〉. If xb = 0 we can conclude p
〈l〉
b = 0 in Step 1a. If on

the other hand xb = 1, we can tighten the bounds of p
〈l〉
b and y〈l〉 using p

〈l〉
b = y〈l〉 in

Step 1b. Independent from the value of xb, the partial product p
〈l〉
b cannot be larger

than y〈l〉, and the upper bound of p
〈l〉
b and the lower bound of y〈l〉 can be tightened

correspondingly in Step 1c.

Step 1d provides the link to the auxiliary partial bit product variables pij = xi ·yj

which are used in the second stage of the domain propagation, see Algorithm 14.8.
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Algorithm 14.7 Multiplication Domain Propagation – LP Propagation

Input : Multiplication constraint r = mult(x, y) on registers r, x, and y of width
β with current local word bounds l̃rw ≤ rw ≤ ũrw , l̃xw ≤ xw ≤ ũxw , and
l̃yw ≤ yw ≤ ũyw , and bit bounds l̃rb

≤ rb ≤ ũrb
, l̃xb

≤ xb ≤ ũxb
, and l̃yb

≤

yb ≤ ũyb
; current local bounds on auxiliary variables l̃

p
〈l〉
b

≤ p
〈l〉
b ≤ ũ

p
〈l〉
b

,

l̃pij
≤ pij ≤ ũpij

, and l̃o〈l〉 ≤ o〈l〉 ≤ ũo〈l〉 .

Output : Tightened local bounds for words rw, xw, yw, bits rb, xb, yb, and auxiliary

variables p
〈l〉
b and o〈l〉.

1. For all b = 0, . . . , β − 1 and all l = 0, . . . , η − 1:

(a) If ũxb
= 0, deduce p

〈l〉
b = 0.

(b) If l̃xb
= 1, deduce p

〈l〉
b ≥ l̃y〈l〉 and y〈l〉 ≤ ũ

p
〈l〉
b

.

(c) Deduce p
〈l〉
b ≤ ũy〈l〉 and y〈l〉 ≥ l̃

p
〈l〉
b

.

(d) Deduce p
〈l〉
b ≤

∑L−1
i=0 2iũpb,lL+i

.

(e) If l̃
p
〈l〉
b

≥ 1, deduce xb = 1.

(f) If ũ
p
〈l〉
b

< l̃y〈l〉 , deduce xb = 0.

2. For l = 0, . . . , η − 1, tighten the bounds using equation (14.16):

l̃r〈l〉 −
∑

i+j=l

δi
x−1
∑

b=0

2bũ
p
〈j〉
iL+b

+ 2Ll̃o〈l+1〉 ≤ o〈l〉 ≤ ũr〈l〉 −
∑

i+j=l

δi
x−1
∑

b=0

2b l̃
p
〈j〉
iL+b

+ 2Lũo〈l+1〉

l̃o〈l〉 +
∑

i+j=l

δi
x−1
∑

b=0

2b l̃
p
〈j〉
iL+b

− 2Lũo〈l+1〉 ≤ r〈l〉 ≤ ũo〈l〉 +
∑

i+j=l

δi
x−1
∑

b=0

2bũ
p
〈j〉
iL+b

− 2Ll̃o〈l+1〉

⌈ l̃o〈l〉 +
∑

i+j=l

δi
x−1∑

b=0

2bl̃
p
〈j〉
iL+b

− ũr〈l〉

2L

⌉

≤ o〈l+1〉 ≤

⌊ ũo〈l〉 +
∑

i+j=l

δi
x−1∑

b=0

2bũ
p
〈j〉
iL+b

− l̃r〈l〉

2L

⌋

By the definition of the partial products, we know that p
〈l〉
b =

∑L−1
i=0 2ipb,lL+i. There-

fore, we can deduce a corresponding upper bound for p
〈l〉
b in Step 1d. The lower bound

of p
〈l〉
b does not need to be tightened, because if

∑L−1
i=0 2i l̃pb,lL+i

> 0 we can deduce

xb = 1 in Algorithm 14.8, and the lower bound of p
〈l〉
b is already tightened in a subse-

quent Step 1b of Algorithm 14.7. Note that after Algorithm 14.8 was performed, we
have

∑L−1
i=0 2iũpb,lL+i

≤ ũy〈l〉 , which means that Step 1c is redundant in subsequent
iterations.

Steps 1e and 1f are the inverse implications of Steps 1a and 1b, respectively. If

p
〈l〉
b > 0, the bit xb must be one, and if p

〈l〉
b < y〈l〉, we know that xb = 0. Additional

conclusions like p
〈l〉
b = 0 if p

〈l〉
b < y〈l〉 are automatically drawn in Steps 1a and 1b of

the subsequent iteration.
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Propagation on Binary Multiplication Table

The second stage in the domain propagation of the multiplication constraint r =
mult(x, y) of width β consists of the calculation and propagation of a binary mul-
tiplication table. We introduce new auxiliary variables

pij = xi · yj ∈ {0, 1} for i+ j < β, (14.17)

which are the partial products of individual bits in x and y. These partial products
are added up columnwise to calculate the resultant bits rb. Of course, the sum of
a column can produce an overflow that has to be passed to the more significant
columns.

Figure 14.4 illustrates the multiplication table for an 8 bit multiplication. The
partial products pij are assigned as addends to a column that corresponds to its
significance, i.e., pij is assigned to column i + j. We sum up the addends of the
columns in blocks of three. For each block and for each column we compute an
intermediate sum out of the at most three addends. This sum is in the range of 0
to 3 and can therefore be represented as a 2 bit value. We call the low significant
bit of block k and column j the subtotal sk

j ∈ {0, 1}, and the high significant bit the

overflow ok
j ∈ {0, 1}. Therefore, for addends ak0

j , ak1
j , ak2

j ∈ {0, 1} of block k and
column j the equation

ak0
j + ak1

j + ak2
j = 2ok

j + sk
j (14.18)

defines the values of the subtotal and overflow. The subtotal variable sk
j is used as

the first addend ak+1,0
j in the next block of the same column. The overflow variable

ok
j is passed as additional addend to the next column j+1. The dark shaded variables

in Figure 14.4 are the variables that are involved in the subtotal calculation (14.18)
of block 1 and column 4. The last subtotals of each column define the resultant bits:

rb = sb−1
b , b = 0, . . . , β − 1, with s−1

0 = p00.

Note that one can add up the partial products, the subtotals, and the overflows
in any order. This order may affect the propagation, since for a different order the
subtotals and overflows are defined differently. We choose the static order that is
indicated in Figure 14.4: the subtotals sk

j are always the first addend of the next
block k + 1, and the overflows are the last addends in their respective column with
overflows of smaller block numbers preceeding the ones of larger block numbers. The
partial products pij fill the empty slots in the order of increasing index i. This yields
the following assignment to the addends q ∈ {0, 1, 2} of each block k and column j:

block 0 : a0q
j =

{

pq,j−q if j ≥ q

0 if j < q

block k ≥ 1 : akq
j =







sk+1
j if q = 0

p2k+q,j−(2k+q) if q ≥ 1 and 2k + 1 ≤ j

o2k+q−1−j
j−1 if q ≥ 1 and 2k + 1 > j

(14.19)

We use the overflows as late as possible because we also employ the same mul-
tiplication table with the same variables in the symbolic propagation with term
rewriting, see below. The symbolic terms for the overflow variables are more com-
plex than the ones for the partial products and the subtotals. This complexity is
introduced to the subtotal terms of a column as soon as an overflow variable is
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Figure 14.4. Binary multiplication table used in domain propagation of r = mult(x, y).
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Algorithm 14.8 Multiplication Domain Propagation – Binary Propagation

Input : Multiplication constraint r = mult(x, y) on registers r, x, and y of width
β with current local bit bounds l̃rb

≤ rb ≤ ũrb
, l̃xb

≤ xb ≤ ũxb
, and

l̃yb
≤ yb ≤ ũyb

; current local bounds on auxiliary variables l̃pij
≤ pij ≤ ũpij

,

l̃sk
j
≤ sk

j ≤ ũsk
j
, and l̃ok

j
≤ ok

j ≤ ũok
j
.

Output : Tightened local bounds for bits rb, xb, yb, and auxiliary variables pij , sk
j ,

and ok
j .

1. For all i + j < β, propagate partial product (14.17) as pij = and(xi, yj)
with the corresponding domain propagation Algorithm 14.13 for bitwise and
constraints.

2. For all columns j = 1, . . . , β−1 and all of its blocks k = 0, . . . , j−1, propagate
equation (14.18) as in Step 1 of the domain propagation Algorithm 14.3 of the
addition constraint. Use the substitutions xb → ak0

j , yb → ak1
j , ob → ak2

j ,

rb → sk
j , and ob+1 → ok

j , with akq
j being defined by equation (14.19).

used as addend. Since it is more likely to identify equal terms on terms with low
complexity, we try to postpone the addition of overflow terms as long as possible.

Wedler, Stoffel, and Kunz [209] use a dynamic approach for ordering the addends
of a column. They add up those variables first that are fixed in the local subproblem.
The goal is to produce as many fixings as possible in the overflow variables added
to the next column. They proved that this technique leads to the maximal number
of forward propagations of the “external” variables xb and yb to the subtotals and
overflows. The disadvantage of this approach within our framework is that without
static definitions of the internal variables, they cannot be used in conflict analysis
and cutting plane separation. Additionally, the statically defined internal variables
can be used as “memory” for already discovered deductions. If dynamic addends
are used, we would have to propagate the full multiplication table from scratch at
every iteration.

Algorithm 14.8 describes the domain propagation that is applied on the binary
multiplication table. There are only two types of constraints involved, namely the
partial product constraints (14.17) and the addition constraints (14.18). A multi-
plication of two bits pij = xi · yj is equivalent to the and concatenation of the bits.
Therefore, we can just call the domain propagation algorithm of the bitwise and
concatenation as a subroutine in Step 1. The bit addition constraint (14.18) has the
same structure as equation (14.8) which appears in the propagation of the addition
constraint. Hence, we just call the appropriate part of Algorithm 14.3 in Step 2 to
propagate these equations.

Symbolic Propagation with Term Rewriting

In the previous section about propagation on the binary multiplication table, we
investigated how fixings of binary variables can deduce further fixings of other binary
variables. In this section, we also try to keep track of the unfixed variables, since
it may happen that their contribution to a later subtotal or overflow is canceled
out, regardless of their actual values. In order to do this, we perform symbolic
calculations on terms in which the unfixed variables appear as symbols.

The variables in the binary multiplication table are calculated with equations (14.17)
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and (14.18), i.e.,

pij = xi · yj and 2ok
j + sk

j = ak0
j + ak1

j + ak2
j ,

with akq
j being either a partial product p, a subtotal s, or an overflow o. Now we

express the equations to calculate p, s, and o as logical terms over xi and yj :

pij = xi ∧ yj (14.20)

sk
j = ak0

j ⊕ a
k1
j ⊕ a

k2
j (14.21)

ok
j = (ak0

j ∧ a
k1
j ) ∨ (ak0

j ∧ a
k2
j ) ∨ (ak1

j ∧ a
k2
j )

= (ak0
j ∧ a

k1
j )⊕(ak0

j ∧ a
k2
j )⊕(ak1

j ∧ a
k2
j ). (14.22)

We can replace the disjunction ∨ by the exclusive or ⊕ in the equation of ok
j , because

it cannot happen that exactly two of the three subterms are true, and in the other
three cases (0, 1, or 3 terms are true), both operators yield the same result:

Observation 14.14. For all x, y, z ∈ {0, 1}, the equivalence

(x ∨ y ∨ z 6= x⊕ y⊕ z) ⇔ (x+ y + z = 2)

holds.

Proof. We only have to evaluate the four cases x + y + z ∈ {0, 1, 2, 3}, since both
operators ∨ and ⊕ are associative and commutative.

Due to Observation 14.14, we can express all emerging expressions for internal
variables in the binary multiplication table as terms over ∧ and ⊕. We call the
resulting algebra the binary multiplication term algebra:

Definition 14.15 (binary multiplication signature). The algebraic signature
Σ = (B,O) with the sort B and operations O = O0 ∪ O2 with 0-ary symbols
O0 = {0, 1, x0, . . . , xβ−1, y0, . . . , yβ−1} and binary operators O2 = {∧,⊕},

0 :→ B, 1 :→ B, xb :→ B, yb :→ B, ∧ : B ×B → B, ⊕ : B × B → B

with b = 0, . . . , β − 1 is called binary multiplication signature. We call TΣ the term
algebra of Σ, which consists of all terms that can be generated from the symbols in
Σ and which fit to the arity of the operators.

By applying the distributivity law

(s⊕ t) ∧ u = (s ∧ u)⊕(t ∧ u), s ∧ (t⊕u) = (s ∧ t)⊕(s ∧ u)

for terms s, t, u ∈ TΣ we can rewrite any term t ∈ TΣ as an equivalent term in
disjunctive normal form

t ≡ πn⊕ . . .⊕π1, πi = zimi
∧ . . . ∧ zi1, zij ∈ O0

for i = 1, . . . , n and j = 1, . . . ,mi. Due to commutativity and associativity of ∧, the
individual conjunctions can be reordered in a second step such that

πi = zimi
∧ . . . ∧ zi1 with zimi

� . . . � zi1
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holds for the precedence relation ≻ on the symbols O of Σ, which is defined as the
transitive closure of

∧ ≻ ⊕ ≻ yβ−1 ≻ . . . ≻ y0 ≻ xβ−1 ≻ . . . ≻ x0 ≻ 1 ≻ 0. (14.23)

Afterwards, we apply the equations

z ∧ 0 = 0, z ∧ 1 = z, z ∧ z = z

on the conjunctions which yields equivalent conjunctions in normal form. The ad-
dends πi of a term t ∈ TΣ in disjunctive normal form with normalized conjunctions
are then reordered using commutativity and associativity of ⊕ such that

t ≡ πn⊕ . . .⊕π1, πi = zimi
∧ . . . ∧ zi1, zij ∈ O0

and (zimi
, . . . , zi1) �lex (zjmj

, . . . , zj1) for i > j. The relation ≻lex is the lexico-
graphic (right-left) ordering with respect to ≻:

Definition 14.16 (lexicographic ordering). Given an ordering ≻⊆ O × O on a
set O, the relation ≻lex⊆ O

⋆ × O⋆ on the strings O⋆ with

(tn, . . . , t1) ≻lex (sm, . . . , s1)

⇔ (i) n > m, or

(ii) n = m and t1 ≻ s1, or

(iii) n = m and t1 = s1 and (tn, . . . , t2) ≻lex (sm, . . . , s2)

is called lexicographic (right-left) ordering with respect to ≻ on strings O⋆.

Note. The literature distinguishes between two versions of the lexicographic order-
ing: the left-right ordering ≻lexlr and the right-left ordering ≻lexrl. Since we only
need the right-left variant, we abbreviate ≻lexrl by ≻lex and call this version the
lexicographic ordering as a shortcut.

After having reordered the addends of the disjunction, we simplify the term by
applying the equations

π⊕ 0 = π and π⊕π = 0.

We call the resulting term t′ the normal form of t if t ≡ t′.
Algorithm 14.9 subsumes this procedure in a more formal fashion. In Step 1

we apply the distributivity law to achieve disjunctive normal form. Step 2 reorders
the symbols in the conjunctions πi, and Step 3 applies the simplifications for the ∧
operator. Note that these simplifications do not destroy the ordering property of
the conjunctions. In Step 4 we reorder the resulting addends of the xor expression,
and finally, in Step 5 the simplifications on the ⊕ operator are applied. The replace-
ment 5b replaces the innermost two addends of the term by the symbol “0”, which
has to be moved to the right by applying Step 4 again to restore the lexicographic
ordering.

In the definition of the commutativity rewriting Rules 4b and 4c we used the
concept of the lexicographic recursive path ordering (see Kamin and Levy [128] and
Dershowitz [79]):
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Algorithm 14.9 Multiplication Domain Propagation – Term Normalization

Input : Term t ∈ TΣ
Output : Term t′ ≡ t in normal form

1. Until no more replacements are possible:

(a) Replace subterms (t3⊕ t2) ∧ t1 → (t3 ∧ t1)⊕(t2 ∧ t1).

(b) Replace subterms t3 ∧ (t2⊕ t1)→ (t3 ∧ t2)⊕(t3 ∧ t1).

2. Until no more replacements are possible:

(a) Replace subterms π3 ∧ (π2 ∧ π1)→ (π3 ∧ π2) ∧ π1.

(b) Replace subterms z1 ∧ z2 → z2 ∧ z1 if z1, z2 ∈ O0 and z2 ≻ z1.

(c) Replace subterms (π ∧ z1)∧ z2 → (π ∧ z2)∧ z1 if z1, z2 ∈ O0 and z2 ≻ z1.

3. Until no more replacements are possible:

(a) Replace subterms π ∧ 0→ 0.

(b) Replace subterms π ∧ 1→ π.

(c) Replace subterms z ∧ z → z with z ∈ O0.

(d) Replace subterms (π ∧ z) ∧ z → π ∧ z with z ∈ O0.

4. Until no more replacements are possible:

(a) Replace subterms π3⊕(π2⊕π1)→ (π3⊕π2)⊕π1.

(b) Replace subterms π1⊕π2 → π2⊕ π1 if π2 ≻lrpo π1.

(c) Replace subterms (π3⊕ π1)⊕π2 → (π3⊕ π2)⊕π1 if π2 ≻lrpo π1.

5. Until no more replacements are possible:

(a) Replace subterms π⊕ 0→ π.

(b) Replace subterms π⊕π → 0; if applied, goto Step 4.

(c) Replace subterms (π2⊕ π1)⊕π1 → π2.

Definition 14.17 (lexicographic recursive path ordering). Let Σ = (S,O) be
an algebraic signature and ≻⊆ O×O be a partial ordering on the operator symbols
of Σ. Then ≻lrpo⊆ TΣ × TΣ with

g(tn, . . . , t1) ≻lrpo f(sm, . . . , s1)

⇔ (i) tj �lrpo f(sm, . . . , s1) for some j ∈ {1, . . . , n}, or

(ii) g ≻ f and g(tn, . . . , t1) ≻lrpo si for all i ∈ {1, . . . ,m}, or

(iii) g = f, g(tn, . . . , t1) ≻lrpo si for all i ∈ {1, . . . ,m},

and (tn, . . . , t1) (≻lrpo)lex (sm, . . . , s1)

is called the lexicographic recursive path ordering of Σ with respect to ≻.

Note again, that we employ the right-left variant of the lexicographic ordering in
our definition of ≻lrpo.

The lexicographic recursive path ordering is a very useful tool for proving the
termination of term rewriting systems. In the following, we employ this concept to
prove the termination of Algorithm 14.9.
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Lemma 14.18. Let Σ = (S,O) be an algebraic signature and ≻⊆ O × O a partial
ordering on the operator symbols. If s ∈ TΣ is a proper subterm of t ∈ TΣ then
t ≻lrpo s.

Proof. We prove the claim by induction on the depth d ∈ Z>0 of s in the tree
representation of t = g(tn, . . . , t1). If s = tj for any j ∈ {1, . . . , n}, i.e., d = 1, we
have t ≻lrpo s by Condition (i) of Definition 14.17. Otherwise, let tj be the subterm
of t that contains s. Then, s is in depth d − 1 of the tree representation of tj , and
we have tj ≻lrpo s by induction. Again by Condition (i), it follows t ≻lrpo s.

Definition 14.19 (well-founded ordering). A partial ordering ≻⊆ S × S on
a set S is called well-founded if there does not exist an infinite descending chain
s1 ≻ s2 ≻ . . . of elements si ∈ S.

Definition 14.20 (monotonic ordering). Given an algebraic signature Σ = (S,O)
with term algebra TΣ, a partial ordering ≻⊆ TΣ × TΣ on the terms is called mono-
tonic, if

s ≻ s′ ⇒ g(tn, . . . , s, . . . , t1) ≻ g(tn, . . . , s
′, . . . , t1)

for all n ∈ Z≥0, n-ary symbols g ∈ O, and terms s, s′, t1, . . . , tn ∈ TΣ.

Theorem 14.21 (Dershowitz [79]). If≻⊆ O×O is a well-founded partial ordering
on the operations of a finite algebraic signature Σ = (S,O), then the lexicographic
recursive path ordering ≻lrpo⊆ TΣ×TΣ is a well-founded monotonic partial ordering
on the terms TΣ.

For our precedence relation≻ defined by (14.23), the lexicographic recursive path
ordering ≻lrpo⊆ TΣ × TΣ of Σ with respect to ≻ is given by

z2 ≻lrpo z1 if z2 ≻ z1 (a)

t2⊕ t1 ≻lrpo z (b)

t2 ∧ t1 ≻lrpo z (c)

t2⊕ t1 ≻lrpo s2⊕ s1 if t1 �lrpo s2⊕ s1 or t2 �lrpo s2⊕ s1 (d)

t2⊕ t1 ≻lrpo s2 ∧ s1 if t1 �lrpo s2 ∧ s1 or t2 �lrpo s2 ∧ s1 (e)

t2 ∧ t1 ≻lrpo s2⊕ s1 if t1 �lrpo s2⊕ s1 or t2 �lrpo s2⊕ s1 (f)

t2 ∧ t1 ≻lrpo s2 ∧ s1 if t1 �lrpo s2 ∧ s1 or t2 �lrpo s2 ∧ s1 (g)

t2 ∧ t1 ≻lrpo s2⊕ s1 if t2 ∧ t1 ≻lrpo si for i = 1, 2 (h)

t2⊕ t1 ≻lrpo s2⊕ s1 if t2⊕ t1 ≻lrpo si for i = 1, 2, and t1 ≻lrpo s1 (i)

t2⊕ t1 ≻lrpo s2⊕ s1 if t2⊕ t1 ≻lrpo si for i = 1, 2, and t1 = s1, t2 ≻lrpo s2 (j)

t2 ∧ t1 ≻lrpo s2 ∧ s1 if t2 ∧ t1 ≻lrpo si for i = 1, 2, and t1 ≻lrpo s1 (k)

t2 ∧ t1 ≻lrpo s2 ∧ s1 if t2 ∧ t1 ≻lrpo si for i = 1, 2, and t1 = s1, t2 ≻lrpo s2 (l)

for all z, z1, z2 ∈ O0, s1, s2, t1, t2 ∈ TΣ.

Proposition 14.22. Algorithm 14.9 terminates.

Proof. The relation ≻ is obviously a well-founded partial ordering (in fact, even a
total ordering) on O. By Theorem 14.21 ≻lrpo is a well-founded monotonic partial
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ordering on TΣ. Therefore, to show the termination of Algorithm 14.9 it suffices
to prove that each replacement rule reduces the order of the term t, i.e., if t is
replaced by t′, then t ≻lrpo t

′. Due to the monotonicity, it even suffices to show this
implication for the subterms on which the replacements are applied.

Step 1a reduces the order due to condition (h) since (t3⊕ t2) ∧ t1 ≻lrpo t3 ∧ t1
and (t3⊕ t2) ∧ t1 ≻lrpo t2 ∧ t1 by condition (l) and Lemma 14.18. The same is true
for Step 1b by condition (h), condition (k), and Lemma 14.18. Step 2a reduces the
order due to (k) and Lemma 14.18. Step 2b is due to (k), (a), and Lemma 14.18,
and the order reduction of Step 2c follows from (k), (a), (l), and Lemma 14.18.

The replacements in Step 3 reduce the order of the term due to Lemma 14.18.
The proof for the replacements in Step 4 is analogous to the one for Step 2. The
order reduction of Step 5a and 5c is again due to Lemma 14.18 and follows for
Step 5b by condition (b).

Corollary 14.23. Algorithm 14.9 would also terminate if the term rewriting rules
were applied in an arbitrary order.

Proof. Since each individual rewriting rule reduces the order of the term, termination
is not dependent on the order in which they are applied.

After having defined our term rewriting system in Algorithm 14.9 to normalize
arbitrary terms t ∈ TΣ, we are ready to present the term algebra domain propagation
algorithm for mult constraints, which is illustrated in Algorithm 14.10. The
algorithm consists of a loop over the columns and addition blocks of the binary
multiplication table of Figure 14.4, i.e., over the individual equations (14.18). The
terms are calculated and processed in Steps 2 to 6. If deductions or substitutions in
the terms have been found, the loop counters are reset in Step 8 to reevaluate the
affected additions.

In Step 2 we identify the addends that are used in the sum calculated in the
current part of the addition table. If an addend is a partial product, we construct
the corresponding term, normalize it, and propagate the variable-term equation in
Step 3. If an addend is a subtotal or an overflow, we already constructed and
processed the term in a previous iteration of the loop. Steps 4, 5, and 6 perform
this term construction, normalization, and processing for the current subtotal and
overflow.

If in the local subproblem only a few variables are fixed such that only a few
propagations and substitutions can be performed, the terms for the subtotals and
overflows can grow very quickly. This results in a large consumption of memory and
processing time. In order to avoid such a large resource consumption, we abort the
algorithm if the number of addends in a normalized subtotal term exceeds a certain
value. In our implementation, we use the limit maxaddends = 20.

The propagation of a variable-term equation ξ = t(z1, . . . , zm), t ∈ TΣ, which is
performed in Steps 3c and 6 of Algorithm 14.10 is depicted in Algorithm 14.11. If
the term is equal to t = 0 or t = 1, the variable ξ can be fixed to the corresponding
value in Step 1. If the term consists of only one variable symbol z1 and the variable
ξ is fixed, we can also fix z1 to the same value in Step 2a. If ξ = 1, we can even
fix all term variables to zi = 1 in Step 2b if the term has only one addend. If the
term only consists of one addend π1 but no fixings could be deduced, we can at least
replace all occurrences of π1 in the other terms produced by Algorithm 14.10 with
ξ. This substitution is performed in Step 2c. Since 1⊕π = ¬π, we can also apply
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Algorithm 14.10 Multiplication Domain Propagation – Symbolic Propagation

Input : Multiplication constraint r = mult(x, y) on registers r, x, and y of width
β with current local bit bounds l̃rb

≤ rb ≤ ũrb
, l̃xb

≤ xb ≤ ũxb
, and

l̃yb
≤ yb ≤ ũyb

; current local bounds on auxiliary variables l̃pij
≤ pij ≤ ũpij

,

l̃sk
j
≤ sk

j ≤ ũsk
j
, and l̃ok

j
≤ ok

j ≤ ũok
j
; Parameter maxaddends ∈ N.

Output : Tightened local bounds for bits rb, xb, yb, and auxiliary variables pij , sk
j ,

and ok
j .

1. Set j := 0 and k := 0.

2. Identify the addends ak0
j , ak1

j , ak2
j of column j, block k by equation (14.19).

3. For all q with akq
j = pbb′ for bits b and b′:

(a) Assign the term t[pbb′ ] := xb ∧ yb′ as in (14.20).

(b) Normalize t[pbb′ ] by calling Algorithm 14.9.

(c) Propagate pbb′ = t[pbb′ ] with Algorithm 14.11.

4. Assign the terms

t[sk
j ] := t[ak0

j ]⊕ t[ak1
j ]⊕ t[ak2

j ]

and t[ok
j ] := (t[ak0

j ] ∧ t[ak1
j ])⊕(t[ak0

j ] ∧ t[ak2
j ])⊕(t[ak1

j ] ∧ t[ak2
j ])

as in (14.21) and (14.22).

5. Normalize t[sk
j ] and o[sk

j ] by calling Algorithm 14.9.

6. Propagate sk
j = t[sk

j ] and ok
j = t[ok

j ] with Algorithm 14.11.

7. If t[sk
j ] = π1⊕ . . .⊕ πn and n > maxaddends, stop.

8. If at least one of the calls of Algorithm 14.11 produced a fixing of a variable
or a substitution in a term, set j to be the minimal column and set k to be
the minimal block number in this column for which a participating term was
affected.

Otherwise, set k := k + 1. If k ≥ j, set j := j + 1 and k := 0.

9. If j < β, goto Step 2.

the reasoning of Step 2 to t = 1⊕ π2, which is done in Step 3. However, we have to
consider ξ in its negated version since

ξ = 1⊕π2(z1, . . . , zm) ⇔ ¬ ξ = π2(z1, . . . , zm).

If t = π1⊕ π2 consists of exactly two addends and ξ is fixed, we can draw the
following conclusions in Step 4. If ξ = 0, it follows π1 = π2 which allows propagation
in Step 4a or substitution in Step 4c, depending on whether π1 is a single variable
symbol or not. If ξ = 1, analogous reasoning can be applied in Steps 4b and 4d.
Again, a term t = 1⊕π2⊕π3 can be processed in the same fashion by negating the
value of ξ, which is performed in the final Step 5.
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Algorithm 14.11 Multiplication Domain Propagation – Variable-Term Equation

Input : Equation ξ = t(z1, . . . , zm) with ξ being a binary CIP variable and t ∈ TΣ
being a normalized term t = π1⊕ . . .⊕ πn with 0-ary symbols z1, . . . , zm ∈
O0; current local bit bounds l̃ξ ≤ ξ ≤ ũξ and l̃zj

≤ zj ≤ ũzj
for the CIP

variables corresponding to the involved 0-ary symbols.

Output : Tightened local bounds for bits ξ, z1, . . . , zm; Modifications of the terms
s ∈ T produced by Algorithm 14.10.

1. If t = 0, deduce ξ = 0.
If t = 1, deduce ξ = 1.

2. If t = π1:

(a) If π1 = z1 and ũξ = 0, deduce z1 = 0.

(b) If π1 = z1 ∧ . . . ∧ zm and l̃ξ = 1, deduce zj = 1 for all j = 1, . . . ,m.

(c) If neither 2a nor 2b was applied and ξ ∈ O0, substitute t→ ξ in all terms
s ∈ T .

3. If t = 1⊕π2:

(a) If π2 = z1 and l̃ξ = 1, deduce z1 = 0.

(b) If π2 = z1 ∧ . . . ∧ zm and ũξ = 0, deduce zj = 1 for all j = 1, . . . ,m.

(c) If neither 3a nor 3b was applied and ξ ∈ O0, substitute t→ ξ in all terms
s ∈ T .

4. If t = π1⊕π2:

(a) If π1 = zj and ũξ = 0, propagate zj = π2 as in Step 2.

(b) If π1 = zj and l̃ξ = 1, propagate zj = 1⊕π2 as in Step 3.

(c) If π1 /∈ O0 and ũξ = 0, substitute π2 → π1 in all terms s ∈ T .

(d) If π1 /∈ O0 and l̃ξ = 1, substitute π2 → 1⊕π1 in all terms s ∈ T .

5. If t = 1⊕π2⊕π3:

(a) If π2 = zj and l̃ξ = 1, propagate zj = π3 as in Step 2.

(b) If π2 = zj and ũξ = 0, propagate zj = 1⊕π3 as in Step 3.

(c) If π2 /∈ O0 and l̃ξ = 1, substitute π3 → π2 in all terms s ∈ T .

(d) If π2 /∈ O0 and ũξ = 0, substitute π3 → 1⊕π2 in all terms s ∈ T .

14.5.3 Presolving

The presolving of multiplication constraints is performed as illustrated in Algo-
rithm 14.12. Similar to the presolving of addition constraints, we first check for
very easy situations. If one of the operands is fixed to zero, the resultant can also
be fixed to zero in Step 1a, and the multiplication constraint can be deleted. If an
operand is fixed to one, the resultant must always be equal to the other operand.
They are aggregated in Step 1b, which also leads to the deletion of the constraint.
If the resultant is zero, we could conclude that one of the operands must be zero if
the constraint would be an ordinary multiplication r = x · y. However, this is not
necessarily true in the truncated multiplication. We can only fix an operand to zero
in Step 1c if the least significant bit of the other operand is one:
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Algorithm 14.12 Multiplication Presolving

1. For all active multiplication constraints r = mult(x, y):

(a) If x = 0, fix r := 0 and delete the constraint.
If y = 0, fix r := 0 and delete the constraint.

(b) If x = 1, aggregate r : ⋆= y and delete the constraint.
If y = 1, aggregate r : ⋆= x and delete the constraint.

(c) If r = 0 and x0 = 1, fix y := 0 and delete the constraint.
If r = 0 and y0 = 1, fix x := 0 and delete the constraint.

(d) If r ⋆= x and x0 = 1, fix y := 1 and delete the constraint.
If r ⋆= y and y0 = 1, fix x := 1 and delete the constraint.

(e) If β = 1, replace the constraint by r = and(x, y).

(f) If maximal non-zero bit of y is less significant than the one of x, i.e.,
max{b | uyb

= 1} < max{b | uxb
= 1}, replace the constraint by r =

mult(y, x).

(g) Apply LP domain propagation Algorithm 14.7 on the global bounds.

(h) Apply binary domain propagation Algorithm 14.8 on the global bounds,
but additionally:

i. For all partial products pij = xi · yj , i + j < β, apply presolving
Algorithm 14.14 for and constraints.

ii. For all columns j and blocks k in the binary multiplication table of
Figure 14.4, apply bit aggregation Algorithm 14.5 of add constraints.

(i) Apply symbolic domain propagation Algorithm 14.10 on the global
bounds. Whenever a substitution t→ u in Algorithm 14.11 is applied:

i. If t = ξ1 and u = ξ2, or t = 1⊕ ξ1 and u = 1⊕ ξ2 with CIP variables
ξ1, ξ2, aggregate ξ1 : ⋆= ξ2.

ii. If t = ξ1 and u = 1⊕ ξ2, or t = 1⊕ ξ1 and u = ξ2 with CIP variables
ξ1, ξ2, aggregate ξ1 : ⋆= 1− ξ2.

2. For all pairs of active multiplication constraints r = mult(x, y) and r′ =
mult(x′, y′) with βr ≥ βr′ :

(a) For all b = 0, . . . , βr′ − 1:
i. If x[b, 0] ⋆= x′[b, 0] and y[b, 0] ⋆= y′[b, 0], aggregate r[b, 0] : ⋆= r′[b, 0].

ii. If x[b, 0] ⋆= y′[b, 0] and y[b, 0] ⋆= x′[b, 0], aggregate r[b, 0] : ⋆= r′[b, 0].

(b) If Step 2(a)i or 2(a)ii was successfully applied for b = βr′ − 1, delete the
constraint r′ = mult(x′, y′).

(c) If βr = βr′ , x ⋆= x′, but r Y
⋆
= r′, deduce y Y

⋆
= y′.

If βr = βr′ , y ⋆= y′, but r Y
⋆
= r′, deduce x Y

⋆
= x′.

(d) If βr = βr′ , x ⋆= y′, but r Y
⋆
= r′, deduce y Y

⋆
= x′.

If βr = βr′ , y ⋆= x′, but r Y
⋆
= r′, deduce x Y

⋆
= y′.



14.5. Multiplication 227

Proposition 14.24. Let β ∈ Z>0 and p, q ∈ Z≥0 be two integers with p being odd,
q < 2β, and 0 = (p · q) mod 2β. Then, it follows q = 0.

Proof. By definition of the modulus operator we have

0 = (p · q) mod 2β ⇔ ∃k ∈ Z : 2βk = p · q.

Since p is odd and 2βk is even for any k ∈ Z, q must be even. For β = 1 this means
q = 0. For larger β we divide both sides of the equation by 2, which yields

∃k ∈ Z : 2β−1k = p ·
q

2
⇔ 0 = (p ·

q

2
) mod 2β−1.

Since q
2 ∈ Z≥0 and q

2 < 2β−1, it follows q
2 = 0 by induction and therefore q = 0.

If r = 0 and b ≥ 1 is the least significant bit for which xb = 1, we can only
conclude that y[β−1− b, 0] = 1, since the more significant bits in y do not affect the
resultant if xb′ = 0 for all b′ < b. Such deductions are already detected in Step 1h.
Therefore, we only consider the cases x0 = 1 and y0 = 1 in Step 1c which in addition
to the fixings allow the deletion of the multiplication constraint.

The equivalences r ⋆= x and r ⋆= y are treated in Step 1d. For r ⋆= x we can
conclude

x = mult(x, y) ⇔ x = (x · y) mod 2β ⇔ 0 =
(
x · (y − 1)

)
mod 2β,

and by Proposition 14.24 it follows y = 1 if the least significant bit of x is x0 = 1.
Again, the deductions for xb = 1 with b ≥ 1 are performed in Step 1h.

The special situation of a single-bit multiplication is addressed in Step 1e. For
β = 1 we have mult(x, y) = and(x, y). Since the and constraint comes with an LP
relaxation without auxiliary variables (see Section 14.7.1) and features a much less
cumbersome propagation algorithm, we replace single-bit mult constraints by and
constraints.

In the LP relaxation of the multiplication constraint r = mult(x, y), the second
operand y is split into nibbles while the first operand x is used in its bit represen-
tation. Thus, the interchange of the operands leads to a different LP relaxation.

Different behavior can also appear in the domain propagation algorithms, since
for r = mult(y, x) the multiplication tables of Figures 14.3 and 14.4 would change
as well as the definition of the auxiliary variables. We experimented with different
heuristic strategies for switching operands. The results indicated that the best strat-
egy is to select the first operand x to be the one that has more high-significant bits
fixed to zero. Therefore, the constraint r = mult(x, y) is replaced by r = mult(y, x)
in Step 1f if the position of the highest bit not fixed to zero is smaller in y than in
x.

Step 1g applies domain propagation on the multiplication table of the LP re-
laxation. We do not perform additional aggregations on the auxiliary variables of
the LP relaxation for the following reason. The nibbles are not represented as CIP
variables. Instead, they are only shortcuts for a subword of the register’s bit string.
Therefore, most of the possible aggregations would be multi-aggregations which are
aggregations with more than one variable on the right hand side. In the current
version of SCIP it is not possible to apply local bound changes to multi-aggregated
variables, since this can only be realized by changing the left and right hand sides
of the corresponding inequality, which is not supported by the data structures of

SCIP. Take the aggregation p
〈l〉
b

⋆= y〈l〉 as an example, which could be applied if
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xb = 1. In fact, this means to multi-aggregate p
〈l〉
b

⋆=
∑δ−1

i=0 2iylL+i, which produces
the additional constraint

l
p
〈l〉
b

≤
δ−1∑

i=0

2iylL+i ≤ up
〈l〉
b

(14.24)

to reflect the bounds of p
〈l〉
b . Changing the local bounds of p

〈l〉
b means to modify the

left and right hand side of inequality (14.24).
In Step 1h of Algorithm 14.12 we perform the domain propagation on the binary

multiplication table. Additionally, aggregations are possible for the partial prod-
uct equations (14.17) and the subtotal equations (14.18). In the symbolic domain
propagation of Step 1i, we can also perform aggregations whenever a substitution
was found that identifies two terms containing only a single register bit or auxiliary
binary variable each.

Pairs of mult constraints are compared in Step 2. We can aggregate the sub-
words of the resultants r[b, 0] : ⋆= r′[b, 0] in Step 2a if the corresponding subwords
of the operands in the two constraints are pairwise equivalent in any order. If this
aggregation was successfully performed on the full width of r′, we can delete the
second constraint in Step 2b. Steps 2c and 2d deduce the inequality of the operands
by applying the implications of 2(a)i and 2(a)ii in the opposite direction. This is
only possible if the resultants are of equal width. Otherwise, the inequality of the
resultants may result from the different truncation of the product.

14.6 Bitwise Negation

The bitwise negation operation

not : [β]→ [β], x 7→ r = not(x)

negates each individual bit such that

r = not(x) ⇔ ∀b ∈ {0, . . . , β − 1} : rb = 1− xb.

In order to implement such a constraint, we just have to aggregate the variables
rb : ⋆= 1 − xb, b = 0, . . . , β − 1, in the presolving stage of SCIP. Afterwards, the
constraint can be deleted from the problem formulation.

14.7 Bitwise And

The bitwise and combination of two bit vectors x, y ∈ {0, . . . , 2β−1} with x =
∑β−1

b=0 2bxb and y =
∑β−1

b=0 2byb, xb, yb ∈ {0, 1} for all b, is defined as

and : [β]× [β]→ [β], (x, y) 7→ r = and(x, y)

with
r = and(x, y) ⇔ ∀ ∈ {0, . . . , β − 1} : rb = xb ∧ yb.

Note that the individual bits of an and constraint are completely independent.
This is reflected in the LP relaxation and the domain propagation and presolving
algorithms presented in this section. In fact, in our implementation bitwise and
constraints are actually disaggregated into separate single-bit and constraints on
binary variables, which are supported by SCIP. Nevertheless, we will treat them
here in their aggregated form in favor of a unified presentation of the operators.
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xb

yb

rb

Figure 14.5. LP relaxation of rb = xb ∧ yb.

14.7.1 LP Relaxation

We use the following well-known LP relaxation of bitwise and constraints r =
and(x, y), see, e.g., Brinkmann and Drechsler [55]:

rb − xb ≤ 0 for all b = 0, . . . , β − 1

rb − yb ≤ 0 for all b = 0, . . . , β − 1

−rb + xb + yb ≤ 1 for all b = 0, . . . , β − 1.

(14.25)

The first inequality models the implication xb = 0→ rb = 0, the second one models
yb = 0→ rb = 0, and the third inequality models xb = 1 ∧ yb = 1→ rb = 1.

Figure 14.5 shows the convex hull of the integer feasible point for a single bit
equation rb = xb ∧ yb. One can see that the facets of the polyhedron are given by
inequalities (14.25) and the lower bound rb ≥ 0 of the resultant bit. In this sense,
the LP relaxation (14.25) is “optimal”, since it completely describes the non-trivial
facets of the substructure represented by the constraint.

14.7.2 Domain Propagation

The domain propagation of bitwise and constraints is straightforward. For each bit
b we propagate the equation

rb = xb ∧ yb. (14.26)

This is illustrated in Algorithm 14.13. If one of the operand bits is zero, the resultant
bit can be also fixed to zero in Step 1a. If both operands are one, the resultant must
also be one, see Step 1b. Conversely, if the resultant bit is fixed to one, both operand
bits can be fixed to one in Step 1c. Finally, if the resultant bit is zero and one of
the operands is one, then the other operand must be zero, see Step 1d.

14.7.3 Presolving

Like the domain propagation and the LP relaxation, the presolving algorithm is
applied independently on each bit of the registers involved in the bitwise and con-
straints. Algorithm 14.14 illustrates the procedure. As usual in the presolving
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Algorithm 14.13 Bitwise And Domain Propagation

Input : Bitwise and constraint r = and(x, y) on registers r, x, and y of width
β with current local bit bounds l̃rb

≤ rb ≤ ũrb
, l̃xb

≤ xb ≤ ũxb
, and

l̃yb
≤ yb ≤ ũyb

.

Output : Tightened local bounds for bits rb, xb, yb.

1. For all b = 0, . . . , β − 1:

(a) If ũxb
= 0 or ũyb

= 0, deduce rb = 0.

(b) If l̃xb
= 1 and l̃yb

= 1, deduce rb = 1.

(c) If l̃rb
= 1, deduce xb = 1 and yb = 1.

(d) If ũrb
= 0 and l̃xb

= 1, deduce yb = 0.
If ũrb

= 0 and l̃yb
= 1, deduce xb = 0.

stage, we apply domain propagation for the global bounds, which is performed in
Step 1. If one of the operand bits is fixed to one, the resultant is always equal to the
other operand and can be aggregated in Step 2a. If the operand bits are equivalent,
the resultant must also take the same value, and the constraint can be deleted in
Step 2b. Conversely, if the operand bits are negated equivalent, the resultant is al-
ways zero and can be fixed in Step 2c. Steps 2d and 2e add the derivable implications
to the implication graph of SCIP, see Section 3.3.5.

Step 3 compares all pairs of existing single-bit equations (14.26). If the operand
bits turn out to be pairwise equivalent in any order, the resultant bits can be aggre-
gated. Note that there seem to be additional presolving possibilities in comparing
two single-bit equations that have equal or negated resultants. For example, from

Algorithm 14.14 Bitwise And Presolving

1. Apply domain propagation Algorithm 14.13 on the global bounds.

2. For all active bitwise and constraints r = and(x, y) and all involved bits
b = 0, . . . , βr − 1:

(a) If xb = 1, aggregate rb : ⋆= yb.
If yb = 1, aggregate rb : ⋆= xb.

(b) If xb
⋆= yb, aggregate rb : ⋆= xb and delete the constraint.

(c) If xb Y
⋆
= yb, fix rb := 0 and delete the constraint.

(d) If rb = 0, add implication xb = 1 → yb = 0 to the implication graph of
SCIP.

(e) Add implications rb = 1→ xb = 1 and rb = 1→ yb = 1 to the implication
graph of SCIP.

3. For all pairs of active bitwise and constraints r = and(x, y) and r′ =
and(x′, y′), including pairs with equal constraints, and all b = 0, . . . , βr − 1
and b′ = 0, . . . , βr′ − 1:

(a) If xb
⋆= x′b′ and yb

⋆= y′b′ , aggregate rb : ⋆= r′b′ .
If xb

⋆= y′b′ and yb
⋆= x′b′ , aggregate rb : ⋆= r′b′ .



14.8. Bitwise Or 231

the equations
rb = xb ∧ yb and ¬ rb = xb ∧ y

′
b

we can conclude xb = 1. However, such deductions are automatically detected by
the implication graph analysis of SCIP after the implications rb = 1 → xb = 1
and rb = 0 → xb = 1 have been added to the implication graph in Step 2e, see
Section 10.7. The same holds in situations where an operator bit is negated in one
of the two constraints which are equal in all other respects, e.g.,

rb = xb ∧ yb and rb = xb ∧ ¬ yb.

In this case, we can conclude rb = 0 and xb = 0. Again, the implication graph
analysis automatically detects rb = 0 due to the implications rb = 1 → yb = 1 and
rb = 1→ yb = 0. Then, the new implications xb = 1→ yb = 0 and xb = 1→ yb = 1
are added in Step 2d of Algorithm 14.14, such that the implication graph analysis
can conclude xb = 0.

14.8 Bitwise Or

The bitwise or combination of two bit vectors x, y ∈ {0, . . . , 2β−1} with x =
∑β−1

b=0 2bxb and y =
∑β−1

b=0 2byb, xb, yb ∈ {0, 1} for all b, is defined as

or : [β]× [β]→ [β], (x, y) 7→ r = or(x, y)

with
r = or(x, y) ⇔ ∀b ∈ {0, . . . , β − 1} : rb = xb ∨ yb.

For each individual bit we can transform the constraint to

rb = xb ∨ yb ⇔ ¬ rb = ¬xb ∧ ¬ yb. (14.27)

In terms of circuit operators, we can rewrite

r = or(x, y) ⇔ not(r) = and(not(x),not(y)).

This symmetry is also reflected in the convex hull of the feasible points of the single-
bit equations (14.27). Comparing Figures 14.5 and 14.6, one can see that they are
point-symmetric to each other with ( 1

2 ,
1
2 ,

1
2 ) being the reflection center.

Like bitwise and constraints, bitwise or constraints are disaggregated into sep-
arate single-bit or constraints on binary variables which are supported by SCIP.
Afterwards, SCIP automatically rewrites them as bitwise and constraints on the
negated variables. This has the advantage, that both and and or constraints take
part in the pairwise presolving Step 3 of the and presolving Algorithm 14.14.

14.9 Bitwise Xor

Analogous to the and and or operators, the bitwise xor combination of two bit
vectors x, y ∈ {0, . . . , 2β−1} with x =

∑β−1
b=0 2bxb and y =

∑β−1
b=0 2byb, xb, yb ∈ {0, 1}

for all b, is defined as

xor : [β]× [β]→ [β], (x, y) 7→ r = xor(x, y)
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xb

yb

rb

Figure 14.6. LP relaxation of rb = xb ∨ yb.

with
r = xor(x, y) ⇔ ∀b ∈ {0, . . . , β − 1} : rb = xb⊕ yb.

We will see, however, that these constraints behave quite different compared to
the previously described bitwise combination operands and and or. In particular,
there is no situation where a single fixing of one of the three variables can be used
in domain propagation to deduce fixings on the other variables. This can be seen
in Figure 14.7: each facet of the cube [0, 1]3 contains exactly two feasible solutions
of the xor constraint, and these are at diagonally opposite vertices. Thus, if one
variable is fixed to any value, there are still the two possibilities (0, 1) and (1, 0), or
(0, 0) and (1, 1) left for the other variables.

14.9.1 LP Relaxation

Figure 14.7 shows the convex hull of the feasible solutions for a single-bit xor con-
straint

rb = xb⊕ yb. (14.28)

xb

yb

rb

Figure 14.7. LP relaxation of rb = xb⊕ yb.
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Algorithm 14.15 Bitwise Xor Domain Propagation

Input : Bitwise xor constraint r = xor(x, y) on registers r, x, and y of width
β with current local bit bounds l̃rb

≤ rb ≤ ũrb
, l̃xb

≤ xb ≤ ũxb
, and

l̃yb
≤ yb ≤ ũyb

.

Output : Tightened local bounds for bits rb, xb, yb.

1. For all b = 0, . . . , β − 1:

(a) If two of the three bits in equation (14.28) are fixed, deduce the corres-
ponding value for the remaining variable.

All of the four facets are non-trivial, i.e., they are not orthogonal to a unit vec-
tor. Therefore, we need four “real” inequalities (as opposed to the bounds of the
variables) to describe the LP relaxation of the constraint:

rb − xb − yb ≤ 0

−rb + xb − yb ≤ 0

−rb − xb + yb ≤ 0

rb + xb + yb ≤ 2.

(14.29)

Each inequality cuts off one infeasible vertex of the unit cube. The first inequality
cuts off (1, 0, 0), the second (0, 1, 0), the third (0, 0, 1), and the fourth inequality
cuts off (1, 1, 1). Again, the LP relaxation (14.29) is “optimal” in the sense that it
describes all facets of the convex hull of feasible solutions for the xor constraint.

14.9.2 Domain Propagation

As already mentioned, the domain propagation of the xor constraint is rather
weak. The value of a variable cannot be decided until all other variables are fixed.
Therefore, the domain propagation consists of only one step, as depicted in Algo-
rithm 14.15.

14.9.3 Presolving

The presolving of bitwise xor constraints is illustrated in Algorithm 14.16. Since
rb = xb⊕ yb ⇔ 0 = rb⊕xb⊕ yb, the resultant bit rb does not play a special role as
in the and constraint. If any pair of variables is equivalent, the third variable can
be fixed to zero in Step 1a. On the other hand, if any pair of variables is negated
equivalent, the third variable can be fixed to one in Step 1b. If any of the bits is
fixed to zero, the other two have to be equal and can be aggregated in Step 1c.
Conversely, if any of the bits is fixed to one, the other two must be opposite and
can be aggregated accordingly in Step 1d. The domain propagation Algorithm 14.15
does not need to be called since the deductions applied therein are already covered
by Steps 1c and 1d.

The presolving in Step 2 for pairs of constraints is slightly more involved than
the one for bitwise and constraints. As before, we treat the constraints for each bit
b in the form 0 = rb⊕xb⊕ yb and compare all pairs of those equations. If there are
two pairs of equivalent or negated equivalent binary variables, the remaining pair of
variables can be aggregated.
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Algorithm 14.16 Bitwise Xor Presolving

1. For all active bitwise xor constraints r = xor(x, y):

(a) If rb
⋆= xb, fix yb := 0.

If rb
⋆= yb, fix xb := 0.

If xb
⋆= yb, fix rb := 0.

(b) If rb Y
⋆
= xb, fix yb := 1.

If rb Y
⋆
= yb, fix xb := 1.

If xb Y
⋆
= yb, fix rb := 1.

(c) If rb = 0, aggregate xb : ⋆= yb.
If xb = 0, aggregate rb : ⋆= yb.
If yb = 0, aggregate rb : ⋆= xb.

(d) If rb = 1, aggregate xb : ⋆= 1− yb.
If xb = 1, aggregate rb : ⋆= 1− yb.
If yb = 1, aggregate rb : ⋆= 1− xb.

2. For all pairs of active bitwise xor constraints r = xor(x, y) and r′ =
xor(x′, y′), including pairs with equal constraints, and all b = 0, . . . , βr − 1
and b′ = 0, . . . , βr′ − 1:

If (ξ, ψ, ϕ) is any permutation of (rb, xb, yb), (ξ′, ψ′, ϕ′) is any permutation of
(r′b, x

′
b, y
′
b), and

(a) if ξ ⋆= ξ′ and ψ ⋆= ψ′, aggregate ϕ : ⋆= ϕ′,

(b) if ξ ⋆= ξ′ and ψ Y
⋆
= ψ′, aggregate ϕ : ⋆= 1− ϕ′,

(c) if ξ Y
⋆
= ξ′ and ψ Y

⋆
= ψ′, aggregate ϕ : ⋆= ϕ′.

14.10 Unary And

The unary logic operators uand, uor, and uxor combine all bits of one register ̺
to calculate a single resultant bit. Thus, they are the first operators described here
that provide a link from multi-bit registers of the data path to single-bit registers of
the control logic of a circuit. The uand constraint

uand : [β]→ [1], x 7→ r = uand(x)

is defined by

r = uand(x) ⇔ r = x0 ∧ . . . ∧ xβ−1.

As mentioned in Section 14.7, the binary bitwise and constraints are disaggregated
into β single-bit constraints rb = xb ∧ yb. In this regard, the unary uand constraint
is just a generalization of this single-bit equation to arbitrary many variables in the
conjunction. In fact, in SCIP we only treat the general case

r = x0 ∧ . . . ∧ xk−1

of conjunctions of binary variables. The equations for the individual bits in a binary
bitwise and constraint are just conjunctions with k = 2, while uand constraints are
conjunctions with k = β. Therefore, the LP relaxation and the domain propagation
and presolving algorithms of Section 14.7 are just special incarnations of the LP
relaxation and algorithms described below.
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Algorithm 14.17 Unary And Domain Propagation

Input : Unary and constraint r = uand(x) on single-bit register r and multi-
bit register x of width β with current local bit bounds l̃r ≤ r ≤ ũr and
l̃xb
≤ xb ≤ ũxb

, b = 0, . . . , β − 1.

Output : Tightened local bounds for bits r and xb.

1. If ũxb
= 0 for any b ∈ {0, . . . , β − 1}, deduce r = 0.

2. If l̃xb
= 1 for all b = 0, . . . , β − 1, deduce r = 1.

3. If l̃r = 1, deduce xb = 1 for all b = 0, . . . , β − 1.

4. If ũr = 0 and l̃xb
= 1 for all b 6= k, k ∈ {0, . . . , β − 1}, deduce xk = 0.

14.10.1 LP Relaxation

The LP relaxation of a uand constraint r = uand(x) can be stated as

r − xb ≤ 0 for all b = 0, . . . , β − 1 (14.30)

−r +

β−1
∑

b=0

xb ≤ β − 1. (14.31)

The first inequality enforces the implication xb = 0→ r = 0 for all bits b, while the
second inequality represents the implication (∀b : xb = 1)→ r = 1.

Lemma 14.25. The convex hull Puand = conv{(r, x) | r ∈ {0, 1}, x ∈ {0, 1}β, r =
uand(x)} of the feasible solutions for the uand constraint is full-dimensional if
β ≥ 2.

Proof. The feasible solutions (r = 0, x = 0), (r = 0, xb = 1, xi = 0 for i 6= b),
b = 0, . . . , β − 1, and (r = 1, x = 1) define β + 2 affinely independent vectors in
Rβ+1. Thus, the dimension of Puand is dim(Puand) = β + 1.

Proposition 14.26. Inequalities (14.30) and (14.31) and the lower bound r ≥ 0
define facets of Puand if β ≥ 2.

Proof. Puand is full-dimensional as shown in Lemma 14.25. Thus, it suffices for
each inequality to provide β + 1 affinely independent feasible solution vectors that
fulfill the inequality with equality. The solutions (r = 0, x = 0), (r = 0, xi =
1, xj = 0 for j 6= i), i ∈ {0, . . . , β − 1} \ {b}, and (r = 1, x = 1) are affinely
independent and fulfill inequality (14.30) for bit b with equality. The solutions
(r = 0, xb = 0, xi = 1 for i 6= b), b = 0, . . . , β − 1, and (r = 1, x = 1) are also affinely
independent and fulfill inequality (14.31) with equality. The solutions (r = 0, x = 0)
and (r = 0, xb = 1, xi = 0 for i 6= b), b = 0, . . . , β − 1, are affinely independent and
fulfill r ≥ 0 with equality.

14.10.2 Domain Propagation

The domain propagation Algorithm 14.17 is the canonical generalization of Algo-
rithm 14.13. If a bit in the operand is zero, the resultant can be fixed to zero in
Step 1. If all bits of the operand are one, the resultant must also be one, see Step 2.
Conversely, if the resultant is fixed to one, all bits of the operand can be fixed to
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Algorithm 14.18 Unary And Presolving

1. For all active unary and constraints r = uand(x) represented as r = x0∧ . . .∧
xβ−1:

(a) Apply domain propagation Algorithm 14.17 on the global bounds. If any
deduction was applied, delete the constraint.

(b) Simplify the constraint as much as possible (i, j ∈ {0, . . . , β − 1}):
i. If xi = 1, remove the variable from the constraint.

ii. If xi
⋆= xj for i 6= j, remove one of the variables from the constraint.

iii. If xi Y
⋆
= xj for i 6= j, fix r := 0 and delete the constraint.

Note that this step may reduce the number of involved operand bits β.

(c) If β = 1, aggregate r : ⋆= x0 and delete the constraint.

(d) If β = 2 and rb = 0, add implication x0 = 1→ x1 = 0 to the implication
graph of SCIP.

(e) Add implications r = 1→ xb = 1 for all b = 0, . . . , β−1 to the implication
graph of SCIP.

2. For all pairs of active unary and constraints r = uand(x) and r′ = uand(x′),
let X ⊆ {x0, . . . , xβx−1} and X ′ ⊆ {x′0, . . . , x

′
βx′−1} be the sets of remaining

operand bits after applying the simplifications of Step 1b.

(a) If for each xb ∈ X there exists an x′b′ ∈ X
′ with xb

⋆= x′b′ , add implication
r′ = 1→ r = 1 to the implication graph of SCIP.

(b) If for each x′b′ ∈ X
′ there exists an xb ∈ X with x′b′

⋆= xb, add implication
r = 1→ r′ = 1 to the implication graph of SCIP.

(c) If both implications r = 1 → r′ = 1 and r′ = 1 → r = 1 were added in
Steps 2a and 2b, aggregate r : ⋆= r′ and delete r′ = uand(x′).

one in Step 3. Finally, if the resultant bit is zero and all but one of the operand bits
are one, the remaining bit of the operand must be zero, see Step 4.

14.10.3 Presolving

As the domain propagation algorithm, the presolving Algorithm 14.18 is a straight-
forward generalization of the presolving Algorithm 14.14 for bitwise and constraints.
It only differs slightly in the pairwise comparison of constraints. We apply domain
propagation for the global bounds in Step 1a. Afterwards, the constraint is simplified
by exploiting the properties

a ∧ 1 = a, a ∧ a = a, and a ∧ ¬ a = 0

of the ∧ operator, which reduces the number of involved bits β. Note that at least
one operand bit remains in the constraint, since otherwise, the domain propagation
in Step 1a would already have fixed r := 1 and deleted the constraint. If only
one unfixed operand bit remained in the simplified constraint, the resultant can be
aggregated to this remaining bit in Step 1c. Steps 1d and 1e add the derivable
implications to the implication graph of SCIP, see Section 3.3.5.

In the pairwise comparison of Step 2, we look at the sets of operand bits which
remained after the simplifications of Step 1b. If—up to equivalence—one is a subset
of the other, the larger set defines a stronger restriction on the resultant. Thus, if
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the resultant for the larger set is one, then the other resultant must also be one. If
both sets are equal up to equivalence, the resultants can be aggregated and one of
the constraints can be deleted.

14.11 Unary Or

The unary or constraint is defined similar to the unary and constraint as

uor : [β]→ [1], x 7→ r = uor(x)

with
r = uor(x) ⇔ r = x0 ∨ . . . ∨ xβ−1.

By using the equivalence

r = x0 ∨ . . . ∨ xβ−1 ⇔ ¬ r = ¬x0 ∧ . . . ∧ ¬xβ−1

we can transform any uor constraint into an equivalent uand constraint. This
transformation is applied in the presolving stage of SCIP. As already mentioned in
Section 14.8, it is advantageous for the pairwise constraint comparison in the pre-
solving algorithm to represent all and, or, uand, and uor constraints as constraints
of the same type.

14.12 Unary Xor

The unary exclusive or operator

uxor : [β]→ [1], x 7→ r = uxor(x)

with
r = uxor(x) ⇔ r = x0⊕ . . .⊕xβ−1

is the generalization of equation (14.28) for the individual bits in a bitwise xor
constraint as discussed in Section 14.9. It inherits the poor domain propagation
potential of equation (14.28): a variable involved in a uxor constraint can only
be fixed to a certain value after all other variables have been fixed. In contrast
to the unary and and unary or constraints, the canonical LP relaxation of uxor
constraints consists of exponentially many inequalities. To avoid a blow-up of the LP
relaxation, we add an integer auxiliary variable, such that a single equation suffices
to model the uxor constraint. Unfortunately, this relaxation is almost useless if the
integrality of the auxiliary variable is not exploited by cutting planes, branching, or
conflict analysis.

14.12.1 LP Relaxation

The number of inequalities in the LP relaxation of uand and uor constraints is
linear in the number of operand bits β. Unfortunately, this is not true for uxor
constraints. Using the equivalence

r = x0⊕ . . .⊕xβ−1 ⇔ 0 = x0⊕ . . .⊕xβ−1 ⊕ r
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and identifying xβ : ⋆= r, the LP relaxation of a uxor constraint can be stated as

∑

b∈S

xb −
∑

b∈X\S

xb ≤ 2k for all k = 0, . . . ,
⌊β

2

⌋
, S ⊆ X with |S| = 2k + 1 (14.32)

with X = {0, . . . , β}. Here, each inequality cuts off only one of the infeasible {0, 1}-
vectors, such that we need exponentially many inequalities. We cannot do better
with inequalities defined in the space RX of problem variables, since all inequalities
of type (14.32) represent facets of the convex hull

Puxor = conv
{
(r, x) ∈ {0, 1}X | r = uxor(x)

}

of integer points that satisfy the constraint:

Lemma 14.27. The convex hull Puxor of the feasible solutions for the uxor con-
straint is full-dimensional if β ≥ 2.

Proof. The feasible solutions (r = 0, x = 0), (r = 1, xb = 1, xi = 0 for i 6= b),
b = 0, . . . , β − 1, and (r = 0, x0 = 1, x1 = 1, xb = 0 for b = 2, . . . , β − 1) define β + 2
affinely independent vectors in Rβ+1. Thus, the dimension of Puxor is dim(Puxor) =
β + 1.

Proposition 14.28. Each inequality (14.32) defines a facet of Puxor if β ≥ 2. The
bounds xb ≥ 0 and xb ≤ 1 define facets of Puxor for all b ∈ X if β ≥ 3.

Proof. Puxor is full-dimensional as shown in Lemma 14.27. Thus, it suffices for
each inequality to provide β+1 affinely independent solution vectors that fulfill the
inequality with equality.

Let k ∈
{
0, . . . , ⌊β

2
⌋
}

and S ⊆ X with |S| = 2k + 1. For β ≥ 2, the vectors

xb = (xb
i)i=0,...,β with xb

i =

{

1 if i ∈ S \ {b}

0 otherwise,

b = 0, . . . , β, are β + 1 affinely independent solutions of 0 = x0⊕ . . .⊕xβ that
fulfill inequality (14.32) for the given k and S with equality. For β ≥ 3, the vector
(0, . . . , 0), the vectors

xb = (xb
i)i=0,...,β with xb

i =

{

1 if i ∈ {1, b}

0 otherwise,

b = 2, . . . , β, and the vector (0, . . . , 0, 1, 1) are β + 1 affinely independent solutions
of 0 = x0⊕ . . .⊕xβ that fulfill the lower bound x0 ≥ 0 with equality. For β ≥ 3,
the upper bound x0 ≤ 1 is fulfilled with equality by the β + 1 affine independent
solution vectors

xb = (xb
i)i=0,...,β with xb

i =

{

1 if i ∈ {0, b}

0 otherwise,

b = 1, . . . , β and (1, 1, 1, 1, 0, . . . , 0). If β ≥ 3, the other bounds are facets for
analogous reasons.

Corollary 14.29. The number of facets of the convex hull Puxor of feasible solutions
of the uxor constraint is exponential in the number of variables.
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Algorithm 14.19 Unary Xor Domain Propagation

Input : Unary xor constraint r = uxor(x) on single-bit register r and multi-
bit register x of width β with current local bit bounds l̃r ≤ r ≤ ũr and
l̃xb
≤ xb ≤ ũxb

, b = 0, . . . , β − 1.

Output : Tightened local bounds for bits r and xb.

1. If all variables except one are fixed, deduce the corresponding value for the
remaining variable.

In order to avoid the exponential blow-up of the LP relaxation, we use sys-
tem (14.32) only if β = 2. Otherwise, we introduce an auxiliary integer variable
q ∈

{
0, . . . , ⌈β

2
⌉
}

and state by the single equation

r + x0 + . . . + xβ−1 = 2q (14.33)

that the number of variables set to one in an uxor constraint must be even. The
disadvantage of equation (14.33) and the introduction of the auxiliary variable q is
that this LP relaxation is much weaker than the exponentially large system (14.32).
For example, in the case β = 2, the polyhedron defined by equation (14.33) and the
bounds of the variables has the vertices

(r, x0, x1, q) ∈
{
(0, 0, 0, 0), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1),

(0, 0, 1, 0.5), (0, 1, 0, 0.5), (1, 0, 0, 0.5)
}

with the last three being invalid solutions of the constraint. Without enforcing the
integrality of q, the LP relaxation 14.33 is almost useless. However, it may become
useful during the course of the solution process, if q starts to appear in cutting planes
or conflict constraints or if it is selected as branching variable.

14.12.2 Domain Propagation

As already mentioned above, we only apply a single type of propagation to uxor
constraints: if all but one of the variables are fixed, we can deduce the corresponding
value for the remaining variable. This procedure is depicted in Algorithm 14.19,
which is a generalization of the propagation Step 1a of Algorithm 14.15.

14.12.3 Presolving

The presolving of unary xor constraints is illustrated in Algorithm 14.20. It is
a generalization of Algorithm 14.16 to exclusive disjunctions with arbitrary many
addends. In Step 1a we simplify the constraint by removing variables fixed to zero
and pairs of equivalent or negated equivalent variables, exploiting the properties

a⊕ 0 = a, a⊕ a = 0, and a⊕¬ a = 1

of the ⊕ operator. The “⊕ 1” addends appended by rule 1(a)iii are treated like
variables which are fixed to one. Thus, if there exists another variable fixed to
one in the constraint or if rule 1(a)iii is applied multiple times, the “⊕ 1” addends
cancel each other by rule 1(a)ii. Thus, at most one fixed variable remains in the
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Algorithm 14.20 Unary Xor Presolving

1. For all active unary xor constraints r = uxor(x) represented as 0 =
x0⊕ . . .⊕xβ with xβ

⋆= r:

(a) Simplify the constraint as much as possible (i, j ∈ {0, . . . , β}):
i. If xi = 0, remove the variable from the constraint.

ii. If xi
⋆= xj for i 6= j, remove both variables from the constraint.

iii. If xi Y
⋆
= xj for i 6= j, remove both variables from the constraint and

append the addend “⊕ 1”.

Note that this step may reduce the number of involved bits β + 1.

(b) If the simplified constraint has the form 0 = x0⊕x1, aggregate x0 : ⋆= x1.

(c) If the simplified constraint has the form 0 = x0⊕ x1⊕ 1, aggregate x0 : ⋆=
1− x1.

2. For all pairs of active unary xor constraints r = uxor(x) and r′ = uxor(x′)
with βx ≥ βx′ :

Consider the sum of both constraints

0 = x0⊕ . . .⊕xβx
⊕x′0⊕ . . .⊕x

′
βx′

= ξ0⊕ . . .⊕ ξβx+βx′+1 (14.34)

and perform the simplifications of Step 1a. Let 0 = ψ0⊕ . . .⊕ψk−1⊕ c with
c ∈ {0, 1} be the simplified equation. Apply the following presolving opera-
tions:

(a) If k = 0 and c = 0, delete one of the constraints.

(b) If k = 0 and c = 1, report the infeasibility of the problem.

(c) If k = 1, fix ψ0 := c.

(d) If k = 2 and c = 0, aggregate ψ0 : ⋆= ψ1.

(e) If k = 2 and c = 1, aggregate ψ0 : ⋆= 1− ψ1.

(f) If k ≤ βx, replace the longer uxor constraint 0 = x0⊕ . . .⊕xβx
with

0 = ψ0⊕ . . .⊕ψk−1⊕ c.

constraint. Steps 1b and 1c check whether there are only two unfixed variables left
in the constraint and aggregate them accordingly.

Step 2 compares all pairs of uxor constraints. We add up the two equations
0 = x0⊕ . . .⊕ xβx−1⊕ r and 0 = x′0⊕ . . .⊕x

′
βx′−1⊕ r

′ and simplify the result as in
Step 1a. If at most two variables and a constant addend are left in the simplified
equation, we can perform the presolving operations depicted in Steps 2a to 2e. If the
simplified sum of the constraints has fewer variables than one of the two constraints,
the sum can replace the longer constraint in Step 2f. This may trigger additional
presolving reductions in subsequent presolving rounds. The replacement of Step 2f
is valid due to the following observation:

Observation 14.30. Given two xor terms s(x) = xs1
⊕ . . .⊕ xsm

and t(x) =
xt1 ⊕ . . .⊕ xtm

, it follows

s(x) = 0 ∧ t(x) = 0 ⇔ s(x)⊕ t(x) = 0 ∧ t(x) = 0.

Proof. If s(x) = 0 and t(x) = 0 it follows s(x)⊕ t(x) = 0⊕ 0 = 0. On the other
hand, if s(x)⊕ t(x) = 0 and t(x) = 0 if follows s(x) = s(x)⊕ 0 = s(x)⊕ t(x) = 0.
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14.13 Equality

The equality operator

eq : [β]× [β]→ [1], (x, y) 7→ r = eq(x, y)

with
r = eq(x, y) ⇔ r ↔ (x = y)

provides a very important link from the data path to the control logic of the circuit.
Often, x and y are results of some arithmetic computations, and the behavior of the
control logic depends on whether the two results are equal or not.

Many property checking problems are modeled like Example 13.2, where the
output of a copy of the circuit with different input assignments is compared to the
output of the original circuit by an equality constraint. Other common properties
compare the circuit with a reference implementation and check whether the two
outputs are always equal. In both cases, the property states that equality of the
outputs must hold. This means, that in the corresponding CIP model which includes
the negated property, the resultant of the equality constraint is fixed to zero, and
we search for a counter-example where the outputs are unequal. Unfortunately, the
domain propagation behavior of eq constraints is much worse for r = 0 than for r =
1, see Section 14.13.2. The same holds for presolving as discussed in Section 14.13.3.
If the resultant is fixed to r = 1, we can apply pairwise aggregation of the bits in
the two operands and delete the constraint from the model. For r = 0, we can only
conclude that x Y

⋆
= y, which is a very weak information.

The LP relaxation is defined on word level and contains a number of auxiliary
variables. Additionally, two “big-M” coefficients are included with values up to 2W ,
with W = 16 being the width of the words.

14.13.1 LP Relaxation

We use an LP relaxation of the constraint r = eq(x, y) on the word level which uses
four auxiliary variables sw, tw ∈ Z≥0, and pw, qw ∈ {0, 1} per word:

xw − yw = sw − tw for all w = 0, . . . , ω − 1 (14.35)

sw ≤ (uxw − lyw ) · pw for all w = 0, . . . , ω − 1 (14.36)

tw ≤ (uyw − lxw ) · qw for all w = 0, . . . , ω − 1 (14.37)

pw − sw ≤ 0 for all w = 0, . . . , ω − 1 (14.38)

qw − tw ≤ 0 for all w = 0, . . . , ω − 1 (14.39)

r + pw + qw ≤ 1 for all w = 0, . . . , ω − 1 (14.40)

r +
ω−1∑

w=0

(pw + qw) ≥ 1 (14.41)

If ω = 1, we can replace (14.40) and (14.41) by the equation r + p0 + q0 = 1.
Equation (14.35) splits the difference xw − yw into the positive part sw and

the negative part tw. The binary variable pw should be one if and only if sw > 0
which means xw > yw. The binary variable qw should be one if and only if tw >
0 which means xw < yw. Thus, the variables pw and qw reflect the sign of the
difference xw − yw. These relations are ensured by inequalities (14.36) to (14.39).
Inequality (14.36) models the implication pw = 0 → sw = 0. Inequality (14.37)
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ensures qw = 0 → tw = 0. Both inequalities are redundant for pw = 1 or qw = 1,
respectively. Inequalities (14.38) and (14.39) model pw = 1→ sw ≥ 1 and qw = 1→
tw ≥ 1. The last inequality (14.40) introduced for all words w ensures that at most
one of sw and tw can be positive, and if r = 1 both have to be zero, which means
that xw = yw. Finally, the single inequality (14.41) reflects the opposite implication
(∀w : xw = yw)→ r = 1.

14.13.2 Domain Propagation

As already noted in the introduction of this section, the domain propagation of the
equality constraint is very unbalanced comparing the cases that r is fixed to zero
or one. In the case r = 1, we can immediately conclude that each pair of bits xb

and yb in the operators must have the same value, i.e., xb = yb. If one of the bits is
fixed, we can deduce the corresponding value for the other bit. In the case r = 0,
however, we can conclude almost nothing. Only if for all pairs except one the bits
have the same value and one variable of the remaining pair is already fixed, we can
conclude that the other variable must take the opposite value in order to enforce the
inequality of the two registers.

In the other direction, we can conclude r = 0 immediately after a bit pair with
opposite values is detected. The deduction of r = 1 can only be carried out if all
operand bits are fixed to pairwise equal values.

Algorithm 14.21 illustrates this procedure. Step 1a implements the implication
r = 1 → ∀b : xb = yb, while Step 1b propagates the implication in the opposite
direction (∃b : xb 6= yb)→ r = 0. Steps 2 and 3 apply the very weak deduction rules
(∀b : xb = yb)→ r = 1 and r = 0→ ∃b : xb 6= yb, respectively.

The auxiliary variables are propagated in Steps 4 to 6. If the resultant is fixed
to r = 1, we can fix all sign variables pw and qw to zero in Step 4a. If one of
the sign variables is fixed for an individual word w, we can apply the corresponding
deductions in Step 4b. Propagating the bounds on tw = yw−xw means to iteratively
tighten the bounds of the variables by

l̃yw − ũxw ≤ tw ≤ ũyw − l̃xw

l̃yw − ũtw ≤ xw ≤ ũyw − l̃tw

l̃tw + l̃xw ≤ yw ≤ ũtw + ũxw

as long as no more bounds can be tightened or an infeasibility is detected. If we
know that one of the variables sw or tw is either zero or non-zero, we can draw
the appropriate conclusions on the sign variables in Step 4c. Note that afterwards
additional deductions are performed in the next iteration in Step 4b. From the lower
and upper bounds of the word variables xw and yw, we can also deduce fixings of
pw and qw as shown in Step 4d. We could already tighten the lower bounds of sw

and tw, but this will automatically happen in Step 4b of the next iteration of the
domain propagation loop. The upper bounds of sw and tw, however, are tightened
in Step 4e.

If the sign variables pw and qw are zero for all words, we can deduce r = 1.
Note that this deduction does not automatically follow from rules 4b and 2, because
although we already know that sw = tw = 0 in Step 4b, we usually cannot fix the
bounds of xw and yw to a specific value which is necessary to deduce fixings of the
bit variables in the domain propagation Algorithm 14.1 of the bit/word partitioning
constraints. Finally in Step 6, if the sign variables pw and qw are zero for all words
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Algorithm 14.21 Equality Domain Propagation

Input : Equality constraint r = eq(x, y) on single-bit register r and multi-bit reg-
isters x and y of width β with current local bit bounds l̃r ≤ r ≤ ũr,
l̃xb
≤ xb ≤ ũxb

, and l̃yb
≤ yb ≤ ũyb

, b = 0, . . . , β − 1; current local bounds

on auxiliary variables l̃sw ≤ sw ≤ ũsw , l̃tw ≤ tw ≤ ũtw , l̃pw ≤ pw ≤ ũpw ,

and l̃qw ≤ qw ≤ ũqw , w = 0, . . . , ω − 1.

Output : Tightened local bounds for bits r, xb, yb, and auxiliary variables sw, tw,
pw, and qw.

1. For all b = 0, . . . , β − 1:

(a) If l̃r = 1 and ũxb
= 0, deduce y = 0.

If l̃r = 1 and l̃xb
= 1, deduce y = 1.

If l̃r = 1 and ũyb
= 0, deduce x = 0.

If l̃r = 1 and l̃yb
= 1, deduce x = 1.

(b) If ũxb
= 0 and l̃yb

= 1, deduce r = 0.

If l̃xb
= 1 and ũyb

= 0, deduce r = 0.

2. If for all bits b ∈ {0, . . . , β− 1} we have ũxb
= ũyb

= 0 or l̃xb
= l̃yb

= 1, deduce
r = 1.

3. If for all bits b ∈ {0, . . . , β − 1} \ {k} we have ũxb
= ũyb

= 0 or l̃xb
= l̃yb

= 1,
and if ũr = 0, and

(a) if l̃xk
= 1, deduce yk = 0,

(b) if ũxk
= 0, deduce yk = 1,

(c) if l̃yk
= 1, deduce xk = 0,

(d) if ũyk
= 0, deduce xk = 1.

4. For all w = 0, . . . , ω − 1:

(a) If l̃r = 1, deduce pw = 0 and qw = 0.

(b) If l̃pw = 1, deduce r = 0, qw = 0, and sw ≥ 1.

If l̃qw = 1, deduce r = 0, pw = 0, and tw ≥ 1.
If ũpw = 0, deduce sw = 0 and propagate bounds on tw = yw − xw.
If ũqw = 0, deduce tw = 0 and propagate bounds on sw = xw − yw.

(c) If l̃sw ≥ 1, deduce pw = 1.
If l̃tw ≥ 1, deduce qw = 1.
If ũsw = 0, deduce pw = 0.
If ũtw = 0, deduce qw = 0.

(d) If l̃xw > ũyw , deduce pw = 1.

If l̃xw ≥ ũyw , deduce qw = 0.

If ũxw < l̃yw , deduce qw = 1.

If ũxw ≤ l̃yw , deduce pw = 0.

(e) Tighten bounds sw ≤ ũxw − l̃yw and tw ≤ ũyw − l̃xw .

5. If ũpw = ũqw = 0 for all w ∈ {0, . . . , ω − 1}, deduce r = 1.

6. If ũpw = ũqw = 0 for all w ∈ {0, . . . , ω − 1} \ {k} and ũr = 0, and

(a) if ũpk = 0, deduce qk = 1,

(b) if ũqk = 0, deduce pk = 1.



244 Operators in Detail

except word k, but the resultant is fixed to r = 0, we can propagate the equation
pk + qk = 1, since one of the two variables must be non-zero.

14.13.3 Presolving

The presolving of equality constraints suffers from the same limitations as the domain
propagation. If the resultant r is fixed to one, we can aggregate all pairs of bits, but
if the resultant is fixed to zero, we usually cannot apply any problem reductions.

Algorithm 14.22 shows the presolving steps that are performed on equality con-
straints. If the resultant bit is one, we can aggregate the bits of the operands
accordingly in Step 1b. Conversely, if the operands are equivalent, the resultant is
fixed to one in Step 1c. In both cases the equality constraint becomes redundant
and can be deleted.

In the opposite situation of r = 0, we can conclude that the operands cannot be
equal. Therefore, we add in Step 1d each operand to the list of unequal registers
of the other operand, see Section 14.1.4. On the other hand, if we know that the
operand registers cannot be equal because they appear in each other’s list of unequal
registers, we can fix r = 0 in Step 1e. Note that in both cases the constraint
cannot be deleted, since the inequality x Y

⋆
= y of registers is only an information

stored in the register data structures. The inequality is not enforced automatically
during the solving process. In particular, the constraint itself may have detected the
inequality and has to be kept active in order to enforce the inequality. In contrast, the
equivalence of registers means that the bits are pairwise aggregated in the variable
aggregation graph of SCIP, see Section 3.3.4. Thus, they are represented in all
other constraints by a unique representative, and the deletion of the constraint in
Steps 1b and 1c is valid, since the whole information of the constraint is captured
by the aggregations.

Step 1f is a special case of Step 1e where the inequality of the operands is proven
by a pair of bits that are negated equivalent, i.e., for which the equivalence xb

⋆= 1−yb

is stored in the variable aggregation tree. In this case, we can delete the constraint
in addition to fix r := 0.

Step 1g is similar to Step 3 of the domain propagation Algorithm 14.21. If there
is only one bit pair k for which equivalence was not detected, and if one of the
remaining three variables r, xk, and yk is fixed, we can aggregate the other two
variables accordingly. Of course, we do not need to treat the fixing r = 1, because
this is already captured by Step 1b.

Step 1h corresponds to Step 6 of the domain propagation Algorithm 14.21. If
there is only one word k for which the sign variables pw and qw are not fixed to
zero, two of the three variables r, pk, and qk can be aggregated, if the third variable
is fixed to zero. Note that we cannot delete the constraint, since the link of the
auxiliary variables pk and qk to the external variables xw and yw has still to be
enforced.

For each fixed operand bit, we can add an implication to the implication graph
of SCIP in Step 1i which states that if the other operand’s bit takes the opposite
value, the resultant must be zero.

Pairs of equality constraints are processed in Step 2. If each pair of bits {x′b′ , y
′
b′}

of constraint r′ = eq(x′, y′) appears also as bit pair or as negated bit pair in con-
straint r = eq(x, y), the equality of x and y implies the equality of x′ and y′.
Therefore, we can in this case derive the implication r = 1 → r′ = 1 in Step 2a.
If this is detected with interchanged roles of the constraints, the corresponding im-
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Algorithm 14.22 Equality Presolving

1. For all active equality constraints r = eq(x, y):

(a) Apply domain propagation Algorithm 14.21 on the global bounds.

(b) If r = 1, aggregate x : ⋆= y and delete the constraint.

(c) If x ⋆= y, fix r := 1 and delete the constraint.

(d) If r = 0, deduce x Y
⋆
= y.

(e) If x Y
⋆
= y, fix r := 0.

(f) If for any bit b ∈ {0, . . . , β− 1} we have xb Y
⋆
= yb, fix r := 0 and delete the

constraint.

(g) If for all bits b ∈ {0, . . . , β − 1} \ {k} we have xb
⋆= yb, and

i. if r = 0, aggregate xk : ⋆= 1− yk and delete the constraint,
ii. if xk = 0, aggregate r : ⋆= 1− yk and delete the constraint,
iii. if xk = 1, aggregate r : ⋆= yk and delete the constraint,
iv. if yk = 0, aggregate r : ⋆= 1− xk and delete the constraint,
v. if yk = 1, aggregate r : ⋆= xk and delete the constraint.

(h) If for all words w ∈ {0, . . . , ω − 1} \ {k} we have pw = qw = 0, and
i. if r = 0, aggregate pk : ⋆= 1− qk,

ii. if pk = 0, aggregate r : ⋆= 1− qk,
iii. if qk = 0, aggregate r : ⋆= 1− pk.

(i) For all b = 0, . . . , β − 1:
i. If xb = 0, add implication yb = 1→ r = 0 to the implication graph.

ii. If xb = 1, add implication yb = 0→ r = 0 to the implication graph.
iii. If yb = 0, add implication xb = 1→ r = 0 to the implication graph.
iv. If yb = 1, add implication xb = 0→ r = 0 to the implication graph.

2. For all pairs of active equality constraints r = eq(x, y) and r′ = eq(x′, y′)
with βx ≥ βx′ :

(a) If for all b′ ∈ {0, . . . , βx′ − 1} there exists b ∈ {0, . . . , βx − 1} such that
i. xb

⋆= x′b′ and yb
⋆= y′b′ , or

ii. xb
⋆= y′b′ and yb

⋆= x′b′ , or

iii. xb Y
⋆
= x′b′ and yb Y

⋆
= y′b′ , or

iv. xb Y
⋆
= y′b′ and yb Y

⋆
= x′b′ ,

add the implication r = 1→ r′ = 1 to the implication graph of SCIP.

(b) If for all b ∈ {0, . . . , βx− 1} there exists b′ ∈ {0, . . . , βx′ − 1} such that at
least one of 2(a)i to 2(a)iv holds, add the implication r′ = 1 → r = 1 to
the implication graph of SCIP.

(c) If both Steps 2a and 2b were successfully applied, aggregate r : ⋆= r′ and
delete the constraint r = eq(x, y).

(d) If x ⋆= x′ and r Y
⋆
= r′, deduce y Y

⋆
= y′.

If x ⋆= y′ and r Y
⋆
= r′, deduce y Y

⋆
= x′.

If y ⋆= x′ and r Y
⋆
= r′, deduce x Y

⋆
= y′.

If y ⋆= y′ and r Y
⋆
= r′, deduce x Y

⋆
= x′.

(e) If x ⋆= x′ and y Y
⋆
= y′, add r = 1→ r′ = 0 to the implication graph.

If x ⋆= y′ and x Y
⋆
= y′, add r = 1→ r′ = 0 to the implication graph.

If x Y
⋆
= x′ and y ⋆= y′, add r = 1→ r′ = 0 to the implication graph.

If x Y
⋆
= y′ and y ⋆= x′, add r = 1→ r′ = 0 to the implication graph.
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plication is added to the implication graph of SCIP in Step 2b. Having detected
both implications for a pair of constraints means that the resultants are equivalent.
Consequently, one of the constraints can be deleted in Step 2c.

Steps 2d and 2e exploit our knowledge about the inequality of registers. If one
of the operand in the first constraint is equivalent to an operand of the second
constraint, but the resultants are negated equivalent, the remaining operand pair
must be unequal, which is detected in Step 2d. Conversely, if one pair of operands
is equivalent but the other pair of operands is unequal, we can conclude in Step 2e
that at least one of the resultants must be zero.

14.14 Less-Than

Like the equality constraint, the less-than operator

lt : [β]× [β]→ [1], (x, y) 7→ r = lt(x, y)

defined by

r = lt(x, y) ⇔ r ↔ (x < y)

provides a link from the data path to the control logic of the circuit. By negating the
resultant and exchanging the operands, one can also model the other three inequality
operands:

not(r) = lt(y, x) ⇔ r ↔ (x ≤ y)

r = lt(y, x) ⇔ r ↔ (x > y)

not(r) = lt(x, y) ⇔ r ↔ (x ≥ y)

Although the LP relaxation of lt constraints is very similar to the relaxation of
eq constraints, the domain propagation behavior of the less-than operator is even
worse than the one of the equality operator. The propagation performance of a
fixed resultant value is symmetric in lt constraints: in both cases, we usually can
not deduce anything. The same holds for presolving. Due to the transitivity of the
< operator, however, we have additional possibilities to discover inequality relations
between registers in the pairwise comparison of lt constraints.

14.14.1 LP Relaxation

The LP relaxation for less-than constraints r = lt(x, y) differs only slightly from
the relaxation of eq constraints. It is also defined on the word level and uses four
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auxiliary variables sw, tw ∈ Z≥0, and pw, qw ∈ {0, 1} per word:

xw − yw = sw − tw for all w = 0, . . . , ω − 1 (14.42)

sw ≤ (uxw − lyw ) · pw for all w = 0, . . . , ω − 1 (14.43)

tw ≤ (uyw − lxw ) · qw for all w = 0, . . . , ω − 1 (14.44)

pw − sw ≤ 0 for all w = 1, . . . , ω − 1 (14.45)

qw − tw ≤ 0 for all w = 0, . . . , ω − 1 (14.46)

pw + qw ≤ 1 for all w = 1, . . . , ω − 1 (14.47)

p0 + q0 = 1 (14.48)

r + pw −
ω−1∑

k=w+1

qk ≤ 1 for all w = 0, . . . , ω − 1 (14.49)

−r + qw −
ω−1∑

k=w+1

pk ≤ 0 for all w = 0, . . . , ω − 1 (14.50)

As before, constraints (14.42) to (14.47) split the difference xw−yw into the positive
part sw and the negative part tw with pw = 1 if and only if xw > yw and qw = 1 if
and only if xw < yw (with a slight deviation for the least significant word w = 0, see
below). As opposed to the equality constraint, the position of the operand words
play an important role: a less significant word can only influence the resultant, if
all more significant words of x and y are pairwise equal. Therefore, the resultant r
is not necessarily affected by all words and does not appear in inequality (14.47).
Instead, the significance of the words and their relation to the resultant is captured
by inequalities (14.49) and (14.50). For the most significant word w = ω − 1, the
sums are empty and the inequalities are reduced to

r + pω−1 ≤ 1 and − r + qω−1 ≤ 0,

which model the valid implications pω−1 = 1 → r = 0 and qω−1 = 1 → r = 1,
respectively. Only if pω−1 = qω−1 = 0, i.e., xω−1 = yω−1, the value of the resultant
is determined by the lower significant words. Thus, we had to include the sums into
inequalities (14.49) and (14.50) to render them redundant whenever the resultant
is already determined on higher significant words. Altogether, inequality (14.49)
represents the implication

(∀k > w : qk = 0) ∧ pw = 1→ r = 0,

and inequality (14.50) models

(∀k > w : pk = 0) ∧ qw = 1→ r = 1

for words w = 0, . . . , ω − 1.

The least significant word w = 0 plays a slightly different role than the other
words. The equality x0 = y0 is, with respect to the value of the resultant, equivalent
to x0 > y0: in both cases the resultant is zero if all more significant words are
pairwise equal. Therefore, we define p0 to be one if and only if x0 ≥ y0, in contrast to
xw > yw for the other words. This turns inequality (14.47) into the equation (14.48)
and makes inequality (14.45) invalid for word w = 0. Of course, we can immediately
aggregate p0 : ⋆= 1− q0 and replace the occurrences of p0 accordingly.
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14.14.2 Domain Propagation

The domain propagation for less-than constraints is depicted in Algorithm 14.23.
Steps 1 and 2 apply domain propagation on the bits of the operand registers x and
y. We iterate over the bits from most significant to least significant bit, since less
significant bits might be irrelevant if the value of the resultant is already determined
by the more significant bits.

If we know that in the current local bounds xb < yb holds for a bit b and if
xj ≤ yj for all higher significant bits j > b, the fixings at bit b prove that x < y,
and we can deduce r = 1 in Step 1a. Conversely, if for a bit b we have xb > yb and
xj ≥ yj for all j > b, it clearly follows x > y and thus r = 0, which is deduced in
Step 1b.

Steps 1c and 1d apply this reasoning in the other way. If we already know that
r = 1 but there is a bit b with xb > yb and we have xj ≥ yj for all more significant
bits j > b except for a single bit k, we can conclude in Step 1c that the inequality
x < y must hold due to bit k. Thus, it follows xk < yk which means xk = 0 and
yk = 1. On the other hand, if we know that r = 0 but xb < yb for a bit b with
xj ≤ yj for all j > b except for bit k, we can deduce xk > yk, i.e., xk = 1 and yk = 0
in Step 1d.

If r = 1 but for the highest significant bits j ≥ b we have xj ≥ yj , it must be
xj = yj for all j ≥ b. This deduction is iteratively applied at Step 1e while the bits
are scanned from b = β− 1 down to b = 0, such that we only need to fix the current
bits xb and yb. Conversely, if r = 0 but xj ≤ yj for all j ≥ b, we can conclude
xj = yj for all j ≥ b in Step 1f.

If we detected during the loop of Step 1 that xb ≥ yb for all bits, we have x ≥ y
and can conclude r = 0 in Step 2.

Steps 3 and 4 propagate the auxiliary variables for the operand words. Again,
we iterate from most significant to least significant word. Steps 3a to 3f are very
similar to the bit level propagations of Step 1. If for a word w we have qw = 1 and
pj = 0 for all j > w, we know that xw < yw and xj ≤ yj for all j > w. It follows
x < y and thus r = 1, which is deduced in Step 3a. Conversely, if pw = 1 and qj = 0
for all j > w, we have x > y (or x ≥ y if w = 0) and we can conclude r = 0 in
Step 3b. If we know that r = 1 but pw = 1 and qj = 0 for all words j > w except
word k, it must be qk = 1, which is deduced in Step 3c. On the other hand, if r = 0
but qw = 1 and pj = 0 for all words j > w except word k, we can conclude pk = 1
in Step 3d. If r = 1 and qj = 0 for all j ≥ w, it must also be pj = 0 for all j ≥ w.
This deduction is performed successively in Step 3e. Step 3f applies the opposite
propagation: if r = 0 and pj = 0 for all j ≥ w, it follows qj = 0 for all j ≥ w.

Steps 3g to 3j apply the same reasoning as Steps 4b to 4e of the domain prop-
agation Algorithm 14.21 for equality constraints, except that the different meaning
of p0 must be regarded. Finally, if in the loop of Step 3 we detected qw = 0 for all
words w, we can conclude r = 0 in Step 4.

14.14.3 Presolving

The presolving Algorithm 14.24 for less-than constraints does not consist of much
more than to call the domain propagation on the global bounds in Step 1a. However,
if a propagation on the external variables was applied that completely determined
the status of the constraint, we can delete the constraint from the model. If the
operands are equivalent, we can clearly deduce r = 0 in Step 1b and delete the
constraint. If on the other hand, the resultant is fixed to r = 1 in Step 1c, the
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Algorithm 14.23 Less-Than Domain Propagation

Input : Less-than constraint r = lt(x, y) on single-bit register r and multi-bit
registers x and y of width β with current local bit bounds l̃r ≤ r ≤ ũr,
l̃xb
≤ xb ≤ ũxb

, and l̃yb
≤ yb ≤ ũyb

, b = 0, . . . , β − 1; current local bounds

on auxiliary variables l̃sw ≤ sw ≤ ũsw , l̃tw ≤ tw ≤ ũtw , l̃pw ≤ pw ≤ ũpw ,

and l̃qw ≤ qw ≤ ũqw , w = 0, . . . , ω − 1.

Output : Tightened local bounds for bits r, xb, yb, and auxiliary variables sw, tw,
pw, and qw.

1. For all b = β − 1, . . . , 0:

(a) If ũxb
= 0, l̃yb

= 1, and ũxj
≤ l̃yj

for all j > b, deduce r = 1.

(b) If l̃xb
= 1, ũyb

= 0, and l̃xj
≥ ũyj

for all j > b, deduce r = 0.

(c) If l̃r = 1, l̃xb
= 1, ũyb

= 0, and l̃xj
≥ ũyj

for all j ∈ {b+1, . . . , β−1}\{k},
deduce xk = 0 and yk = 1.

(d) If ũr = 0, ũxb
= 0, l̃yb

= 1, and ũxj
≤ l̃yj

for all j ∈ {b+1, . . . , β−1}\{k},
deduce xk = 1 and yk = 0.

(e) If l̃r = 1, and l̃xj
≥ ũyj

for all j ≥ b, deduce xb ≤ ũyb
and yb ≥ l̃xb

.

(f) If ũr = 0, and ũxj
≤ l̃yj

for all j ≥ b, deduce xb ≥ l̃yb
and yb ≤ ũxb

.

2. If l̃xb
≥ ũyb

for all b = 0, . . . , β − 1, deduce r = 0.

3. For all w = ω − 1, . . . , 0:

(a) If l̃qw = 1 and ũpj = 0 for all j > w, deduce r = 1.

(b) If l̃pw = 1 and ũqj = 0 for all j > w, deduce r = 0.

(c) If l̃r = 1, l̃pw = 1, and ũqj = 0 for all j ∈ {w+1, . . . , ω− 1} \ {k}, deduce
qk = 1.

(d) If l̃r = 0, l̃qw = 1, and ũpj = 0 for all j ∈ {w+1, . . . , ω− 1} \ {k}, deduce
pk = 1.

(e) If l̃r = 1, and ũqj = 0 for all j ≥ w, deduce pw = 0.

(f) If l̃r = 0, and ũpj = 0 for all j ≥ w, deduce qw = 0.

(g) If l̃pw = 1, deduce qw = 0, and if additionally w ≥ 1, deduce sw ≥ 1.

If l̃qw = 1, deduce pw = 0 and tw ≥ 1.
If ũpw = 0, deduce sw = 0 and propagate bounds on tw = yw − xw.
If ũqw = 0, deduce tw = 0 and propagate bounds on sw = xw − yw.

(h) If l̃sw ≥ 1, deduce pw = 1.
If l̃tw ≥ 1, deduce qw = 1.
If ũsw = 0 and w ≥ 1, deduce pw = 0.
If ũtw = 0, deduce qw = 0.

(i) If l̃xw > ũyw , deduce pw = 1.

If l̃xw ≥ ũyw , deduce qw = 0.

If ũxw < l̃yw , deduce qw = 1.

If ũxw ≤ l̃yw and w ≥ 1, deduce pw = 0.

(j) Tighten bounds sw ≤ ũxw − l̃yw and tw ≤ ũyw − l̃xw .

4. If ũqw = 0 for all w = 0, . . . , ω − 1, deduce r = 0.
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Algorithm 14.24 Less-Than Presolving

1. For all active less-than constraints r = lt(x, y):

(a) Apply domain propagation Algorithm 14.23 on the global bounds. If any
of rules 1a to 1d or rule 2 was applied, delete the constraint.

(b) If x ⋆= y, fix r := 0 and delete the constraint.

(c) If r = 1, deduce x Y
⋆
= y.

(d) For all b = β − 1, . . . , 0:
If xj

⋆= yj for all j ∈ {b+ 1, . . . , β − 1} \ {k}, and
i. if xb = 0, yb = 1, and xk = 1, aggregate r : ⋆= yk,

ii. if xb = 0, yb = 1, and yk = 0, aggregate r : ⋆= 1− xk.
iii. if xb = 1, yb = 0, and xk = 0, aggregate r : ⋆= yk,
iv. if xb = 1, yb = 0, and yk = 1, aggregate r : ⋆= 1− xk.

If any of the aggregations was performed, delete the constraint.

2. For all pairs of active less-than constraints r = lt(x, y) and r′ = lt(x′, y′):

(a) If x ⋆= x′ and y ⋆= y′, aggregate r : ⋆= r′ and delete constraint r = lt(x, y).

(b) If x ⋆= y′ and y ⋆= x′, add r = 1 → r′ = 0 to the implication graph of
SCIP.

(c) If x ⋆= x′ and r Y
⋆
= r′, deduce y Y

⋆
= y′.

If y ⋆= y′ and r Y
⋆
= r′, deduce x Y

⋆
= x′.

(d) If r = 1, r′ = 1, and y ⋆= x′, deduce x Y
⋆
= y′.

If r = 1, r′ = 1, and x ⋆= y′, deduce y Y
⋆
= x′.

If r = 1, r′ = 0, and y ⋆= y′, deduce x Y
⋆
= x′.

If r = 1, r′ = 0, and x ⋆= x′, deduce y Y
⋆
= y′.

If r = 0, r′ = 1, and x ⋆= x′, deduce y Y
⋆
= y′.

If r = 0, r′ = 1, and y ⋆= y′, deduce x Y
⋆
= x′.

operands cannot be equal and we can remember the inequality x Y
⋆
= y in our register

data structures, see Section 14.1.4. Note that in this case the constraint must not
be deleted, since the inequality of the operands has still to be enforced. Finally, if
in the most significant part of the operands there are only two bit pairs k > b of
non-equivalent bits, and if the lesser significant bits xb and yb are fixed to opposite
values, the value of the resultant would be determined if the more significant bits
xk and yk were equal. Thus, if one of the bits xk or yk is fixed, the resultant can be
aggregated to the other operand’s bit variable in Step 1d. Afterwards, the constraint
can be deleted.

The presolving procedure for pairs of less-than constraints in Step 2 is also rather
weak. We can aggregate the two resultants in Step 2a if the operands are pairwise
equivalent in the same order. If they are pairwise equivalent but in opposite order,
i.e., x ⋆= y′ and y ⋆= x′, we can only conclude that at most one of the resultants can
be one. Thus, in Step 2b we add the corresponding implication to the implication
graph of SCIP. If only one of the operand pairs is equivalent but the resultant is
negated equivalent, the other pair of operands is detected to be unequal in Step 2c.
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Step 2d applies the transitivity law of the < and ≤ operators:

x < y
⋆
= x′ < y′ ⇒ x < y′ ⇒ x Y

⋆
= y′

x′ < y′
⋆
= x < y ⇒ x′ < y ⇒ y Y

⋆
= x′

x < y
⋆
= y′ ≤ x′ ⇒ x < x′ ⇒ x Y

⋆
= x′

y′ ≤ x′
⋆
= x < y ⇒ y′ < y ⇒ y Y

⋆
= y′

y ≤ x
⋆
= x′ < y′ ⇒ y < y′ ⇒ y Y

⋆
= y′

x′ < y′
⋆
= y ≤ x ⇒ x′ < x ⇒ x Y

⋆
= x′

Note that we cannot deduce any inequality relations if r = 0 and r′ = 0, since in
this case it is possible that all operands are equal.

14.15 If-Then-Else

The unary logic operators uand, uor, and uxor, and the comparison operators
eq and lt provide links from the data path to the control logic of the circuit. The
if-then-else operator

ite : [1]× [β]× [β]→ [β], (x, y, z) 7→ r = ite(x, y, z)

with

r = ite(x, y, z) ⇔ r =

{

y if x = 1

z if x = 0

addresses the reverse direction: the control logic bit x influences which part of
the data path (y or z) should be passed to the resultant r. One example for the
application of the ite operator is the “opcode” selection in an arithmetical logic unit
(ALU). For each supported operation, an internal variable stores the result of the
corresponding combination of the input registers. Afterwards, a case split consisting
of equality and if-then-else constraints selects the variable that should be passed
to the output register of the circuit. Thus, a very simple ALU which supports the
operations “+”, “−”, and “×” can look as illustrated in Figure 14.8.

If-then-else constraints have interesting domain propagation and presolving pos-
sibilities. They share an aspect with the equality constraints, namely that we can
exploit the implications x = 1 → ∀b : rb = yb and x = 0 → ∀b : rb = zb. On the
other hand, if we know yb = zb we can already conclude rb = yb without knowing
the value of x. As explained in Chapter 15.2, if-then-else constraints are the main
reason for the detection of irrelevant parts of the circuit.

14.15.1 LP Relaxation

The LP relaxation of if-then-else constraints is defined on word level. It consists of
four inequalities per word:

rw − yw ≤ (uzw − lyw ) · (1− x) for all w = 0, . . . , ω − 1 (14.51)

rw − yw ≥ (lzw − uyw ) · (1− x) for all w = 0, . . . , ω − 1 (14.52)

rw − zw ≤ (uyw − lzw) · x for all w = 0, . . . , ω − 1 (14.53)

rw − zw ≥ (lyw − uzw) · x for all w = 0, . . . , ω − 1 (14.54)
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Figure 14.8. Simple arithmetical logic unit. Different arithmetical operations combine the input
registers x and y to produce intermediate results si. One of these operations is selected by the
input register op. A case-switching network consisting of eq and ite constraints passes the result
of the selected operation to the output register r.
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In the case x = 1, inequalities (14.51) and (14.52) imply rw = yw, and inequal-
ities (14.53) and (14.54) are redundant. Conversely, in the case x = 0, inequal-
ities (14.53) and (14.54) force rw = zw and inequalities (14.51) and (14.52) are
redundant.

Lemma 14.31. The convex hull Pite = conv{(r, x, y, z) | x ∈ {0, 1}, r, y, z ∈ Z, ly ≤
y ≤ uy, lz ≤ z ≤ uz , r = ite(x, y, z)} of the feasible solutions for an ite constraint
is full-dimensional if ly < uy, lz < uz , ly < uz , and lz < uy.

Proof. The feasible solutions

(r, x, y, z) ∈
{
(lz, 0, ly , lz), (lz, 0, uy , lz), (uz, 0, ly , uz), (ly, 1, ly , lz), (uy, 1, uy , lz)

}

define five affinely independent vectors in R4. Thus, the dimension of Pite is
dim(Pite) = 4.

Proposition 14.32. Inequalities (14.51) to (14.54) define facets of Pite if ly < uy,
lz < uz , ly < uz , and lz < uy.

Proof. Pite is full-dimensional as shown in Lemma 14.31. Thus, it suffices for each
inequality to provide four affinely independent solution vectors that fulfill the in-
equality with equality. For inequality (14.51), the solutions

(r, x, y, z) ∈
{
(ly, 1, ly , lz), (ly, 1, ly , uz), (uy, 1, uy , lz), (uz, 0, ly , uz)

}

meet this criterion. The affinely independent solution vectors

(r, x, y, z) ∈
{
(ly, 1, ly , lz), (ly, 1, ly , uz), (uy, 1, uy , lz), (lz, 0, uy , lz)

}

fulfill inequality (14.52) with equality. Corresponding solution vectors for inequali-
ties (14.53) and (14.54) can be constructed analogously.

14.15.2 Domain Propagation

The domain propagation for if-then-else constraint is depicted in Algorithm 14.25.
Step 1 compares the bits of the resultant and the operands y and z. If yb = zb,

we can deduce rb = yb independently from the value of x in Step 1a. If the selector
bit is fixed to x = 1, Step 1b propagates rb = yb. In the other case of x = 0, we
can propagate the equation rb = zb in Step 1c. Steps 1d and 1e apply the inverse
reasoning of Steps 1b and 1c: if for a bit b we find rb 6= yb, we can conclude x = 0,
and if rb 6= zb, we can deduce x = 1.

Step 2 applies exactly the same rules as Step 1 on word level. Independent from
x, the bounds of rw can be tightened in Step 2a. If x is fixed, we can propagate
rw = yw or rw = zw in Steps 1b and 1c, respectively. If the bounds of the words
make a certain selector value impossible, the selector bit x is fixed to the opposite
value in Steps 2d and 2e.

14.15.3 Presolving

Presolving for if-then-else constraints applies the same rules as domain propagation,
but can also find aggregations of variables. Additionally, we exploit our knowledge
about equality or inequality of registers. Like for other constraints, we compare
pairs of ite constraints to detect further simplifications.
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Algorithm 14.25 If-Then-Else Domain Propagation

Input : If-then-else constraint r = ite(x, y, z) on registers single-bit register x
and multi-bit registers r, y, and z of width β with current local bounds
l̃x ≤ x ≤ ũx and local bit bounds l̃rb

≤ rb ≤ ũrb
, l̃yb

≤ yb ≤ ũyb
, and

l̃zb
≤ zb ≤ ũzb

.

Output : Tightened local bounds for bits x, rb, yb, zb.

1. For all b = 0, . . . , β − 1:

(a) If l̃yb
= 1 and l̃zb

= 1, deduce rb = 1.
If ũyb

= 0 and ũzb
= 0, deduce rb = 0.

(b) If l̃x = 1 and ũyb
= 0, deduce rb = 0.

If l̃x = 1 and l̃yb
= 1, deduce rb = 1.

If l̃x = 1 and ũrb
= 0, deduce yb = 0.

If l̃x = 1 and l̃rb
= 1, deduce yb = 1.

(c) If ũx = 0 and ũzb
= 0, deduce rb = 0.

If ũx = 0 and l̃zb
= 1, deduce rb = 1.

If ũx = 0 and ũrb
= 0, deduce zb = 0.

If ũx = 0 and l̃rb
= 1, deduce zb = 1.

(d) If l̃rb
= 1 and ũyb

= 0, or if ũrb
= 0 and l̃yb

= 1, deduce x = 0.

(e) If l̃rb
= 1 and ũzb

= 0, or if ũrb
= 0 and l̃zb

= 1, deduce x = 1.

2. For all w = 0, . . . , ω − 1:

(a) Tighten bounds of rw: min{l̃yw , l̃zw} ≤ rw ≤ max{ũyw , ũzw}.

(b) If l̃x = 1, deduce l̃yw ≤ rw ≤ ũyw and l̃rw ≤ yw ≤ ũrw .

(c) If ũx = 0, deduce l̃zw ≤ rw ≤ ũzw and l̃rw ≤ zw ≤ ũrw .

(d) If l̃rw > ũyw , or if ũrw < l̃yw , deduce x = 0.

(e) If l̃rw > ũzw , or if ũrw < l̃zw , deduce x = 1.

Algorithm 14.26 shows the presolving rules applied to if-then-else constraints. If
the if-case y and the else-case z are equivalent, the selector bit x does not play a role
and we can aggregate r : ⋆= y in Step 1a. Afterwards, the constraint is redundant
and can be deleted. If we know that the resultant is unequal to one of the operands,
we can fix the selection bit accordingly in Step 1b. After the domain propagation
on the global bounds was applied in Step 1c, we compare pairs of bits (i, j) in the
resultant and the operands. If yi and yj are (negated) equivalent and zi and zj are
(negated) equivalent, the resultant bits at these positions must also be (negated)
equivalent, which is discovered in Step 1(d)i. If on the other hand the equivalences
of the operand bits and the resultant bits do not match, the selector variable can be
fixed to the opposite decision value in Steps 1(d)ii and 1(d)iii.

If the selector variable x is fixed after applying the previous presolving rules, we
can aggregate the resultant with the respective operand and delete the ite constraint
in Steps 1e and 1f. Step 1g introduces the derivable implications to the implication
graph of SCIP, see Section 3.3.5. If a bit in the resultant r is fixed, we can add
the corresponding implications for the values of x in Step 1(g)i. Note that the
valid implications yb = 1 → zb = 0 for rb = 0 and yb = 0 → zb = 1 for rb = 1
are automatically added through the transitive closure of the implication graph. If
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Algorithm 14.26 If-Then-Else Presolving

1. For all active if-then-else constraints r = ite(x, y, z):

(a) If y ⋆= z, aggregate r : ⋆= y and delete the constraint.

(b) If r Y
⋆
= z, fix x := 1.

If r Y
⋆
= y, fix x := 0.

(c) Apply domain propagation Algorithm 14.25 on the global bounds.

(d) For all i, j ∈ {0, . . . , β − 1} with i < j:
i. If yi

⋆= yj and zi
⋆= zj , aggregate ri : ⋆= rj .

If yi Y
⋆
= yj and zi Y

⋆
= zj , aggregate ri : ⋆= 1− rj .

ii. If yi
⋆= yj and ri Y

⋆
= rj , fix x := 0.

If yi Y
⋆
= yj and ri

⋆= rj , fix x := 0.

iii. If zi
⋆= zj and ri Y

⋆
= rj , fix x := 1.

If zi Y
⋆
= zj and ri

⋆= rj , fix x := 1.

(e) If x = 1, aggregate r : ⋆= y and delete the constraint.

(f) If x = 0, aggregate r : ⋆= z and delete the constraint.

(g) For all b = 0, . . . , β − 1, add the following implications to the implication
graph of SCIP:

i. If rb = 0, add implications x = 1→ yb = 0 and x = 0→ zb = 0.
If rb = 1, add implications x = 1→ yb = 1 and x = 0→ zb = 1.

ii. If yb = 0, add implications x = 1→ rb = 0 and zb = 0→ rb = 0.
If yb = 1, add implications x = 1→ rb = 1 and zb = 1→ rb = 1.

iii. If zb = 0, add implications x = 0→ rb = 0 and yb = 0→ rb = 0.
If zb = 1, add implications x = 0→ rb = 1 and yb = 1→ rb = 1.

2. For all pairs of active if-then-else constraints r = ite(x, y, z) and r′ =
eq(x′, y′, z′) with βr ≥ βr′ :

(a) For all b = 0, . . . , βr − 1:
i. If x ⋆= x′, yb

⋆= y′b, and zb
⋆= z′b, aggregate rb : ⋆= r′b.

If x ⋆= x′, yb Y
⋆
= y′b, and zb Y

⋆
= z′b, aggregate rb : ⋆= 1− r′b.

ii. If x Y
⋆
= x′, yb

⋆= z′b, and zb
⋆= y′b, aggregate rb : ⋆= r′b.

If x Y
⋆
= x′, yb Y

⋆
= z′b, and zb Y

⋆
= y′b, aggregate rb : ⋆= 1− r′b.

If all of the resultant bits were aggregated, delete r′ = eq(x′, y′, z′).

(b) If βr = βr′ and r Y
⋆
= r′, add the following implications to the implication

graph of SCIP:
i. If y ⋆= y′, add x = 1→ x′ = 0.

ii. If z ⋆= z′, add x = 0→ x′ = 1.
iii. If y ⋆= z′, add x = 1→ x′ = 1.
iv. If z ⋆= y′, add x = 0→ x′ = 0.

(c) If y ⋆= r′ and x = 1→ x′ = 1 holds, replace y by y′.
If y ⋆= r′ and x = 1→ x′ = 0 holds, replace y by z′.

(d) If z ⋆= r′ and x = 0→ x′ = 1 holds, replace z by y′.
If z ⋆= r′ and x = 0→ x′ = 0 holds, replace z by z′.

(e) If y′ ⋆= r and x′ = 1→ x = 1 holds, replace y′ by y.
If y′ ⋆= r and x′ = 1→ x = 0 holds, replace y′ by z.

(f) If z′ ⋆= r and x′ = 0→ x = 1 holds, replace z′ by y.
If z′ ⋆= r and x′ = 0→ x = 0 holds, replace z′ by z.
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one of the operand bits is fixed, similar implications can be added in Steps 1(g)ii
and 1(g)iii.

In the pairwise presolving Step 2 we can also look at the individual bits of the
two constraints in Step 2a. As usual, we define r′b = y′b = z′b = 0 if b ≥ βr′ .
Now if the two selector variables x and x′ are equivalent, the bits of the if-cases yb

and y′b are equivalent, and the bits of the else-cases zb and z′b are also equivalent,
the resultant bits rb and r′b must also be equivalent. If the operand bits are
pairwise negated equivalent, the resultant bits must also be negated equivalent.
Conversely, if the selector variables are negated equivalent and the operand bits
are (negated) equivalent with interchanged roles, the resultant bits must also be
(negated) equivalent.

If we know that the resultants have the same width but are unequal, the implica-
tions of Step 2b can be deduced: if an operand from the first constraint is equivalent
to an operand of the second constraint, the selector bits x and x′ cannot both select
this operand, since otherwise, the resultants would also be equivalent. Note that the
implications of Steps 2(b)i and 2(b)ii immediately fix the selector bits if x ⋆= x′, and

Steps 2(b)iii and 2(b)iv fix them if x Y
⋆
= x′. Due to Steps 1e and 1f, this would also

lead to the aggregation of the resultants and the deletion of the two constraints.
Steps 2c to 2f check for chainings of ite constraints. If the resultant r′ of one con-

straint r′ = ite(x′, y′, z′) appears as operand in another constraint r = ite(x, y, z),
and if there is a matching implication between the selection variables x and x′, we
can substitute the resultant r′ by the corresponding operand y′ or z′ in the sec-
ond constraint. Thereby, we avoid the unnecessary detour via r′ and the first ite
constraint. For example, if there are two constraints

r = ite(x, r′, z) and r′ = ite(x, y′, z′),

we can replace r′ by y′ in the first constraint which gives

r = ite(x, y′, z) and r′ = ite(x, y′, z′).

This substitution simplifies the structure of the function graph, see Section 13.2,
and offers additional potential for the irrelevance detection of Section 15.2. For
example, suppose r′ is not used in other constraints. Then we can delete the second
constraint from the problem because it is not relevant for the validity of the property.
If after the deletion of the constraint z′ does only appear as the resultant of a single
constraint, it can also be deleted from the problem instance for the same reason.
This can trigger a chain of problem reductions with the possibility to delete a whole
subtree from the function graph.

14.16 Zero Extension

With the zero extension operator

zeroext : [µ]→ [β], x 7→ r = zeroext(x)

a register x is copied into a (usually wider) register r with the excessive bits of r
fixed to zero. Although usually β > µ we define the constraint for general register
widths:

r = zeroext(x) ⇔ ∀b ∈ {0, . . . , β − 1} : rb =

{

xb if b < µ,

0 if b ≥ µ.
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Thereby it is possible with β < µ to extract a low-significant subword of a register.
Nevertheless, the zero extension operator can easily be implemented by performing
the corresponding aggregations rb : ⋆= xb for b < µ and fixings rb := 0 for b ≥ µ in
the presolving stage of SCIP. Afterwards, the constraint can be deleted from the
problem formulation.

14.17 Sign Extension

Like the zero extension, the sign extension operator

signext : [µ]→ [β], x 7→ r = signext(x)

copies a register x into a register r. But in this case, the excessive bits of r are all
equal to the most significant bit of x, thereby preserving the signed value in the two’s
complement representation. The constraint is defined for general register widths µ
and β as

r = signext(x) ⇔ ∀b ∈ {0, . . . , β − 1} : rb =

{

xb if b < µ,

xµ−1 if b ≥ µ.

Again, we can implement the operator by performing the corresponding aggregations
rb : ⋆= xb for b < µ and rb : ⋆= xµ−1 for b ≥ µ in the presolving stage of SCIP and
deleting the constraint afterwards.

14.18 Concatenation

Concatenation with the operator

concat : [β]× [µ]→ [β + µ], (x, y) 7→ r = concat(x, y)

means to form a single register bit string out of the two input registers by chaining up
their individual bits. The bits of the first input register x form the high-significant
part of the result, while the bits of the second input register y are used in the
low-significant part:

r = concat(x, y) ⇔ ∀b ∈ {0, . . . , β + µ− 1} : rb =

{

yb if b < µ,

xb−µ if b ≥ µ.

Like the other word extension operators, concatenation can be implemented by
performing the necessary presolving aggregations rb : ⋆= yb for b < µ and rb : ⋆= xb−µ

for b ≥ µ and deleting the constraint afterwards.

14.19 Shift Left

The shift left operation

shl : [β]× [µ]→ [β], (x, y) 7→ r = shl(x, y)
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param B := 64 ;
s e t B i t s := { 0 . . B−1 } ;
s e t DomY := { 0 . . B } ;

va r x [ B i t s ] b i n a r y ;
va r y i n t e g e r >= 0 <= B;
va r r [ B i t s ] b i n a r y ;

min imize ob j : 0∗ x [ 0 ] ;

subto s h l : f o r a l l <p , b> i n DomY∗ B i t s w i th b−p >= 0 :
v i f y == p then r [ b ] == x [ b−p ] end ;

subto s h l 0 : f o r a l l <p , b> i n DomY∗ B i t s w i th b−p < 0 :
v i f y == p then r [ b ] == 0 end ;

Figure 14.9. Zimpl model of the shl constraint.

performs a shifting of the bits of x by y positions to the left, which corresponds to
multiplying x by 2y. The resultant is defined as

r = shl(x, y) ⇔ ∀b ∈ {0, . . . , β − 1} : rb =

{

xb−y if b ≥ y,

0 if b < y.

As y appears in the subscript of the variable x in the definition of the shift left
constraint, the shl operator is related to the element constraint of constraint
programming (see, e.g., van Hentenryck [115], or Marriott and Stuckey [158]). How-
ever, domain propagation can be applied in a much more sophisticated way if the
shl constraint is treated as a whole instead of propagating each element constraint
rb = xb−y individually.

The role of y in the constraint is highly non-linear. Therefore, it is very hard
to come up with a reasonably small LP relaxation of the shift left constraint. The
canonical way of combining the relaxations for each of the involved element con-
straints yields around 1

2
β2 auxiliary variables and 3

2
β2 inequalities. Such a large

relaxation would noticeably increase the time to solve the LP relaxations at the
nodes of the branch-and-bound tree. Thus, we refrain from including a linear relax-
ation of the shl constraint at all.

14.19.1 LP Relaxation

In a first attempt to provide an LP relaxation for the shift left operand we model the
constraint in Zimpl, see Koch [133, 134]. Figure 14.9 shows a Zimpl implementation
of the shl constraint r = shl(x, y) with βr = B bits in the registers r and x. To
keep things simple, we assume that y is bounded by uy = βr. For all y ≥ βr we have
r = 0 anyway.

The two “subto” statements in the Zimpl model produce the linear inequali-
ties which define the LP relaxation of the shl constraint. Note that we use the
“vif” command to model a case distinction on the variable y. Zimpl automatically
translates the “vif” statement into a system of inequalities and auxiliary variables.

Table 14.2 shows the number of variables, inequalities, and non-zero coefficients
in the linear relaxation generated by Zimpl 2.04 with simple preprocessing being
activated through the “-O” option. It is obvious that this automatically generated
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width β 1 2 4 8 16 32 64 128 256

variables 13 35 109 377 1 393 5 345 20 929 82 817 329 473
inequalities 11 37 134 508 1 976 7 792 30 944 123 328 492 416
non-zeros 24 84 312 1 200 4 704 18 624 74 112 295 680 1 181 184

Table 14.2. Size of LP relaxation resulting from Zimpl model of Figure 14.9.

relaxation is way too large for being useful in our context. It has approximately 5β2

variables, 7β2 inequalities, and 18β2 non-zero coefficients.
Our second approach tries to exploit the special structure of the shl constraint

and uses a relaxation similar to the one of the element constraint proposed in
Milano et al. [164]. Again, we assume uy = β for the sake of simplicity.

β
∑

p=0

p · ψp = y (14.55)

β
∑

p=0

ψp = 1 (14.56)

b∑

p=0

πp
b−p = rb for all b = 0, . . . , β − 1 (14.57)

πp
b − xb ≤ 0 for all b, p = 0, . . . , β − 1 with b+ p < β (14.58)

πp
b − ψ

p ≤ 0 for all b, p = 0, . . . , β − 1 with b+ p < β (14.59)

−πp
b + xb + ψp ≤ 1 for all b, p = 0, . . . , β − 1 with b+ p < β (14.60)

Equations (14.55) and (14.56) splits the shift selection variable y into binary
variables ψp ∈ {0, 1} such that ψy = 1 and ψp = 0 for p 6= y. Equation (14.57)
states that the resultant bit rb is equal to

rb = xb · ψ
0 + . . . + x0 · ψ

b, (14.61)

with inequalities (14.58) to (14.60) providing the linear relaxation for the products
πp

b = xb · ψ
p with πp

b ∈ {0, 1} as already shown in Section 14.7.1. Because ψp = 1
if and only if y = p due to (14.55), at most one of the products appearing in
equation (14.61) can be non-zero. The equation reduces to rb = xb−y if b ≥ y and
rb = 0 if b < y, which corresponds to the definition of the shl constraint.

Although the above relaxation is more compact than the automatically generated
relaxation of Zimpl, it still includes 1

2
β2 + O(β) auxiliary variables, 3

2
β2 + O(β)

inequalities and equations, and 4β2 + O(β) non-zero coefficients. These are only
approximately 10% of the number of variables and 20% of the number of constraints
and non-zeros of the Zimpl relaxation, but the size of the relaxation remains quite
large, as depicted in Table 14.3. Note that this relaxation is considerably larger than

width β 1 2 4 8 16 32 64 128 256

variables 3 6 15 45 153 561 2 145 8 385 33 153
inequalities 6 13 36 118 426 1 618 6 306 24 898 98 946
non-zeros 13 32 94 314 1 138 4 322 16 834 66 434 263 938

Table 14.3. Size of LP relaxation given by constraints (14.55) to (14.60).
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Figure 14.10. Resultant bits fixed to one imply bounds for the shifting variable y.

the already large relaxation of the multiplication constraint, see Section 14.5.1. For
mult constraints, we can use nibbles of width L = 8 instead of single bits to define
the partial products. This reduces both the number of variables and the number of
constraints in the LP relaxation by a factor of 8 compared to the above relaxation
of the shl constraint.

Although we did not support this by computational studies, we suppose that
the benefit of adding system (14.55) to (14.60) does not justify the large increase in
the size of the LP relaxation and the corresponding deterioration of the LP solving
process. The relaxation of the shl constraint becomes even more complicated if
the shift selection variably y is not bounded by uy = β but may take larger values.
Therefore, we refrain from including a relaxation of shift left constraints into the LP
and rely solely on constraint programming techniques, i.e., domain propagation.

14.19.2 Domain Propagation

The domain propagation Algorithm 14.27 for shift left constraints performs a pattern
matching to check which values are potentially feasible for the shifting variable y.
Step 1 checks whether x = 0. In this case, we can also fix r = 0, independent from
the value of y, and do not need to apply further propagation. Otherwise, we proceed
with Step 2 which calculates the current local bounds of the register y by summing
up the bounds of the words yw, w = 0, . . . , ωy − 1. Note that in our implementation
we demand β < 231, which means that we can store all meaningful bound values of
y in a 32-bit integer.

The bounds of y can be tightened in Step 3 by inspecting the bits of x and r, see
Figure 14.10. If the resultant has a bit which is fixed to one at position p, and in
the subword of x up to position p the most significant bit which is not fixed to zero
is at position i, x must be shifted at least by p− i bits to the left to yield r. On the
other hand, if rq = 1 and j is the least significant position of x with a bit not fixed
to zero, x must be shifted at most by q − j bits to the left.

This simple bound tightening helps to shorten the loop of Step 5 where the
actual pattern matching takes place. First, we initialize the sets D of potential
values for the involved variables in Step 4 to be empty. Then we check for each
value p in the current domain of y whether it would lead to an inconsistency with
the current bounds of the bit variables. Condition 5a verifies whether the value is
representable with the current fixings of the bits yb. For example, if y0 = 0 in the
current subproblem, only even values p are possible. Condition 5b checks whether
the shifting would move a fixed bit xb−p = v to the slot of a resultant bit which is
fixed to the opposite value rb = 1− v. Such a situation rules out the shifting value
p, see Figure 14.11. Note that we define xi = 0 for all i < 0, since the shl operator
moves in zeros to the least significant bits of r. The value y = p is also invalid by
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Algorithm 14.27 Shift Left Domain Propagation

Input : Shift left constraint r = shl(x, y) on registers r and x of width βr = βx = β
with current local bit bounds l̃rb

≤ rb ≤ ũrb
and l̃xb

≤ xb ≤ ũxb
, and y

of width βy = µ with current local bit bounds l̃yb
≤ yb ≤ ũyb

and word

bounds l̃yw ≤ yw ≤ ũyw .

Output : Tightened local bounds for bits rb, xb, and yb, and words yw.

1. If ũxb
= 0 for all b = 0, . . . , β−1, deduce rb = 0 for all b and abort propagation.

2. Calculate bounds for the register y from the words’ bounds:

l̃y :=

ωy−1
∑

w=0

2wW l̃yw and ũy :=

ωy−1
∑

w=0

2wW ũyw .

3. Let br=1
min := min{b | l̃rb

= 1} and br=1
max := max{b | l̃rb

= 1}.

Let bx6=0
min := min{b | ũxb

= 1} and bx6=0
max := max{b | ũxb

= 1 and b ≤ br=1
max}.

Tighten l̃y := max
{
l̃y, b

r=1
max − b

x6=0
max

}
and ũy := min

{
ũy , b

r=1
min − b

x6=0
min

}
.

4. Initialize Dxb
:= ∅ and Drb

:= ∅ for all b = 0, . . . , β − 1, Dyb
:= ∅ for all

b = 0, . . . , µ− 1, and Dy := ∅.

5. For all p = l̃y, . . . , ũy :

Let p =
∑µ−1

b=0 2bpb be the bit decomposition of p. If the following holds:

(a) pb ∈ {l̃yb
, ũyb} for all b = 0, . . . , µ− 1,

(b) Db := {l̃rb
, ũrb
} ∩ {l̃xb−p

, ũxb−p
} 6= ∅ for all b = 0, . . . , β − 1, and

(c) there is no bit b ∈ {0, . . . , β − 1} with rb Y
⋆
= xb−p,

the shifting value y = p is valid. In this case, update

(a) Dy := Dy ∪ {p},

(b) Dyb
:= Dyb

∪ {pb} for all b = 0, . . . , µ− 1,

(c) Drb
:= Drb

∪ Db for all b = 0, . . . , β − 1,

(d) Dxb
:= Dxb

∪ Db+p for all b = 0, . . . , β − 1− p, and

(e) Dxb
:= {l̃xb

, ũxb
} for all b = β − p, . . . , β − 1.

6. Tighten word bounds of yw, w = 0, . . . , ωy − 1, corresponding to the register
bounds min{Dy} ≤ y ≤ max{Dy}.

7. For all b = 0, . . . , µ− 1: Tighten min{Dyb
} ≤ yb ≤ max{Dyb

}.
For all b = 0, . . . , β − 1: Tighten min{Drb

} ≤ rb ≤ max{Drb
}.

For all b = 0, . . . , β − 1: Tighten min{Dxb
} ≤ xb ≤ max{Dxb

}.
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Figure 14.11. Pattern matching to identify potential values of y.
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Figure 14.12. Fixing of shifting operand bits yb (top), resultant bits rb (middle), and first operand
bits xb (bottom).

Condition 5c if there exists a pair rb Y
⋆
= xb−p of negated equivalent bits. If all three

conditions are satisfied, the shifting value p is potentially feasible, and we extend the
sets of potential values for the involved variables accordingly. Bits xβ−p, . . . , xβ−1

do not need to be considered for the pattern matching, because they are “shifted
out” of the region covered by r. Therefore, if p is a valid match, these bits of x are
not affected by the bits of r, and their sets of potential values have to be set to their
current domains Dxb

:= {l̃xb
, ũxb
}.

After the pattern matching was performed, we inspect the resulting sets D of
potential values to tighten the bounds of the variables. In Step 6, we tighten the
bounds of y to the minimal and maximal feasible values for p, respectively. Since y
itself is not a CIP variable, we have to apply the bound changes to the words yw.
Note, however, that usually only the most significant word yωy−1 can be tightened.
Deductions on the bounds of a word w ∈ {0, . . . , ωy−2} can only be performed, if all
more significant words w+1, . . . , ωy − 1 are fixed. Fortunately, in most applications
y consists of only one word, since with the word size W = 16 a single word of y
suffices to treat registers x and r of up to 216 − 1 bits. Finally in Step 7, we fix
those bits yb, rb, xb, which only have a single element in their corresponding sets of
potential values, see Figure 14.12.

14.19.3 Presolving

The presolving for shift left constraints is depicted in Algorithm 14.28. Step 1a
detects the inequality of x and r, if the shifting operand is non-zero. Note that even
with y > 0, r could be equal to x if r = x = 0. Therefore, we have to explicitly
exclude this case. The same reasoning is applied the other way around in Step 1b.
If r and x are equivalent, the shifting operand y must be zero. This, however, is
only true if r = x 6= 0. If we know that r and x are unequal, i.e., r Y

⋆
= x, we can

deduce y ≥ 1 in Step 1c. Since y itself is not a CIP variable, we have to apply the
deduction on the words of y. This is only possible if y consists of only a single word.
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Algorithm 14.28 Shift Left Presolving

1. For all active shift left constraints r = shl(x, y):

(a) If yw > 0 for any word w ∈ {0, . . . , ωy − 1}, and xw > 0 or rw > 0 for

any w ∈ {0, . . . , ωx − 1}, deduce r Y
⋆
= x.

(b) If r ⋆= x and xw > 0 for any w ∈ {0, . . . , ωx − 1}, fix y := 0.

(c) If r Y
⋆
= x and ωy = 1, deduce y0 ≥ 1.

(d) Apply domain propagation Algorithm 14.27 on the global bounds.

(e) If ly = uy, aggregate rb : ⋆= xb−ly for all b = 0, . . . , βr − 1 using xi = 0 for
i < 0, and delete the constraint.

(f) For all b = 0, . . . , βr − 1:
i. Let pb

min = min{p | ly ≤ p ≤ uy and uxb−p
= 1} be the minimal and

pb
max = max{p | ly ≤ p ≤ uy and uxb−p

= 1} be the maximal shifting
value y for rb = 1.

ii. For all w = 0, . . . , ωy − 1: Add implications

rb = 1→ yw ≥

⌈

pb
min −

∑

i 6=w 2iWuyi

2wW

⌉

and

rb = 1→ yw ≤

⌊

pb
max −

∑

i 6=w 2iW lyi

2wW

⌋

to the implication graph of SCIP.
iii. If xi = 0 for all i < b, add implication xb = 0 → rb+ly = 0 to the

implication graph of SCIP.

2. For all pairs of active shift left constraints r = shl(x, y) and r′ = shl(x′, y′)
with βr ≥ βr′ :

(a) If x ⋆= x′ and y ⋆= y′, aggregate r[βr′ − 1, 0] : ⋆= r′ and delete constraint
r′ = shl(x′, y′).

(b) If βr = βr′ , x ⋆= x′, and r Y
⋆
= r′, deduce y Y

⋆
= y′.

If βr = βr′ , y ⋆= y′, and r Y
⋆
= r′, deduce x Y

⋆
= x′.

(c) If r ⋆= r′ and x ⋆= x′, and if rw ≥ 1 for any word w ∈ {0, . . . , ωr − 1},
aggregate y : ⋆= y′ and delete constraint r′ = shl(x′, y′).

Step 1d applies the domain propagation on the global bounds. If it turns out
that the shifting variable y is fixed, we can aggregate the resultant r and the first
operand x accordingly in Step 1e and delete the constraint afterwards.

Step 1f adds implications to the implication graph of SCIP which can be deduced
from the shl constraint. We regard the bounds ly ≤ y ≤ uy of the shifting register y
as calculated in Step 2 of Algorithm 14.27. If a resultant bit rb is set to one, the value
of the shifting variable y must be in the range pb

min ≤ y ≤ p
b
max, which is computed in

Step 1(f)i by similar reasoning as in Step 3 of Algorithm 14.27. Step 1(f)ii translates
these bounds on y into bounds on the individual words yw. In order to do this, we
have to assume that all other words i 6= w are set to their upper or lower bounds,
respectively, and divide the leftover value by the significance of the word.

The domain propagation already fixed r0 = . . . = rly−1 = 0. The next bit rly
is either equal to x0 or zero, depending on whether y = ly or y > ly. Thus, the



264 Operators in Detail

implication x0 = 0 → rly = 0 is valid. If all of the lower significant bits up to bit b
are zero in register x, we can extend this argument to the more significant bits xb

and rb+ly .
Step 2 compares pairs of shl constraints. Clearly, if the operands are equivalent

as required for Step 2a, we can aggregate the resultants on their overlapping part and
delete the constraint operating on the shorter registers. Applying this implication in
the inverse direction in Step 2b, we can conclude from the inequality of two equally
wide resultant registers and the equivalence of one pair of operands, that the other
operand pair must be unequal. If the resultants are equivalent, and if the first
operands are equivalent, we can aggregate y : ⋆= y′ in Step 2c. However, we have
to exclude r = r′ = 0. In this case, the shifting operands y and y′ could take any
values that “shift out” all bits of x ⋆= x′ which are set to one.

14.20 Shift Right

The shift right operation

shr : [β]× [µ]→ [β], (x, y) 7→ r = shr(x, y)

performs a shifting of the bits of x by y positions to the right. The resultant is
defined as

r = shr(x, y) ⇔ ∀b ∈ {0, . . . , β − 1} : rb =

{

xb+y if b+ y < β,

0 if b+ y ≥ β.

The shift right operator is a special case of the more general slice operator, which is
covered in the next section. Therefore, it suffices to replace a constraint r = shr(x, y)
by r = slice(x, y) in the presolving stage of SCIP.

14.21 Slicing

The slice operator

slice : [µ]× [ν]→ [β], (x, y) 7→ r = slice(x, y)

allows to access subwords of the operand x. The resultant is defined as

r = slice(x, y) ⇔ ∀b ∈ {0, . . . , β − 1} : rb =

{

xb+y if b+ y < µ,

0 if b+ y ≥ µ,

which means that r = x[y+ βr − 1, y]. For µ = β, the slice operator is equivalent to
the shift right operator, i.e., slice(x, y) = shr(x, y). Therefore, slice can be seen
as generalization of shr.

Consequently, slice constraints are very similar to shift left constraints. The LP
relaxation would be as involved as the one of the shift left operator. Therefore, we
also refrain from including a linear relaxation of slice in the LP. Like for the shl
constraint, the domain propagation of the slice constraint applies a pattern matching
algorithm to check which values for the slice start operand y are possible.
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param Bx := 64 ;
param Br := 16 ;
s e t Bi t sX := { 0 . . Bx−1 } ;
s e t Bi t sR := { 0 . . Br−1 } ;
s e t DomY := { 0 . . Bx } ;

va r x [ B i t sX ] b i n a r y ;
va r y i n t e g e r >= 0 <= Bx ;
va r r [ B i t sR ] b i n a r y ;

min imize ob j : 0∗ x [ 0 ] ;

subto s l i c e : f o r a l l <p , b> i n DomY∗Bit sR with b+p < Bx :
v i f y == p then r [ b ] == x [ b+p ] end ;

subto s l i c e 0 : f o r a l l <p , b> i n DomY∗Bit sR with b+p >= Bx :
v i f y == p then r [ b ] == 0 end ;

Figure 14.13. Zimpl model of the slice constraint.

14.21.1 LP Relaxation

Like for the shl constraint, we tried to generate an LP relaxation for the slice
operand by modeling the constraint r = slice(x, y) in Zimpl as shown in Fig-
ure 14.13 with βr = Br and βx = Bx. For βx = βr (i.e., for shr constraints)
this yields LP relaxations of the same size as the ones of the shl constraint, see
Table 14.2. We could also use a more compact model similar to the one of shl
constraints given by equations (14.55) to (14.60). But again, this would still be a
very large relaxation, such that we decided to not include it in the LP relaxation of
the property checking CIP.

14.21.2 Domain Propagation

Algorithm 14.29 depicts the domain propagation for slice constraints. It performs
a pattern matching to check which values are potentially feasible for the slice start
variable y. Besides the potentially different bit widths βr and βx, it only differs from
the domain propagation Algorithm 14.27 in Steps 3 and 5. Figure 14.14 illustrates
Step 3. If rp = 1 and the maximal position with a bit xb not fixed to zero is i, the
slice start variable y can be at most i− p, i.e., y ≤ i− p. If rq = 1 and the minimal
position not smaller than q with a bit xb not fixed to zero is j, we can conclude
y ≥ j − p. In Step 5 we define xb = 0 for b ≥ βx as usual. One update of the
sets D of potential values for the involved variables is illustrated in Figure 14.15.
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Figure 14.14. Resultant bits fixed to one imply bounds for the slice start variable y.
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Algorithm 14.29 Slice Domain Propagation

Input : Slice constraint r = slice(x, y) on registers r, x, and y with current local
bit bounds l̃rb

≤ rb ≤ ũrb
, l̃xb

≤ xb ≤ ũxb
, and l̃yb

≤ yb ≤ ũyb
, and current

local word bounds l̃yw ≤ yw ≤ ũyw .

Output : Tightened local bounds for bits rb, xb, and yb, and words yw.

1. If ũxb
= 0 for all b = 0, . . . , βx − 1, deduce rb = 0 for all b = 0, . . . , βr − 1 and

abort the propagation.

2. Calculate bounds for the register y from the words’ bounds:

l̃y :=

ωy−1
∑

w=0

2wW l̃yw and ũy :=

ωy−1
∑

w=0

2wW ũyw .

3. Let br=1
min := min{b | l̃rb

= 1} and br=1
max := max{b | l̃rb

= 1}.

Let bx6=0
min := min{b | ũxb

= 1 and b ≥ br=1
min} and bx6=0

max := max{b | ũxb
= 1}.

Tighten l̃y := max
{
l̃y, b

x6=0
min − b

r=1
min

}
and ũy := min

{
ũy, b

x6=0
max − b

r=1
max

}
.

4. Initialize Dxb
:= ∅ for all b = 0, . . . , βx − 1, Drb

:= ∅ for all b = 0, . . . , βr − 1,
Dyb

:= ∅ for all b = 0, . . . , βy − 1, and Dy := ∅.

5. For all p = l̃y, . . . , ũy :

Let p =
∑βy−1

b=0 2bpb be the bit decomposition of p. If the following holds:

(a) pb ∈ {l̃yb
, ũyb} for all b = 0, . . . , βy − 1,

(b) Db := {l̃rb
, ũrb
} ∩ {l̃xb+p

, ũxb+p
} 6= ∅ for all b = 0, . . . , βr − 1, and

(c) there is no bit b ∈ {0, . . . , βr − 1} with rb Y
⋆
= xb+p,

the slice start value y = p is valid. In this case, update

(a) Dy := Dy ∪ {p},

(b) Dyb
:= Dyb

∪ {pb} for all b = 0, . . . , βy − 1,

(c) Drb
:= Drb

∪ Db for all b = 0, . . . , βr − 1,

(d) Dxb
:= Dxb

∪ Db−p for all b = p, . . . , np − 1, and

(e) Dxb
:= {l̃xb

, ũxb
} for all b = 0, . . . , p− 1 and all b = np, . . . , βx − 1,

with np = min{βr + p, βx}.

6. Tighten word bounds of yw, w = 0, . . . , ωy − 1, corresponding to the register
bounds min{Dy} ≤ y ≤ max{Dy}.

7. For all b = 0, . . . , βy − 1: Tighten min{Dyb
} ≤ yb ≤ max{Dyb

}.
For all b = 0, . . . , βr − 1: Tighten min{Drb

} ≤ rb ≤ max{Drb
}.

For all b = 0, . . . , βx − 1: Tighten min{Dxb
} ≤ xb ≤ max{Dxb

}.
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Figure 14.15. Update of the potential values sets Dx and Dr for a pattern match in y = p. Each
set D is extended by the set represented by the corresponding symbol “0”, “1”, or “⋆” in the update
row, which denote the sets {0}, {1}, and {0, 1}, respectively.

The resultant sets Drb
and the sets Dxb+p

for those operand bits xb+p which overlap
with the resultant are extended by the corresponding intersection Db of their current
domains. The remaining bits of x are not affected by the bits of r, and their sets of
potential values have to be set to their current domains Dxb

:= {l̃xb
, ũxb
}.

14.21.3 Presolving

Algorithm 14.30 illustrates the presolving for slice constraints. It differs marginally
from the presolving Algorithm 14.28 for shift left constraints. In Step 1c we can
only deduce y ≥ 1 if βr ≥ βx. For example if (xb)b = (1, 1) and (rb)b = (1) it clearly

follows r Y
⋆
= x, but y = 0 is still a valid slice start value. In contrast to shift left

constraints, the implications added in Step 1(f)iii operate on the most significant
bits of r and x. If xβx−1 = . . . = xb = 0, then it must also be ri = 0 for all
i ≥ b − ly. Note that we define ri = 0 for i ≥ βr, which means that implications
with consequents xi = 0, i ≥ βr, are redundant and can be ignored.

Steps 2a and 2b are equal to the corresponding steps in Algorithm 14.28. In
contrast to the shift left operator, we cannot aggregate y : ⋆= y′ if r ⋆= r′ and x ⋆= x′

in Step 2c for any register widths. For example, the constraint r = slice(x, y)
with bit strings (xb)b = (0, 1, 0, 1, 0, 1, 0, 1) and (rb)b = (0, 1, 0, 1) has three different
solutions for y, namely y = 0, y = 2, and y = 4. The aggregation y : ⋆= y′ can only be
performed, if the widths of the operands do not exceed the widths of the resultants.

14.22 Multiplex Read

A multiplexer is a module in a digital circuit that allows to select an output from a
set of input signals by a control signal. One can think of the multiplex read operator

read : [µ]× [ν]→ [β], (x, y) 7→ r = read(x, y)

with

r = read(x, y) ⇔ ∀b ∈ {0, . . . , β − 1} : rb =

{

xb+y·β if b+ y · β < µ,

0 if b+ y · β ≥ µ,

as a read access r = x[y] to an array x with elements of β bits, as illustrated in
Figure 14.16. In a typical read constraint, the array register x can be quite large.
For example, x can represent internal memory like the level-1 cache of a CPU.
Another application of a multiplexer is the serialization of data into a stream of
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Algorithm 14.30 Slice Presolving

1. For all active slice constraints r = slice(x, y):

(a) If yw > 0 for any word w ∈ {0, . . . , ωy − 1}, and xw > 0 or rw > 0 for

any w ∈ {0, . . . , ωx − 1}, deduce r Y
⋆
= x.

(b) If r ⋆= x and xw > 0 for any w ∈ {0, . . . , ωx − 1}, fix y := 0.

(c) If r Y
⋆
= x, βr ≥ βx, and ωy = 1, deduce y0 ≥ 1.

(d) Apply domain propagation Algorithm 14.29 on the global bounds.

(e) If ly = uy, aggregate rb : ⋆= xb+ly for all b = 0, . . . , βr − 1 using xi = 0 for
i ≥ βx, and delete the constraint.

(f) For all b = 0, . . . , βr − 1:
i. Let pb

min = min{p | ly ≤ p ≤ uy and uxb+p
= 1} be the minimal and

pb
max = max{p | ly ≤ p ≤ uy and uxb+p

= 1} be the maximal slice
start value y for rb = 1.

ii. For all w = 0, . . . , ωy − 1: Add implications

rb = 1→ yw ≥

⌈

pb
min −

∑

i 6=w 2iWuyi

2wW

⌉

and

rb = 1→ yw ≤

⌊

pb
max −

∑

i 6=w 2iW lyi

2wW

⌋

to the implication graph of SCIP.
iii. If xi = 0 for all i > b, add implication xb = 0 → rb−ly = 0 to the

implication graph of SCIP.

2. For all pairs of active slice constraints r = slice(x, y) and r′ = slice(x′, y′)
with βr ≥ βr′ :

(a) If x ⋆= x′ and y ⋆= y′, aggregate r[βr′ − 1, 0] : ⋆= r′ and delete constraint
r′ = shl(x′, y′).

(b) If βr = βr′ , x ⋆= x′, and r Y
⋆
= r′, deduce y Y

⋆
= y′.

If βr = βr′ , y ⋆= y′, and r Y
⋆
= r′, deduce x Y

⋆
= x′.

(c) If βr ≥ βx, βr′ ≥ βx′ , r ⋆= r′, and x ⋆= x′, and if rw ≥ 1 for any word w ∈
{0, . . . , ωr − 1}, aggregate y : ⋆= y′ and delete constraint r′ = shl(x′, y′).

x19x18x17x16x15 x14x13x12x11x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

r4 r3 r2 r1 r0

y = 2

block 0block 1block 2block 3

x

r

Figure 14.16. Multiplex read with array elements of β = 5 bits.
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param Bx := 1024;
param Br := 8 ;
param nBlk := c e i l (Bx/Br ) ;
s e t Bi t sX := { 0 . . Bx−1 } ;
s e t Bi t sR := { 0 . . Br−1 } ;
s e t DomY := { 0 . . nBlk } ;
s e t Blk := { 0 . . nBlk−1 } ;

va r x [ B i t sX ] b i n a r y ;
va r y i n t e g e r >= 0 <= nBlk ;
va r r [ B i t sR ] b i n a r y ;

min imize ob j : 0∗x [ 0 ] ;

subto muxread : f o r a l l <p , b> i n Blk∗Bit sR with b + p∗Br < Bx :
v i f y == p then r [ b ] == x [ b+p∗Br ] end ;

subto muxread0 : f o r a l l <p , b> i n Blk∗Bit sR with b + p∗Br >= Bx :
v i f y == p then r [ b ] == 0 end ;

Figure 14.17. Zimpl model of the multiplex read constraint.

bits or words. In this case, the block selection variable y would be incremented at
each time step such that the data words are consecutively passed to the data bus
represented by the resultant register r.

The multiplex read operator is very similar to the slice operator presented in the
previous section. The only difference in the bitwise definition is the multiplication of
the block selection variable y by the resultant’s width β. Therefore, the algorithms
for the two constraint classes share most of the ideas, in particular the pattern
matching in the domain propagation. In contrast to the shift left and slice operators,
the LP relaxation of the multiplex read constraint is much smaller with respect to
the size of the input registers. It only needs a number of inequalities and auxiliary
variables which grows linearly with the width of x.

14.22.1 LP Relaxation

The difference of the multiplex read operator to the slice operator is that each bit xb

is only copied to the resultant for exactly one value of the block selection operand
y. Furthermore, if its block is selected, the bit xb is copied to a predefined location
in the resultant register r. This leads to a linear relaxation which grows linearly in
βx, in contrast to the quadratically growing relaxation of the slice constraint.

Figure 14.17 shows a Zimpl model of the constraint r = read(x, y). Like before,
we assume that y can only hit one “non-existing” block in x, i.e., the upper bound
of y is y ≤ ⌈βx

βr
⌉. Although the Zimpl model looks pretty similar to the one in

Figure 14.13 for slice constraints, one has to observe that the “forall” loop in the
constraints only ranges over ⌈βx

βr
⌉ · βr ≈ βx elements, while the loops in the slice

model range over (βx + 1) · βr elements. This difference is also highlighted by the
relaxation sizes depicted in Table 14.4, which were calculated using βr = 8. Note
that these numbers change only marginally for different values of βr.

We improve the automatically Zimpl-generated relaxation by constructing a cus-
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width βx 8 16 32 64 128 256 512 1 024 2 048

variables 57 105 201 393 777 1 545 3 081 6 153 12 297
inequalities 48 112 240 496 1 008 2 032 4 080 8 176 16 368
non-zeros 112 272 592 1 232 2 512 5 072 10 192 20 432 40 912

Table 14.4. Size of LP relaxation resulting from Zimpl model of Figure 14.17 for fixed βr = 8.

tomized compact LP relaxation as follows:

uy∑

p=ly

p · ψp = y (14.62)

uy∑

p=ly

ψp = 1 (14.63)

rb − xb+p·βr
≤ 1− ψp for all b = 0, . . . , βr − 1 and p = ly , . . . , uy (14.64)

−rb + xb+p·βr
≤ 1− ψp for all b = 0, . . . , βr − 1 and p = ly , . . . , uy (14.65)

This relaxation is only applicable if the block selection operand consists of only a
single word y = y0, which is, however, a reasonable assumption. We do not linearize
multiplex read constraints with ωy ≥ 2.

The relaxation contains uy − ly + 1 auxiliary binary variables ψp ∈ {0, 1} and
2βr(uy− ly +1)+2 constraints. As in the proposed relaxation of the shl constraint,
equations (14.62) and (14.63) disaggregate the block selection operand y into a series
of binary variables ψp, each of which corresponding to a single value p ∈ {ly, . . . , uy}
in the domain of y. Inequalities (14.64) and (14.65) model the implication

y = p→ rb = xb+p·βr
.

Here we define again xi = 0 for i ≥ βx such that this implication conforms to the
definition of the read operator. Since exactly one of ψp is equal to one, the resultant
bits rb are uniquely and well-defined.

14.22.2 Domain Propagation

The domain propagation Algorithm 14.31 is very similar to the previous Algo-
rithms 14.27 and 14.29 for shl and slice constraints, respectively. Since the
pattern matching Step 3 for read constraints runs in linear time in βx, we do not
need to pre-calculate tighter bounds for y as in Step 3 of Algorithm 14.29. We can
also dispense with the check whether x is equal to zero, since this is automatically
performed with equal effort in the pattern matching of Step 3. The pattern matching
itself compares—corresponding to the definition of the read operand—the resultant
bits rb with the proper operand bits xb+p·βr

in block p of x. If a potential match is
identified, the sets of potential values are updated as usual. It does not make sense
to keep track of the potential values for xb, since they will be unrestricted as soon
as there are two different valid blocks p. The special case of only a single valid block
Dy = {p} is dealt with in Step 4, where we propagate the equation rb = xb+p·βr

for
all b = 0, . . . , βr − 1. Finally, as for the shl and slice constraints, the calculated
sets of potential values are evaluated in Steps 5 and 6 to tighten the bounds of the
variables yw, yb, and rb.



14.22. Multiplex Read 271

Algorithm 14.31 Multiplex Read Domain Propagation

Input : Multiplex read constraint r = read(x, y) on registers r, x, and y with
current local bit bounds l̃rb

≤ rb ≤ ũrb
, l̃xb

≤ xb ≤ ũxb
, and l̃yb

≤ yb ≤ ũyb
,

and current local word bounds l̃yw ≤ yw ≤ ũyw .

Output : Tightened local bounds for bits rb, xb, and yb, and words yw.

1. Calculate bounds for the register y from the words’ bounds:

l̃y :=

ωy−1
∑

w=0

2wW l̃yw and ũy :=

ωy−1
∑

w=0

2wW ũyw .

2. Initialize Drb
:= ∅ for all b = 0, . . . , βr − 1, Dyb

:= ∅ for all b = 0, . . . , βy − 1,
and Dy := ∅.

3. For all p = l̃y, . . . , ũy :

Let p =
∑βy−1

b=0 2bpb be the bit decomposition of p. If the following holds:

(a) pb ∈ {l̃yb
, ũyb} for all b = 0, . . . , βy − 1,

(b) Db := {l̃rb
, ũrb
} ∩ {l̃xb+p·βr

, ũxb+p·βr
} 6= ∅ for all b = 0, . . . , βr − 1, and

(c) there is no bit b ∈ {0, . . . , βr − 1} with rb Y
⋆
= xb+p·βr

,

the block selection value y = p is valid. In this case, update

(a) Dy := Dy ∪ {p},

(b) Dyb
:= Dyb

∪ {pb} for all b = 0, . . . , βy − 1, and

(c) Drb
:= Drb

∪ Db for all b = 0, . . . , βr − 1.

4. If Dy = {p}, then for all b = 0, . . . , βr − 1:

(a) If l̃rb
= ũrb

, deduce xb+p·βr
= l̃rb

.

(b) If l̃xb+p·βr
= ũxb+p·βr

, deduce rb = l̃xb+p·βr
.

5. Tighten word bounds of yw, w = 0, . . . , ωy − 1, corresponding to the register
bounds min{Dy} ≤ y ≤ max{Dy}.

6. For all b = 0, . . . , βy − 1: Tighten min{Dyb
} ≤ yb ≤ max{Dyb

}.
For all b = 0, . . . , βr − 1: Tighten min{Drb

} ≤ rb ≤ max{Drb
}.

14.22.3 Presolving

Like the domain propagation, the presolving for multiplex read constraints does not
differ much from the presolving of slice constraints. Algorithm 14.32 illustrates the
procedure. We do not apply Step 1c of Algorithm 14.30. Although the reasoning
is valid for read constraints as well, the condition βr ≥ βx will never be satisfied,
since in every reasonable multiplexer the array x has more bits than the resultant r.
Of course, the aggregations in Step 1d and the calculations in Step 1(e)i are adapted
to the definition of the read operator. Due to the blockwise selection of the input
bits xb by the operand y we cannot generate implications like the ones of Step 1(f)iii
of Algorithm 14.30.

Pairs of read constraints are only compared in Step 2 if their resultants have
the same width. Otherwise, the partitioning of x into blocks would be different and
the values of the block selection operands y and y′ would have different meaning.
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Algorithm 14.32 Multiplex Read Presolving

1. For all active multiplex read constraints r = read(x, y):

(a) If yw > 0 for any word w ∈ {0, . . . , ωy − 1}, and xw > 0 or rw > 0 for

any w ∈ {0, . . . , ωx − 1}, deduce r Y
⋆
= x.

(b) If r ⋆= x and xw > 0 for any w ∈ {0, . . . , ωx − 1}, fix y := 0.

(c) Apply domain propagation Algorithm 14.31 on the global bounds.

(d) If ly = uy , aggregate rb : ⋆= xb+ly ·βr
for all b = 0, . . . , βr − 1 using xi = 0

for i ≥ βx, and delete the constraint.

(e) For all b = 0, . . . , βr − 1:
i. Let pb

min = min{p | ly ≤ p ≤ uy and uxb+p·βx
= 1} be the minimal

and pb
max = max{p | ly ≤ p ≤ uy and uxb+p·βx

= 1} be the maximal
block y that can be selected for rb = 1.

ii. For all w = 0, . . . , ωy − 1: Add implications

rb = 1→ yw ≥

⌈

pb
min −

∑

i 6=w 2iWuyi

2wW

⌉

and

rb = 1→ yw ≤

⌊

pb
max −

∑

i 6=w 2iW lyi

2wW

⌋

to the implication graph of SCIP.

2. For all pairs of active multiplex read constraints r = read(x, y) and r′ =
read(x′, y′) with βr = βr′ :

(a) If x ⋆= x′ and y ⋆= y′, aggregate r : ⋆= r′ and delete constraint r′ =
read(x′, y′).

(b) If x ⋆= x′ but r Y
⋆
= r′, deduce y Y

⋆
= y′.

If y ⋆= y′ but r Y
⋆
= r′, deduce x Y

⋆
= x′.

We can only deduce trivial aggregations for constraint pairs. If the operands are
pairwise equivalent, the resultants are detected to be equivalent as well in Step 2a.
Step 2b states the negated versions of this implication. The aggregation of the block
selection operands y and y′ as in Step 2c of Algorithm 14.30 is not possible, since
again, the condition βr ≥ βx will never be satisfied.

14.23 Multiplex Write

The multiplex write operator

write : [β]× [µ]× [ν]→ [β], (x, y, z) 7→ r = write(x, y, z)

with

r = write(x, y, z) ⇔ ∀b ∈ {0, . . . , β − 1} : rb =

{

zb−y·ν if 0 ≤ b− y · ν < ν,

xb otherwise,

is the counterpart to the multiplex read operator. As shown in Figure 14.18, it stores
a given value z at position y in a data array x, thus implementing the assignment
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x19x18x17x16x15 x14x13x12x11x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

z4 z3 z2 z1 z0

y = 2

r19 r18 r17 r16 r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0

block 0block 1block 2block 3

x

z

r

Figure 14.18. Multiplex write with array elements of β = 5 bits.

x[y] := z. The resultant register r denotes the state of the array after the assignment
was executed.

The write operator can also be used to demultiplex a serialized data stream as
illustrated in Figure 14.19. At each time step t, the block selector operand yt of
the multiplexer zt = read(x, yt) and the demultiplexer rt = write(rt−1, yt, zt) is
incremented, such that the content of x is copied into the array r within a full cycle
of y through the arrays.

The multiplex write operator resembles the previous operators shl, slice, and
read. Like for the read operator, the LP relaxation is reasonably small because
each resultant bit rb can only receive the value of exactly two variables: the bit xb

of the first operand, or the bit zb−y·ν of the replacement operand z. As before, the
domain propagation is performed with a pattern matching algorithm.

x19x18x17x16x15 x14x13x12x11x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

z4z4z4z4 z3z3z3z3 z2z2z2z2 z1z1z1z1 z0z0z0z0

r19 r18 r17 r16 r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0

block 0block 1block 2block 3

x

x

z

r

y

ytzt

rt

rt−1

t← t + 1

t = 0t = 1t = 2t = 3

read read readread

read

writewritewrite write

write

Figure 14.19. Multiplexer and demultiplexer to copy a data array x as serialized data stream
into the target array r via a data bus z over multiple time steps.
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14.23.1 LP Relaxation

Analogously to the read operator relaxation, we define the relaxation of write
constraints as follows:

uy∑

p=ly

p · ψp = y (14.66)

uy∑

p=ly

ψp = 1 (14.67)

rb+p·βz
− zb ≤ 1− ψp for all b = 0, . . . , βz − 1 and p = ly, . . . , uy (14.68)

−rb+p·βz + zb ≤ 1− ψp for all b = 0, . . . , βz − 1 and p = ly, . . . , uy (14.69)

rb+p·βz
− xb+p·βz

≤ ψp for all b = 0, . . . , βz − 1 and p = ly, . . . , uy (14.70)

−rb+p·βz
+ xb+p·βz

≤ ψp for all b = 0, . . . , βz − 1 and p = ly, . . . , uy (14.71)

As before, by equations (14.66) and (14.67) we split the block selection operand y
into a series of binary variables ψp ∈ {0, 1}, each of which represents one value in
the domain y ∈ {ly, . . . , uy}. For this being valid, we assume that y = y0 consists
of only one word, i.e., ωy = 1. We do not linearize multiplex write constraints with
ωy ≥ 2.

Inequalities (14.68) to (14.71) model the constraint rb+p·βz
= ite(ψp, zb, xb+p·βz

),
compare the LP relaxation of if-then-else constraints in Section 14.15.1. The first
two inequalities ensure

ψp = 1→ rb+p·βz
= zb,

while the latter two force

ψp = 0→ rb+p·βz
= xb+p·βz

.

Note that the bits in the blocks p < ly or p > uy that cannot be selected by
variable y are aggregated as rb+p·βz

: ⋆= xb+p·βz
for b = 0, . . . , βz − 1 in Step 1(b)iii

of the presolving Algorithm 14.34. Thus, we do not need additional inequalities of
types (14.70) and (14.71) for p /∈ {ly, . . . , uy}.

14.23.2 Domain Propagation

The domain propagation Algorithm 14.33 for multiplex write constraints is some-
what different than the one for the read operator. After the bounds for the block
selection operand y are calculated as usual in Step 1, we perform a first check in
Step 2 whether there is an inconsistency of bits rb 6= xb in block p =

⌊
b

βz

⌋
. In this

situation rb must have been overwritten by z, and y can therefore be fixed to p.
The pattern matching of Step 4 runs as usual with the additional update 4d: if

the overlapping bits zb and xi, i = b+ p · βz, for block p are fixed to the same value,
the corresponding resultant bit ri must also take this value. In the special case that
only one possible matching Dy = {p} was found, we can propagate rb+p·βz

= zb in
Step 5 for all b = 0, . . . , βz − 1. Step 6 processes all blocks where z does not match
to the corresponding part of r. For the bits b in these blocks it must be rb = xb.
Finally, Steps 7 and 8 apply our knowledge about the potential values of y, yb, and
zb to tighten the corresponding word and bit variables.
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Algorithm 14.33 Multiplex Write Domain Propagation

Input : Multiplex write constraint r = write(x, y, z) on registers r, x, y, and z
with current local bit bounds l̃rb

≤ rb ≤ ũrb
, l̃xb
≤ xb ≤ ũxb

, and l̃yb
≤ yb ≤

ũyb
, and l̃zb

≤ zb ≤ ũzb
, and current local word bounds l̃yw ≤ yw ≤ ũyw .

Output : Tightened local bounds for bits rb, xb, yb, and zb, and words yw.

1. Calculate bounds for the register y from the words’ bounds:

l̃y :=

ωy−1
∑

w=0

2wW l̃yw and ũy :=

ωy−1
∑

w=0

2wW ũyw .

2. For all b = 0, . . . , βr − 1:
If l̃rb

> ũxb
, ũrb

< l̃xb
, or rb Y

⋆
= xb, set l̃y := ũy := ⌊ b

βz
⌋ and abort the loop.

3. Initialize Dzb
:= ∅ for all b = 0, . . . , βz − 1, Dyb

:= ∅ for all b = 0, . . . , βy − 1,
and Dy := ∅.

4. For all p = l̃y, . . . , ũy :

Let p =
∑βy−1

b=0 2bpb be the bit decomposition of p. If the following holds:

(a) pb ∈ {l̃yb
, ũyb} for all b = 0, . . . , βy − 1,

(b) Db := {l̃rb+p·βz
, ũrb+p·βz

} ∩ {l̃zb
, ũzb
} 6= ∅ for all b = 0, . . . , βz − 1, and

(c) there is no bit b ∈ {0, . . . , βz − 1} with rb+p·βz
Y
⋆
= zb,

the block selection value y = p is valid. In this case, update

(a) Dy := Dy ∪ {p},

(b) Dyb
:= Dyb

∪ {pb} for all b = 0, . . . , βy − 1,

(c) Dzb
:= Dzb

∪ Db for all b = 0, . . . , βz − 1, and

(d) if l̃zb
= ũzb

= l̃xb+p·βz
= ũxb+p·βz

, deduce rb+p·βz
= l̃zb

.

5. If Dy = {p}, then for all b = 0, . . . , βz − 1:

(a) If l̃zb
= ũzb

, deduce rb+p·βz
= l̃zb

.

(b) If l̃rb+p·βz
= ũrb+p·βz

, deduce zb = l̃rb+p·βz
.

6. For all b = 0, . . . , βr − 1 with
⌊

b
βz

⌋
/∈ Dy:

(a) If l̃xb
= ũxb

, deduce rb = l̃xb
.

(b) If l̃rb
= ũrb

, deduce xb = l̃rb
.

7. Tighten word bounds of yw, w = 0, . . . , ωy − 1, corresponding to the register
bounds min{Dy} ≤ y ≤ max{Dy}.

8. For all b = 0, . . . , βy − 1: Tighten min{Dyb
} ≤ yb ≤ max{Dyb

}.
For all b = 0, . . . , βz − 1: Tighten min{Dzb

} ≤ zb ≤ max{Dzb
}.
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Algorithm 14.34 Multiplex Write Presolving

1. For all active multiplex write constraints r = write(x, y):

(a) If r ⋆= z, zw > 0 for any w ∈ {0, . . . , ωz − 1}, and uy <
⌈

βr

βz

⌉
, fix y := 0.

(b) Apply domain propagation Algorithm 14.33 on the global bounds with
the following modifications:

i. Instead of Update 4d, if xb+p·βz

⋆= zb, aggregate rb+p·βz
: ⋆= zb.

ii. In Step 5, aggregate rb+p·βz
: ⋆= zb instead of only deducing bounds.

iii. In Step 6, aggregate rb : ⋆= xb instead of only deducing bounds.

(c) For all p = ly, . . . , uy and all b = 0, . . . , βz−1, define j = b+p·βz to be the
corresponding bit position in x and r, and add the following implications
to the implication graph of SCIP:

i. If xj = 0, add implications rj = 1→ zb = 1 and rj = 1→ y = p.
If xj = 1, add implications rj = 0→ zb = 0 and rj = 0→ y = p.

ii. If rj = 0, add implications xj = 1→ zb = 0 and xj = 1→ y = p.
If rj = 1, add implications xj = 0→ zb = 1 and xj = 0→ y = p.

iii. If zb = 0, add implication xj = 0→ rj = 0.
If zb = 1, add implication xj = 1→ rj = 1.

iv. If rj = 0, p = ly, and ωy = 1, add implication zb = 1→ y ≥ ly + 1.
If rj = 1, p = ly, and ωy = 1, add implication zb = 0→ y ≥ ly + 1.
If rj = 0, p = uy, and ωy = 1, add implication zb = 1→ y ≤ uy − 1.
If rj = 1, p = uy, and ωy = 1, add implication zb = 0→ y ≤ uy − 1.

v. If zb = 0, p = ly, and ωy = 1, add implication rj = 1→ y ≥ ly + 1.
If zb = 1, p = ly, and ωy = 1, add implication rj = 0→ y ≥ ly + 1.
If zb = 0, p = uy, and ωy = 1, add implication rj = 1→ y ≤ uy − 1.
If zb = 1, p = uy, and ωy = 1, add implication rj = 0→ y ≤ uy − 1.

2. For all pairs of active multiplex write constraints r = write(x, y, z) and r′ =
write(x′, y′, z′) with βz = βz′ and βr ≥ βr′ :

(a) If x ⋆= x′, y ⋆= y′, and z ⋆= z′, aggregate r[βr′ − 1, 0] : ⋆= r′ and delete the
constraint r′ = write(x′, y′, z′).

(b) If βr = βr′ , x ⋆= x′, y ⋆= y′, but r Y
⋆
= r′, deduce z Y

⋆
= z′.

If βr = βr′ , x ⋆= x′, z ⋆= z′, but r Y
⋆
= r′, deduce y Y

⋆
= y′.

If βr = βr′ , y ⋆= y′, z ⋆= z′, but r Y
⋆
= r′, deduce x Y

⋆
= x′.

(c) If r ⋆= r′, y ⋆= y′, and uy <
⌈

min{βr ,β′
r}

βz

⌉

, aggregate z : ⋆= z′.

(d) If z Y
⋆
= z′, y ⋆= y′, and uy <

⌈
min{βr ,β′

r}
βz

⌉

, deduce r Y
⋆
= r′.

14.23.3 Presolving

The presolving of multiplex write constraints as depicted in Algorithm 14.34 starts
by checking in Step 1a whether the resultant is equivalent to the write operand z. If
the latter is non-zero, and if the upper bound of the block selection operand y ensures
that the complete bit string of z is written into r, z must be written into block 0 of
r, and we can fix y := 0. The main part of the algorithm consists of calling the
domain propagation Algorithm 14.33 on the global bounds in Step 1b. However,
we replace the steps that propagate the equality of two registers by a corresponding
aggregation. Step 1c considers all potential values of the block selection operand y
and identifies implications that can be added to the implication graph of SCIP. If
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xj , zb, and rj are the bits that belong together in the current block p, Steps 1(c)i
to 1(c)iii apply the implication

xj 6= rj → rj = zb ∧ y = p (14.72)

for all fixings of a single variable. In particular, the implication xj = zb → rj = xj

used in Step 1(c)iii follows from (14.72), since

(xj = zb) ∧ (xj 6= rj → rj = zb) ⇒ (xj 6= rj → rj = xj) ⇒ rj = xj .

Steps 1(c)iv and 1(c)v apply the same implication reorganized to the form

rj 6= zb → y 6= p.

Such an inequality y 6= p (which is a disjunction y < p ∨ y > p) in the conclusion
of an implication cannot be stored in the implication graph of SCIP. Therefore, we
can only exploit this situation in the blocks p corresponding to the lower and upper
bounds of the block selection variable y, where the inequality becomes y ≤ p− 1 or
y ≥ p+ 1, respectively. Additionally, we can only use these implications if the block
selection operand consists of only a single word. Otherwise, the conclusion would
be a disjunction on the different word variables yw.

The pairwise presolving of Step 2 can only be applied for write constraints
of equal βz. Otherwise, the partitioning of x and r into array elements would be
different. Step 2a applies the trivial aggregation which states that two constraints
with equivalent operands must have equivalent resultant bits. Step 2b executes this
rule in the inverse direction. Step 2c is a bit more interesting: if the resultants and
the block selection operands are pairwise equivalent, we can deduce that the written
value z must also be equivalent. This is, however, only true if z would be absorbed
completely by r, i.e., if the upper bound of the block selection operand y is small
enough. The inverse implication of this rule is stated in Step 2d: if unequal values
are written to the same position, and if all of these bits will affect the resultants,
the resultants must be unequal.





Chapter 15

Presolving

In the previous chapter, we presented the algorithms used in the constraint han-
dlers of our property checking tool to process the different circuit operators. One
important ingredient of a constraint handler is the presolving component. These
constraint based presolving algorithms try to simplify the problem instance by con-
sidering the constraints of a single constraint class independently from all other
constraints. Even more, most of the reductions are deduced from a single constraint
and the bounds of the involved variables. The only “global” information exploited
is our knowledge about the equality or inequality of variables and—to a smaller
extent—the discovered implications between the variables which are stored in the
implication graph, see Section 3.3.5.

In addition to the presolving of linear constraints and its specializations, Chap-
ter 10 introduced a few general purpose presolving techniques that can be applied
independent of an individual constraint class. They can be used not only for mixed
integer programs but for any constraint integer program. These concepts, in par-
ticular probing and implication graph analysis, are also employed here. In the fol-
lowing, we present two additional presolving techniques that are specifically tailored
to the property checking problem. The term algebra preprocessing features a term
replacement system to exploit the commutativity, associativity, and distributivity
of the arithmetic constraints add and mult. The irrelevance detection discards
parts of the circuit that are not relevant for the property at hand. This does not
help to tighten the domains of the variables but reduces the effort spent on the
individual subproblems during the solving process. Furthermore, removing irrele-
vant constraints and variables can help the branching strategy to concentrate on
the relevant part on the circuit where the crucial decisions have to be taken, see
Section 16.1.

As described in Section 3.2.5, the preprocessing algorithms of the constraints
and the global presolving algorithms are applied periodically until no more problem
reductions can be found. Whenever a new fixing, aggregation, domain reduction, or
implication was found by one of the preprocessing algorithms, presolving is applied
again to the affected constraints. More expensive presolving operations like probing
or term algebra preprocessing are delayed until the other algorithms failed to produce
further reductions.

15.1 Term Algebra Preprocessing

Analog to the symbolic propagation with term rewriting applied in the domain prop-
agation of multiplication constraints, see Section 14.5.2, we employ a term rewriting
system as a global presolving engine. Recall that the symbolic propagation for mul-
tiplication constraints was defined on a simple signature consisting of binary variable
symbols B and the operations ∧ : B × B → B and ⊕ : B × B → B. In contrast,
the term algebra preprocessing operates on a more complex signature of low signifi-
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cant register subwords, truncated addition, and truncated multiplication operators.
The goal is to exploit the commutativity, associativity, and distributivity of the two
operators in order to identify equivalent subword-defining terms, thereby concluding
that the subwords themselves must be equivalent.

We need the following preliminaries to justify the term rewriting rules that we
want to employ. A comprehensive introduction on group and ring theory can be
found in Allenby [9].

Definition 15.1 (ring homomorphism). If (R,+R, ·R) and (S,+S , ·S) are rings,
a ring homomorphism is a mapping f : R→ S such that

1. f(a+R b) = f(a) +S f(b) for all a, b ∈ R, and

2. f(a ·R b) = f(a) ·S f(b) for all a, b ∈ R.

A ring homomorphism f : R→ S on unitary rings (R,+R, ·R, 1R) and (S,+S , ·S , 1S)
which satisfies

3. f(1R) = 1S

is called unitary ring homomorphism.

Proposition 15.2. For all n,m ∈ Z>0 with n
m
∈ Z, the modulus operation

mod m : Zn → Zm, a 7→ a mod m

is a unitary ring homomorphism from the unitary ring (Zn,+n, ·n, 1) to the unitary
ring (Zm,+m, ·m, 1) with Zk = {0, . . . , k − 1}, a+k b = (a+ b) mod k, and a ·k b =
(a · b) mod k.

Proof. To show Conditions 1 and 2 of Definition 15.1, let ◦ ∈ {+, ·} be either mul-
tiplication or addition. Let a, b ∈ Zn and c = (a ◦n b) = (a ◦ b) mod n. Define k ∈ Z
to be the unique value with a ◦ b = c + kn. Let a′ = a mod m, b′ = b mod m, and
c′ = c mod m. We have to show c′ = a′ ◦m b′. Let p, q, r ∈ Z be the unique values
such that a = a′ + pm, b = b′ + qm, and c = c′ + rm. Then, for ◦ = + we have

c′ = c− rm = a+ b− kn− rm = a′ + b′ +
(
p+ q − k

n

m
− r
)
m = a′ +m b′,

and for ◦ = · it follows

c′ = c− rm = a · b− kn− rm = a′ · b′ +
(
pq + aq + bp− k

n

m
− r
)
m = a′ ·m b′,

since n
m
∈ Z by assumption and c′ ∈ Zm. The validity of Condition 3 is obvious.

Corollary 15.3. Truncated addition and truncated multiplication respect the sub-
word property, i.e.,

r = add(x, y) ⇒ r[b, 0] = add(x[b, 0], y[b, 0])

r = mult(x, y) ⇒ r[b, 0] = mult(x[b, 0], y[b, 0])

for all b = 0, . . . , βr − 1.
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Our term rewriting system operates on terms composed of the constants 0 and
1, the register bits ̺jb and their negations ¯̺jb, the concatenations of these constant
symbols into bit strings, the truncation of bit strings to shorter strings, and the add
and mult operators. In order to obtain a finite signature, we impose a maximum
βmax ∈ Z>0 on the width of the bit strings on which the operators are defined. One
can think of βmax as the maximal width of the registers contained in the property
checking instance at hand.

Definition 15.4 (bit string arithmetics signature). Let βmax ∈ Z>0 and B =
{1, . . . , βmax}. The algebraic signature Σ = (S,O) with the sorts S = {[β] |β ∈ B}
and the following operators O = O0 ∪O1 ∪O2:

O0: 0 : → [1]

1 : → [1]

̺jb : → [1] with j = 1, . . . , n and b = 0, . . . , β̺j
− 1

¯̺jb : → [1] with j = 1, . . . , n and b = 0, . . . , β̺j
− 1

O1: −β : [β]→ [β]

|βµ
: [µ]→ [β] with β, µ ∈ B and µ ≥ β

O2: ⊗βµ : [β − µ]× [µ]→ [β] with β, µ ∈ B and β > µ

· β : [β]× [β]→ [β] with β ∈ B

+β : [β]× [β]→ [β] with β ∈ B

is called bit string arithmetics signature. We call TΣ the term algebra of Σ, which
consists of all terms that can be generated from the symbols in Σ and which fit to
the arity of the operators. The terms of sort [β] are denoted by T[β]. Thus, T[β]

contains all terms t ∈ TΣ whose outermost operator has codomain [β].

Whenever it is non-ambiguous, we will omit the domain subscripts of the oper-
ators. We want to interpret the bit string arithmetics signature to be in line with
the definition of the circuit operators. In particular, the signature operators −, |β ,
⊗, · , and + should reflect the properties of the minus, slice( · , 0), concat, mult,
and add operators, respectively. Formally, we have to introduce equations E to the
signature Σ in order to describe the relevant properties of the circuit operators. We
start with the associative law, which is valid for the three binary operators:

tν ⊗ (tµ ⊗ tβ) = (tν ⊗ tµ)⊗ tβ

tβ3 · (t
β
2 · t

β
1 ) = (tβ3 · t

β
2 ) · tβ1

tβ3 + (tβ2 + tβ1 ) = (tβ3 + tβ2 ) + tβ1

(15.1)

Here we have tβ, tβi ∈ T[β], t
µ ∈ T[µ], and tν ∈ T[ν]. These equations allow to simplify

the notation by removing the brackets with the implicit meaning that the operators
from left to right represent innermost to outermost operations. Now we extend



282 Presolving

system (15.1) by the following equations to yield the final set of equations E:

−(−tβ) = tβ

(cµ−1 ⊗ · · · ⊗ c0)|β = cβ−1 ⊗ · · · ⊗ c0

tβ · (0⊗ · · · ⊗ 0) = 0⊗ · · · ⊗ 0

tβ · (0⊗ · · · ⊗ 0⊗ 1) = tβ

tβ1 · (t
β−1
2 ⊗ 0) = (tβ1 |β−1 · t

β−1
2 )⊗ 0

tβ1 · t
β
2 = tβ2 · t

β
1

(tβ3 · t
β
1 ) · tβ2 = (tβ3 · t

β
2 ) · tβ1

(tµ2 · t
µ
1 )|β = (tµ2 |β) · (tµ1 |β)

tβ2 · (−t
β
1 ) = −(tβ2 · t

β
1 )

(−tβ2 ) · tβ1 = −(tβ2 · t
β
1 )

− (0⊗ · · · ⊗ 0) = 0⊗ · · · ⊗ 0

(−tβ)⊗ 0 = − (tβ ⊗ 0)

tβ + (0⊗ · · · ⊗ 0) = tβ

(tβ1 + tβ2 )⊗ 0 = (tβ1 ⊗ 0) + (tβ2 ⊗ 0)

tβ1 + tβ2 = tβ2 + tβ1

(tβ3 + tβ1 ) + tβ2 = (tβ3 + tβ2 ) + tβ1
(tµ2 + tµ1 )|β = (tµ2 |β) + (tµ1 |β)

tβ + (−tβ) = 0⊗ · · · ⊗ 0

tβ3 · (t
β
2 + tβ1 ) = (tβ3 · t

β
2 ) + (tβ3 · t

β
1 )

(tβ3 + tβ2 ) · tβ1 = (tβ3 · t
β
1 ) + (tβ2 · t

β
1 )

with ci ∈ O0 being constant symbols. These equations define an equivalence relation
≡E ⊆ TΣ × TΣ which identifies terms s ≡E t, s, t ∈ TΣ, that would always yield the
same results when evaluated with circuit operators. We can apply these equations
to terms t ∈ TΣ in order to transform them into normal form.

Definition 15.5 (normal form). We call a term t ∈ T[β] to be in normal form if
it has the form

t = (am + . . . + a1)

with ai = [−]
(
(fimi

· . . . · fi1)⊗ 0⊗ · · · ⊗ 0
︸ ︷︷ ︸

si times

)
for i = 1, . . . ,m,

and fij = cij,β−si−1 ⊗ · · · ⊗ cij,0 for i = 1, . . . ,m, and j = 1, . . . ,mi

with si ∈ {0, . . . , β − 1}, cij,k ∈ O0, cij,0 6= 0, i = 1, . . . ,m, j = 1, . . . ,mi, k =
0, . . . , β − si − 1. The minus symbol enclosed in brackets [−] is optional.

Note. Observe that the number si of appended “⊗ 0”s may be zero, which means
that no “⊗” operator is contained in ai.

Note. We cannot transform all terms t ∈ TΣ into normal form using equations E.
For example, no equation can be applied on the term t = (1 + 1) ⊗ 1, although it
is not in normal form. In our presolving algorithm, however, we will only produce
terms that can be transformed into normal form.

The normalization of a term t ∈ TΣ is accomplished by executing term rewriting
rules R = {le → re | e ∈ E} in an arbitrary order until no more rules are applicable,
see Algorithm 15.1. In this definition, le and re are the left and right hand sides of
the equations e ∈ E. In order to ensure the termination of this rewriting process,
we have to restrict the use of the commutativity Rules 2e, 2f, 3d, and 3e. Let ≻ be
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Algorithm 15.1 Term Algebra Preprocessing – Term Normalization

Input : Term t ∈ TΣ
Output : Term t′ ≡E t in normal form

Apply the following subterm rewriting rules in any order until no more rules are
applicable, with tk, tki ∈ T[β], and ci ∈ O0 being subterms of t:

1. Minus, Truncation, and Concatenation:

(a) −
(
− tβ

)
→ tβ

(b) − (0⊗ · · · ⊗ 0) → 0⊗ · · · ⊗ 0

(c)
(
− tβ

)
⊗ 0 → −

(
tβ ⊗ 0

)

(d)
(
cµ−1 ⊗ · · · ⊗ c0

)
|β → cβ−1 ⊗ · · · ⊗ c0

(e) tν ⊗
(
tµ ⊗ tβ

)
→
(
tν ⊗ tµ

)
⊗ tβ

2. Multiplication:

(a) tβ3 ·
(
tβ2 · t

β
1

)
→
(
tβ3 · t

β
2

)
· tβ1

(b) tβ ·
(
0⊗ · · · ⊗ 0

)
→ 0⊗ · · · ⊗ 0

(c) tβ ·
(
0⊗ · · · ⊗ 0⊗ 1

)
→ tβ

(d) tβ1 ·
(
tβ−1
2 ⊗ 0

)
→
(
tβ1 |β−1 · t

β−1
2

)
⊗ 0

(e) tβ1 · t
β
2 → tβ2 · t

β
1

(
if tβ2 ≻lrpo t

β
1

)

(f)
(
tβ3 · t

β
1

)
· tβ2 →

(
tβ3 · t

β
2

)
· tβ1

(
if tβ2 ≻lrpo t

β
1

)

(g)
(
tµ2 · t

µ
1

)
|β → tµ2 |β · t

µ
1 |β

(h) tβ2 ·
(
− tβ1

)
→ −

(
tβ2 · t

β
1

)

(i)
(
− tβ2

)
· tβ1 → −

(
tβ2 · t

β
1

)

3. Addition:

(a) tβ3 +
(
tβ2 + tβ1

)
→
(
tβ3 + tβ2

)
+ tβ1

(b) tβ +
(
0⊗ · · · ⊗ 0

)
→ tβ

(c)
(
tβ1 + tβ2

)
⊗ 0 →

(
tβ1 ⊗ 0

)
+
(
tβ2 ⊗ 0

)

(d) tβ1 + tβ2 → tβ2 + tβ1
(
if tβ2 ≻lrpo t

β
1

)

(e)
(
tβ3 + tβ1

)
+ tβ2 →

(
tβ3 + tβ2

)
+ tβ1

(
if tβ2 ≻lrpo t

β
1

)

(f)
(
tµ2 + tµ1

)
|β → tµ2 |β + tµ1 |β

(g) tβ +
(
− tβ

)
→ 0⊗ · · · ⊗ 0

4. Distributivity:

(a) tβ3 ·
(
tβ2 + tβ1

)
→ tβ3 · t

β
2 + tβ3 · t

β
1

(b)
(
tβ3 + tβ2

)
· tβ1 → tβ3 · t

β
1 + tβ2 · t

β
1
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the precedence relation defined as the transitive closure of

µ > β ⇒ ◦µ ≻ •β for all ◦, • ∈ {|·, · ,⊗,−,+},

|β ≻ · β ≻ ⊗β ≻ −β ≻ +β for all β ∈ B \ {1},

|1 ≻ · 1 ≻ −1 ≻ +1 ≻ ¯̺jb ≻ ̺j′b′ ≻ 1 ≻ 0,

|βµ
≻ |βν

⇔ µ > ν,

⊗βµ ≻ ⊗βν ⇔ µ > ν,

¯̺jb ≻ ¯̺j′b′

̺jb ≻ ̺j′b′

}

⇔ j > j′ ∨ (j = j′ ∧ b > b′)

(15.2)

As in the termination proof of the binary multiplication term normalization Algo-
rithm 14.9, see Section 14.5.2, we define ≻lrpo to be the lexicographic recursive path
ordering of Σ with respect to ≻. Recall that ≻lrpo is defined in Definition 14.17 as

g(tn, . . . , t1) ≻lrpo f(sm, . . . , s1)

⇔ (i) tj �lrpo f(sm, . . . , s1) for some j ∈ {1, . . . , n}, or

(ii) g ≻ f and g(tn, . . . , t1) ≻lrpo si for all i ∈ {1, . . . ,m}, or

(iii) g = f, g(tn, . . . , t1) ≻lrpo si for all i ∈ {1, . . . ,m},

and (tn, . . . , t1) (≻lrpo)lex (sm, . . . , s1)

Now, the commutativity rules are only applicable if tβ2 ≻lrpo t
β
1 . In order to treat

Rule 3g in the termination proof below, we need the following lemma:

Lemma 15.6. For all β, µ ∈ B, µ ≥ β, and all t ∈ T[µ] the relation t �lrpo 0⊗· · ·⊗0 ∈
T[β] is valid.

Proof. Let d(t) ∈ Z≥0 be the depth of the tree representation of term t. We prove
the claim by induction on β and on d(t). For t = 0⊗· · ·⊗ 0 ∈ T[β] nothing has to be
shown. Thus, let T ′[µ] = T[µ] \ {0 ⊗ · · · ⊗ 0} and consider t ∈ T ′[µ]. We have to show
that t ≻lrpo 0⊗ · · · ⊗ 0 ∈ T[β].

Assume β = 1 and let µ ≥ β be arbitrary. Because t 6= 0 it follows t ≻lrpo 0 due
to Condition (ii) of Definition 14.17 since 0 is the smallest symbol with respect to
≻.

Now let µ ≥ β ≥ 2. Assume that we have already shown the claim for all β′ < β
on arbitrary terms t and for all β′ = β on all terms t′ with d(t′) < d(t).

Suppose the outermost operation of t is “⊗”, i.e., t = t2 ⊗ t1 with t1 ∈ T[µ1],
t2 ∈ T[µ2], and µ1 + µ2 = µ. Then we have t2 ⊗ t1 ≻lrpo (0 ⊗ · · · ⊗ 0) ⊗ 0 ∈ T[β]

by Condition (iii) of Definition 14.17 since t2 ⊗ t1 ≻lrpo 0 ∈ T[1] and t2 ⊗ t1 ≻lrpo

0⊗ · · · ⊗ 0 ∈ T[β−1] by induction and (t2, t1) (≻lrpo)lex (0⊗ · · · ⊗ 0, 0) because either
t1 6= 0 and therefore t1 ≻lrpo 0 or t2 ∈ T

′
[µ−1] and therefore t2 ≻lrpo 0⊗· · ·⊗0 ∈ T[β−1]

by induction.
If “⊗” is not the outermost operation of t, we either have t = −t1, t = t1|µ, t =

t1 · t2, or t = t1 + t2 with t1, t2 ∈ T[ν] and ν ≥ µ. In all cases, t ≻lrpo 0⊗· · ·⊗0 ∈ T[β]

follows from Condition (i) of Definition 14.17 since t1 �lrpo t by induction because
d(t1) = d(t)− 1 < d(t).

Proposition 15.7. Algorithm 15.1 terminates.

Proof. Obviously, the relation ≻ is a well-founded partial ordering (in fact, even
a total ordering) on O, compare Definition 14.19. Thus, by Theorem 14.21, the
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lexicographic recursive path ordering ≻lrpo is a well-founded monotonic ordering on
TΣ, and we only have to show that for each rewriting rule t→ t′ the relation t ≻lrpo t

′

holds.

Rule 1a reduces the term order by Lemma 14.18 which states that for subterms
t of s we always have s ≻lrpo t. The same holds for Rules 1b, 2b, 2c, and 3b. For
Rule 1c we can apply Conditions (ii) and (iii) of Definition 14.17 and Lemma 14.18.
The truncation Rule 1d reduces the term order due to iterated application of Con-
dition (ii) and Lemma 14.18. The reduction properties of the associativity Rules 1e,
2a, and 3a follow from a twofold application of Condition (iii) and Lemma 14.18.

We have tβ1 · (t
β−1
2 ⊗ 0) ≻lrpo (tβ1 |β−1 · t

β−1
2 ) ⊗ 0 in Rule 2d due to Condition (ii),

Lemma 14.18, and because tβ1 · (t
β−1
2 ⊗ 0) ≻lrpo tβ1 |β−1 · t

β−1
2 , which is due to

Condition (iii), Condition (ii), and Lemma 14.18 since · β ≻ |β−1. The commu-
tativity Rules 2e, 2f, 3d, and 3e reduce the term order due to Condition (iii) and
Lemma 14.18. For the truncation distributivity Rules 2g and 3f we have to apply
Condition (ii), Condition (iii), and Lemma 14.18. This is also the case for Rules 2h,
2i, and 3c, and for the distributivity Rules 4a and 4b. Finally, Rule 3g reduces the
term order due to Lemma 15.6.

After having shown how one can normalize bit string arithmetic terms, we are
ready to present the term algebra presolving procedure. Each constraint of the prop-
erty checking problem instance defines an equation between the resultant register
and a term which includes the operand registers. The registers are now treated as
variables. By substituting the operand registers with their defining terms and by
applying the term replacement rules of Algorithm 15.1, we can extract equalities
of terms or subterms and thereby equalities of the corresponding resultant register
strings or substrings.

The details of this procedure are depicted in Algorithm 15.2. At first in Step 1,
we collect all add and mult constraints from the problem instance. We can also
use uxor and uand constraints since they are equivalent to βx-ary add and mult
constraints on single bit variables, respectively. Note that this includes bitwise xor
and and constraints since each of these constraints is converted into βr constraints
using the unary operators uxor and uand, respectively, see Sections 14.7 and 14.9.
The bitwise or and unary uor operators are also considered since they are auto-
matically converted to corresponding uand constraints on negated bit variables, see
Sections 14.8 and 14.11. The assembled constraints are stored as term equations
{r = t} in a set T .

Note. Observe that the term equations are collected only in the first call of the algo-
rithm during the global presolving loop of SCIP, see Section 3.2.5. In all subsequent
presolving rounds, we keep the term equation database T as it was at the end of the
previous call of the algorithm. Since the term algebra preprocessing is delayed as
long as other presolving methods find problem reductions, the term data base repre-
sents an already thoroughly preprocessed constraint set. Therefore, the disregarding
of constraints generated after the first call to the term algebra preprocessing should
be of marginal influence. Furthermore, variable fixings and aggregations found in
future presolving rounds are exploited in term algebra presolving. We implic-
itly identify constant symbols c1, c2 ∈ O0 of the bit string arithmetics signature Σ if
c1 ≡ c2, i.e., if the corresponding variables or constants are equivalent in the variable
aggregation graph of SCIP (see Section 3.3.4). We replace each constant symbol
c ∈ O0 by a representative of its equivalence class during term normalization.
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Algorithm 15.2 Term Algebra Preprocessing

1. If this is the first call to the algorithm, set T := ∅ and extend T for all
constraints C ∈ C of the problem instance:

(a) If C = {r = add(x, y)}, update
T := T ∪ {rβr−1 ⊗ · · · ⊗ r0 = (xβr−1 ⊗ · · · ⊗ x0) + (yβr−1 ⊗ · · · ⊗ y0).

(b) If C = {r = mult(x, y)}, update
T := T ∪ {rβr−1 ⊗ · · · ⊗ r0 = (xβr−1 ⊗ · · · ⊗ x0) · (yβr−1 ⊗ · · · ⊗ y0)}.

(c) If C = {r = uxor(x)}, update T := T ∪ {r0 = xβx−1 + . . . + x0}.

(d) If C = {r = uand(x)}, update T := T ∪ {r0 = xβx−1 · . . . · x0}.

2. For all {r = t} ∈ T call Algorithm 15.1 to normalize t. Update T accordingly.

3. For all {r = t} ∈ T call Algorithm 15.3 to process self-references in the term.

4. For all {r = t} ∈ T call Algorithm 15.4 to process term equations with r|µ = 0.

5. For all {r = t} ∈ T call Algorithm 15.5 to deduce fixings and aggregations for
the resultant bits rb.

6. For all {r = t} ∈ T call Algorithm 15.6 to substitute an operand for a term.

7. If fixings or aggregations were produced, if a term equation was modified in
T , or if a new term equation was added to T , goto Step 3.

8. For all pairs {r = t}, {r′ = t′} ∈ T with βr ≥ βr′ :

(a) Let µ ∈ {1, . . . , βr′} be the maximal width for which the normalization
of s := t|µ and s′ := t′|µ yields equal terms. Set µ := 0 if no such width
exists.

(b) Aggregate rb : ⋆= r′b for all b = 0, . . . , µ− 1.

(c) If µ = βr′ , delete {r′ = t′} from T .

Step 2 normalizes the terms by calling the term normalization Algorithm 15.1.
In Step 3 the term equations are inspected for self-references of the resultant, i.e.,
whether on the least significant bits up to bit µ ≤ βr the term equation has the
form r|µ = t|µ(r|µ). However, we can only exploit situations where the resultant’s
substring r|µ appears as addend r|µ ≡E ai|µ of the summation and not within a
multiplication. The procedure is illustrated in Algorithm 15.3. Steps 1 and 2 check

Algorithm 15.3 Term Algebra Preprocessing – Self-Reference Simplification

Input : Term equation set T and term equation {r = t} ∈ T with t in normal form
as in Definition 15.5.

Output : Modified term equation set T .

1. Set i⋆ := 0 and q⋆ := 0.

2. For i = 1, . . . ,m with mi = 1 and ai = fi1 ⊗ 0⊗ · · · ⊗ 0:
If q = max{µ ≤ βr | r|µ ≡E ai|µ} > q⋆, update i⋆ := i and q⋆ := q.

3. If q⋆ > 0 and m ≥ 2, call Algorithm 15.1 to normalize the term equation
{0⊗ · · · ⊗ 0 = (am + . . . + ai⋆+1 + ai⋆−1 + . . . + a1)|q⋆} and add it to T .

4. If q⋆ = βr and m = 1, remove term equation {r = t} from T .
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Algorithm 15.4 Term Algebra Preprocessing – Zero Resultant Simplification

Input : Term equation set T and term equation {r = t} ∈ T with t in normal form
as in Definition 15.5.

Output : Modified term equation set T .

1. Set q := max
{
µ ≤ βr

∣
∣ r|µ ≡E 0⊗ · · · ⊗ 0

}
. If q = 0, stop.

2. Select i ∈ {1, . . . ,m} with mi = 1. If no addend ai with mi = 1 exists, stop.

3. If m = 1, set r⋆ := (fi1 ⊗ 0⊗ · · · ⊗ 0)|q and t⋆ := 0⊗ · · · ⊗ 0 ∈ T[q].
If m ≥ 2 and ai = fi1 ⊗ 0⊗ · · · ⊗ 0, set

r⋆ := ai|q and t⋆ := ((−am) + . . . + (−ai+1) + (−ai−1) + . . .+ (−a1))|q.

If m ≥ 2 and ai = − fi1 ⊗ 0⊗ · · · ⊗ 0, set

r⋆ := −ai|q and t⋆ := (am + . . . + ai+1 + ai−1 + . . . + a1)|q.

4. Normalize r⋆ and t⋆ by calling Algorithm 15.1.

5. If q = βr, replace {r = t} with {r⋆ = t⋆} in T .
If q < βr, add term equation {r⋆ = t⋆} to T .

whether there is an addend ai which is, if truncated to µ bits, equivalent to the
truncated resultant. From all of those candidates, we select the addend ai⋆ that is
equivalent to the resultant on the largest number of bits. We subtract the addend
ai⋆ from the truncated resultant and the truncated term, such that the left hand
side of the truncated term equation is reduced to zero. If there is at least one other
addend, we insert the resulting term equation to the set T in Step 3. If ai⋆ was the
only addend, the resulting term equation reads {0 ⊗ · · · ⊗ 0 = 0 ⊗ · · · ⊗ 0} which
is redundant information. If additionally µ = βr the original term equation was
{r = r}, and it can be removed from T in Step 4.

Due to fixings of the resultant’s bits or due to the processing of self-referencing
term equations in Step 3 of Algorithm 15.2 it may happen that some or all of the
resultant’s bits rb in a term equation r = t are fixed to zero. Step 4 tries to exploit
this situation by calling Algorithm 15.4. In Step 1 of this algorithm, we count the
number q of least significant bits in the resultant that are fixed to zero. If q = 0, i.e.,
r0 6= 0, we cannot process this term equation. Otherwise, we can look at the less
significant part r|q = t|q of the equation, which is valid due to Corollary 15.3. Since
r|q ≡E 0 ⊗ · · · ⊗ 0, one of the addends ai in the truncated equation can be moved
to the left hand side and take the role of the new resultant. Note, however, that we
can only deal with addends consisting of only one factor, i.e., ai = fi1 ⊗ 0⊗ · · · ⊗ 0
or ai = −fi1 ⊗ 0 ⊗ · · · ⊗ 0, since otherwise, the left hand side r⋆ of the resulting
equation r⋆ = t⋆ would not be a simple bit string.

We select such a “simple” addend in Step 2. If there is no addend with a single
factor, we have to abort. If the selection was successful, we remove the addend
from the term in Step 3 to yield t⋆ and move it to the left hand side of the term
equation as new resultant r⋆. If ai = a1 was the only addend, i.e., m = 1, we
strip a potentially existing minus sign “−” from ai and mark the remaining term
t⋆ to be zero (implicitly applying rewriting Rules 1a and 1b of the normalization
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Algorithm 15.5 Term Algebra Preprocessing – Deductions on Resultant Bits

Input : Term equation set T and term equation {r = t} ∈ T with t in normal form
as in Definition 15.5.

Output : Modified term equation set T and fixings and aggregations on resultant
bits rb.

1. While ai = a′i ⊗ 0 or ai = −(a′i ⊗ 0) for all i = 1, . . . ,m with a′i ∈ TΣ, fix
r0 := 0, replace {r = t} by {rβr−1 ⊗ . . . ⊗ r1 = a′m + . . . + a′1}, and normalize
the term again by calling Algorithm 15.1. Update T accordingly.

2. If m = 1, m1 = 1, and a1 has no minus sign, i.e., t = cβr−1 ⊗ · · · ⊗ c0 with
cb ∈ O0, then aggregate rb : ⋆= cb for all b = 0, . . . , βr − 1 and delete the term
equation from T .

3. If m = 1, m1 = 1, and a1 has a minus sign, i.e., t = − cβr−1 ⊗ · · · ⊗ c0 with
cb ∈ O0, then set o := 1 and for all b = 0, . . . , βr − 1:

(a) If o = 1, aggregate rb : ⋆= cb. If cb = 1, set o := 0. If cb /∈ {0, 1} abort this
loop.

(b) If o = 0, aggregate rb : ⋆= 1− cb.

If the loop was not aborted prematurely in Step 3a, delete the term equation
from T .

Algorithm 15.1). Otherwise, we have to check whether the addend has a minus
sign as first operator. If not, we can use the truncated addend as new resultant
r⋆ = ai|q. The term, however, has to be used in its negative form which means
that all addends in t⋆ must be preceded by a “−”. On the other hand, if ai has a
minus sign as first operator, we use it in its negative form a⋆ = −ai|q and leave the
remaining term t⋆ as it is. Step 4 normalizes both sides of the equation r⋆ = t⋆. Note
that r⋆ was defined in such a way that the normalization reduces r⋆ to a simple bit
concatenation. Finally, in Step 5 the new term equation r⋆ = t⋆ is inserted into T .
If q = βr which means rb = 0 for all resultant bits, the new term equation replaces
the old one. Otherwise, the new term equation is only defined on a subset of the
bits such that the old equation must remain in T .

The term algebra preprocessing Algorithm 15.2 continues in Step 5 by inspecting
the terms of the term equation in order to deduce fixings and aggregations for the
resultant bits. Algorithm 15.5 shows the details of this procedure. If all addends of
the term t are proven to be zero on their least significant bit, the resultant bit r0 can
also be fixed to r0 := 0 in Step 1. Additionally, we can prune the least significant bit
from the resultant and from each addend of the term which corresponds to dividing
the equation by the common divisor 2. By the definition of the normal form of t,
this can be applied iteratively s⋆ = min{si | i ∈ {1, . . . ,m}} times.

If a term t has only one addend with a single factor, i.e., t = [−]cβr−1⊗· · ·⊗c0, we
can directly exploit the equation r = t and aggregate the bits of r accordingly. In the
case that t has no minus sign, we can aggregate rb : ⋆= cb for all bits b = 0, . . . , βr − 1
in Step 2. If t is preceded by a minus sign, we have to calculate the two’s complement
of c = cβr−1 ⊗ · · · ⊗ c0 manually in Step 3 in order to deduce aggregations on the
bits rb. The two’s complement is defined as −c = not(c) + 1. Thus, we start with
the least significant bit r0 and aggregate r0 : ⋆= c0 since negation and addition of one
cancel each other on the least significant bit. Afterwards, we calculate the overflow
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Algorithm 15.6 Term Algebra Preprocessing – Operand Substitution

Input : Term equation set T and term equation {r = t} ∈ T with t in normal form
as in Definition 15.5.

Output : Modified term equation set T .

1. Set i⋆ := 0, j⋆ := 0, M⋆ :=∞, and q⋆ := 0.

2. For all i = 1, . . . ,m, j = 1, . . . ,mi, and {r′ = t′} ∈ T :

(a) If q = max
{
µ ≤ min{βr′ , βr − si}

∣
∣ r′|µ ≡E fij |µ

}
> q⋆, or q = q⋆ ≥ 1

and M ′ =
∑m′

i′=1m
′
i′ < M⋆, and

(b) there is no subterm f ′ij of t′ with r′|q ≡E f ′ij |q,

update i⋆ := i, j⋆ := j, M⋆ := M ′, q⋆ := q, r⋆ := r′, and t⋆ = t′.

3. If q⋆ = 0, stop.

4. Set r̃ := r|q⋆+si⋆ . Set t̃ := t|q⋆+si⋆ and substitute fi⋆j⋆ |q⋆ → t⋆|q⋆ therein.

5. Normalize r̃ and t̃ by calling Algorithm 15.1.

6. If q⋆ = βr− si⋆ , replace {r = t} in T by {r = t̃}. Otherwise, add {r̃ = t̃} to T .

o of the “+1” addition which is o = 1 ⇔ not(c0) = 1 ⇔ c0 = 0. As long as the
overflow o is uniquely determined because cb is a fixed value and no variable register
bit, we can continue the aggregation of more significant bits. If the overflow becomes
zero, all remaining bits can be aggregated as rb : ⋆= 1−cb since no additional overflow
can appear.

Step 6 of Algorithm 15.2 substitutes operands fij in term equations {r = t} ∈ T
for terms t′ that are stored as defining terms {fij = t′} ∈ T . Due to Corollary 15.3,
we can also substitute less significant substrings of the operands by corresponding
terms, thereby generating a term equation that is valid on this less significant part.
The substitution is performed by Algorithm 15.6. Steps 1 and 2 select an operand
fi⋆j⋆ with fi⋆j⋆ |µ ≡E r⋆|µ that should be substituted using {r⋆ = t⋆} ∈ T . For
a substitution candidate pair (fij, r

′) we calculate in Step 2a the number q of less
significant bits in r′ that match the bits of fij . Note that

r′|µ ≡E fij |µ ⇔ r′b = cij,b for all b = 0, . . . , µ− 1,

which is easy to check. If r′0 6= cij,0, we define q := 0. From the substitution
candidates we select the one with the largest number q of matching bits. If more
than one substitution leads to the same number of matching bits, we choose the one
with the least total number M of operands f ′ij in the term t′ in order to keep the
substitution as simple as possible. Condition 2b ensures that we do not generate
infinite chains of substitutions by excluding self-referencing term equations. If we
would allow to substitute fij for a term t′(fij) we risked the successive generation
of an infinite term r = t(t′(. . . (t′(fij)))).

After having selected a candidate, we truncate the resultant r and the term t
to the valid width of the substitution and apply the substitution fi⋆j⋆ |q⋆ → t⋆|q⋆

in Step 4 which yields the valid equation r̃ = t̃. Both sides of this equation are
normalized in Step 5 after which r̃ becomes a simple bit concatenation. If the match
of operand bits to resultant bits was exhaustive, we have r = r̃, and Step 6 replaces
the original term in T by the substituted version. Otherwise, we extend the term
equation set T by r̃ = t̃ which is only valid on a lower significant part.
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Steps 3 to 6 of the term algebra preprocessing Algorithm 15.2 are called itera-
tively until no more problem reductions or term substitutions were applied. After-
wards we inspect the final term equation database T in Step 8 to find pairs of term
equations r = t and r′ = t′ for which the terms t and t′ are equivalent at least on
a subset of the bits. Step 8a calculates the maximal width µ up to which the two
terms are equivalent. In Step 8b the corresponding resultant bits are aggregated. If
all bits up to the full width βr′ of the shorter or equal resultant r′ were aggregated,
the term equation r′ = t′ can be deleted from T in Step 8c.

Remark 15.8. Due to the fixings and aggregations of register bits ̺jb and due
to the constraint rewritings performed in other presolving algorithms, our term
rewriting system is not restricted to add, mult, and, or, xor, uand, uor, and
uxor constraints. Instead, we also implicitly consider most of the other circuit
operators, namely minus, sub, not, zeroext, signext, and concat, as well as
shl, shr, slice, read, and write if the offset operand is fixed.

In the current version of our code, we do not exploit the distributivity law, and
we do not mix addition and multiplication constraints in the substitution step. We
expect that further preprocessing improvements can be achieved by incorporating
other constraints like eq, lt, ite or the subword access operators with variable offset
operand into the term algebra and by exploiting rewriting rules like the distributivity
law which link different operations.

15.2 Irrelevance Detection

In order to prove the validity of a given property, often only a part of the circuit has
to be considered. For example, if a property on an arithmetical logical unit (ALU)
describes a certain aspect of the addition operation, the other operations of the
ALU are irrelevant. Suppose that ite constraints select the operation of the ALU
by routing the output of the desired operation to the output register of the circuit,
compare Figure 14.8 of Section 14.15 on page 252. The calculated values of the other
operations are linked to the discarded inputs of the ite constraints and thereby do
not contribute to the output of the circuit. These irrelevant constraints and the
involved intermediate registers have no influence on the validity of the property and
can therefore be removed from the problem instance.

The detection of irrelevant parts of the circuit can also be applied to the local
subproblems during the branch-and-bound search. In particular, irrelevant register
variables need not to be considered as branching candidates. Disregarding locally
irrelevant variables in the branching decision can be seen as replacement for the more
indirect method of selecting the next branching variable under the literals involved
in the recent conflict clauses, which is employed in state-of-the-art SAT solvers [100].

The identification and removal of irrelevant parts of the circuit is also known as
localization reduction which was developed by Kurshan [137] or cone of influence
reduction, which is explained, for example, in Biere et al. [43] and Clarke et al. [61].
Similar ideas can be found in the program slicing technique of Weiser [210, 211]
for decomposing software systems. However, these techniques are employed for SAT
based property checking only in presolving and not during the traversal of the search
tree. Current state-of-the-art SAT solvers rely on a very fast processing of the indi-
vidual subproblems, spending most of the time for Boolean constraint propagation.
Incorporating local cone of influence reduction would lead to a large increase in the
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subproblem processing time. Thus, the performance of SAT solvers would most
likely deteriorate. In contrast, our constraint integer programming solver spends
much more time on each individual subproblem with the hope that this will be
compensated by a much smaller search tree. The additional overhead to further
prune locally irrelevant parts of the circuit is negligible, in particular compared to
the time needed to solve the LP relaxations and to execute the domain propagation
algorithms.

We implemented the irrelevance detection as part of the domain propagation and
presolving algorithms of the circuit constraint handlers, see Chapter 14. The basic
reasoning is as follows: whenever a register ̺j is only used in a single constraint
Ci, and for all values of the other registers involved in Ci there exists a value for
̺j such that the constraint is feasible, we can delete Ci from the problem. If a
counter-example for the property is found, we can calculate a valid value for ̺j in
a postprocessing stage. Because all circuit operations are totally defined, we can
in particular delete constraints for which the resultant r is not used in any other
constraint. For certain operators, however, irrelevance detection can also be applied
to input registers.

The irrelevance detection procedure is illustrated in Algorithm 15.7. In Step 1
the function graph G = (V,A) is created. Recall that this is a directed bipartite
graph G = (V̺ ∪ VC, A) with two different types of nodes, namely register nodes
V̺ = {̺1, . . . , ̺n} and constraint nodes VC = {C1, . . . , Cm}. The arc set is defined as

A = {(̺j , Ci) | register ̺j is input of circuit operation Ci}

∪ {(Ci, ̺j) | register ̺j is output of circuit operation Ci}.

Note that although and and xor constraints are replaced in presolving by a
corresponding number of unary uand and uxor constraints, they are still repre-
sented as binary and and xor constraints in the function graph in order to preserve
the structure of the graph. Additionally, whenever a constraint is deleted from the
problem because the register bits are fixed in a way such that the constraint will
always be feasible, its representative in the function graph is retained.

Constant registers in the property checking problem cannot be set to a matching
value while postprocessing a partial solution. Therefore, we have to make sure that
they are not used to detect the irrelevance of a constraint. This is achieved by adding
an extra node λ to the vertex set of G and linking it to the constant register vertices
̺j in Step 2, thereby increasing their degree d(̺j) := d+(̺j) + d−(̺j).

Step 3 processes special situations in mult and ite constraints. If one of the
input registers of a mult constraint r = mult(x, y) is fixed to zero, the resultant r
will always be zero, independently from the value of the other operand. Therefore,
we can unlink the other operand from the constraint vertex. If the selection operand
x of an ite constraint r = ite(x, y, z) is fixed, the operand that is not selected by x
does not contribute to the resultant. Again, it can be unlinked from the constraint
vertex. If the two input registers y and z are equivalent, the resultant r will also
be equal to this single value, independently from the selection operand x. Thus, we
can unlink x from the ite constraint.

Finally, in Step 4 we check for irrelevant constraints. If the degree d(r) of the
resultant vertex of a constraint is equal to one, the resultant register is not used
in any other constraint and is detected by Condition 4a to be irrelevant for the
validity of the property. We can delete the constraint and its resultant register
from the problem and calculate the register’s value in a postprocessing step if a
counter-example has been found.
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Algorithm 15.7 Irrelevance Detection

1. Construct the function graph G = (V,A) of the property checking problem,
see Section 13.2.

2. Set V := V ∪ {λ}. For all constant registers ̺j add an arc (λ, ̺j) to A.

3. For all constraints Ci ∈ VC with the indicated constraint type:

(a) r = mult(x, y):
i. If x = 0, remove (y, Ci) from A.

ii. If y = 0, remove (x, Ci) from A.

(b) r = ite(x, y, z):
i. If x = 1, remove (z, Ci) from A.

ii. If x = 0, remove (y, Ci) from A.
iii. If y ⋆= z, remove (x, Ci) from A.

4. For all constraints Ci ∈ VC with Ci = {r = op(x, y, z)}:
If one of the following holds for the indicated constraint type:

(a) any constraint: d(r) = 1,

(b) r = add(x, y): d(x) = 1 or d(y) = 1,

(c) r = mult(x, y): x, y ∈ δ+(Ci) and d(x) = d(y) = 1,

(d) r = not(x): d(x) = 1,

(e) r = and(x, y): d(x) = d(y) = 1,

(f) r = xor(x, y): d(x) = 1 or d(y) = 1,

(g) r = uand(x): d(x) = 1,

(h) r = uxor(x): d(x) = 1,

(i) r = eq(x, y): d(x) = 1 or d(y) = 1,

(j) r = ite(x, y, z):
i. x, y ∈ δ+(Ci) and d(x) = d(y) = 1, or

ii. x, z ∈ δ+(Ci) and d(x) = d(z) = 1, or
iii. y, z ∈ δ+(Ci) and d(y) = d(z) = 1,

(k) r = concat(x, y): d(x) = d(y) = 1,

the constraint is irrelevant. Delete Ci from the (sub)problem and from the
(local) function graph G.

Conditions 4b to 4k check for additional situations in which the constraint and
one or more of the involved registers are irrelevant. If one of the operand registers in
an add, xor, or eq constraint is not used anywhere else, we can choose its value for
an arbitrary partial solution in such a way, that the respective constraint becomes
feasible. Consider the case d(x) = 1. The constraint r = add(x, y) can be made
feasible for any given r and y by setting x = sub(r, y). If r = xor(x, y) we have to
calculate x = xor(r, y). In the case r = eq(x, y) we have to set x = y if r = 1, and
can choose any x 6= y if r = 0. Therefore, constraints of these types are detected to
be irrelevant if d(x) = 1 or d(y) = 1 by Conditions 4b, 4f, and 4i.

If all involved operands of a mult, not, and, uand, uxor, or concat constraint
have a degree of one in the function graph G, we can find operand values for any
given resultant r such that the constraint is feasible. In the case of mult constraints,
however, we also have to check whether the operands are still linked to the constraint
since the corresponding arcs could already have been deleted in Step 3a. If both
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links still exist, we can always choose x = r and y = 1 to yield a valid constraint
r = mult(x, y). Analogous postprocessings for a given resultant value r can be
performed for the other constraints:

⊲ x = not(r) for not constraints,

⊲ x = y = r for and constraints,

⊲ x = 0 if r = 0 and x = (1, . . . , 1) if r = 1 for uand constraints,

⊲ x = 0 if r = 0 and x = (0, . . . , 0, 1) if r = 1 for uxor constraints, and

⊲ x = (rβr−1, . . . , rβy
) and y = (rβy−1, . . . , r0) for concat constraints.

For an ite constraint r = ite(x, y, z) we can detect irrelevance in the following
situations. If the selection operand x and one of the case operands y or z have
both a degree of one and are still linked to the constraint, irrelevance is detected
by Conditions 4(j)i or 4(j)ii, respectively. Assume d(x) = d(y) = 1. For a given
resultant value r and operand value z, we can always set x = 1 and y = r to turn
r = ite(x, y, z) into a feasible constraint. On the other hand, if d(x) = d(z) = 1
we just have to set x = 0 and z = r and do not have to care about the given value
of y. If neither of y and z is appearing in the remaining problem instance, i.e.,
y, z ∈ δ+(Ci) and d(y) = d(z) = 1, we can postprocess y = z = r independently of
the given value of x.





Chapter 16

Search

A branch-and-bound algorithm mainly consists of three steps that are iterated until
the given problem instance has been solved, see Section 2.1:

1. Select a subproblem.

2. Process the subproblem.

3. If not pruned, split the subproblem into smaller parts.

The subproblem processing Step 2 for the property checking problem is covered in
Chapter 14. The current chapter explains the branching strategy for Step 3 and the
node selection rule for Step 1 that we employ.

16.1 Branching

The branching strategy in a branch-and-bound algorithm defines how the problem
is recursively split into smaller subproblems, compare Section 2.1 and Chapter 5.
Therefore, it is the most important component for determining the shape of the
search tree. The ultimate goal of the branching strategy is to partition the problem
instance in such a way that it can be solved by processing only a minimal number
of subproblems. This global objective, however, is practically impossible to achieve.
Instead, since we have to make our branching decision locally at each subproblem,
we can at best try to follow some local criteria and hope that this yields a small
search tree for the global problem.

As mentioned in Section 2.1, the most popular branching strategy is to branch
on variables, i.e., split the domain of a single variable into two parts. Since in
branch-and-bound solvers the domains of the variables are usually treated implic-
itly, branching on variables has the advantage that one does not have to explicitly
add constraints to the subproblems, thereby avoiding overhead in the subproblem
management. In particular, this is true for mixed integer programming and for
SAT solving. For the same reason, we also apply branching on variables to the
constraint integer programming model of the property checking problem.

In mixed integer programming, the branching selection is mostly guided by the
LP relaxation. Branching takes place on integer variables that have a fractional
value in the current LP solution. The idea is that the LP relaxation is undecided
about these variables and we have to help the LP by forcing a decision. Indeed, one
can very often either find an integral LP solution after only a very few (compared
to the number of integer variables) branching steps or drive the LP relaxation to
infeasibility. Since we also have an LP relaxation at hand for the property checking
CIP, we adopt this idea and branch on integer variables with fractional LP solution
value. In contrast to mixed integer programming, an integral LP solution is not
necessarily a feasible CIP solution for the property checking problem, because not
all circuit operators are linearized. Therefore, if the LP solution is integral but still
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not feasible, we have to branch on an integer variable with integral LP solution
value.

We saw in Chapter 5 that for mixed integer programming the change in the
objective value of the LP relaxation is a good indicator for selecting the branching
variable. The full strong branching strategy yields very good results in the num-
ber of branching nodes needed to solve the problem instances. In this strategy, we
evaluate the impact of a potential branching decision by solving the two correspond-
ing branching LPs. This is performed for every integer variable with fractional LP
value. Then, we choose the variable for which the objective value of the branching
LPs increased the most. Unfortunately, full strong branching is very expensive such
that the reduction in the number of branching nodes is usually outweighed by the
time needed to choose the branching variables. Therefore, one tries to approximate
full strong branching by less expensive methods, for example by estimating the LP
objective increase instead of calculating it by solving the branching LPs.

In contrast to most mixed integer programs, the property checking problem does
not contain an objective function. As we model the problem as constraint integer
program, we have to specify objective function coefficients for the variables, but
these are just artificial values. Therefore, it seems unlikely that the increase in the
objective value of the LP relaxations gives meaningful hints about the quality of the
branching candidates.

The satisfiability problem does not contain an objective function either. Cur-
rent SAT solvers usually select the branching variable by some variant of the vari-
able state independent decaying sum (VSIDS) strategy, see Moskewicz et al. [168].

This branching rule basically prefers variables that appear in the recently gener-
ated conflict clauses. Goldberg and Novikov [100] improved this scheme in their
solver BerkMin by noting that not only the variables in the final conflict clauses
should be regarded as promising branching candidates but also all other variables
involved in the conflicts, i.e., all variables on the conflict side of the conflict graphs,
see Chapter 11.

In our property checking solver, we use a mixture of MIP and SAT branching
strategies. Like in MIP, we select the branching variable under all integer variables
with fractional LP values. If the LP solution is integral but still not feasible for the
CIP, we consider all unfixed integer variables (i.e., integer variables with at least two
values in their current domain) as branching candidates. From these candidates we
choose the branching variable in a SAT-like manner by applying the VSIDS strategy
of BerkMin. Additionally, we exploit our knowledge about the structure of the
circuit by disregarding variables that belong to registers which are irrelevant for
the current subproblem. Such registers are identified by the irrelevance detection
described in Section 15.2.

16.2 Node Selection

The node selection strategy in a branch-and-bound solver determines in which order
the nodes of the search tree, defined by the branching rule, are traversed. In mixed
integer programming one usually employs a mixture of best first and depth first
search, see Chapter 6. Best first search aims to improve the global dual bound as
fast as possible by always selecting the subproblem with the lowest dual bound as
next subproblem to be processed. In fact, for a fixed branching strategy, a pure
best first search traversal of the tree would solve the problem instance with the
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minimal number of branching nodes. The disadvantage of best first search is that
it entails a large amount of switching between subproblems that are very far away
from each other in the search tree. This involves significant subproblem management
overhead. Therefore, the best first search strategy is supplemented with depth first
search elements: after a best subproblem was selected, the search continues with a
few iterations of depth first search, after which again a best subproblem is selected.

Since SAT does not contain an objective function, best first search does not
make sense for SAT. Indeed, state-of-the-art SAT solvers employ pure depth first
search. This has several advantages in the context of SAT. First, the subproblem
management is reduced to a minimum. In fact, SAT solvers completely avoid the
explicit generation of the search tree. Instead, they only keep track of the path to
the current subproblem and process the tree implicitly by using backtracking and
by generating conflict clauses, see Chapter 11. The second advantage is that the
management of conflict clauses is much easier. Most conflict clauses are only useful
in a certain part of the search tree, namely in the close vicinity of the node for
which they were generated. Since depth first search completely solves the nodes in
this part of the tree before moving on to other regions, one can effectively identify
conflict clauses that are no longer useful and delete them from the clause database,
see Goldberg and Novikov [100] for details. Nevertheless, depth first search entails
the risk of getting stuck in an infeasible region of the search tree while there are
lots of easy to find feasible solutions in other parts of the tree. To avoid such a
situation, SAT solvers perform frequent restarts, which means to completely undo
all branching decisions and start the search from scratch. Since conflict clauses are
retained, the information gathered during the search is preserved.

Like the satisfiability problem, the property checking problem does not contain
an objective function. Therefore, we mainly employ depth first search. The problem
of getting stuck in infeasible or fruitless parts of the tree, however, cannot be resolved
by restarts as easily as in SAT solvers. Because the effort in solving the LPs would
be lost, restarts were too costly. Therefore, we enrich the depth first search strategy
by a small amount of best first search: after every 100 nodes of depth first search, we
select a best node from the tree and continue depth first search from this node. The
subproblem management overhead for this combined strategy is marginal, the effect
is similar to the restarts of SAT solvers, but the LP relaxations of the processed
nodes do not have to be solved again. A disadvantage compared to actual restarts
is that we cannot undo our branching decisions.





Chapter 17

Computational Results

In this chapter we examine the computational effectiveness of the described con-
straint integer programming techniques on industrial benchmarks obtained from ver-
ification projects conducted by OneSpin Solutions. The instances are described
in Appendix A.4.

In a first series of benchmarks, we compare the CIP approach with the current
state-of-the-art technology, which is to apply a SAT solver to the gate level represen-
tation of the circuit and property. Before the SAT solver is called, a preprocessing
step is executed to simplify the instance at the gate level, which is based on binary
decision diagrams (BDDs). We use MiniSat 2.0 [82] to solve the resulting SAT in-
stances. We also tried MiniSat 1.14, Siege v4 [196], and zChaff 2004.11.15 [168],
but MiniSat 2.0 turned out to perform best on most of the instances of our test set.

A second set of benchmarks evaluates the impact of the problem specific presolv-
ing methods that we described in Chapter 15, of probing as explained in Section 10.6,
and of conflict analysis, which is described in Chapter 11. We also performed ad-
ditional benchmark tests to assess the performance impact of other components like
the branching and node selection strategies, or the specification of the objective
function, but the alternative settings that we tried did not have a strong influence
on the performance.

17.1 Comparison of CIP and SAT

Tables 17.1 and 17.2 present the comparison of MiniSat and the CIP approach on
an arithmetical logical unit (ALU). This circuit is able to perform add, sub, shl,
shr, and signed and unsigned mult operations on two input registers. We consider
multiple versions of the circuit which differ in the width of the input registers. The
width is depicted in the second column of the tables. Apart from the number of
branching nodes and the time in CPU seconds needed to solve each instance, the
other entries of the tables show the number of clauses and variables of the SAT
representations in conjunctive normal form (CNF) and the number of constraints
and variables of the CIP instances. Note that the registers in the CIP formulation
are represented as words and bits which are linked via special constraints, see Sec-
tion 14.1. Thus, each register in the register transfer level description gives rise to
one additional constraint, and the number of variables shown in the tables equals
the total number of bits in the registers plus the number of 16-bit words that cover
the registers.

Overall, we investigated 11 different properties of the ALU circuit. Six of them
turned out to be trivial for both, the SAT and the CIP solver, and they are not
listed in the tables. From the remaining five properties, two are invalid and three
are valid.

The results on the invalid properties are shown in Table 17.1. Recall that for
such instances the task is to find a feasible solution, i.e., a counter-example to the
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SAT CIP

Property width Clauses Vars Nodes Time Constrs Vars Nodes Time

add_fail 5 181 80 1 0.0 96 293 3 0.0

10 326 145 1 0.0 96 356 3 0.0

15 471 210 1 0.0 96 426 3 0.0

20 616 275 1 0.0 96 491 2 0.0

25 761 340 1 0.0 96 551 2 0.0

30 906 405 1 0.0 95 610 2 0.0

35 1 051 470 1 0.0 93 661 2 0.0

40 1 196 535 1 0.0 93 731 2 0.0

sub_fail 5 223 94 1 0.0 103 356 3 0.0

10 428 179 1 0.0 103 459 3 0.0

15 633 264 1 0.0 103 577 3 0.0

20 838 349 1 0.0 103 682 3 0.0

25 1 043 434 1 0.0 103 782 3 0.1

30 1 248 519 1 0.0 102 886 3 0.1

35 1 453 604 1 0.0 100 980 4 0.1

40 1 658 689 1 0.0 100 1 090 4 0.1

Table 17.1. Comparison of SAT and CIP on invalid ALU properties.

property. As can be seen in the table, both solvers accomplish this task very quickly,
even for the largest of the considered register widths.

The most interesting numbers in this table are the sizes of the problem instances.
Obviously, the BDD preprocessing applied prior to generating the CNF input for

the SAT solver did a great job to reduce the size of the instance. The addition
and subtraction operations can be encoded quite easily on the gate level, such that
the number of clauses in the SAT representation is rather small. The number of
remaining variables for SAT is even smaller than for the CIP approach, even if one
accounts for the double modeling on word and bit level in the CIP representation. Of
course, the presolving of the CIP solver is also able to reduce the size of the instances
considerably. For example, the presolved add_fail instance on input registers of
width β = 5 consists of only 61 constraints and 34 variables, including the necessary
auxiliary variables for the LP relaxation.

Table 17.2 presents the benchmark results on the valid ALU properties. Here,
the solver has to prove the infeasibility of the instances. The muls property involves
the verification of the signed multiplication operation. As one can see, for register
widths of 10 bits or larger, the SAT approach cannot prove the validity of the
property within the time limit of 2 hours. Additionally, the CNF formula is already
quite large with almost 200000 clauses and more than 60000 variables for 40-bit
registers. This is due to the fact that the multiplication has to be represented as
complex addition network in the gate level description. In contrast, the sizes of the
CIP models are similar to the ones for the invalid ALU properties. Because the
structural information of the circuit is still available at the RT level, the CIP solver
is able to prove the property already in the presolving step, which is denoted by the
branching node count of 0.

The neg_flag property represents a validity check on the sign flag of the status
register. In contrast to the previously described properties, it does not select a
specific arithmetical operation but deals with all operations simultaneously. On
these instances, the CIP approach is again superior to SAT, although it cannot prove
the property in presolving and has to revert to branching. Still, it can solve even
the largest instances within a reasonable time, while the SAT approach is already
considerably slower for 10-bit registers and fails to solve the instances with registers
of width β = 15 or larger.
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SAT CIP

Property width Clauses Vars Nodes Time Constrs Vars Nodes Time

muls 5 3 343 1 140 13 864 0.5 79 302 0 0.0

10 12 828 4 325 — >7200.0 99 470 0 0.0

15 28 463 9 560 — >7200.0 116 646 0 0.0

20 50 248 16 845 — >7200.0 136 947 0 0.1

25 78 183 26 180 — >7200.0 156 1 294 0 0.1

30 112 268 37 565 — >7200.0 176 1 684 0 0.1

35 152 503 51 000 — >7200.0 196 2 144 0 0.2

40 198 888 66 485 — >7200.0 216 2 651 0 0.3

neg_flag 5 3 436 1 166 3 081 0.1 318 1 103 45 0.8

10 12 826 4 306 941 867 100.0 340 1 439 50 3.6

15 28 366 9 496 — >7200.0 352 1 693 64 11.6

20 50 056 16 736 — >7200.0 374 2 220 42 36.3

25 77 896 26 026 — >7200.0 394 2 726 107 81.8

30 111 886 37 366 — >7200.0 413 3 274 53 136.6

35 152 026 50 756 — >7200.0 422 3 714 35 218.4

40 198 316 66 196 — >7200.0 442 4 385 55 383.5

zero_flag 5 3 119 1 109 79 0.0 323 1 127 54 2.3

10 9 974 3 454 137 0.0 345 1 485 28 0.6

15 20 729 7 099 176 0.1 357 1 763 37 1.6

20 35 384 12 044 73 0.1 379 2 322 26 4.0

25 53 939 18 289 202 0.2 399 2 851 78 6.2

30 76 394 25 834 221 0.4 418 3 424 73 10.7

35 102 749 34 679 185 0.5 427 3 895 63 15.6

40 133 004 44 824 103 0.6 447 4 589 185 379.7

Table 17.2. Comparison of SAT and CIP on valid ALU properties.

Similar to neg_flag, the zero_flag property is “global” in the sense that it
does not focus on a single arithmetical or logical operation in the ALU circuit. It
describes the desired behavior of the zero flag in the status register. The performance
of the CIP solver on these instances is better than the neg_flag performance. Note
that the long runtime on the 40-bit instance is an exception, which is due to “bad
luck” in probing, see Section 10.6 (97 % of the total time is spent in presolving, most
of it in probing). The 39-bit instance (not shown in the table) solves in 39.6 seconds.
As shown in Section 17.3, the 40-bit instance can be solved without probing in 9.3
seconds.

In contrast to the neg_flag results, the SAT approach is surprisingly efficient on
the zero_flag property. This result may be related to the difference of signed and
unsigned multiplication: the property on unsigned multiplication is trivial for both
SAT and CIP and is therefore not listed in the tables, while the signed multiplication
instances of larger register widths are intractable for SAT. Since the zero status flag
does not depend on the sign of the result, this property is easier to prove for SAT
solvers than the neg_flag property.

Tables 17.3 and 17.4 show the results for properties of a pipelined adder. The
underlying chip design is very similar to the circuit of Example 13.2, which is depicted
in Figure 13.1 on page 191. It has one input register and an internal accumulator
register, which adds up the values assigned to the input during consecutive time
steps. Additionally, it has a reset signal that clears the accumulator. The properties
verify certain variants of the commutative and associative law on inputs over four
consecutive time steps. Again, we distinguish between the invalid properties of
Table 17.3 and the valid properties of Table 17.4.

As can be seen in Table 17.3, finding counter-examples for the invalid PipeAd-
der instances is very easy for both solvers. Since the CIP data structures are much
more complex and involve a larger overhead, the SAT solver is slightly faster. It is
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SAT CIP

Property width Clauses Vars Nodes Time Constrs Vars Nodes Time

#1 5 3 126 1 204 136 0.0 281 706 6 0.1

10 5 691 2 189 233 0.0 281 1 071 6 0.1

15 8 272 3 174 592 0.0 281 1 436 6 0.1

20 10 821 4 159 436 0.0 281 1 874 6 0.2

25 13 394 5 144 1 209 0.1 281 2 239 6 0.2

30 15 967 6 129 984 0.1 281 2 604 6 0.2

35 18 524 7 114 1 552 0.1 281 3 042 6 0.3

40 21 081 8 099 1 283 0.1 281 3 407 6 0.4

#2 5 2 271 898 1 0.0 228 620 4 0.1

10 4 276 1 683 62 0.0 228 965 17 0.1

15 6 281 2 468 148 0.0 228 1 310 60 0.2

20 8 286 3 253 1 0.0 228 1 724 76 0.3

25 10 291 4 038 239 0.0 228 2 069 50 0.3

30 12 296 4 823 423 0.0 228 2 414 109 0.4

35 14 301 5 608 1 0.1 228 2 828 125 0.6

40 16 306 6 393 1 0.1 228 3 173 138 0.7

#3 5 2 475 966 91 0.0 236 648 5 0.1

10 4 675 1 816 389 0.0 236 1 009 5 0.1

15 6 875 2 666 388 0.0 236 1 373 4 0.2

20 9 075 3 516 914 0.0 236 1 802 34 0.2

25 11 275 4 366 1 745 0.0 236 2 162 4 0.2

30 13 475 5 216 1 823 0.1 236 2 522 104 0.5

35 15 675 6 066 2 218 0.1 236 2 955 5 0.4

40 17 875 6 916 3 729 0.1 236 3 315 31 0.7

#4 5 2 478 967 1 0.0 248 663 3 0.0

10 4 678 1 817 1 0.0 248 1 024 4 0.1

15 6 878 2 667 1 0.0 248 1 388 3 0.1

20 9 078 3 517 1 0.0 248 1 817 4 0.1

25 11 278 4 367 1 0.0 248 2 177 4 0.1

30 13 478 5 217 1 0.0 248 2 537 4 0.1

35 15 678 6 067 1 0.0 248 2 970 5 0.1

40 17 878 6 917 1 0.0 248 3 330 96 0.3

#5 5 2 778 1 067 1 0.0 264 725 3 0.0

10 5 278 2 017 1 0.0 264 1 126 3 0.1

15 7 778 2 967 1 0.0 264 1 536 3 0.1

20 10 278 3 917 1 0.0 264 2 007 4 0.1

25 12 778 4 867 1 0.0 264 2 407 4 0.1

30 15 278 5 817 1 0.0 264 2 807 4 0.1

35 17 778 6 767 1 0.0 264 3 288 4 0.1

40 20 278 7 717 1 0.0 264 3 688 4 0.1

#8 5 2 781 1 068 107 0.0 264 725 5 0.0

10 5 281 2 018 247 0.0 264 1 126 5 0.1

15 7 781 2 968 863 0.0 264 1 536 64 0.1

20 10 281 3 918 1 253 0.0 264 2 007 20 0.1

25 12 781 4 868 1 618 0.0 264 2 407 60 0.2

30 15 281 5 818 1 626 0.0 264 2 807 108 0.2

35 17 781 6 768 2 549 0.1 264 3 288 40 0.2

40 20 281 7 718 3 152 0.1 264 3 688 56 0.2

Table 17.3. Comparison of SAT and CIP on invalid PipeAdder properties.
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SAT CIP

Property width Clauses Vars Nodes Time Constrs Vars Nodes Time

#6 5 2 778 1 067 4 321 0.0 264 725 0 0.0

10 5 278 2 017 24 195 0.2 264 1 126 0 0.0

15 7 778 2 967 58 839 0.5 264 1 536 0 0.0

20 10 278 3 917 83 615 0.8 264 2 007 0 0.0

25 12 778 4 867 145 377 1.3 264 2 407 0 0.0

30 15 278 5 817 191 388 1.6 264 2 807 0 0.1

35 17 778 6 767 214 307 2.1 264 3 288 0 0.1

40 20 278 7 717 291 160 2.9 264 3 688 0 0.1

#7 5 2 778 1 067 5 696 0.0 264 725 0 0.0

10 5 278 2 017 59 387 0.6 264 1 126 0 0.1

15 7 778 2 967 128 369 1.3 264 1 536 0 0.1

20 10 278 3 917 165 433 1.9 264 2 007 0 0.1

25 12 778 4 867 187 012 2.2 264 2 407 0 0.1

30 15 278 5 817 149 481 1.7 264 2 807 0 0.1

35 17 778 6 767 1 343 206 22.5 264 3 288 0 0.1

40 20 278 7 717 892 946 16.4 264 3 688 0 0.2

#9 5 2 778 1 067 14 901 0.1 261 724 0 0.0

10 5 278 2 017 630 929 8.9 261 1 115 0 0.1

15 7 778 2 967 1 109 126 21.3 261 1 515 0 0.1

20 10 278 3 917 24 485 660 764.0 261 1 974 0 0.1

25 12 778 4 867 119 922 885 5554.4 261 2 364 0 0.1

30 15 278 5 817 2 696 270 81.6 261 2 760 0 0.1

35 17 778 6 767 4 562 830 177.1 261 3 223 0 0.2

40 20 278 7 717 64 749 573 4087.1 261 3 613 0 0.2

#10 5 2 778 1 067 4 321 0.0 261 724 0 0.0

10 5 278 2 017 24 195 0.2 261 1 115 0 0.0

15 7 778 2 967 58 839 0.5 261 1 515 0 0.0

20 10 278 3 917 83 615 0.8 261 1 974 0 0.0

25 12 778 4 867 145 377 1.3 261 2 364 0 0.1

30 15 278 5 817 191 388 1.6 261 2 760 0 0.1

35 17 778 6 767 214 307 2.1 261 3 223 0 0.1

40 20 278 7 717 291 160 2.9 261 3 613 0 0.1

Table 17.4. Comparison of SAT and CIP on valid PipeAdder properties.

interesting to note that the number of CIP constraints stays constant for increas-
ing register widths, while the number of clauses in the SAT representation grows
in a linear fashion. This is because the number of logical gates that are needed to
implement an addition grows linearly with the number of input bits.

The results for the valid properties of the PipeAdder circuit are shown in Ta-
ble 17.4. All of the instances are solved by the CIP presolving techniques almost
immediately. The properties #6, #7, and #10 are also quite easy to prove with SAT
techniques. In contrast, property #9 poses some difficulties for MiniSat 2.0. This
seems to be an issue which is specific to MiniSat 2.0, since all other SAT solvers
we tried show a much more regular behavior. In particular, their runtimes increase
monotonously with the widths of the input registers. The fastest SAT solver on
property #9 is Siege, which solves the 40-bit version in 146.8 seconds. This is,
however, considerably slower than the 0.2 seconds needed with our CIP approach.

Tables 17.5 and 17.6 also deal with a circuit that implements a pipelined arith-
metical operation. In contrast to the pipelined adder of the previous tables, it
performs a multiplication of the consecutively provided inputs.

The results of the pipelined multiplier are similar in quality as for the adder:
counter-examples for invalid properties can be found faster with SAT techniques,
while CIP is superior in proving the infeasibility of the instances that model valid
properties. The differences in the runtime, however, are much more pronounced: for
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SAT CIP

Property width Clauses Vars Nodes Time Constrs Vars Nodes Time

#1 5 4 254 1 578 122 0.0 305 730 6 0.3

10 11 994 4 288 187 0.0 305 1 095 28 0.6

15 23 875 8 373 669 0.1 305 1 460 6 0.7

20 39 849 13 833 516 0.2 305 1 898 6 1.6

25 59 972 20 668 1 283 0.3 305 2 263 6 2.3

30 84 220 28 878 4 410 0.4 305 2 628 6 4.7

35 112 577 38 463 3 876 0.6 305 3 066 6 7.7

40 145 059 49 423 569 0.7 305 3 431 7 10.5

#2 5 3 627 1 356 73 0.0 252 664 15 0.2

10 10 997 3 936 143 0.0 252 1 029 21 2.2

15 22 512 7 895 418 0.1 252 1 394 45 1.2

20 38 112 13 221 808 0.2 252 1 832 42 2.8

25 57 867 19 928 2 425 0.3 252 2 197 39 3.5

30 81 747 28 010 2 144 0.4 252 2 562 32 4.6

35 109 732 37 463 6 707 0.6 252 3 000 82 7.7

40 141 842 48 291 4 639 0.8 252 3 365 43 9.4

#3 5 4 053 1 498 72 0.0 261 714 15 0.7

10 12 653 4 488 281 0.1 261 1 118 15 3.0

15 26 223 9 132 702 0.1 261 1 519 33 2.6

20 44 703 15 418 1 817 0.2 261 1 996 20 9.3

25 68 163 23 360 3 531 0.3 261 2 399 20 13.5

30 96 573 32 952 6 798 0.6 261 2 799 36 20.4

35 129 913 44 190 10 432 1.0 261 3 277 45 21.8

40 168 203 57 078 14 881 1.2 261 3 680 46 28.8

#4 5 4 056 1 499 50 0.0 273 729 11 0.5

10 12 656 4 489 132 0.0 273 1 133 21 2.8

15 26 226 9 133 191 0.1 273 1 534 42 6.2

20 44 706 15 419 880 0.2 273 2 011 28 11.1

25 68 166 23 361 1 615 0.2 273 2 414 61 23.1

30 96 576 32 953 1 587 0.3 273 2 814 38 33.0

35 129 916 44 191 2 517 0.5 273 3 292 120 6.3

40 168 206 57 079 2 514 0.7 273 3 695 90 7.3

#5 5 4 800 1 747 62 0.0 289 821 16 1.1

10 15 770 5 527 558 0.0 289 1 301 25 5.4

15 33 360 11 511 935 0.1 289 1 772 33 15.0

20 57 510 19 687 2 216 0.2 289 2 327 42 32.5

25 88 290 30 069 3 435 0.3 289 2 806 85 52.0

30 125 670 42 651 6 458 0.6 289 3 276 75 92.0

35 169 630 57 429 8 531 0.8 289 3 832 44 55.1

40 220 190 74 407 10 970 1.0 289 4 311 422 125.2

#8 5 4 944 1 795 40 0.0 289 821 51 1.2

10 16 079 5 630 212 0.1 289 1 301 133 8.1

15 33 834 11 669 587 0.1 289 1 772 55 19.8

20 58 149 19 900 1 597 0.2 289 2 327 154 43.1

25 89 094 30 337 1 727 0.3 289 2 806 279 45.5

30 126 639 42 974 2 530 0.6 289 3 276 73 89.9

35 170 764 57 807 2 596 0.7 289 3 832 92 118.9

40 221 489 74 840 6 834 1.1 289 4 311 42 91.4

Table 17.5. Comparison of SAT and CIP on invalid PipeMult properties.
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SAT CIP

Property width Clauses Vars Nodes Time Constrs Vars Nodes Time

#6 5 4 800 1 747 113 585 2.8 289 821 0 0.0

10 15 770 5 527 — >7200.0 289 1 301 0 0.1

15 33 360 11 511 — >7200.0 289 1 772 0 0.1

20 57 510 19 687 — >7200.0 289 2 327 0 0.2

25 88 290 30 069 — >7200.0 289 2 806 0 0.3

30 125 670 42 651 — >7200.0 289 3 276 0 0.4

35 169 630 57 429 — >7200.0 289 3 832 0 0.6

40 220 190 74 407 — >7200.0 289 4 311 0 0.7

#7 5 4 800 1 747 241 341 8.3 289 821 0 0.1

10 15 770 5 527 — >7200.0 289 1 301 0 0.2

15 33 360 11 511 — >7200.0 289 1 772 0 0.5

20 57 510 19 687 — >7200.0 289 2 327 0 1.0

25 88 290 30 069 — >7200.0 289 2 806 0 1.8

30 125 670 42 651 — >7200.0 289 3 276 0 2.9

35 169 630 57 429 — >7200.0 289 3 832 0 4.8

40 220 190 74 407 — >7200.0 289 4 311 0 6.8

#9 5 4 800 1 747 885 261 34.5 287 900 0 0.1

10 15 770 5 527 — >7200.0 287 1 442 0 0.5

15 33 360 11 511 — >7200.0 287 1 976 0 1.6

20 57 510 19 687 — >7200.0 287 2 594 0 3.5

25 88 290 30 069 — >7200.0 287 3 135 0 7.1

30 125 670 42 651 — >7200.0 287 3 672 0 11.6

35 169 630 57 429 — >7200.0 287 4 288 0 19.8

40 220 190 74 407 — >7200.0 287 4 832 0 27.9

#10 5 4 800 1 747 91 909 2.2 287 900 0 0.1

10 15 770 5 527 — >7200.0 287 1 442 0 0.1

15 33 360 11 511 — >7200.0 287 1 976 0 0.2

20 57 510 19 687 — >7200.0 287 2 594 0 0.4

25 88 290 30 069 — >7200.0 287 3 135 0 0.6

30 125 670 42 651 — >7200.0 287 3 672 0 0.8

35 169 630 57 429 — >7200.0 287 4 288 0 1.1

40 220 190 74 407 — >7200.0 287 4 832 0 1.5

Table 17.6. Comparison of SAT and CIP on valid PipeMult properties.

the invalid properties, CIP needs up to two minutes to produce a counter-example,
while MiniSat solves almost all of the instances within one second each. The
results for the valid properties reveal a runtime difference of a completely different
magnitude: while CIP can prove the infeasibility of the instances in presolving within
a few seconds, the SAT solver fails to verify the properties within the time limit for
register widths β ≥ 10.

Tables 17.7 and 17.8 show the SAT/CIP comparison for a DSP/IIR filter core
which we have obtained from the opencores.org website. In order to derive prop-
erty checking instances from the circuit, OneSpin Solutions constructed a set of
reasonable properties, which again includes invalid and valid properties. Within the
two years of the Valse-XT project, the tool chain of OneSpin Solutions that
converts the circuit and property specifications into CIP and SAT input has been
under continuous development. At different dates during the project we obtained
different versions of the instances, which are marked as ‘A’, ‘B’, and ‘C’ in the tables.

As before, we distinguish between the invalid and valid properties. The former
are contained in Table 17.7, which shows the usual behavior: SAT solvers are faster
to find counter-examples for invalid properties. The results on the valid Biquad
properties shown in Table 17.8 are also supporting the general trend that the CIP
approach is superior to SAT for proving the infeasibility of the instances. The most
prominent advantage can be observed for the g2_checkg2 property: these instances
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SAT CIP

Property Clauses Vars Nodes Time Constrs Vars Nodes Time

g3_checkreg1-A 3 595 1 270 89 0.0 154 1 070 6 1.2

g3_checkreg1-B 3 595 1 270 89 0.0 122 797 25 0.9

g3_checkreg1-C 3 643 1 286 192 0.0 121 795 25 0.9

g3_xtoxmdelay-A 841 447 1 0.0 820 2 833 37 0.5

g3_xtoxmdelay-B 838 445 1 0.0 136 898 31 0.1

g3_xtoxmdelay-C 838 445 1 0.0 135 896 31 0.1

g3_checkgfail-A 298 810 103 204 3 030 0.7 15 258 119 373 504 290.0

g3_checkgfail-B 168 025 58 924 8 528 0.6 3 646 24 381 236 29.2

g3_checkgfail-C 168 331 59 026 23 889 1.2 3 694 24 688 150 50.2

Table 17.7. Comparison of SAT and CIP on invalid Biquad properties.

can be solved with CIP in around 4 minutes while the SAT solver hits the time limit
for all of the three versions.

Finally, we apply SAT and CIP techniques on a multiplication circuit. There
are various possible bit level implementations of a multiplication operation. Two of
them are the so-called boothed and non-boothed variants. Having both signed and
unsigned multiplication, we end up with four different circuits, for which the results
are shown in Table 17.9.

The property that has to be checked is that the outcome of the bit level imple-
mentation of the multiplication is always equal to the register level multiplication
constraint. Thus, these instances are rather equivalence checking problems than
property checking problems, since the task is to show the equivalence of the register
transfer level representation and the chosen bit level implementation.

Since the Multiplier circuits are designed on bit level, all of the structure of the
multiplication is already missing. This suggests that almost all of the benefit of the
CIP approach vanishes. The only structured constraint in the CIP instance that can
be exploited is the single multiplication that represents the property. The results on
the smaller sized instances seem to support this concern: SAT is faster in proving
infeasibility than CIP for input registers of up to 9 bits. For the larger register
widths, however, the situation reverses. With constraint integer programming, one
can solve all of the instances within two hours, while the SAT solver fails on register
widths β ≥ 11 for the signed variants and for β ≥ 12 for the unsigned circuits.

We conclude from our experiments that applying constraint integer programming

SAT CIP

Property Clauses Vars Nodes Time Constrs Vars Nodes Time

g_checkgpre-A 46 357 16 990 463 851 22.2 2 174 13 359 1 163 14.2

g_checkgpre-B 46 916 17 171 1 109 042 57.6 1 616 10 745 2 086 12.3

g_checkgpre-C 46 918 17 172 625 296 29.1 1 694 11 046 1 886 15.3

g2_checkg2-A 52 305 18 978 — >7200.0 2 293 14 486 15 793 213.9

g2_checkg2-B 52 864 19 159 — >7200.0 1 714 11 567 21 346 204.8

g2_checkg2-C 52 866 19 160 — >7200.0 1 792 11 868 23 517 257.6

g25_checkg25-A — — 0 0.0 4 569 32 604 699 29.7

g25_checkg25-B 56 988 20 283 55 112 2.4 2 616 18 636 2 643 22.4

g25_checkg25-C 56 994 20 286 54 643 2.5 2 731 19 345 2 632 24.2

g3_negres-A 1 745 619 0 0.0 1 359 7 425 0 0.7

g3_negres-B 1 744 617 0 0.0 79 656 0 0.0

g3_negres-C 1 758 623 0 0.0 82 658 0 0.0

gBIG_checkreg1-A 143 263 49 637 1 558 916 287.2 6 816 37 104 3 293 170.7

gBIG_checkreg1-B 113 729 39 615 1 275 235 157.3 3 095 17 628 46 7.0

gBIG_checkreg1-C 113 729 39 632 1 211 654 159.6 3 255 18 757 68 8.6

Table 17.8. Comparison of SAT and CIP on valid Biquad properties.
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SAT CIP

Layout width Clauses Vars Nodes Time Constrs Vars Nodes Time

booth 2 175 66 18 0.0 107 143 8 0.0

signed 3 644 227 142 0.0 269 345 71 0.1

4 1 116 389 549 0.0 350 464 527 0.9

5 1 924 663 3 023 0.1 568 742 1 771 3.9

6 2 687 922 12 689 0.4 675 900 7 586 21.3

7 3 936 1 343 71 154 3.3 1 002 1 312 17 035 70.1

8 5 002 1 703 340 372 21.0 1 139 1 514 61 116 318.7

9 6 654 2 259 1 328 631 135.4 1 556 2 045 56 794 384.2

10 8 023 2 720 5 877 637 935.1 1 723 2 292 116 383 904.1

11 10 080 3 411 — >7200.0 2 230 2 933 173 096 1756.2

12 11 752 3 973 — >7200.0 2 427 3 223 248 437 2883.7

13 14 216 4 799 — >7200.0 3 024 3 977 355 515 4995.9

14 16 191 5 462 — >7200.0 3 251 4 310 182 684 3377.9

booth 2 137 54 19 0.0 126 162 0 0.0

unsigned 3 401 146 102 0.0 209 277 35 0.1

4 894 315 596 0.0 412 547 239 0.5

5 1 363 476 2 593 0.1 525 698 1 743 3.5

6 2 117 732 17 854 0.5 816 1 092 5 218 15.7

7 2 787 960 66 761 2.5 963 1 279 14 939 51.7

8 3 808 1 305 341 113 17.9 1 342 1 799 51 710 269.1

9 4 679 1 600 1 433 711 102.9 1 523 2 024 151 270 911.3

10 5 965 2 034 6 969 778 879.0 1 988 2 675 133 336 1047.6

11 7 037 2 396 24 247 606 4360.4 2 203 2 925 231 890 2117.7

12 8 590 2 919 — >7200.0 2 752 3 706 206 625 2295.1

13 9 863 3 348 — >7200.0 3 001 3 980 343 227 4403.4

14 11 685 3 960 — >7200.0 3 636 4 897 421 494 7116.8

nonbooth 2 157 58 12 0.0 100 138 0 0.0

signed 3 430 155 70 0.0 186 274 12 0.1

4 980 343 582 0.0 321 485 274 0.5

5 1 701 588 2 396 0.1 496 763 1 311 2.8

6 2 605 894 11 785 0.4 711 1 111 4 283 12.8

7 3 698 1 263 71 370 3.4 966 1 532 8 493 31.2

8 4 992 1 699 308 925 21.8 1 261 2 030 21 770 100.6

9 6 481 2 200 1 317 390 134.1 1 596 2 612 44 695 265.9

10 8 162 2 765 7 186 499 1344.1 1 971 3 273 76 626 569.8

11 10 035 3 394 — >7200.0 2 386 4 019 75 973 690.8

12 12 091 4 084 — >7200.0 2 841 4 853 159 132 1873.0

13 14 336 4 837 — >7200.0 3 336 5 778 153 857 1976.3

14 16 773 5 654 — >7200.0 3 871 6 797 263 266 4308.9

nonbooth 2 0 0 0 0.0 76 110 4 0.0

unsigned 3 280 105 49 0.0 167 252 4 0.1

4 671 240 416 0.0 298 458 105 0.2

5 1 179 414 2 288 0.0 469 732 675 1.4

6 1 807 628 10 862 0.3 680 1 076 1 297 3.6

7 2 567 886 55 718 1.8 931 1 493 6 315 22.4

8 3 471 1 192 337 873 16.5 1 222 1 986 25 909 111.2

9 4 507 1 542 1 212 498 83.1 1 553 2 564 39 668 214.0

10 5 675 1 936 8 198 899 909.6 1 924 3 221 52 252 335.4

11 6 975 2 374 28 863 978 5621.5 2 335 3 963 128 326 1040.1

12 8 395 2 852 — >7200.0 2 786 4 793 147 940 1507.5

13 9 947 3 374 — >7200.0 3 277 5 714 188 797 2347.7

14 11 631 3 940 — >7200.0 3 808 6 729 294 927 4500.2

Table 17.9. Comparison of SAT and CIP on Multiplier instances (all properties are valid).
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default no term algebra no irrelevance

Property width Vars Nodes Time Vars Nodes Time Vars Nodes Time

neg_flag 5 395 45 0.8 395 45 0.7 541 46 1.4

10 1 010 50 3.6 1 010 50 3.5 1 500 58 6.2

15 2 027 64 11.6 2 027 64 10.9 3 127 57 17.8

20 3 009 42 36.3 3 009 42 34.3 4 885 32 42.5

25 4 424 107 81.8 4 424 107 78.2 7 787 61 84.9

30 6 900 53 136.6 6 900 53 133.2 11 228 90 152.6

35 10 214 35 218.4 10 214 35 210.2 15 788 83 267.4

40 11 690 55 383.5 11 690 55 369.1 20 291 117 353.0

zero_flag 5 579 54 2.3 579 54 2.2 501 27 2.4

10 312 28 0.6 312 28 0.6 1 131 8 7.5

15 383 37 1.6 383 37 1.5 2 458 23 31.4

20 489 26 4.0 489 26 3.3 4 367 14 87.1

25 695 78 6.2 695 78 6.0 7 814 15 127.5

30 794 73 10.7 794 73 10.3 11 136 46 235.4

35 787 63 15.6 787 63 15.0 14 616 24 503.5

40 20 699 185 379.7 20 699 185 373.4 20 036 277 423.7

Table 17.10. Evaluation of problem specific presolving techniques on valid ALU properties.

on the gate level representation of the circuit can indeed yield significant performance
improvements for proving the validity of properties compared to the current state-
of-the-art SAT approach. For invalid properties, however, SAT solvers are usually
much faster in finding a counter-example. Therefore, we suggest to combine the two
techniques, for example by first running a SAT solver for some limited time, and
switching to CIP if one gets the impression that the property is valid.

17.2 Problem Specific Presolving

In this section we evaluate the contribution of the problem specific presolving meth-
ods to the overall success of the CIP approach, namely the term algebra preprocessing
of Section 15.1 and the irrelevance detection of Section 15.2. In order to assess the
impact of the two techniques, we compare the default parameter settings to settings
in which the respective presolving method is disabled. Interesting comparison values
are the sizes of the instances after presolving and the nodes and time needed to find
a counter-example or to prove the validity of the property. In order to retain the
structure of the function graph, see Section 13.2, satisfied and irrelevant constraints
are only disabled instead of being completely removed from the presolved problem
instances. Therefore, the effect of presolving can only be seen in the number of
remaining variables, and we omit the number of constraints in the tables.

The results on the invalid properties and the valid muls property for the ALU
circuit do not differ from the default settings if any of the problem specific presolving
methods is disabled. For the neg_flag and zero_flag properties, however, some
differences can be observed as shown in Table 17.10. The term algebra prepro-
cessing does not find any reductions, such that its deactivation saves a few seconds.
In contrast, the irrelevance detection can simplify the presolved model significantly,
which usually leads to a reduction in the runtime. This is most prominent for the
zero_flag property, for which the irrelevance detection can reduce the number of
variables to a few hundreds, while there remain thousands of variables in the larger
instances if irrelevance detection is disabled.

The results on the 40-bit version of the zero_flag property shed some light on
the abnormal behavior in the default settings. We already explained in the previous
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default no term algebra no irrelevance

Property width Vars Nodes Time Vars Nodes Time Vars Nodes Time

#7 5 — 0 0.0 317 41 0.1 — 0 0.0

10 — 0 0.1 543 40 0.1 — 0 0.1

15 — 0 0.1 767 41 0.1 — 0 0.1

20 — 0 0.1 1 039 98 0.2 — 0 0.1

25 — 0 0.1 1 264 161 0.2 — 0 0.1

30 — 0 0.1 1 489 188 0.3 — 0 0.1

35 — 0 0.1 1 760 462 0.7 — 0 0.1

40 — 0 0.2 1 985 304 0.6 — 0 0.2

#9 5 — 0 0.0 333 82 0.1 — 0 0.0

10 — 0 0.1 569 72 0.1 — 0 0.0

15 — 0 0.1 806 98 0.1 — 0 0.1

20 — 0 0.1 1 085 408 0.4 — 0 0.1

25 — 0 0.1 1 320 231 0.3 — 0 0.1

30 — 0 0.1 1 555 289 0.4 — 0 0.1

35 — 0 0.2 1 836 643 1.0 — 0 0.2

40 — 0 0.2 2 071 1 121 1.8 — 0 0.2

Table 17.11. Evaluation of problem specific presolving techniques on valid PipeAdder properties.

section that this is due to very “bad luck” in probing: for some reason, probing does
not find the necessary fixings that enable the irrelevance decection to discard large
parts of the circuit. The behavior on all other zero_flag instances, including the
ones for up to 39 bits which are not shown in the table, is similar to the 5 to 35-bit
variants.

For the invalid PipeAdder circuit, there are almost no differences in the results
if the presolving techniques are disabled. The same holds for the valid properties
#6 and #10. As can be seen in Table 17.11, the term algebra preprocessing has,
however, a noticeable impact on properties #7 and #9, since it is able to prove their
validity during presolving. Without term algebra preprocessing, we have to revert
to branching. Nevertheless, all of the instances can still be solved in less than 2
seconds.

The situation changes for the PipeMult circuit. For the invalid properties shown
in Table 17.12, irrelevance detection is able to remove about 10 % of the variables
from the problem instances, which improves the performance for property #4, while
it does not seem to have a clear impact on the other two properties. The term
algebra preprocessing is not able to find reductions on the invalid properties.

In contrast, term algebra preprocessing is able to prove the validity of the valid
PipeMult properties, but without this technique, properties #7 and #9 become
intractable for register widths β ≥ 15, as can be seen in Table 17.13. Note,
however, that CIP still performs better than SAT solvers: the latter cannot even
solve the 10-bit instances of these properties within the time limit.

Table 17.14 shows the impact of the two presolving techniques on the invalid
properties of the Biquad circuit. The term algebra preprocessing is able to re-
move a very small fraction of the variables in the g3_checkgfail instances, but this
reduction does not compensate for the runtime costs of the presolving method. In
contrast, irrelevance detection removes about half of the variables, which leads to a
considerable performance improvement. For the g3_checkreg1 and g3_xtoxmdelay

properties, there is almost no difference in the presolved model sizes and the run-
times. Therefore, they are not included in the table.

The valid g3_negres property of the Biquad circuit is again unaffected by the
disabling of the two presolving methods. The differences for the remaining valid
properties are shown in Table 17.15. As can be seen, term algebra preprocessing
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default no term algebra no irrelevance

Property width Vars Nodes Time Vars Nodes Time Vars Nodes Time

#4 5 553 11 0.5 553 11 0.5 498 16 0.6

10 1 493 21 2.8 1 493 21 2.7 1 591 17 2.9

15 2 879 42 6.2 2 879 42 6.3 3 187 42 7.8

20 4 806 28 11.1 4 806 28 11.0 5 435 29 14.4

25 7 241 61 23.1 7 241 61 23.1 8 370 39 23.8

30 10 058 38 33.0 10 058 38 32.9 11 649 38 40.4

35 13 727 120 6.3 13 727 120 6.3 15 665 21 50.4

40 17 534 90 7.3 17 534 90 7.4 20 257 21 66.1

#5 5 937 16 1.1 937 16 1.1 920 12 1.0

10 2 947 25 5.4 2 947 25 5.5 3 083 25 5.7

15 6 092 33 15.0 6 092 33 15.0 6 375 33 16.4

20 10 375 42 32.5 10 375 42 32.5 10 950 168 30.7

25 15 828 85 52.0 15 828 85 52.2 16 899 42 52.2

30 22 058 75 92.0 22 058 75 92.0 23 613 249 90.5

35 30 378 44 55.1 30 378 44 55.5 32 087 42 136.6

40 38 503 422 125.2 38 503 422 125.7 41 918 426 94.5

#8 5 789 51 1.2 789 51 1.2 814 66 1.3

10 2 593 133 8.1 2 593 133 8.1 2 757 143 6.7

15 5 481 55 19.8 5 481 55 19.9 5 847 55 19.7

20 9 399 154 43.1 9 399 154 43.3 10 025 180 45.9

25 14 457 279 45.5 14 457 279 45.5 15 468 69 70.1

30 19 955 73 89.9 19 955 73 91.0 21 708 72 77.6

35 27 088 92 118.9 27 088 92 119.3 29 375 56 109.4

40 34 849 42 91.4 34 849 42 92.2 37 843 42 123.1

Table 17.12. Evaluation of problem specific presolving techniques on invalid PipeMult properties.

default no term algebra no irrelevance

Property width Vars Nodes Time Vars Nodes Time Vars Nodes Time

#7 5 — 0 0.1 833 2 630 8.2 — 0 0.1

10 — 0 0.2 2 713 337 950 2827.1 — 0 0.2

15 — 0 0.5 5 379 >272 513 >7200.0 — 0 0.6

20 — 0 1.0 9 513 >212 561 >7200.0 — 0 1.2

25 — 0 1.8 14 368 >93 410 >7200.0 — 0 2.2

30 — 0 2.9 20 351 >111 827 >7200.0 — 0 3.5

35 — 0 4.8 27 666 >66 407 >7200.0 — 0 5.8

40 — 0 6.8 35 436 >38 825 >7200.0 — 0 8.4

#9 5 — 0 0.1 1 628 16 069 92.8 — 0 0.1

10 — 0 0.5 4 983 77 120 1258.9 — 0 0.6

15 — 0 1.6 10 740 >138 788 >7200.0 — 0 1.8

20 — 0 3.5 17 855 >101 771 >7200.0 — 0 3.9

25 — 0 7.1 27 755 >85 969 >7200.0 — 0 7.9

30 — 0 11.6 40 295 >75 138 >7200.0 — 0 12.9

35 — 0 19.8 ⋆ ⋆ ⋆ — 0 21.7

40 — 0 27.9 69 912 >34 364 >7200.0 — 0 31.2

Table 17.13. Evaluation of problem specific presolving techniques on valid PipeMult properties.
Note that the run for property #9 with 35-bit registers in the “no bitarith term” setting failed due
to a bug in the solver which caused a segmentation fault.

default no term algebra no irrelevance

Property Vars Nodes Time Vars Nodes Time Vars Nodes Time

g3_checkgfail-A 33 775 504 290.0 35 753 55 268.0 71 640 4 495 1705.7

g3_checkgfail-B 12 365 236 29.2 12 569 376 16.9 23 564 136 205.7

g3_checkgfail-C 12 382 150 50.2 12 517 149 45.6 23 567 189 208.5

Table 17.14. Evaluation of problem specific presolving techniques on invalid Biquad properties.



17.3. Probing 311

default no term algebra no irrelevance

Property Vars Nodes Time Vars Nodes Time Vars Nodes Time

g_checkgpre-A 4 819 1 163 14.2 4 821 1 409 14.7 9 419 3 314 83.9

g_checkgpre-B 3 400 2 086 12.3 3 410 1 718 11.2 7 660 2 409 57.4

g_checkgpre-C 3 698 1 886 15.3 3 787 1 260 9.1 8 264 1 375 46.9

g2_checkg2-A 7 285 15 793 213.9 7 296 15 109 216.5 ⋆ ⋆ ⋆

g2_checkg2-B 4 722 21 346 204.8 4 753 11 207 116.4 8 351 28 713 495.6

g2_checkg2-C 4 997 23 517 257.6 5 072 29 710 275.8 8 957 13 411 242.9

g25_checkg25-A 9 410 699 29.7 9 502 835 29.3 20 974 2 715 159.1

g25_checkg25-B 5 187 2 643 22.4 5 238 1 279 13.6 8 834 1 981 56.1

g25_checkg25-C 5 313 2 632 24.2 5 376 850 11.8 8 908 2 422 63.8

gBIG_checkreg1-A 13 264 3 293 170.7 13 393 4 728 181.9 31 683 446 289.6

gBIG_checkreg1-B 5 837 46 7.0 5 929 44 6.4 14 511 821 122.1

gBIG_checkreg1-C 6 271 68 8.6 6 418 47 7.5 15 113 1 045 135.6

Table 17.15. Evaluation of problem specific presolving techniques on valid Biquad properties.
Note that the run for property g2_checkg2-A in the “no irrelevance” setting failed due to a bug in
the solver which caused a segmentation fault.

exhibits the same behavior as for the invalid properties: it produces only a very small
number of variable reductions and is therefore not worth its runtime costs. On the
other hand, irrelevance detection is again a very useful technique. It removes around
half of the variables and improves the overall performance significantly.

As a final test to evaluate the impact of the two problem specific presolving
techniques, we performed benchmarks on the Multiplier test set. It turned out
that the differences in the presolved model sizes and in the performance are very
marginal. Therefore, we omit the tables and the discussion of the results.

17.3 Probing

Probing is a generally applicable presolving technique that tentatively fixes the bi-
nary variables of the CIP problem instance to zero and one and evaluates the de-
ductions that are produced by subsequent domain propagation. See Section 10.6 for
a more detailed explanation.

Since some of the domain propagation algorithms included in the chip verification
constraint handlers are quite expensive, probing itself is a rather time-consuming
method. In this section, we want to investigate whether the expenses to apply
probing pay off with respect to the overall runtime. We compare the default settings
in which probing is activated to an alternative parameter set that disables probing.

For the invalid ALU properties, there are almost no differences. With and with-
out probing, the instances can be solved in virtually no time. The same holds for the
valid muls property of the circuit. In contrast, there are significant differences for the
neg_flag and zero_flag properties, as can be seen in Table 17.16: although prob-
ing, in combination with irrelevance detection, can significantly reduce the sizes of
the problem instances, it is way too expensive to yield an improvement in the overall
runtime performance. Without probing, the instances, in particular the neg_flag

instances, are solved in a fraction of the time that is needed for probing.
Compared to SAT, the results on the neg_flag properties emphasize the benefits

of the CIP approach even more than the numbers presented in Section 17.1: our CIP
solver without probing solves the 40-bit instance in less than 4 seconds, while the
SAT solver cannot even solve the 15-bit instance within the time limit of 2 hours.

The benchmark tests on the PipeAdder circuit do not show a significant dif-
ference if probing is disabled. There are no differences on the valid properties, and
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default no probing

Property width Vars Nodes Time Vars Nodes Time

neg_flag 5 395 45 0.8 751 37 0.1

10 1 010 50 3.6 2 007 55 0.2

15 2 027 64 11.6 3 956 40 0.2

20 3 009 42 36.3 6 638 39 0.5

25 4 424 107 81.8 10 013 49 0.8

30 6 900 53 136.6 13 955 79 1.7

35 10 214 35 218.4 18 738 69 2.3

40 11 690 55 383.5 24 147 64 3.9

zero_flag 5 579 54 2.3 792 54 0.1

10 312 28 0.6 2 084 173 0.5

15 383 37 1.6 4 068 66 0.3

20 489 26 4.0 6 795 256 2.0

25 695 78 6.2 10 206 94 1.4

30 794 73 10.7 14 183 113 2.6

35 787 63 15.6 19 011 136 3.5

40 20 699 185 379.7 24 456 211 9.3

Table 17.16. Impact of probing on valid ALU properties.

also without probing, counter-examples to the invalid properties can be found in less
than a second. The tables with the benchmark results are omitted.

For the PipeMult test set, the situation is different, as can be seen in Ta-
bles 17.17 and 17.18. In both cases, one can observe the same behavior as for the
ALU instances: probing turns out to be a waste of time, although the number of
variables for the invalid properties can be slightly reduced in most of the cases.

Tables 17.19 and 17.20 show the results on the Biquad circuits. There are no
differences associated to probing on the valid g3_negres property, which is why it
is missing in Table 17.20.

Our previous poor impression of probing carries forward to the invalid Biquad
properties: Table 17.19 clearly shows that probing deteriorates the performance. On
the other hand, the results of Table 17.20 are much more promising. In particular for
the g_checkpre instances, the reduction in the problem size obtained by probing
decreases the runtime approximately by 60 to 80 %. Another large performance
improvement can be observed for gBIG_checkreg1-A, but there are other instances,
for example g2_checkg2-B and g25_checkg25-B, that show a deterioration.

Our final benchmarks on the Multiplier circuit conveys a better impression of
probing. As can be seen in Table 17.21, disabling probing yields almost consistently
an increase in the runtime. In particular, three of the instances cannot be solved
anymore within the time limit. An explanation is that due to the large node counts,
the time spent on probing becomes a relatively small portion of the overall time.
Additionally, these instances contain only one constraint, namely the multiplication
in the property part of the model, that features an expensive domain propagation
algorithm. Therefore, probing is, compared to the size of the instance, relatively
cheap.

We conclude from the benchmark results of this section that it may be better to
disable probing in our CIP based chip design verification algorithm. The results on
the valid Biquad and Multiplier instances, however, are in favor of this presolving
technique. Overall, a better strategy is needed to control the effort which is spent
on probing.
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default no probing

Property width Vars Nodes Time Vars Nodes Time

#1 5 849 6 0.3 959 34 0.1

10 2 050 28 0.6 2 174 37 0.1

15 3 745 6 0.7 3 854 56 0.3

20 6 085 6 1.6 6 218 56 0.4

25 8 905 6 2.3 9 058 54 0.6

30 12 088 6 4.7 12 288 43 0.7

35 16 050 6 7.7 16 276 76 1.6

40 20 495 7 10.5 20 741 53 1.3

#2 5 869 15 0.2 922 23 0.1

10 2 050 21 2.2 2 137 34 0.1

15 3 746 45 1.2 3 817 29 0.2

20 6 104 42 2.8 6 181 59 0.5

25 8 946 39 3.5 9 021 61 0.7

30 12 178 32 4.6 12 251 52 0.7

35 16 167 82 7.7 16 239 52 0.9

40 20 629 43 9.4 20 704 52 1.1

#3 5 1 029 15 0.7 1 123 18 0.0

10 2 708 15 3.0 2 801 35 0.1

15 5 135 33 2.6 5 225 22 0.2

20 8 481 20 9.3 8 561 59 0.6

25 12 622 20 13.5 12 703 53 0.7

30 17 298 36 20.4 17 392 53 0.9

35 23 123 45 21.8 23 217 64 1.6

40 29 570 46 28.8 29 665 25 1.0

#4 5 553 11 0.5 579 20 0.0

10 1 493 21 2.8 1 566 12 0.1

15 2 879 42 6.2 3 019 33 0.2

20 4 806 28 11.1 4 984 54 0.5

25 7 241 61 23.1 7 460 73 0.9

30 10 058 38 33.0 10 249 38 0.7

35 13 727 120 6.3 13 727 34 0.8

40 17 534 90 7.3 17 534 33 1.0

#5 5 937 16 1.1 1 044 26 0.1

10 2 947 25 5.4 3 134 31 0.2

15 6 092 33 15.0 6 346 40 0.4

20 10 375 42 32.5 10 646 34 0.6

25 15 828 85 52.0 16 228 33 0.8

30 22 058 75 92.0 22 515 72 2.2

35 30 378 44 55.1 30 382 33 1.4

40 38 503 422 125.2 38 982 33 1.8

#8 5 789 51 1.2 975 21 0.1

10 2 593 133 8.1 2 888 132 0.6

15 5 481 55 19.8 5 829 21 0.3

20 9 399 154 43.1 9 736 61 1.0

25 14 457 279 45.5 14 816 66 1.5

30 19 955 73 89.9 20 523 49 1.7

35 27 088 92 118.9 27 671 25 1.3

40 34 849 42 91.4 35 444 25 1.7

Table 17.17. Impact of probing on invalid PipeMult properties.
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default no probing

Property width Vars Nodes Time Vars Nodes Time

#7 5 — 0 0.1 — 0 0.0

10 — 0 0.2 — 0 0.1

15 — 0 0.5 — 0 0.1

20 — 0 1.0 — 0 0.2

25 — 0 1.8 — 0 0.3

30 — 0 2.9 — 0 0.5

35 — 0 4.8 — 0 0.6

40 — 0 6.8 — 0 0.8

#9 5 — 0 0.1 — 0 0.1

10 — 0 0.5 — 0 0.1

15 — 0 1.6 — 0 0.2

20 — 0 3.5 — 0 0.4

25 — 0 7.1 — 0 0.7

30 — 0 11.6 — 0 0.9

35 — 0 19.8 — 0 1.2

40 — 0 27.9 — 0 1.6

Table 17.18. Impact of probing on valid PipeMult properties.

default no probing

Property Vars Nodes Time Vars Nodes Time

g3_checkreg1-A 1 164 6 1.2 1 185 8 0.1

g3_checkreg1-B 661 25 0.9 679 19 0.0

g3_checkreg1-C 661 25 0.9 679 22 0.0

g3_xtoxmdelay-A 1 243 37 0.5 1 253 38 0.4

g3_xtoxmdelay-B 248 31 0.1 253 17 0.0

g3_xtoxmdelay-C 248 31 0.1 253 15 0.0

g3_checkgfail-A 33 775 504 290.0 34 311 66 95.4

g3_checkgfail-B 12 365 236 29.2 12 595 79 4.9

g3_checkgfail-C 12 382 150 50.2 12 631 72 5.0

Table 17.19. Impact of probing on invalid Biquad properties.

default no probing

Property Vars Nodes Time Vars Nodes Time

g_checkgpre-A 4 819 1 163 14.2 5 553 5 952 60.5

g_checkgpre-B 3 400 2 086 12.3 4 115 7 383 57.9

g_checkgpre-C 3 698 1 886 15.3 4 413 6 029 45.3

g2_checkg2-A 7 285 15 793 213.9 7 724 17 004 216.5

g2_checkg2-B 4 722 21 346 204.8 5 119 7 320 52.9

g2_checkg2-C 4 997 23 517 257.6 5 397 29 385 285.7

g25_checkg25-A 9 410 699 29.7 9 709 1 043 22.0

g25_checkg25-B 5 187 2 643 22.4 5 361 894 7.8

g25_checkg25-C 5 313 2 632 24.2 5 487 2 515 18.5

gBIG_checkreg1-A 13 264 3 293 170.7 14 919 13 372 418.0

gBIG_checkreg1-B 5 837 46 7.0 6 083 68 2.8

gBIG_checkreg1-C 6 271 68 8.6 6 516 105 3.2

Table 17.20. Impact of probing on valid Biquad properties.
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default no probing

Property width Vars Nodes Time Vars Nodes Time

booth 2 37 8 0.0 72 41 0.0

signed 3 126 71 0.1 177 180 0.2

4 202 527 0.9 265 789 1.1

5 352 1 771 3.9 446 2 378 5.0

6 460 7 586 21.3 581 7 779 23.9

7 669 17 035 70.1 832 19 244 76.5

8 806 61 116 318.7 1 013 43 452 230.6

9 1 224 56 794 384.2 1 365 64 564 431.5

10 1 432 116 383 904.1 1 596 248 085 1898.2

11 1 799 173 096 1756.2 1 999 268 999 2932.8

12 2 045 248 437 2883.7 2 276 402 279 4444.0

13 2 502 355 515 4995.9 2 780 402 389 6191.6

14 2 790 182 684 3377.9 3 105 309 863 5270.3

booth 2 — 0 0.0 67 31 0.0

unsigned 3 101 35 0.1 129 149 0.1

4 224 239 0.5 260 749 0.9

5 336 1 743 3.5 356 1 519 2.6

6 516 5 218 15.7 552 8 864 26.4

7 651 14 939 51.7 683 14 904 52.0

8 886 51 710 269.1 942 56 758 275.3

9 1 075 151 270 911.3 1 125 171 556 995.5

10 1 376 133 336 1047.6 1 450 140 821 1113.8

11 1 582 231 890 2117.7 1 652 171 404 1550.8

12 1 941 206 625 2295.1 2 041 323 834 3630.9

13 2 179 343 227 4403.4 2 274 >532 643 >7200.0

14 2 601 421 494 7116.8 2 732 >426 186 >7200.0

nonbooth 2 — 0 0.0 70 23 0.0

signed 3 63 12 0.1 144 100 0.1

4 174 274 0.5 259 457 0.5

5 296 1 311 2.8 421 2 564 4.5

6 441 4 283 12.8 610 6 081 15.0

7 609 8 493 31.2 835 26 652 95.3

8 802 21 770 100.6 1 096 53 957 240.7

9 1 172 44 695 265.9 1 420 106 346 625.1

10 1 455 76 626 569.8 1 757 115 635 893.8

11 1 767 75 973 690.8 2 130 141 005 1222.8

12 2 107 159 132 1873.0 2 539 230 977 2585.3

13 2 503 153 857 1976.3 3 011 393 617 5236.1

14 2 903 263 266 4308.9 3 494 405 893 6706.1

nonbooth 2 28 4 0.0 47 12 0.0

unsigned 3 40 4 0.1 114 98 0.1

4 160 105 0.2 217 298 0.3

5 294 675 1.4 344 1 509 2.7

6 439 1 297 3.6 510 3 885 9.0

7 601 6 315 22.4 696 21 230 75.8

8 799 25 909 111.2 925 82 398 423.5

9 1 024 39 668 214.0 1 187 117 653 601.7

10 1 291 52 252 335.4 1 482 152 011 1004.9

11 1 557 128 326 1040.1 1 787 162 844 1333.7

12 1 871 147 940 1507.5 2 146 436 984 4105.9

13 2 183 188 797 2347.7 2 506 436 908 4834.4

14 2 558 294 927 4500.2 2 934 >517 781 >7200.0

Table 17.21. Impact of probing on verifying the Multiplier circuit.
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default no conflict analysis

Property width Nodes Time Nodes Time

neg_flag 5 45 0.8 309 0.9

10 50 3.6 619 4.1

15 64 11.6 597 11.7

20 42 36.3 939 36.9

25 107 81.8 573 80.9

30 53 136.6 885 139.0

35 35 218.4 1 665 225.5

40 55 383.5 1 991 387.3

zero_flag 5 54 2.3 141 2.3

10 28 0.6 45 0.7

15 37 1.6 83 1.6

20 26 4.0 57 3.3

25 78 6.2 185 6.2

30 73 10.7 197 10.6

35 63 15.6 129 15.1

40 185 379.7 2 715 421.4

Table 17.22. Impact of conflict analysis on valid ALU properties.

17.4 Conflict Analysis

Conflict analysis is a technique to analyze infeasible subproblems that are encoun-
tered during the branch-and-bound search. It can produce additional valid con-
straints that can be used later in the solving process to prune the search tree.
Conflict analysis has originated in the SAT community and is particularly suited
for proving the infeasibility of a problem instance. Chapter 11 explains how conflict
analysis can be generalized to mixed integer programming, which easily extends to
constraint integer programming.

In order to use conflict analysis for arbitrary constraints, each constraint handler
has to implement a so-called reverse propagation method. This method has to pro-
vide the “reasons” for a deduction that the constraint handler’s domain propagation
method has produced earlier during the search, compare Section 11.1. Given the
rather complex domain propagation algorithms of our chip verification constraint
handlers, this is not an easy task. Nevertheless, we equipped the constraint han-
dlers with the necessary algorithms such that almost all of the possible propagations
can be “reverse propagated”.

In this section, we evaluate the impact of conflict analysis on solving property
checking problems. Since counter-examples to the invalid ALU properties can be
found in at most 4 branch-and-bound nodes, conflict analysis does not have any
influence on these instances. The same holds for all instances that can already be
solved in the presolving stage, which includes the muls property of the ALU circuit.
The results for the remaining two valid ALU instances are shown in Table 17.22.
It turns out that the number of branching nodes needed to prove the infeasibility
of the instances gets significantly larger if conflict analysis is disabled. This does
not, however, increase the runtime by a significant amount. In fact, almost all of
the runtime is spent in presolving, such that the time that can be saved by conflict
analysis is very limited.

Similar to the invalid ALU instances, finding counter-examples for the invalid
PipeAdder and PipeMult properties is so easy that conflict analysis cannot yield
significant performance improvements. The correctness of the valid properties of
these circuits is already shown in presolving. Therefore, we skip the tables with the
PipeAdder and PipeMult results.
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default no conflict analysis

Property Nodes Time Nodes Time

g_checkgpre-A 1 163 14.2 >2023338 >7200.0

g_checkgpre-B 2 086 12.3 >2864290 >7200.0

g_checkgpre-C 1 886 15.3 1558967 4398.1

g2_checkg2-A 15 793 213.9 >1097670 >7200.0

g2_checkg2-B 21 346 204.8 >1842786 >7200.0

g2_checkg2-C 23 517 257.6 >1808079 >7200.0

g25_checkg25-A 699 29.7 109175 662.5

g25_checkg25-B 2 643 22.4 34397 143.4

g25_checkg25-C 2 632 24.2 39845 162.7

gBIG_checkreg1-A 3 293 170.7 >486990 >7200.0

gBIG_checkreg1-B 46 7.0 653 9.7

gBIG_checkreg1-C 68 8.6 465 10.3

Table 17.23. Impact of conflict analysis on valid Biquad properties.

For the invalid Biquad properties, conflict analysis yields only minor improve-
ments. The only noteworthy result is the one on the g3_checkgfail-A instance: in
the default settings, a counter-example can be found in 504 nodes and 290.0 seconds.
Disabling conflict analysis deteriorates the performance, such that 2612 nodes and
357.4 seconds are needed.

The results for the valid Biquad properties are shown in Table 17.23. Here,
the benefit of including conflict analysis becomes clearly evident: using the default
settings, all of the instances can be solved in a few minutes while six of them become
intractable if conflict analysis is disabled.

A similar conclusion can be derived from the results on the Multiplier circuit,
which are given in Table 17.24. While in default settings all instances can be solved
within two hours, without conflict analysis the solver hits the time limit if the width
of the input registers becomes larger or equal to β = 10. Note that for both, the
valid Biquad properties and the Multiplier circuit, there is not a single instance
that can be solved without conflict analysis in less time or with a fewer number of
branching nodes than in the default settings.

We conclude from our experiments, that conflict analysis is a very important
tool to prove the validity of properties for more complex circuits. Having already
produced a noticeable performance improvement for mixed integer programming,
see the computational results of Section 11.3, conflict analysis is an indispensable
ingredient of our CIP based chip design verification solver.



318 Computational Results

default no conflict analysis

Property width Nodes Time Nodes Time

booth 2 8 0.0 9 0.0

signed 3 71 0.1 83 0.1

4 527 0.9 1 603 1.4

5 1 771 3.9 5 581 6.1

6 7 586 21.3 23 717 34.1

7 17 035 70.1 101 119 181.3

8 61 116 318.7 499 117 1129.7

9 56 794 384.2 1 435 175 4322.2

10 116 383 904.1 >2 080 575 >7200.0

11 173 096 1756.2 >1 712 966 >7200.0

12 248 437 2883.7 >1 298 920 >7200.0

13 355 515 4995.9 >1 146 821 >7200.0

14 182 684 3377.9 > 729 553 >7200.0

booth 2 0 0.0 0 0.0

unsigned 3 35 0.1 55 0.1

4 239 0.5 477 0.6

5 1 743 3.5 5 821 6.2

6 5 218 15.7 21 389 31.1

7 14 939 51.7 96 173 151.2

8 51 710 269.1 384 581 858.5

9 151 270 911.3 1 811 671 4469.6

10 133 336 1047.6 >2 005 291 >7200.0

11 231 890 2117.7 >1 964 676 >7200.0

12 206 625 2295.1 >1 266 363 >7200.0

13 343 227 4403.4 >1 232 579 >7200.0

14 421 494 7116.8 > 834 663 >7200.0

nonbooth 2 0 0.0 0 0.0

signed 3 12 0.1 25 0.1

4 274 0.5 563 0.6

5 1 311 2.8 3 273 3.6

6 4 283 12.8 16 951 22.8

7 8 493 31.2 74 541 124.5

8 21 770 100.6 298 209 640.3

9 44 695 265.9 1 044 537 3014.9

10 76 626 569.8 >2 048 638 >7200.0

11 75 973 690.8 >1 491 337 >7200.0

12 159 132 1873.0 >1 075 690 >7200.0

13 153 857 1976.3 >1 026 471 >7200.0

14 263 266 4308.9 > 675 644 >7200.0

nonbooth 2 4 0.0 5 0.0

unsigned 3 4 0.1 5 0.1

4 105 0.2 237 0.3

5 675 1.4 2 535 2.5

6 1 297 3.6 12 341 15.7

7 6 315 22.4 67 581 96.6

8 25 909 111.2 247 323 459.2

9 39 668 214.0 1 082 421 2691.3

10 52 252 335.4 >2 421 634 >7200.0

11 128 326 1040.1 >1 776 217 >7200.0

12 147 940 1507.5 >1 348 860 >7200.0

13 188 797 2347.7 >1 074 452 >7200.0

14 294 927 4500.2 > 937 928 >7200.0

Table 17.24. Impact of conflict analysis on verifying the Multiplier circuit.



Appendix A

Computational Environment

In the following we characterize the computational infrastructure and the environ-
ment under which our computational experiments have been conducted. Afterwards,
we describe the various test sets on which the computations have been performed.

A.1 Computational Infrastructure

All benchmark runs have been executed on Dell Precision 370 desktop PCs with
2 GB RAM and a 3.8 GHz Intel Pentium 4 CPU with 1 MB second-level cache.
They have been distributed to eight equivalent machines. We used Suse Linux 10.2
as operating system and Gcc 4.1.2 with the -O3 optimizer option to compile the
source code.

All timings are reported in CPU seconds. As time measurements, in particular
for hyperthreading CPUs, are very dependent on the CPU load caused by other
processes running in the background, the author did his best to run the tests only
on unloaded machines and to rerun suspicious benchmarks. Small variations in the
runtime, however, cannot be avoided. Our experience for the reported mean values
is that differences of up to 2 % in the average runtime can be attributed to variations
in the timing.

For the MIP benchmarks, we used a time limit of one hour, while we allowed two
hour runs on the chip verification test sets. If the time limit was hit, we treat the
time limit and the current number of processed nodes as the resulting benchmark
values. Thus, we pretend that the instance was solved at this moment. Note that
this provides an advantage to the runs in which the time limit was hit, since the
accounted values are smaller than the actual time and number of nodes needed
to solve the respective instances. On the other hand, it has the benefit that the
influence on the overall statistics due to a failure on a single instance is limited.

We imposed a memory limit of 1.5 GB in order to avoid swapping. If the memory
limit was hit, we treat the run as if it hit the time limit. The accounted number of
nodes is scaled accordingly, as if the nodes per time ratio stayed constant throughout
the solving process. An excess of the memory limit happened only very infrequently
in our computations. In total, only 180 out of the 28060 MIP runs have been
aborted due to the memory limit, most of them for the mik test set, in particular
with random branching , most infeasible branching , least infeasible branching , and
inference branching . All of the chip verification runs stayed within the memory
limit.

We used two unofficial versions of SCIP in the benchmark runs that the author
will make available on request. For the MIP benchmarks, we employed SCIP 0.90f,
while the chip verification benchmarks have been conducted using SCIP 0.90i as
CIP framework. SCIP 0.90i is the more recent version of the two. It is very similar
to version 1.0, which will be published shortly after this thesis. We linked SCIP to
Cplex 10.0.1 [118] in order to solve the underlying LP relaxations.

319
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test set type size problem class ref origin

miplib mixed 30 mixed [6] http://miplib.zib.de

coral mixed 38 mixed [145] http://coral.ie.lehigh.edu/mip-instances/

milp mixed 37 mixed http://plato.asu.edu/ftp/milp/

enlight IP 7 combinatorial game http://miplib.zib.de/contrib/AdrianZymolka/

alu IP 25 infeasible chip verification [1] http://miplib.zib.de/contrib/ALU/

fctp MBP 16 fixed charge transportation [106] http://plato.asu.edu/ftp/fctp/

acc BP 7 sports scheduling [173] http://www.ps.uni-sb.de/~walser/acc/acc.html

fc MBP 20 fixed charge network flow [22] http://www.ieor.berkeley.edu/~atamturk/data/

arcset IP/MIP 23 capacitated network design [25] http://www.ieor.berkeley.edu/~atamturk/data/

mik MIP 41 mixed integer knapsack [23] http://www.ieor.berkeley.edu/~atamturk/data/

Table A.1. Mixed integer programming test sets.

For reasons of comparison, we also solved the MIP instances with Cplex 10.0.1
as stand-alone MIP solver. We used default settings, except that we set the gap
dependent abort criteria to mipgap = 0 and absmipgap = 10−9, which are the
corresponding values in SCIP.

A.2 Mixed Integer Programming Test Set

In order to evaluate the impact of the various algorithms related to MIP solving
by computational experiments, we collected several publicly available MIP instances
from the web. Table A.1 gives an overview of these test sets.

Overall, we collected 575 instances, from which we selected subsets of the sizes
given in the table using the following procedure:

1. First, we ran Cplex 10.0.1 and SCIP 0.82d with and without conflict analysis
on all of the instances. If none of the two solvers could solve the instance within
one hour CPU time, we discarded the instance.

2. As the coral and milp test set share some instances, we removed the dupli-
cates from coral.

3. From the remaining coral test set, we removed instances that can be solved
within 10 seconds by both, Cplex and SCIP 0.82d in default settings. Then,
we sorted the instances by non-decreasing Cplex time and removed every
second instance.

4. From the alu test set, we removed the _3, _4, _5, and _9 instances since
they are trivial. Furthermore, we only used the instances that model circuits
with register widths of at most 8 bits, because the instances for larger register
widths are too difficult in terms of numerics.

5. From the mik test set, we removed instances that can be solved within 10
seconds by both, Cplex and SCIP 0.82d in default settings.

This procedure left a total of 244 instances with the sizes of the individual test sets
shown in Table A.1.

http://miplib.zib.de
http://coral.ie.lehigh.edu/mip-instances/
http://plato.asu.edu/ftp/milp/
http://miplib.zib.de/contrib/AdrianZymolka/
http://miplib.zib.de/contrib/ALU/
http://plato.asu.edu/ftp/fctp/
http://www.ps.uni-sb.de/~walser/acc/acc.html
http://www.ieor.berkeley.edu/~atamturk/data/
http://www.ieor.berkeley.edu/~atamturk/data/
http://www.ieor.berkeley.edu/~atamturk/data/
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A.3 Computing Averages

Since we consider a large number of MIP instances in our benchmark tests, it is
unpractical to show the results for all of the individual instances. Additionally, in
order to compare different solvers or parameter settings, it is convenient to subsume
the timings and node counts for the instances of a single test set by calculating an
average value. One has to keep in mind, however, that it is important how the
average values are defined.

Let v1, . . . , vk ∈ R≥0 be non-negative values, for example the times or node
counts for the individual instances of a test set. We consider three different types of
averages: the geometric mean

γ(v1, . . . , vk) =
( k∏

i=1

max{vi, 1}
) 1

k

,

the shifted geometric mean

γs(v1, . . . , vk) =
( k∏

i=1

max{vi + s, 1}
) 1

k

− s

with s ∈ R≥0, and the arithmetic mean

∅(v1, . . . , vk) =
1

k

k∑

i=1

vi.

We set the shifting parameter s in the shifted geometric mean to s = 10 for the time
and s = 100 for the node counts.

For a set of benchmark results, the above mean values differ considerably if the
scales of the individual values vi are divers. This is illustrated in the following
example:

Example A.1 (mean value calculation). Consider two different settings A and B
that have been applied on the same test set consisting of 10 instances. The instances
in the test set are of varying difficulty. Setting A usually needs 10 % fewer nodes
than B, but there are two outliers.

setting n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

A 100 10 50 100 500 1 000 5 000 10 000 50 000 500 000

B 1 11 55 110 550 1 100 5 500 11 000 55 000 1 000 000

ratio B/A 0.01 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 2.0

Table A.2. Hypothetical node counts for two settings applied on a test set with 10 instances.

Assume that we have observed the node counts given in Table A.2. Then, the
mean values for these node counts using s = 100 are approximately as follows:

geometric mean: γ(A) = 1120.7, γ(B) = 817.9,
γ(B)

γ(A)
= 0.73,

shifted geometric mean: γs(A) = 1783.6, γs(B) = 1890.2,
γs(B)

γs(A)
= 1.06,

arithmetic mean: ∅(A) = 56676.0, ∅(B) = 107332.7,
∅(B)

∅(A)
= 1.89.
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Thus, the geometric mean reports a 27 % improvement in the node count for setting
B, while the shifted geometric mean and arithmetic mean show a 6 % and 89 %
deterioration, respectively.

Example A.1 shows that the performance ratios reported by the three different
means are influenced by different characteristics of the benchmark values. Using
the geometric mean, one computes a (geometric) average value of the per instance
ratios. Small absolute variations in the benchmark values for an easy instance can
lead to a large difference in the corresponding ratio. Therefore, ratios for easy
instances usually have a much larger range than the ratios for hard instances, and
the geometric mean is sometimes dominated by these small absolute variations for
the easy instances. In contrast, the arithmetic mean ignores the easy instances
almost completely if there are other instances with performance values of a larger
scale.

The shifted geometric mean is a compromise between the two extreme cases. It
is a variant of the geometric mean that focuses on ratios instead of totals, which
prevents the hard instances from dominating the reported result. On the other
hand, the shifting of the nominators and denominators of the ratios reduces the
strong influence of the very small node counts and time values. Therefore, we use
the shifted geometric mean for the summary tables in the main part of the thesis.
The geometric means and the totals (which are equivalent to arithmetic means for
a test set of fixed size) can be found in the detailed tables in Appendix B.

In the previous Section A.2 we specified the test sets used for our MIP bench-
marks. Note that the miplib, coral, and milp test sets are collections of MIP
instances that model a variety of different problem classes. Therefore, these test
sets are well suited to assess the general performance of MIP solvers. In contrast,
each of the other test sets contains different instances of only a single problem class.
Therefore, in order to calculate a reasonable total average performance value from
the 244 instances, we have to reduce the influence of the problem class specific test
sets in the average calculations. Otherwise, these problem classes would be overre-
presented in the totals, in particular the ones of larger size.

We decided to treat each of the special problem class test sets as if they rep-
resented three instances in the overall test set. This is achieved by calculating the
total average performance value as

γs(total) =
(

γs(miplib)30 + γs(coral)38 + γs(milp)37+

γs(enlight)3 + γs(alu)3 + γs(fctp)3 + γs(acc)3+

γs(fc)3 + γs(arcset)3 + γs(mik)3
) 1

126

.

Hence, our total test set consists of 105 individual instances and 21 “pseudo in-
stances” that represent a particular problem class.

A.4 Chip Design Verification Test Set

To compare the SAT and CIP approaches for the chip design verification prob-
lem, and to evaluate the impact of the various CIP components, we conducted
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experiments on the following sets of property checking instances, which have been
generated by OneSpin Solutions:

⊲ ALU: an arithmetical logical unit which is able to perform add, sub, shl,
shr, and signed and unsigned mult operations.

⊲ PipeAdder: an adder with a 4-stage pipeline to add up four values.

⊲ PipeMult: a multiplier with a 4-stage pipeline to multiply four values.

⊲ Biquad: a DSP/IIR filter core obtained from [177] in different representations
with some valid and invalid properties.

⊲ Multiplier: boothed and non-boothed gate level architectures of signed and
unsigned multiplication networks, for which the correctness has to be proven.
These instances are rather equivalence checking instances than property check-
ing problems.

All test sets except the Multiplier set involve valid and invalid properties. The
width of the input registers in the ALU, PipeAdder and PipeMult sets range
from 5 to 40 bits. For the Multiplier instances the width ranges from 2 to 14 bits.

We converted these instances into a register transfer level description and an
equivalent gate level representation using proprietary tools of OneSpin Solutions.
The former representation is used as input for our CIP solver, the latter for a SAT
solver.

Note that the tools of OneSpin Solutions perform an additional presolving
step during the transformation to the gate level, which can simplify or sometimes
even completely solve the instances. Therefore, some instances are not available as
SAT input, which is marked by reporting a node count of 0 and a runtime of 0.0 in
the benchmark results. The time needed for the gate level transformation and the
presolving is not included in the timings reported in the result tables. However, this
time is usually neglectable.





Appendix B

Tables

This appendix chapter presents detailed result tables for our benchmark tests on
mixed integer programming. Each table contains statistics for using various different
parameter settings on the instances of a single test set. The column “setting” lists the
settings that we have tried. In column “T” one can find the number of instances for
which the solver hit the time or memory limit if called with the respective parameter
settings. The columns “fst” and “slw” indicate, how many instances have been solved
at least 10 % faster or slower, respectively, than with the reference settings of the
first row (which usually are the default settings).

The ngm, nsgm, and ntot values represent the geometric means, shifted geometric
means, and total numbers of branching nodes, respectively, that have been spent on
solving the instances of the test set. The numbers are given as percental relative
differences to the reference settings: if S0 are the reference settings, the number in
column ngm for setting i is equal to

ni
gm = 100 ·

(

γ(ni
1, . . . , n

i
k)

γ(n0
1, . . . , n

0
k)
− 1

)

, (B.1)

with ni
j being the node count on instance j for settings Si. Analogous formulas are

used for the other entries of the table.
The tgm, tsgm, and ttot values are the geometric means, shifted geometric means,

and totals of the time needed to solve the instances of the test set. Again, we list
percental relative differences to the reference settings that are calculated in a similar
way as in Equation (B.1). Note that the numbers shown in the summary tables in
the main part of the thesis are the shifted geometric means, i.e., we have copied
columns nsgm and tsgm of the “all instances” block into the summary tables.

In order to evaluate the impact and the computational costs of a certain strategy,
it is sometimes useful to distinguish between the models that are affected by the
change in the solving strategy and the ones for which the solving process proceeds
in exactly the same way as for the reference settings. This distinction yields the
“different path” and “equal path” blocks of the tables. While the “all instances”
block shows the average values for all instances in the test set (with the number
of instances indicated in brackets), the average values in the “different path” block
are calculated on only those instances for which the solving path for the respective
settings is different to the one of the reference settings. Since it is very hard to
actually compare the paths in the search tree, we assume that the solving path of
two runs is equal if and only if both runs spent the same number of branching nodes
and the same total number of simplex iterations to process the instance. Of course,
this may declare some runs to have the same path although they were different.
However, this seems to be very unlikely.

The “#” columns in these blocks show the number of instances that fall into
the respective category. Note that we only include instances that were solved to
optimality within the time and memory limit by both, the reference settings and the
settings of the respective row. Therefore, the sum of the “different” and “equal path”
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instances is only equal to the total number of instances in the test set if none of the
two involved settings hit the time or memory limit. Note also that the comparison
of the different settings does not make sense in the “different path” and “equal path”
blocks, since the values are usually averages over a different subset of the instances.

The full tables with all results of the individual instances and the complete log
files of the runs can be found in the web at http://scip.zib.de.

Memory Management

all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

no block 2 0 9 −1 −1 −7 +9 +8 +16 0 — — — 28 +8 +7 +15

no buffer 1 1 5 0 0 −1 +6 +3 +1 0 — — — 29 +6 +3 +2

none 2 0 7 −1 −1 −7 +7 +6 +15 0 — — — 28 +6 +5 +12

Table B.1. Evaluation of memory management on test set miplib.

all instances (38) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

no block 3 0 13 0 0 −1 +10 +10 +10 0 — — — 35 +11 +11 +19

no buffer 3 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

none 3 0 13 0 0 −1 +12 +11 +12 0 — — — 35 +13 +12 +24

Table B.2. Evaluation of memory management on test set coral.

all instances (36) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 7 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

no block 7 0 10 −1 −1 −7 +8 +7 +4 0 — — — 29 +10 +9 +10

no buffer 7 0 0 0 0 0 −1 −1 0 0 — — — 29 −1 −1 −1

none 7 0 10 −1 −1 −7 +7 +7 +3 0 — — — 29 +9 +8 +9

Table B.3. Evaluation of memory management on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

no block 0 0 0 0 0 0 +4 +3 +8 0 — — — 7 +4 +3 +8

no buffer 0 0 0 0 0 0 +1 −1 −2 0 — — — 7 +1 −1 −2

none 0 0 3 0 0 0 +11 +7 +19 0 — — — 7 +11 +7 +19

Table B.4. Evaluation of memory management on test set enlight.

http://scip.zib.de
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all instances (25) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

no block 1 0 2 0 0 −7 +4 +4 +4 0 — — — 24 +4 +5 +10

no buffer 1 0 0 0 0 0 +1 +1 +1 0 — — — 24 +1 +1 +2

none 1 0 5 −1 −1 −10 +8 +6 +6 0 — — — 24 +8 +6 +14

Table B.5. Evaluation of memory management on test set alu.

all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

no block 0 0 2 0 0 0 +6 +5 +9 0 — — — 16 +6 +5 +9

no buffer 0 0 1 0 0 0 +6 +4 +6 0 — — — 16 +6 +4 +6

none 0 0 0 0 0 0 +4 +3 +5 0 — — — 16 +4 +3 +5

Table B.6. Evaluation of memory management on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

no block 0 0 0 0 0 0 +2 +2 +1 0 — — — 7 +2 +2 +1

no buffer 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

none 0 0 0 0 0 0 +3 +2 +2 0 — — — 7 +3 +2 +2

Table B.7. Evaluation of memory management on test set acc.

all instances (20) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

no block 0 0 0 0 0 0 +4 +3 +4 0 — — — 20 +4 +3 +4

no buffer 0 0 0 0 0 0 +4 +3 +2 0 — — — 20 +4 +3 +2

none 0 0 1 0 0 0 +6 +5 +5 0 — — — 20 +6 +5 +5

Table B.8. Evaluation of memory management on test set fc.

all instances (23) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

no block 0 0 15 0 0 0 +10 +9 +9 0 — — — 23 +10 +9 +9

no buffer 0 0 0 0 0 0 +2 +1 +1 0 — — — 23 +2 +1 +1

none 0 0 7 0 0 0 +9 +8 +6 0 — — — 23 +9 +8 +6

Table B.9. Evaluation of memory management on test set arcset.

all instances (41) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 41 0 0 0

no block 0 0 24 0 0 0 +11 +11 +18 0 — — — 41 +11 +11 +18

no buffer 0 0 0 0 0 0 +1 +1 +1 0 — — — 41 +1 +1 +1

none 0 0 29 0 0 0 +12 +11 +19 0 — — — 41 +12 +11 +19

Table B.10. Evaluation of memory management on test set mik.
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Branching

all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

random 8 1 22 +808 +475 +42 +162 +139 +180 19 +134 +112 +227 3 −2 −1 −1

most inf 7 2 20 +569 +341 +16 +153 +139 +169 20 +147 +139 +356 3 −2 −2 −2

least inf 10 1 22 +1804 +1096 +100 +325 +266 +268 17 +322 +268 +790 3 0 0 0

pseudocost 1 5 13 +183 +87 −11 +20 +16 +27 26 +23 +19 +40 3 0 0 0

full strong 3 1 18 −71 −65 −82 +95 +92 +128 24 +107 +105 +165 3 −1 0 0

strong 2 1 13 −64 −62 −78 +38 +38 +46 19 +52 +49 +36 9 +1 +1 0

hybr strong 1 2 11 −24 −18 +3 +19 +20 +23 22 +27 +27 +34 7 −1 −1 −2

psc strinit 1 8 6 +31 +13 −2 +5 +5 −3 25 +6 +6 −5 4 −2 −1 −2

reliability 1 4 4 −10 −7 −9 −1 −1 −6 21 −1 −1 −8 8 −1 −1 −1

inference 7 1 20 +483 +269 +53 +108 +101 +171 20 +84 +79 +377 3 0 0 0

Table B.11. Evaluation of branching on test set miplib.

all instances (37) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 2 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

random 18 4 27 +758 +694 +148 +332 +332 +298 17 +114 +123 +222 2 0 0 0

most inf 15 4 26 +529 +517 +125 +312 +314 +275 20 +132 +141 +232 2 +1 +1 +1

least inf 21 2 29 +1586 +1380 +195 +598 +575 +369 14 +242 +238 +330 2 −2 −2 −1

pseudocost 3 9 19 +84 +79 +68 +38 +40 +50 31 +37 +39 +70 2 0 0 +1

full strong 4 3 28 −85 −79 −34 +98 +97 +86 30 +115 +114 +115 2 −2 −2 −1

strong 3 2 23 −73 −68 −35 +59 +59 +65 31 +68 +69 +96 3 −1 −1 −1

hybr strong 4 8 14 −19 −12 +32 +27 +27 +43 31 +16 +16 +28 2 +1 +1 +2

psc strinit 1 14 9 +17 +18 −18 +2 +2 −7 33 +6 +6 +11 2 −2 −2 −1

reliability 2 11 8 +14 +16 −14 +6 +7 +13 31 +7 +8 +23 4 +2 +2 +2

inference 12 4 25 +381 +329 +105 +179 +177 +192 23 +103 +103 +153 2 −1 0 0

Table B.12. Evaluation of branching on test set coral.

all instances (35) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 6 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

random 14 5 16 +304 +194 +19 +86 +81 +65 16 +48 +41 +47 5 +1 0 +1

most inf 16 5 16 +269 +187 +22 +93 +86 +75 14 +14 +6 −6 5 0 0 0

least inf 16 5 16 +488 +306 +32 +113 +109 +84 14 +47 +42 +53 5 0 0 0

pseudocost 10 7 13 +105 +71 +18 +23 +23 +30 20 +17 +15 +35 5 −1 −1 −1

full strong 12 4 19 −79 −72 −68 +115 +107 +72 15 +198 +177 +212 5 0 0 +1

strong 7 4 18 −58 −59 −80 +46 +44 +22 17 +111 +105 +99 9 +2 +1 +1

hybr strong 10 1 18 +45 +41 +24 +47 +43 +33 17 +73 +64 +66 8 0 0 −1

psc strinit 8 7 8 +37 +40 +9 +8 +9 +14 18 −1 0 −1 9 0 0 0

reliability 6 7 8 +11 +7 −4 +5 +6 +7 17 +4 +6 +6 10 +1 +1 +2

inference 8 8 11 +122 +76 +1 +20 +20 +25 21 +25 +26 +67 5 −2 −1 0

Table B.13. Evaluation of branching on test set milp.
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all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

random 2 0 5 +164 +163 +144 +147 +115 +202 4 +174 +203 +615 1 0 0 0

most inf 0 4 0 −29 −29 −65 −35 −40 −71 6 −39 −43 −71 1 0 0 0

least inf 2 0 5 +221 +219 +194 +191 +149 +212 4 +266 +325 +1235 1 0 0 0

pseudocost 0 2 3 +3 +3 −70 −8 −27 −74 6 −9 −30 −74 1 0 0 0

full strong 0 0 5 −84 −83 −91 +68 +45 +83 6 +83 +51 +83 1 0 0 0

strong 0 1 4 −86 −85 −93 +20 +11 −2 6 +24 +13 −2 1 0 0 0

hybr strong 0 1 4 0 +1 +21 +21 +9 +21 6 +25 +11 +21 1 0 0 0

psc strinit 0 2 3 +22 +23 +68 +26 +27 +66 6 +31 +30 +66 1 0 0 0

reliability 0 2 1 −9 −8 +13 0 +5 +11 6 0 +5 +11 1 0 0 0

inference 0 3 1 −48 −49 −91 −56 −70 −93 6 −62 −73 −93 1 0 0 0

Table B.14. Evaluation of branching on test set enlight.

all instances (24) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

random 6 1 22 +23951 +6987 +1249 +2655 +1271 +1061 18 +3070 +1559 +1149

most inf 10 0 19 +9715 +5127 +1577 +2897 +1991 +1611 14 +1412 +1567 +4680

least inf 8 0 23 +30929 +9084 +1487 +3504 +1891 +1482 16 +4071 +2655 +6360

pseudocost 5 0 19 +3169 +1659 +804 +907 +619 +818 19 +676 +472 +500

full strong 4 1 17 −65 −60 −51 +157 +180 +572 15 +116 +123 +179

strong 0 5 10 −79 −78 −78 +7 +13 +93 17 +10 +16 +93

hybr strong 1 6 8 −43 −31 +217 −2 +11 +198 18 −15 −4 +87

psc strinit 0 3 12 +149 +120 +50 +67 +55 +64 19 +92 +66 +64

reliability 0 5 11 +6 +17 +246 +23 +36 +182 19 +30 +43 +183

inference 0 9 7 +176 +6 −39 −29 −35 −45 24 −29 −35 −45

Table B.15. Evaluation of branching on test set alu.

all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

random 3 0 10 +867 +511 +1352 +247 +288 +1121 10 +209 +256 +773 3 0 0 0

most inf 3 0 11 +757 +443 +1139 +234 +267 +1095 10 +191 +223 +634 3 0 0 0

least inf 3 0 11 +1684 +931 +1974 +355 +379 +1252 10 +378 +415 +1469 3 0 0 0

pseudocost 0 2 9 +221 +103 +93 +33 +35 +65 13 +42 +40 +65 3 0 0 0

full strong 0 1 10 −72 −73 −92 +33 +36 +81 13 +43 +40 +81 3 0 0 0

strong 0 1 9 −65 −68 −90 +24 +25 +48 11 +36 +31 +49 5 +2 +3 +3

hybr strong 0 1 6 +7 +6 +14 +3 +4 +10 11 +5 +5 +10 5 0 0 0

psc strinit 0 0 7 +71 +39 +39 +13 +14 +29 12 +16 +17 +29 4 +3 +4 +4

reliability 0 0 0 0 0 −1 +3 +2 +3 8 +4 +3 +3 8 +1 +2 +2

inference 1 0 10 +631 +364 +818 +170 +187 +683 12 +221 +225 +801 3 0 0 0

Table B.16. Evaluation of branching on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

random 1 1 3 +292 +393 +1639 +48 +52 +175 3 −3 −1 +70 3 −3 −3 −3

most inf 3 1 3 +396 +513 +2057 +81 +85 +264 1 −82 −82 −82 3 −2 −2 −2

least inf 3 0 3 +1110 +1422 +5881 +132 +138 +293 1 +8 +8 +8 3 −3 −3 −3

pseudocost 0 3 1 +69 +88 +314 −40 −41 −34 4 −59 −58 −35 3 −2 −2 −2

full strong 3 0 4 −90 −95 −98 +167 +174 +346 1 +390 +390 +390 3 −1 −1 −1

strong 2 0 4 −43 −52 −62 +78 +82 +202 2 +80 +79 +63 3 −3 −3 −3

hybr strong 3 0 4 +316 +392 +778 +147 +153 +309 1 +59 +59 +59 3 −1 −1 −1

psc strinit 1 2 2 +6 +31 +459 +10 +11 +90 3 −31 −31 −13 3 −3 −3 −3

reliability 1 1 3 +325 +404 +864 +81 +84 +163 3 +184 +183 +150 3 −2 −2 −2

inference 0 3 1 +29 +33 +110 −23 −24 −27 4 −36 −36 −28 3 −2 −2 −2

Table B.17. Evaluation of branching on test set acc.
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all instances (19) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

random 2 1 14 +11564 +5542 +22505 +684 +912 +5925 17 +456 +634 +3346

most inf 2 0 14 +9640 +5060 +20634 +840 +1152 +6688 17 +581 +842 +4359

least inf 2 1 14 +12830 +6039 +28965 +618 +837 +6129 17 +404 +569 +3617

pseudocost 0 0 13 +1230 +603 +490 +77 +98 +154 19 +77 +98 +154

full strong 0 1 8 −74 −81 −92 +11 +14 +21 19 +11 +14 +21

strong 0 0 10 −66 −73 −89 +14 +18 +24 14 +18 +21 +26

hybr strong 0 0 9 −27 −28 −31 +13 +14 +17 15 +15 +16 +18

psc strinit 0 3 1 +69 +54 +17 −4 −5 −7 14 −4 −5 −7

reliability 0 1 0 0 0 −1 −2 −2 −2 9 −2 −2 −2

inference 0 4 13 +2204 +1137 +1964 +137 +188 +568 19 +137 +188 +568

Table B.18. Evaluation of branching on test set fc.

all instances (23) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

random 11 0 22 +3802 +3219 +2518 +1348 +1276 +1080 12 +660 +662 +1431

most inf 12 0 23 +2863 +2434 +2543 +1163 +1114 +1078 11 +397 +404 +876

least inf 13 0 23 +4221 +3573 +2868 +1370 +1296 +1134 10 +380 +376 +577

pseudocost 1 1 22 +301 +248 +180 +110 +106 +118 22 +106 +102 +79

full strong 2 2 19 −62 −60 −37 +112 +112 +259 21 +105 +107 +316

strong 2 1 17 −52 −51 −59 +74 +72 +172 20 +63 +62 +69

hybr strong 0 2 18 −6 −6 +21 +39 +38 +48 23 +39 +38 +48

psc strinit 0 6 12 +46 +37 +60 +18 +18 +31 23 +18 +18 +31

reliability 0 5 7 +4 0 −14 0 −1 −8 19 −1 −2 −13

inference 1 2 21 +875 +742 +656 +331 +317 +355 22 +325 +314 +331

Table B.19. Evaluation of branching on test set arcset.

all instances (41) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

random 41 0 41 +9016 +8994 +3851 +11976 +10606 +5543 0 — — —

most inf 41 0 41 +7415 +7397 +3189 +11976 +10606 +5543 0 — — —

least inf 34 0 41 +9218 +9195 +4088 +10168 +9009 +5024 7 +10977 +10504 +11773

pseudocost 0 0 40 +123 +123 +125 +113 +102 +143 41 +113 +102 +143

full strong 0 2 36 −90 −90 −87 +59 +59 +140 41 +59 +59 +140

strong 0 14 20 −86 −86 −83 +5 +8 +38 41 +5 +8 +38

hybr strong 0 7 20 +1 +1 +18 +11 +11 +24 41 +11 +11 +24

psc strinit 0 4 28 +32 +32 +62 +35 +35 +75 41 +35 +35 +75

reliability 0 4 6 −1 −1 +8 +2 +2 +10 41 +2 +2 +10

inference 30 0 41 +4663 +4652 +2650 +6524 +5841 +4271 11 +2721 +2604 +3467

Table B.20. Evaluation of branching on test set mik.
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Branching Score Function

all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

min (µ = 0) 2 1 12 +22 +24 −5 +26 +26 +40 24 +32 +32 +66 4 +1 +1 0

weighted (µ = 1
6

) 2 4 9 +27 +21 +2 +12 +12 +23 24 +10 +10 +5 4 −1 −1 −1

weighted (µ = 1
3

) 3 4 10 +58 +46 +24 +26 +28 +61 23 +21 +23 +35 4 −1 −1 −1

avg (µ = 1
2

) 2 0 14 +88 +73 +9 +29 +30 +50 24 +29 +29 +42 4 −1 −1 −2

max (µ = 1) 4 1 16 +109 +92 +41 +53 +53 +80 22 +57 +58 +92 4 −1 −1 −1

Table B.21. Evaluation of branching score functions on test set miplib.

all instances (37) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 2 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

min (µ = 0) 3 7 19 +23 +25 +4 +26 +25 +30 31 +31 +31 +51 2 +1 +1 +1

weighted (µ = 1
6

) 5 8 13 +49 +48 +7 +21 +20 +43 30 +11 +10 +8 2 −1 −1 −1

weighted (µ = 1
3

) 4 12 12 +47 +53 +6 +26 +27 +42 30 +23 +25 +40 2 −3 −3 −2

avg (µ = 1
2

) 5 7 20 +119 +102 +27 +50 +49 +66 30 +45 +44 +62 2 +1 +1 +1

max (µ = 1) 7 5 23 +220 +199 +94 +113 +113 +135 28 +87 +88 +155 2 +1 +1 +1

Table B.22. Evaluation of branching score functions on test set coral.

all instances (35) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 6 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

min (µ = 0) 8 4 11 +28 +19 −13 +18 +18 +15 18 +26 +27 +34 8 0 0 0

weighted (µ = 1
6

) 7 5 10 +36 +26 −11 +10 +10 +6 19 +10 +8 −8 8 0 0 0

weighted (µ = 1
3

) 8 3 12 +80 +69 +5 +37 +36 +25 19 +52 +50 +62 7 +2 +2 +3

avg (µ = 1
2

) 10 4 13 +67 +68 +22 +36 +35 +33 20 +39 +37 +47 5 +1 +1 +1

max (µ = 1) 11 2 16 +106 +97 +17 +59 +58 +48 19 +74 +73 +94 5 +2 +2 +3

Table B.23. Evaluation of branching score functions on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

min (µ = 0) 0 1 4 +10 +12 +67 +26 +34 +73 6 +31 +38 +73 1 0 0 0

weighted (µ = 1
6

) 0 3 2 −13 −13 −48 −10 −19 −52 6 −11 −21 −52 1 0 0 0

weighted (µ = 1
3

) 0 2 3 +14 +15 −23 +18 −1 −30 6 +21 −1 −30 1 0 0 0

avg (µ = 1
2

) 0 3 2 +2 +2 −9 0 −9 −22 6 0 −10 −22 1 0 0 0

max (µ = 1) 0 1 4 +115 +116 +194 +113 +115 +172 6 +141 +135 +172 1 0 0 0

Table B.24. Evaluation of branching score functions on test set enlight.

all instances (25) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

min (µ = 0) 3 3 13 +70 +85 +108 +78 +88 +161 17 +79 +86 +188 5 0 0 0

weighted (µ = 1
6

) 1 3 12 +117 +104 +53 +76 +66 +48 19 +111 +90 +111 5 0 0 0

weighted (µ = 1
3

) 2 2 13 +94 +96 +92 +79 +85 +116 18 +73 +71 +139 5 0 0 0

avg (µ = 1
2

) 2 3 14 +195 +165 +86 +116 +101 +108 19 +116 +88 +121 4 0 0 0

max (µ = 1) 3 1 16 +499 +357 +135 +239 +187 +185 19 +256 +183 +250 3 0 0 0

Table B.25. Evaluation of branching score functions on test set alu.
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all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

min (µ = 0) 0 1 9 +70 +71 +277 +57 +72 +286 12 +83 +89 +287 4 0 0 0

weighted (µ = 1
6

) 0 3 3 +13 +8 +10 +1 −2 +1 12 +1 −2 +1 4 0 0 0

weighted (µ = 1
3

) 0 2 6 +14 +12 +45 +8 +6 +24 12 +10 +7 +24 4 +3 +4 +4

avg (µ = 1
2

) 0 1 7 +32 +34 +125 +21 +26 +89 13 +26 +29 +89 3 0 0 0

max (µ = 1) 0 0 10 +88 +68 +245 +48 +56 +176 13 +62 +64 +177 3 0 0 0

Table B.26. Evaluation of branching score functions on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

min (µ = 0) 1 0 4 +77 +100 +455 +41 +43 +120 3 +22 +22 +25 3 −2 −2 −2

weighted (µ = 1
6

) 2 1 3 +312 +390 +1151 +67 +70 +186 2 +40 +39 +20 3 −2 −2 −2

weighted (µ = 1
3

) 1 1 3 +176 +222 +836 +27 +29 +136 3 +25 +26 +103 3 −2 −2 −2

avg (µ = 1
2

) 1 0 3 +191 +235 +730 +39 +41 +107 3 +17 +17 +8 3 −2 −2 −2

max (µ = 1) 0 0 4 +316 +391 +733 +48 +50 +81 4 +101 +101 +84 3 −2 −2 −2

Table B.27. Evaluation of branching score functions on test set acc.

all instances (20) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

min (µ = 0) 0 1 12 +135 +147 +292 +43 +58 +111 19 +45 +60 +113

weighted (µ = 1
6

) 0 3 1 −8 −12 −29 −6 −7 −11 20 −6 −7 −11

weighted (µ = 1
3

) 0 4 1 −1 −6 −16 −4 −6 −9 20 −4 −6 −9

avg (µ = 1
2

) 0 6 4 −31 −35 −30 −3 −4 −6 20 −3 −4 −6

max (µ = 1) 0 6 4 +4 −10 +7 −2 −2 −2 20 −2 −2 −2

Table B.28. Evaluation of branching score functions on test set fc.

all instances (23) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

min (µ = 0) 0 3 14 +66 +57 +87 +37 +35 +42 23 +37 +35 +42

weighted (µ = 1
6

) 0 4 12 +23 +20 +13 +12 +11 +6 23 +12 +11 +6

weighted (µ = 1
3

) 0 3 14 +44 +37 +43 +22 +22 +23 23 +22 +22 +23

avg (µ = 1
2

) 1 3 12 +69 +60 +116 +32 +32 +90 22 +27 +26 +39

max (µ = 1) 1 2 16 +117 +109 +232 +61 +62 +161 22 +56 +57 +138

Table B.29. Evaluation of branching score functions on test set arcset.

all instances (41) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

min (µ = 0) 0 1 36 +131 +131 +267 +132 +134 +274 41 +132 +134 +274

weighted (µ = 1
6

) 0 4 20 +16 +16 +37 +12 +13 +36 41 +12 +13 +36

weighted (µ = 1
3

) 0 1 34 +34 +34 +58 +31 +31 +64 41 +31 +31 +64

avg (µ = 1
2

) 0 0 38 +63 +63 +84 +54 +52 +97 41 +54 +52 +97

max (µ = 1) 3 0 41 +193 +193 +291 +180 +169 +459 38 +156 +149 +191

Table B.30. Evaluation of branching score functions on test set mik.
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Node Selection

all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

dfs 2 5 8 +60 +64 +81 +22 +22 +36 18 +26 +22 +4 9 −2 −2 −2

bfs 1 3 15 −24 −18 −15 +30 +28 +25 25 +37 +34 +37 4 −2 −2 −2

bfs/plunge 1 2 6 +5 +3 +24 +4 +3 +4 20 +7 +5 +7 9 0 0 0

estimate 1 3 13 −18 −15 +24 +15 +14 +12 23 +20 +18 +18 6 0 0 −1

estim/plunge 1 6 3 −3 −3 +15 −3 −3 −10 18 −6 −5 −15 11 0 0 0

hybrid 2 3 7 +7 +7 +26 +8 +8 +18 18 +5 +4 −10 10 −2 −1 −2

Table B.31. Evaluation of node selection on test set miplib.

all instances (38) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

dfs 7 13 15 +145 +143 +38 +51 +49 +69 28 +11 +12 +31 3 +1 +1 +1

bfs 5 6 20 −41 −28 −1 +37 +38 +46 30 +31 +33 +52 3 +3 +3 +4

bfs/plunge 2 6 18 −1 0 −12 +2 +2 −10 30 +15 +15 +10 5 +2 +2 +2

estimate 4 9 19 −23 −9 −5 +19 +19 +17 30 +24 +25 +29 3 0 0 0

estim/plunge 2 8 10 +3 +3 −9 −3 −3 −11 30 +1 +1 +4 5 +2 +2 +2

hybrid 2 7 10 −9 −9 0 −5 −5 −10 30 +4 +4 +10 5 +3 +2 +2

Table B.32. Evaluation of node selection on test set coral.

all instances (35) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 6 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

dfs 6 5 13 +57 +41 +8 +12 +12 +7 18 +13 +13 +10 9 +1 +1 +1

bfs 6 5 12 −24 −12 −6 +20 +20 +13 20 +39 +38 +57 8 0 0 −1

bfs/plunge 4 4 8 +3 +2 +9 +2 +1 −4 17 +8 +8 +8 11 +1 +1 +2

estimate 5 6 12 −19 −9 +9 +9 +8 +3 20 +17 +15 +16 8 −1 0 −1

estim/plunge 4 3 7 +9 +9 +18 +5 +5 +2 16 +11 +11 +14 13 +3 +2 +2

hybrid 6 2 8 +9 +8 +28 +4 +3 0 18 +6 +5 −1 11 +2 +2 +3

Table B.33. Evaluation of node selection on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

dfs 0 1 4 +109 +109 +51 +73 +53 +9 6 +90 +61 +9 1 0 0 0

bfs 0 1 4 +14 +16 +61 +78 +74 +136 6 +95 +86 +136 1 0 0 0

bfs/plunge 1 1 4 +35 +36 +200 +42 +53 +173 5 +39 +57 +275 1 0 0 0

estimate 0 2 3 +1 +2 −52 +24 0 −49 6 +28 0 −49 1 0 0 0

estim/plunge 0 2 1 +7 +7 −11 −5 −11 −29 6 −5 −12 −29 1 0 0 0

hybrid 0 2 3 +12 +13 +113 +20 +25 +108 6 +24 +28 +108 1 0 0 0

Table B.34. Evaluation of node selection on test set enlight.
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all instances (24) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

dfs 0 12 1 −43 −43 −52 −36 −40 −59 16 −49 −47 −59 8 0 0 0

bfs 0 2 13 +55 +50 +121 +91 +101 +250 19 +127 +125 +250 5 0 0 0

bfs/plunge 0 6 5 +27 +29 +56 +20 +25 +97 16 +32 +34 +97 8 0 0 0

estimate 1 2 15 +97 +87 +189 +108 +113 +273 18 +131 +120 +171 5 0 0 0

estim/plunge 1 6 6 +16 +17 +93 +18 +25 +127 14 −4 −3 −5 9 0 0 0

hybrid 0 6 4 +6 +6 +2 +2 +3 +9 16 +3 +4 +9 8 0 0 0

Table B.35. Evaluation of node selection on test set alu.

all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

dfs 0 1 8 +71 +74 +219 +46 +59 +145 11 +74 +78 +145 5 0 0 0

bfs 0 1 8 −12 −6 +12 +20 +25 +63 12 +28 +29 +63 4 0 0 0

bfs/plunge 0 1 6 −1 +2 +19 +7 +9 +27 12 +9 +10 +27 4 0 0 0

estimate 0 2 7 −6 −5 +24 +17 +22 +66 12 +24 +26 +66 4 0 0 0

estim/plunge 0 3 1 −2 −3 −5 −1 −2 −6 9 −3 −3 −6 7 +1 +2 +2

hybrid 0 1 6 +1 +2 +21 +6 +7 +26 12 +8 +9 +26 4 0 0 0

Table B.36. Evaluation of node selection on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

dfs 2 0 4 +340 +425 +1069 +98 +102 +233 2 +249 +248 +289 3 −3 −3 −3

bfs 0 2 2 −22 −30 −24 −7 −7 −23 4 −11 −11 −24 3 −2 −2 −2

bfs/plunge 0 2 1 −16 −7 +229 −7 −7 +8 3 −15 −14 +9 4 −2 −2 −2

estimate 0 2 2 −21 −29 −20 −7 −7 −23 4 −11 −11 −24 3 −2 −2 −2

estim/plunge 1 2 1 +10 +25 +458 +7 +8 +68 2 −49 −49 −45 4 −2 −2 −2

hybrid 0 2 1 +11 +27 +495 +7 +7 +62 3 +19 +19 +69 4 −1 −1 −1

Table B.37. Evaluation of node selection on test set acc.

all instances (20) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

dfs 0 3 1 −9 −9 −2 −3 −4 −4 15 −4 −4 −4 5 −2 −2 −2

bfs 0 1 10 −29 −31 −36 +11 +14 +20 15 +16 +17 +21 5 −2 −2 −2

bfs/plunge 0 0 2 +8 +9 +8 +2 +2 +3 15 +3 +3 +3 5 −2 −2 −2

estimate 0 1 5 −29 −32 −35 +4 +6 +10 15 +6 +7 +11 5 −2 −2 −2

estim/plunge 0 0 1 +8 +9 +6 0 +1 +1 13 +1 +1 +1 7 −1 −1 −1

hybrid 0 0 2 +11 +12 +23 +3 +5 +9 15 +5 +6 +10 5 −1 −1 −1

Table B.38. Evaluation of node selection on test set fc.

all instances (23) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

dfs 3 5 15 +253 +249 +1007 +152 +152 +287 20 +95 +97 +116 0 — — —

bfs 1 0 21 +7 +6 +44 +55 +53 +108 22 +50 +48 +64 0 — — —

bfs/plunge 0 4 10 0 0 +7 +10 +11 +21 22 +10 +11 +21 1 +4 +4 +4

estimate 0 2 17 +22 +19 +23 +43 +42 +42 23 +43 +42 +42 0 — — —

estim/plunge 0 5 4 +7 +7 +8 +5 +5 −4 20 +6 +6 −4 3 +2 +2 +3

hybrid 0 3 10 +4 +3 +18 +13 +13 +30 22 +13 +13 +30 1 +3 +3 +3

Table B.39. Evaluation of node selection on test set arcset.
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all instances (41) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

dfs 0 16 11 +19 +19 −1 −5 −7 −21 41 −5 −7 −21

bfs 0 1 36 +3 +3 +19 +46 +44 +65 41 +46 +44 +65

bfs/plunge 0 5 11 −4 −4 +6 +2 +3 +6 41 +2 +3 +6

estimate 0 0 38 +6 +6 +12 +42 +39 +52 41 +42 +39 +52

estim/plunge 0 9 3 +2 +2 +5 −3 −2 −2 41 −3 −2 −2

hybrid 0 5 14 0 0 +5 +6 +6 +5 41 +6 +6 +5

Table B.40. Evaluation of node selection on test set mik.
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Child Selection

all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

down 1 2 11 +20 +18 +5 +22 +23 +27 22 +31 +32 +40 7 −1 −1 −1

up 1 5 4 +3 −1 −6 0 0 +2 23 0 0 +3 6 −1 −1 −2

pseudocost 2 6 7 −11 −8 −15 +11 +12 +20 22 +13 +15 +24 6 −2 −2 −2

LP value 1 9 9 +5 +1 −20 +7 +7 +3 22 +10 +10 +5 7 −1 0 −1

root LP value 1 3 6 +2 −2 −6 +1 0 +1 25 +2 0 +1 4 0 0 0

inference 1 4 4 −5 −4 +6 +4 +4 +1 19 +6 +6 +2 10 +1 0 0

Table B.41. Evaluation of child selection on test set miplib.

all instances (38) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

down 3 10 13 +11 +14 +5 +11 +10 +12 30 +6 +4 +10 4 0 0 0

up 3 14 4 −27 −19 +65 −12 −11 +3 31 −14 −13 +7 4 +1 +1 +1

pseudocost 4 14 9 −7 −1 +20 +5 +6 +17 30 −4 −3 −2 3 −2 −2 −2

LP value 2 11 10 −13 −9 +5 −2 −2 −5 32 +1 +1 +10 3 −1 −1 0

root LP value 4 15 5 −19 −14 −11 −6 −5 +9 31 −10 −9 +1 3 0 0 0

inference 3 13 5 +3 +1 −7 −3 −4 −4 30 −4 −5 −8 5 −1 −1 −1

Table B.42. Evaluation of child selection on test set coral.

all instances (35) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 6 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

down 5 4 10 +7 +8 −6 +15 +14 +11 20 +31 +30 +45 9 +1 +1 +1

up 4 8 3 −11 −9 +5 −5 −5 0 19 −9 −9 +10 10 +3 +2 +2

pseudocost 5 8 10 +7 +10 −9 +11 +10 +7 20 +24 +23 +50 8 +1 +1 +1

LP value 5 5 12 +11 +15 −4 +13 +12 +14 21 +23 +22 +48 8 0 +1 +1

root LP value 5 9 4 −10 −9 −1 −8 −8 −5 20 −13 −13 −12 9 0 +1 0

inference 3 5 6 −15 −12 +3 −4 −5 −8 17 −6 −7 −10 12 +1 +1 +2

Table B.43. Evaluation of child selection on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

down 0 1 3 −5 −4 +16 +2 −1 +11 6 +3 −1 +11 1 0 0 0

up 0 1 3 +20 +20 −12 +17 +3 −16 6 +20 +4 −16 1 0 0 0

pseudocost 0 2 2 −3 −3 +34 +1 −2 +22 6 +1 −2 +22 1 0 0 0

LP value 0 3 1 −9 −9 −17 −9 −11 −28 6 −10 −12 −28 1 0 0 0

root LP value 0 2 1 −3 −3 −11 −5 −8 −16 6 −6 −8 −16 1 0 0 0

inference 0 2 3 +7 +7 +27 +10 +3 +22 6 +11 +4 +22 1 0 0 0

Table B.44. Evaluation of child selection on test set enlight.
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all instances (24) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

down 0 9 7 −1 −6 −19 −6 −12 −24 19 −7 −13 −24 5 0 0 0

up 0 7 6 −26 −20 +67 −8 −3 +88 17 −11 −4 +88 7 0 0 0

pseudocost 0 6 8 +33 +27 +14 +19 +11 +12 19 +25 +13 +12 5 0 0 0

LP value 0 6 6 −1 +3 +10 +5 +5 +7 19 +7 +5 +7 5 0 0 0

root LP value 0 5 8 +20 +29 +66 +30 +41 +94 18 +42 +51 +94 6 0 0 0

inference 0 8 7 +8 +6 −19 −7 −12 −30 16 −10 −15 −30 8 0 0 0

Table B.45. Evaluation of child selection on test set alu.

all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

down 0 1 4 +2 +2 +5 +3 +4 +11 9 +5 +5 +11 7 +1 +2 +2

up 0 4 1 −14 −11 −6 −7 −7 −11 12 −9 −9 −11 4 0 0 0

pseudocost 0 2 4 0 −2 +10 +6 +4 +24 11 +8 +5 +24 5 +2 +3 +3

LP value 0 1 6 −5 −1 +8 +6 +6 +20 11 +7 +8 +20 5 +2 +3 +3

root LP value 0 4 2 −11 −9 0 −4 −6 −2 12 −6 −7 −2 4 0 0 0

inference 0 1 0 −2 −2 +1 −1 −2 +3 8 −4 −3 +3 8 +1 +1 +1

Table B.46. Evaluation of child selection on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

down 0 2 2 −10 −13 0 −18 −19 −39 4 −29 −29 −40 3 −2 −2 −2

up 0 2 2 +24 +35 +326 −1 −1 +28 4 +1 +1 +29 3 −3 −3 −3

pseudocost 0 1 3 +37 +64 +372 +19 +20 +100 4 +37 +37 +103 3 −2 −2 −2

LP value 0 2 0 −22 −18 0 −15 −15 −24 4 −23 −23 −24 3 −3 −3 −3

root LP value 0 1 2 −6 +21 +175 +12 +13 +56 4 +23 +24 +58 3 −1 −1 −1

inference 0 2 2 +19 +27 +159 −7 −7 −16 4 −11 −11 −17 3 −1 −1 −1

Table B.47. Evaluation of child selection on test set acc.

all instances (20) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

down 0 0 2 +4 +4 +5 0 +1 +2 15 +1 +1 +2 5 −2 −2 −2

up 0 3 2 −2 −1 −9 −2 −3 −5 15 −3 −4 −6 5 −1 −1 −1

pseudocost 0 4 2 −6 −9 −25 −4 −5 −8 15 −4 −6 −9 5 −2 −2 −2

LP value 0 1 1 +1 +1 −13 −2 −3 −5 15 −2 −3 −5 5 −1 −1 −1

root LP value 0 2 2 −5 −7 −17 −3 −4 −8 15 −4 −5 −8 5 −1 −1 −1

inference 0 0 1 +4 +3 −3 0 −1 −2 14 0 −1 −2 6 −1 −1 −1

Table B.48. Evaluation of child selection on test set fc.

all instances (23) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

down 0 7 6 +8 +5 −2 −1 −2 −9 23 −1 −2 −9 0 — — —

up 0 7 9 −3 −2 +10 +3 +3 +20 23 +3 +3 +20 0 — — —

pseudocost 0 4 7 +7 +5 +18 +6 +6 +28 23 +6 +6 +28 0 — — —

LP value 0 4 5 +2 0 +1 +1 +1 +8 23 +1 +1 +8 0 — — —

root LP value 0 4 10 +8 +7 +8 +6 +6 +6 23 +6 +6 +6 0 — — —

inference 0 3 9 +4 +3 +3 +4 +4 +2 22 +4 +4 +2 1 +3 +3 +3

Table B.49. Evaluation of child selection on test set arcset.
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all instances (41) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

down 0 24 9 +13 +13 +4 −9 −8 −15 41 −9 −8 −15

up 0 6 18 −5 −5 −4 +8 +8 +9 41 +8 +8 +9

pseudocost 0 4 23 +12 +12 +18 +19 +19 +34 41 +19 +19 +34

LP value 0 1 24 +20 +20 +19 +17 +17 +24 41 +17 +17 +24

root LP value 0 11 14 +12 +12 +25 +1 +2 +15 41 +1 +2 +15

inference 0 9 3 −5 −5 −3 −1 −1 +2 41 −1 −1 +2

Table B.50. Evaluation of child selection on test set mik.
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Domain Propagation

all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

none 1 5 6 +12 +1 −16 +5 +6 +1 27 +6 +6 +2 2 −2 −1 −1

aggr linear 1 2 5 0 0 +2 +3 +3 +9 17 +5 +5 +16 12 +1 +1 +1

no obj prop 1 6 1 −4 −4 −11 −3 −3 −8 13 −6 −6 −16 16 −1 −1 −3

no root redcost 1 2 1 −1 −3 −7 −2 −2 −5 16 −3 −4 −8 13 −1 −1 −1

Table B.51. Evaluation of domain propagation on test set miplib.

all instances (38) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

none 5 11 12 +11 +12 +15 +15 +15 +33 31 +8 +8 +19 2 −2 −2 −1

aggr linear 3 14 6 −12 −10 −29 −7 −8 −9 28 −10 −11 −19 7 +1 +1 +2

no obj prop 3 7 2 −5 −5 −1 −4 −4 0 20 −7 −7 +1 15 0 0 −2

no root redcost 2 6 1 −9 −8 −8 −7 −7 −11 16 −9 −9 −2 19 0 0 −1

Table B.52. Evaluation of domain propagation on test set coral.

all instances (36) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 7 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

none 6 6 10 +35 +20 −32 +18 +13 −3 23 +31 +22 −7 6 0 0 +1

aggr linear 5 7 3 −11 −9 −4 −4 −3 −10 15 −1 +1 −4 14 +1 +1 +1

no obj prop 6 3 3 +28 +15 −37 +7 +5 −5 8 +63 +53 +18 21 +1 +1 +1

no root redcost 8 1 6 +1 0 −1 +2 +1 +1 13 +1 0 −4 15 +2 +2 +1

Table B.53. Evaluation of domain propagation on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

none 1 0 5 +185 +183 +118 +167 +104 +142 5 +238 +140 +184 1 0 0 0

aggr linear 0 5 0 −61 −59 −54 −46 −42 −65 6 −51 −45 −65 1 0 0 0

no obj prop 0 0 1 +2 +2 0 0 0 −4 4 +2 +2 −2 3 −2 −2 −5

no root redcost 0 0 0 0 0 0 −1 −1 −1 0 — — — 7 −1 −1 −1

Table B.54. Evaluation of domain propagation on test set enlight.

all instances (24) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

none 2 0 16 +287 +283 +583 +209 +222 +508 18 +255 +254 +411 4 0 0 0

aggr linear 0 13 3 −26 −24 −64 −30 −36 −66 19 −36 −40 −66 5 0 0 0

no obj prop 0 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

no root redcost 0 0 0 0 0 0 +2 +1 +2 0 — — — 24 +2 +1 +2

Table B.55. Evaluation of domain propagation on test set alu.
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all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

none 0 4 1 −3 −5 −3 −3 −7 −9 13 −3 −7 −9 3 0 0 0

aggr linear 0 0 0 −2 −2 −2 0 0 0 7 0 0 0 9 +1 +1 +1

no obj prop 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

no root redcost 0 0 0 0 0 0 +1 0 0 7 +1 0 0 9 0 0 0

Table B.56. Evaluation of domain propagation on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

none 1 1 2 +7 +25 +239 +29 +31 +142 3 −1 −1 +53 3 −2 −2 −2

aggr linear 0 2 2 −2 −5 +37 −18 −18 −34 4 −28 −28 −35 3 −2 −2 −2

no obj prop 0 0 0 0 0 0 −2 −1 −1 0 — — — 7 −2 −1 −1

no root redcost 0 0 0 0 0 0 −1 −1 −1 0 — — — 7 −1 −1 −1

Table B.57. Evaluation of domain propagation on test set acc.

all instances (20) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

none 0 0 15 +94 +75 +184 +33 +42 +79 20 +33 +42 +79 0 — — —

aggr linear 0 0 3 −1 0 −1 +3 +3 +4 14 +4 +4 +4 6 +3 +3 +3

no obj prop 0 0 13 +73 +63 +209 +31 +40 +87 19 +33 +42 +89 1 +2 +2 +2

no root redcost 0 0 0 +3 +4 +1 +3 +3 +3 9 +3 +3 +3 11 +2 +2 +3

Table B.58. Evaluation of domain propagation on test set fc.

all instances (23) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

none 0 3 11 +12 +10 +21 +13 +13 +18 23 +13 +13 +18 0 — — —

aggr linear 0 5 6 +4 +2 −2 +1 +1 0 23 +1 +1 0 0 — — —

no obj prop 0 4 4 +1 +1 −1 +1 +1 0 11 +1 +1 −1 12 +1 +1 +1

no root redcost 0 3 1 −3 −4 −5 0 0 +3 11 −5 −4 +1 12 +4 +3 +3

Table B.59. Evaluation of domain propagation on test set arcset.

all instances (41) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 41 0 0 0

none 0 14 22 +66 +66 +94 +17 +19 +57 41 +17 +19 +57 0 — — —

aggr linear 0 27 3 −34 −34 −42 −15 −15 −23 41 −15 −15 −23 0 — — —

no obj prop 0 10 15 +38 +38 +94 +17 +21 +66 41 +17 +21 +66 0 — — —

no root redcost 0 1 0 −1 −1 −1 +1 +1 +1 7 −2 −2 −1 34 +1 +1 +1

Table B.60. Evaluation of domain propagation on test set mik.
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Cutting Plane Separation

all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

none 6 6 22 +6599 +2958 +159 +592 +443 +220 24 +335 +273 +195 0 — — —

no knap 1 5 4 +19 +13 +1 +3 +5 +1 13 +11 +14 +3 16 −2 −2 −2

no c-MIR 1 8 6 +302 +157 0 +51 +35 +13 13 +167 +133 +89 16 −2 −1 −1

no Gom 1 17 4 +11 −1 −15 −18 −15 −19 24 −22 −19 −31 5 −5 −3 −3

no SCG 1 10 1 −10 −2 −4 −6 −5 −4 12 −13 −11 −14 17 −2 −1 −1

no flow 1 13 3 +32 +3 −16 −14 −9 −7 17 −19 −13 −31 12 −8 −6 −2

no impl 1 2 4 +36 +10 0 +1 +1 +5 9 +7 +9 +29 20 −2 −2 −2

no cliq 1 4 2 +15 +7 +1 −6 −6 +3 7 −19 −17 +19 22 −2 −2 −1

no rdcost 3 2 13 +38 +20 +28 +22 +21 +38 25 +21 +20 +30 2 −2 −2 −2

cons Gom 1 15 3 +14 +2 −15 −8 −6 −15 24 −11 −8 −25 5 +4 +3 +3

Table B.61. Evaluation of cut separation on test set miplib.

all instances (37) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 34 0 0 0

none 9 20 13 +342 +290 +164 +48 +51 +106 27 −4 −2 +45 1 −46 −46 −46

no knap 3 4 2 +15 +6 +32 +4 +4 +15 7 +24 +27 +158 27 −1 −1 0

no c-MIR 2 9 7 +16 +15 +7 +4 +3 +18 19 +44 +41 +109 15 0 0 +2

no Gom 4 14 11 +64 +54 +29 +10 +12 +31 31 +9 +11 +56 2 −2 −2 −1

no SCG 3 9 3 −1 +1 −19 −2 −3 −4 12 −2 −6 −19 21 0 0 +1

no flow 3 14 4 +15 +6 +14 −3 −1 +16 17 −1 +1 +61 17 −5 −4 −2

no impl 2 5 5 −19 −19 −20 −12 −12 −14 12 −3 −2 +13 22 +2 +2 +2

no cliq 3 3 4 +17 +12 +2 +1 +2 +3 9 +4 +7 +41 25 0 0 0

no rdcost 3 6 9 +2 +3 +29 +1 +1 +6 28 +1 +1 +15 6 +2 +2 +3

cons Gom 2 17 8 +3 0 −14 −16 −15 −17 32 −14 −13 −7 2 −1 −1 0

Table B.62. Evaluation of cut separation on test set coral.

all instances (34) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 6 0 0 0 0 0 0 0 0 0 — — — 28 0 0 0

none 6 13 14 +191 +81 −2 +8 +6 −5 25 +15 +12 +4 1 −3 −3 −3

no knap 6 0 3 +9 +9 +1 +4 +4 +2 3 +52 +52 +114 25 0 0 0

no c-MIR 6 7 7 +66 +48 +10 +20 +18 +8 12 +82 +75 +77 15 −7 −6 −5

no Gom 6 10 8 +29 +3 +6 −3 −4 −7 21 −10 −12 −25 5 +1 +1 +1

no SCG 5 7 3 +4 −5 −1 −7 −7 −9 11 −17 −19 −41 17 0 0 −1

no flow 4 7 1 −4 −3 −5 −4 −4 −8 8 −10 −9 −31 20 0 0 +1

no impl 4 5 1 −3 −4 −12 −8 −9 −16 8 −7 −8 −22 20 −1 −1 −1

no cliq 5 5 5 +22 +5 +1 −3 −7 −8 12 −11 −20 −46 16 +3 +2 +2

no rdcost 5 5 6 +5 +12 −9 +5 +5 +2 20 +9 +9 +8 8 −1 0 +1

cons Gom 4 11 8 0 −4 −9 −5 −5 −16 23 −1 0 −14 5 +3 +2 +2

Table B.63. Evaluation of cut separation on test set milp.
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all instances (7) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

none 0 3 1 +144 +34 −63 −35 −47 −82 7 −35 −47 −82

no knap 1 0 5 +280 +108 +103 +61 +51 +111 6 +53 +47 +94

no c-MIR 0 2 0 −21 −21 −61 −27 −33 −68 3 −52 −53 −68

no Gom 0 3 1 −18 −18 −64 −29 −40 −76 7 −29 −40 −76

no SCG 0 3 2 +14 +13 −32 +2 −13 −41 6 +2 −14 −41

no flow 0 2 1 −15 −15 −61 −18 −30 −68 7 −18 −30 −68

no impl 0 3 2 −32 −31 −78 −39 −49 −85 7 −39 −49 −85

no cliq 0 0 0 0 0 0 −2 −3 −5 0 — — —

no rdcost 0 1 0 +6 +6 +3 0 −1 −6 5 −1 −1 −6

cons Gom 0 1 2 +19 +19 −24 +4 −4 −41 7 +4 −4 −41

Table B.64. Evaluation of cut separation on test set enlight.

all instances (24) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

none 0 11 6 +17 +7 −27 −17 −21 −32 24 −17 −21 −32 0 — — —

no knap 0 8 7 −28 −13 +61 −9 +4 +40 24 −9 +4 +40 0 — — —

no c-MIR 0 7 9 −14 −14 +3 −7 −16 −6 22 −8 −17 −6 2 0 0 0

no Gom 0 10 5 −30 −25 −21 −16 −17 −27 24 −16 −17 −27 0 — — —

no SCG 0 5 7 −6 +4 +17 +14 +16 +26 18 +19 +20 +32 6 0 +1 +2

no flow 0 8 6 +18 +18 −16 +3 −6 −24 22 +4 −6 −25 2 −2 −2 −2

no impl 0 12 7 −55 −50 −10 −35 −34 −20 23 −36 −35 −20 1 0 0 0

no cliq 0 10 6 −10 −14 −21 −11 −15 −30 21 −13 −16 −30 3 0 0 0

no rdcost 0 4 6 +14 +14 +7 +10 +11 +6 15 +16 +15 +6 9 0 0 0

cons Gom 0 8 5 −36 −27 −2 −23 −16 −10 23 −24 −16 −10 1 0 0 0

Table B.65. Evaluation of cut separation on test set alu.

all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

none 1 4 8 +3051 +898 +1259 +103 +152 +484 15 +88 +146 +383 0 — — —

no knap 0 2 4 +25 +28 +71 +13 +12 +56 14 +15 +13 +56 2 0 0 0

no c-MIR 0 5 4 +30 +25 +94 −4 +9 +71 13 −4 +10 +72 3 −3 −4 −5

no Gom 0 7 5 +46 +21 +26 −9 −5 +6 16 −9 −5 +6 0 — — —

no SCG 0 1 0 −2 −2 −5 −1 −1 −3 1 −20 −20 −20 15 0 +1 +2

no flow 0 3 7 +53 +26 +119 +16 +14 +86 15 +17 +15 +86 1 0 0 0

no impl 0 0 0 0 0 0 0 0 0 1 0 0 0 15 0 0 0

no cliq 0 0 0 0 0 0 +4 +3 +4 0 — — — 16 +4 +3 +4

no rdcost 0 2 2 +4 +3 +16 +1 0 +9 13 +1 0 +9 3 0 0 0

cons Gom 0 6 3 0 +10 −4 −9 −8 −15 15 −9 −8 −15 1 0 0 0

Table B.66. Evaluation of cut separation on test set fctp.

all instances (7) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

none 1 4 3 +285 +164 +593 −9 +26 +106 6 −35 −5 +7

no knap 0 0 0 0 0 0 −1 −1 −1 0 — — —

no c-MIR 0 0 0 0 0 0 −3 −2 −2 0 — — —

no Gom 0 6 1 +42 −22 −41 −30 −28 −43 7 −30 −28 −43

no SCG 0 4 3 +117 +31 +61 +13 +13 −1 7 +13 +13 −1

no flow 0 0 0 0 0 0 −2 −2 −1 0 — — —

no impl 1 0 2 +82 +98 +418 +36 +38 +102 1 +30 +30 +30

no cliq 1 0 6 +903 +304 +383 +155 +150 +161 6 +150 +145 +140

no rdcost 0 2 1 +2 +9 +103 −7 −6 −5 3 −11 −11 −5

cons Gom 0 4 3 +293 +45 +57 +10 +8 −13 7 +10 +8 −13

Table B.67. Evaluation of cut separation on test set acc.
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all instances (19) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

none 6 0 19 +170321 +81239 +112359 +2382 +2433 +11127 13 +797 +826 +2767

no knap 0 2 9 +46 +39 +51 +12 +11 +16 19 +12 +11 +16

no c-MIR 0 8 9 +1409 +855 +1442 +42 +99 +269 19 +42 +99 +269

no Gom 0 13 2 +11 −7 −18 −18 −17 −21 19 −18 −17 −21

no SCG 0 2 6 +15 +16 +24 +5 +5 +6 10 +10 +8 +9

no flow 0 9 8 +310 +169 +145 +8 +22 +32 19 +8 +22 +32

no impl 0 1 4 +14 +17 +14 +4 +5 +6 10 +7 +8 +8

no cliq 0 0 0 0 0 0 0 0 0 0 — — —

no rdcost 0 2 2 0 +1 +10 +1 +1 +2 19 +1 +1 +2

cons Gom 0 8 5 −9 −11 −26 −7 −9 −12 19 −7 −9 −12

Table B.68. Evaluation of cut separation on test set fc.

all instances (23) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

none 3 9 11 +860 +717 +1509 +104 +104 +241 20 +20 +17 −23

no knap 0 2 0 0 0 0 −3 −2 −1 0 — — —

no c-MIR 0 7 11 +176 +141 +369 +46 +50 +97 23 +46 +50 +97

no Gom 0 11 10 +110 +96 +78 +17 +17 −6 23 +17 +17 −6

no SCG 0 4 5 +14 +4 −7 +1 +1 −8 12 0 0 −18

no flow 0 6 7 −6 −9 −9 −6 −5 −7 16 −9 −8 −10

no impl 0 2 6 +43 +28 +12 +13 +12 −3 11 +25 +23 −9

no cliq 0 0 0 0 0 0 0 0 −1 0 — — —

no rdcost 0 4 9 +30 +27 +27 +12 +11 −3 23 +12 +11 −3

cons Gom 0 7 9 +74 +57 +51 +8 +9 +13 23 +8 +9 +13

Table B.69. Evaluation of cut separation on test set arcset.

all instances (41) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

none 41 0 41 +8597 +8575 +3751 +11976 +10606 +5543 0 — — —

no knap 0 0 0 0 0 0 0 0 0 0 — — —

no c-MIR 0 0 35 +211 +211 +226 +137 +131 +188 39 +148 +142 +198

no Gom 0 4 33 +64 +64 +115 +46 +46 +104 41 +46 +46 +104

no SCG 0 5 12 +5 +5 +2 +6 +6 +4 26 +7 +8 +9

no flow 0 14 21 +39 +39 +131 +21 +32 +114 41 +21 +32 +114

no impl 0 2 19 +32 +32 +8 +29 +24 +11 26 +46 +42 +38

no cliq 0 0 0 0 0 0 −2 −2 −3 0 — — —

no rdcost 3 0 41 +238 +237 +471 +431 +404 +767 38 +411 +399 +802

cons Gom 0 7 23 +23 +23 +57 +15 +17 +49 41 +15 +17 +49

Table B.70. Evaluation of cut separation on test set mik.
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all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

none 6 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

knapsack 5 8 1 −53 −51 −17 −41 −35 −16 11 −73 −67 −60 13 0 0 0

c-MIR 3 12 0 −92 −89 −50 −79 −72 −45 10 −97 −95 −95 14 +2 +2 +2

Gomory 5 9 9 −75 −70 −28 −53 −50 −32 19 −48 −49 −48 4 +4 +4 +4

strong CG 5 7 6 −52 −44 −12 −30 −28 −18 12 −26 −30 −57 12 +3 +3 +3

flow cover 4 10 2 −61 −57 −26 −45 −40 −22 13 −74 −69 −63 11 +2 +2 +1

impl bds 5 5 1 −23 −23 −3 −17 −16 −11 8 −42 −41 −28 16 0 0 0

clique 6 2 2 −12 −7 −1 0 0 0 6 −4 −4 −5 18 +1 +1 +1

redcost 4 13 3 −23 −24 −20 −23 −20 −17 21 −27 −22 −24 3 +2 +2 +3

cons Gom 4 10 3 −67 −61 −23 −53 −48 −30 14 −62 −58 −45 10 +5 +3 +1

Table B.71. Evaluation of only using individual cut separators on test set miplib.

all instances (37) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

none 9 0 0 0 0 0 0 0 0 0 — — — 28 0 0 0

knapsack 10 1 2 +16 +15 0 +16 +15 +9 4 +6 +6 +8 23 +2 +2 +2

c-MIR 6 7 6 −39 −39 −32 −17 −18 −26 13 −16 −16 −40 15 +6 +5 +4

Gomory 6 13 12 −50 −49 −29 −24 −25 −31 27 −1 −3 −32 1 +2 +2 +2

strong CG 9 2 8 +20 +19 +2 +14 +13 0 11 +51 +47 +2 17 +2 +2 +2

flow cover 7 4 9 −10 −10 −34 +9 +7 −13 13 +59 +53 −12 15 +5 +5 +3

impl bds 9 7 3 −15 −15 −11 −4 −5 −6 10 −29 −30 −58 17 +3 +2 +3

clique 8 1 3 −11 −11 −2 −1 −1 −6 5 +127 +123 +84 23 +2 +2 +2

redcost 9 9 6 −14 −15 −22 −5 −5 −2 21 −8 −9 −16 6 +1 +1 +3

cons Gom 5 11 9 −37 −36 −20 −26 −27 −37 19 −7 −8 −37 9 +2 +2 +2

Table B.72. Evaluation of only using individual cut separators on test set coral.

all instances (37) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

none 8 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

knapsack 8 1 2 +2 +2 −1 +4 +5 +3 5 +30 +35 +76 24 +1 +1 +1

c-MIR 8 5 6 −33 −29 −6 −12 −12 −5 12 −26 −27 −4 16 +1 +1 +1

Gomory 7 8 13 −17 −5 −22 +5 +4 +4 21 +49 +47 +64 7 0 0 0

strong CG 8 6 6 −9 −4 +1 +2 +2 +2 16 +3 +4 +13 13 0 0 0

flow cover 8 3 2 +2 +2 −21 −4 −4 −3 4 −48 −51 −72 24 −1 −1 −1

impl bds 8 3 4 −9 −8 +4 −1 −2 0 9 −4 −9 −3 19 −2 −1 −2

clique 8 3 6 −17 −4 0 +7 +11 +8 12 +23 +40 +80 17 0 0 0

redcost 8 9 5 −8 −8 +45 −2 −2 +3 23 −7 −6 −4 5 0 0 0

cons Gom 8 5 13 −15 −1 +1 +8 +8 +7 18 +27 +25 +33 10 +1 +2 +3

Table B.73. Evaluation of only using individual cut separators on test set milp.

all instances (7) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

none 0 0 0 0 0 0 0 0 0 0 — — —

knapsack 0 0 0 0 0 0 +2 0 0 0 — — —

c-MIR 0 3 0 −53 −53 −83 −51 −65 −83 3 −82 −81 −85

Gomory 0 3 2 −49 −7 +164 +27 +52 +238 7 +27 +52 +238

strong CG 0 4 1 −89 −61 −60 −25 −35 −57 7 −25 −35 −57

flow cover 0 3 1 −42 −41 −70 −37 −50 −71 7 −37 −50 −71

impl bds 0 0 0 0 0 0 +3 +2 +2 0 — — —

clique 0 0 0 0 0 0 +1 0 −1 0 — — —

redcost 0 0 3 +14 +14 +42 +24 +30 +58 5 +35 +38 +59

cons Gom 0 2 2 −62 −30 +3 +3 +9 +19 7 +3 +9 +19

Table B.74. Evaluation of only using individual cut separators on test set enlight.
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all instances (25) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

none 1 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

knapsack 1 5 7 −24 −14 −7 −9 −3 −10 24 −9 −3 −31 0 — — —

c-MIR 1 8 7 −51 −39 +16 −25 −10 +11 24 −26 −12 +32 0 — — —

Gomory 2 7 8 −33 −21 +48 −3 +16 +65 19 −18 −2 +7 4 −1 −1 −2

strong CG 1 7 5 −68 −57 −4 −39 −25 −6 20 −47 −34 −23 4 0 0 0

flow cover 1 6 8 −6 −2 +1 −6 −7 −7 22 −6 −8 −21 2 −3 −3 −4

impl bds 1 7 9 −22 −17 +9 −7 0 +6 24 −7 0 +17 0 — — —

clique 1 8 8 −38 −30 −6 −23 −14 −11 24 −23 −16 −33 0 — — —

redcost 1 4 4 +4 +4 0 +6 +8 +2 16 +9 +11 +7 8 0 0 0

cons Gom 1 8 6 −60 −54 −4 −41 −32 −16 20 −48 −44 −64 4 −1 −2 −3

Table B.75. Evaluation of only using individual cut separators on test set alu.

all instances (16) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

none 1 0 0 0 0 0 0 0 0 0 — — —

knapsack 0 9 1 −84 −75 −59 −50 −52 −44 15 −52 −58 −75

c-MIR 1 7 2 −46 −45 −34 −18 −22 −12 11 −25 −29 −31

Gomory 1 0 9 −20 −10 −11 +34 +15 +9 15 +37 +17 +23

strong CG 1 0 0 −1 0 −1 +5 +2 +1 1 0 0 0

flow cover 0 8 2 −92 −82 −74 −54 −57 −59 15 −54 −61 −80

impl bds 1 0 0 −1 0 −1 +1 +1 0 1 0 0 0

clique 1 0 0 0 0 −2 +5 +2 +1 0 — — —

redcost 1 0 0 0 0 0 +1 +1 0 0 — — —

cons Gom 1 3 6 −24 −15 −10 +7 −3 +2 15 +8 −3 +6

Table B.76. Evaluation of only using individual cut separators on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

none 1 0 0 0 0 0 0 0 0 0 — — — 6 0 0 0

knapsack 1 0 0 0 0 0 −1 −1 −1 0 — — — 6 −1 −1 −1

c-MIR 1 0 0 0 0 −2 +3 +2 +1 0 — — — 6 +3 +2 +3

Gomory 1 1 5 +19 +22 +19 +110 +54 +31 6 +137 +67 +73 0 — — —

strong CG 1 2 4 −52 −50 −28 +11 −15 −15 6 +13 −18 −36 0 — — —

flow cover 1 0 0 0 0 +1 0 0 0 0 — — — 6 0 0 −1

impl bds 0 2 0 −53 −58 −78 −42 −43 −57 1 −93 −93 −93 5 −1 −1 −1

clique 0 3 4 −70 −50 −68 −32 −39 −33 6 −24 −33 +10 0 — — —

redcost 0 1 0 −6 −8 −27 −3 −3 −10 0 — — — 6 0 0 0

cons Gom 1 0 3 +5 +2 −1 +27 +9 +1 3 +73 +31 +22 3 +1 +1 +1

Table B.77. Evaluation of only using individual cut separators on test set acc.

all instances (20) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

none 7 0 0 0 0 0 0 0 0 0 — — —

knapsack 0 20 0 −95 −95 −96 −93 −90 −96 13 −89 −84 −92

c-MIR 0 20 0 −99 −99 −99 −96 −95 −98 13 −88 −86 −94

Gomory 5 8 6 −38 −38 −35 −8 −7 −13 13 −3 −1 −19

strong CG 7 0 0 0 0 −1 +2 +2 0 0 — — —

flow cover 1 18 1 −75 −75 −74 −60 −55 −65 13 −51 −44 −60

impl bds 7 1 1 −1 −1 −2 +2 +1 0 2 +4 +4 −4

clique 7 0 0 −1 −1 −2 +3 +2 0 0 — — —

redcost 7 4 2 −5 −5 −1 −2 −2 −1 13 −3 −4 −8

cons Gom 5 8 2 −25 −25 −18 −11 −7 −7 13 −14 −9 −25

Table B.78. Evaluation of only using individual cut separators on test set fc.
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all instances (23) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

none 3 0 0 0 0 0 0 0 0 0 — — —

knapsack 3 0 0 +1 +1 +4 −2 −2 −1 0 — — —

c-MIR 0 14 5 −56 −56 −87 −36 −38 −76 20 −9 −9 −10

Gomory 1 12 6 −67 −66 −39 −39 −36 −29 20 −30 −26 +22

strong CG 2 10 3 −52 −51 −19 −33 −28 −16 13 −46 −39 +24

flow cover 3 5 7 −6 −6 +3 +6 +7 +3 17 +9 +9 +14

impl bds 3 2 4 0 0 +7 0 0 0 8 +2 +2 +5

clique 3 0 0 +1 +1 +4 −2 −2 0 0 — — —

redcost 3 5 10 −11 −11 −6 +17 +17 +19 19 +8 +8 +8

cons Gom 2 13 4 −65 −64 −29 −49 −45 −29 20 −44 −40 −14

Table B.79. Evaluation of only using individual cut separators on test set arcset.

all instances (41) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

none 41 0 0 0 0 0 0 0 0 0 — — —

knapsack 41 0 0 −1 −1 −1 0 0 0 0 — — —

c-MIR 41 0 0 +2 +2 +2 0 0 0 0 — — —

Gomory 12 29 0 −69 −69 −56 −69 −69 −52 0 — — —

strong CG 41 0 0 −3 −3 −2 0 0 0 0 — — —

flow cover 10 31 0 −62 −62 −47 −66 −65 −51 0 — — —

impl bds 41 0 0 +1 +1 +2 0 0 0 0 — — —

clique 41 0 0 +2 +2 +2 0 0 0 0 — — —

redcost 33 8 0 −19 −19 +10 −45 −44 −18 0 — — —

cons Gom 10 30 0 −66 −66 −52 −67 −67 −51 0 — — —

Table B.80. Evaluation of only using individual cut separators on test set mik.
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all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

all (1) 7 0 24 −65 −63 −96 +182 +162 +178 19 +195 +173 +317 4 −2 −1 −1

all (1⋆) 2 0 18 −31 −29 −73 +47 +45 +39 23 +57 +55 +50 5 +19 +24 +129

all (10⋆) 1 1 6 −6 −7 −36 +8 +7 +9 16 +13 +13 +16 13 +2 +1 +1

impl bds (1⋆) 1 2 0 −7 −7 −10 −4 −4 −7 9 −10 −10 −21 20 −1 −1 −1

knapsack (1⋆) 1 3 1 −8 −5 −8 −2 −3 −6 7 −8 −9 −41 22 −1 −1 −1

impl/knap (1⋆) 1 4 1 −12 −10 −14 −3 −3 −8 13 −7 −8 −26 16 0 0 0

Table B.81. Evaluation of local cut separation on test set miplib.

all instances (38) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

all (1) 8 3 29 −78 −73 −82 +156 +171 +122 28 +160 +185 +183 2 +3 +3 +3

all (1⋆) 3 4 23 −54 −45 −68 +19 +28 +27 32 +24 +36 +62 2 −3 −3 −2

all (10⋆) 3 6 6 −19 −13 −41 +2 +2 0 27 +2 +3 −1 8 0 0 +1

impl bds (1⋆) 2 2 3 −6 −5 −7 −1 −1 −9 15 +3 +4 +11 20 +1 +1 +1

knapsack (1⋆) 3 5 1 −6 −5 −15 −3 −3 0 10 −12 −11 −1 25 +1 0 0

impl/knap (1⋆) 2 5 2 −13 −12 −23 −7 −7 −12 19 −9 −8 −1 16 +2 +1 0

Table B.82. Evaluation of local cut separation on test set coral.

all instances (36) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 7 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

all (1) 14 1 17 −68 −70 −89 +103 +95 +55 14 +175 +151 +103 8 +1 +1 0

all (1⋆) 9 2 15 −37 −38 −74 +41 +37 +24 18 +61 +53 +39 9 +4 +4 +10

all (10⋆) 8 0 9 −8 −10 −44 +18 +17 +14 15 +34 +34 +40 13 +3 +2 +3

impl bds (1⋆) 7 3 2 0 0 −2 0 −1 −3 8 +1 −3 −20 21 0 0 0

knapsack (1⋆) 6 1 2 −4 −4 −25 0 0 −3 2 +21 +21 +19 27 0 0 0

impl/knap (1⋆) 7 2 3 −5 −5 −28 +2 +1 −2 9 +2 −1 −16 20 +3 +3 +4

Table B.83. Evaluation of local cut separation on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

all (1) 2 0 6 −96 −95 −99 +270 +136 +198 4 +457 +279 +385 1 0 0 0

all (1⋆) 0 0 6 −54 −53 −73 +132 +66 +103 6 +167 +76 +104 1 0 0 0

all (10⋆) 0 1 5 +5 +5 −20 +27 +11 0 6 +32 +12 0 1 0 0 0

impl bds (1⋆) 0 2 0 −34 −33 −54 −14 −18 −40 6 −16 −20 −40 1 0 0 0

knapsack (1⋆) 0 1 2 −11 −11 −40 −7 −13 −42 6 −8 −14 −42 1 0 0 0

impl/knap (1⋆) 0 2 2 −30 −30 −12 −5 −6 +31 6 −6 −6 +31 1 0 0 0

Table B.84. Evaluation of local cut separation on test set enlight.
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all instances (22) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 22 0 0 0

all (1) 2 2 13 −51 −47 −47 +201 +196 +537 15 +290 +249 +510 5 0 0 0

all (1⋆) 0 1 14 −4 +1 −3 +37 +29 +37 17 +50 +34 +37 5 0 0 0

all (10⋆) 0 2 3 +3 +3 +3 +2 +2 +3 13 +4 +3 +3 9 0 0 0

impl bds (1⋆) 0 4 8 −15 −17 +13 −10 −13 +7 17 −13 −14 +7 5 0 0 0

knapsack (1⋆) 0 6 4 −10 −16 −18 −16 −25 −27 17 −20 −28 −27 5 0 0 0

impl/knap (1⋆) 0 6 8 +26 +21 +17 +26 +14 +31 17 +35 +16 +31 5 0 0 0

Table B.85. Evaluation of local cut separation on test set alu.

all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

all (1) 0 0 12 −76 −72 −92 +115 +123 +310 12 +177 +158 +311 4 0 0 0

all (1⋆) 0 2 9 −26 −22 −40 +25 +21 +35 12 +35 +25 +35 4 0 0 0

all (10⋆) 0 0 3 −1 −1 −5 +7 +8 +8 9 +11 +10 +8 7 +1 +2 +2

impl bds (1⋆) 0 0 0 0 0 0 +1 +1 +2 3 +1 +1 +1 13 +1 +1 +2

knapsack (1⋆) 0 2 0 −12 −9 −5 −4 −5 −3 11 −7 −7 −3 5 0 0 +1

impl/knap (1⋆) 0 2 0 −12 −8 −5 −4 −5 −2 11 −6 −6 −2 5 0 0 +1

Table B.86. Evaluation of local cut separation on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

all (1) 0 2 2 −46 −45 −2 +8 +9 +57 4 +16 +17 +58 3 −2 −2 −2

all (1⋆) 1 2 2 −44 −41 +25 +8 +9 +66 3 −34 −34 −43 3 −3 −3 −3

all (10⋆) 0 2 1 −21 −23 −20 −1 −1 −3 4 0 0 −3 3 −2 −2 −2

impl bds (1⋆) 0 0 1 +21 +43 +288 +27 +28 +75 2 +124 +127 +307 5 +1 +1 +1

knapsack (1⋆) 0 0 0 0 0 0 −3 −2 −2 0 — — — 7 −3 −2 −2

impl/knap (1⋆) 0 0 1 +21 +43 +288 +24 +25 +71 2 +120 +122 +301 5 −2 −2 −2

Table B.87. Evaluation of local cut separation on test set acc.

all instances (20) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

all (1) 0 0 13 −72 −78 −91 +53 +62 +86 15 +77 +77 +93 5 0 0 0

all (1⋆) 0 1 6 −37 −36 −51 +6 +6 +5 15 +8 +7 +6 5 −1 −1 −1

all (10⋆) 0 0 0 −2 −2 −1 +1 +1 +2 10 +2 +2 +3 10 0 0 0

impl bds (1⋆) 0 0 1 −4 −4 0 0 0 0 11 0 0 +1 9 0 0 0

knapsack (1⋆) 0 0 1 −10 −7 0 0 +1 +1 8 +1 +2 +4 12 0 0 0

impl/knap (1⋆) 0 0 4 −13 −9 −1 +6 +6 +7 14 +6 +6 +8 6 +3 +3 +4

Table B.88. Evaluation of local cut separation on test set fc.

all instances (23) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

all (1) 4 0 23 −47 −45 −47 +681 +631 +600 19 +697 +671 +1223 0 — — —

all (1⋆) 0 1 22 −10 −11 −16 +75 +69 +106 22 +75 +70 +106 1 +65 +65 +65

all (10⋆) 0 0 4 −6 −6 −6 +6 +6 +14 13 +8 +8 +15 10 +2 +2 +3

impl bds (1⋆) 0 2 1 0 −1 −10 +1 +1 −3 11 +1 0 −8 12 +1 +1 +1

knapsack (1⋆) 0 1 2 −3 −3 −1 +7 +7 +7 1 −40 −40 −40 22 +10 +10 +7

impl/knap (1⋆) 0 3 6 −3 −4 −11 +8 +8 +2 11 +13 +13 +3 12 +4 +3 +2

Table B.89. Evaluation of local cut separation on test set arcset.
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all instances (41) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

all (1) 0 6 29 −91 −91 −93 +63 +56 +30 41 +63 +56 +30

all (1⋆) 0 26 5 −69 −69 −74 −28 −29 −42 41 −28 −29 −42

all (10⋆) 0 21 3 −30 −30 −25 −12 −12 −13 41 −12 −12 −13

impl bds (1⋆) 0 0 0 0 0 0 +2 +2 +2 12 +2 +2 +2

knapsack (1⋆) 0 24 4 −43 −42 −38 −25 −23 −29 41 −25 −23 −29

impl/knap (1⋆) 0 22 11 −43 −43 −38 −20 −18 −24 41 −20 −18 −24

Table B.90. Evaluation of local cut separation on test set mik.
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Cutting Plane Selection

all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

one per round 4 2 24 +36 +3 −1 +116 +97 +116 23 +55 +40 +63 3 +45 +18 0

take all 4 2 24 +9 −8 −6 +137 +105 +110 25 +105 +72 +45 1 −2 −2 −2

no obj paral 1 3 5 +14 +2 −1 +5 +4 +10 19 +7 +7 +38 10 +1 +1 +1

no ortho 1 1 18 +8 −7 +2 +39 +28 +15 26 +46 +35 +35 3 0 0 +1

Table B.91. Evaluation of cut selection on test set miplib.

all instances (37) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 34 0 0 0

one per round 8 8 19 −11 +3 −17 +99 +98 +96 26 +41 +40 +27 2 +2 +2 +3

take all 4 7 19 −24 −7 −22 +39 +38 +21 31 +36 +36 +19 1 0 0 0

no obj paral 3 9 5 −4 −9 −20 −8 −8 −4 21 −9 −9 −2 12 +3 +2 +3

no ortho 4 10 19 −12 −3 −12 +18 +19 +25 30 +8 +9 +19 2 −1 0 +2

Table B.92. Evaluation of cut selection on test set coral.

all instances (35) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 7 0 0 0 0 0 0 0 0 0 — — — 28 0 0 0

one per round 9 5 15 −16 −4 −42 +32 +27 +18 22 +47 +39 +40 2 +1 +1 +2

take all 12 7 17 +7 −1 −17 +51 +45 +34 21 +23 +15 −8 1 −3 −3 −3

no obj paral 6 8 4 −4 −8 −3 −7 −7 −10 16 −14 −14 −25 12 +1 +1 +1

no ortho 8 9 10 −25 −21 −42 +14 +11 +7 23 +14 +9 +2 3 +1 +1 +1

Table B.93. Evaluation of cut selection on test set milp.

all instances (7) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

one per round 1 0 5 +220 +95 +152 +97 +85 +187 6 +94 +94 +318

take all 0 1 5 −29 −29 −44 +37 −17 −34 7 +37 −17 −34

no obj paral 0 1 2 −2 −2 −14 +1 −3 −7 6 +2 −4 −7

no ortho 0 1 5 +9 +10 −2 +28 +8 −4 7 +28 +8 −4

Table B.94. Evaluation of cut selection on test set enlight.

all instances (24) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

one per round 0 6 11 −20 −13 −16 −10 −3 −13 24 −10 −3 −13

take all 0 7 8 −29 −24 +10 +6 +1 +18 24 +6 +1 +18

no obj paral 0 8 9 +11 +18 +17 +14 +18 +22 23 +15 +19 +22

no ortho 0 11 6 −33 −25 −14 −14 −16 −17 24 −14 −16 −17

Table B.95. Evaluation of cut selection on test set alu.
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all instances (16) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

one per round 0 1 6 −2 −10 +11 +18 +7 +28 15 +20 +7 +28

take all 0 0 14 −21 −7 −5 +170 +69 +58 16 +170 +69 +58

no obj paral 0 1 7 +14 +10 +12 +8 +6 +16 13 +10 +6 +16

no ortho 0 2 11 −7 +2 +2 +54 +17 +16 16 +54 +17 +16

Table B.96. Evaluation of cut selection on test set fctp.

all instances (7) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

one per round 6 0 7 +828 +258 +637 +2032 +1853 +702 1 +1393 +1393 +1393

take all 1 0 6 +231 +128 +453 +387 +351 +195 6 +363 +325 +116

no obj paral 0 1 0 −32 −32 −21 −21 −22 −27 2 −55 −56 −77

no ortho 2 0 6 +130 +85 +591 +345 +313 +218 5 +348 +312 +95

Table B.97. Evaluation of cut selection on test set acc.

all instances (19) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

one per round 0 0 18 +362 +140 +87 +87 +80 +86 19 +87 +80 +86

take all 0 0 19 −38 −24 −27 +822 +694 +756 19 +822 +694 +756

no obj paral 0 4 6 −2 +6 +60 +5 +7 +20 19 +5 +7 +20

no ortho 0 0 19 −3 +11 +18 +117 +102 +108 19 +117 +102 +108

Table B.98. Evaluation of cut selection on test set fc.

all instances (23) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

one per round 0 7 12 +70 +50 +26 +37 +35 +16 23 +37 +35 +16

take all 0 5 16 −55 −42 −29 +40 +49 +53 23 +40 +49 +53

no obj paral 0 4 7 +16 +12 0 +6 +6 −6 17 +8 +7 −6

no ortho 0 6 9 +8 0 −8 +2 +1 −6 23 +2 +1 −6

Table B.99. Evaluation of cut selection on test set arcset.

all instances (41) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

one per round 3 2 38 +312 +312 +680 +246 +247 +639 38 +222 +230 +546

take all 0 0 41 +27 +27 +6 +745 +676 +570 41 +745 +676 +570

no obj paral 0 5 15 +4 +4 +8 +7 +7 +13 39 +8 +8 +13

no ortho 0 9 19 −6 −6 +26 +6 +8 +26 41 +6 +8 +26

Table B.100. Evaluation of cut selection on test set mik.
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Primal Heuristics

all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

none 2 9 13 +291 +111 +23 +39 +39 +68 27 +26 +25 +56 1 −4 −4 −4

no round 1 3 10 +79 +26 −2 +13 +10 0 22 +20 +16 +1 7 −3 −3 −4

no diving 2 3 6 −5 −3 +10 +5 +5 +19 18 +2 +2 +1 10 +2 +2 +1

no objdiving 1 5 6 +58 +30 −11 +14 +17 +32 19 +25 +27 +52 10 −2 −3 −13

no improvement 1 2 3 0 −1 −5 +1 0 −3 12 +5 +2 −6 17 −2 −2 −1

Table B.101. Evaluation of primal heuristics on test set miplib.

all instances (38) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

none 3 16 8 +37 +18 −31 −8 −9 −5 34 −9 −10 −10 1 +2 +2 +2

no round 2 8 8 −3 −3 −39 −3 −4 −10 25 +6 +4 +11 10 −1 −1 0

no diving 4 13 8 −6 −1 +29 −3 −3 +17 29 −7 −7 +19 5 +1 +1 +1

no objdiving 2 11 5 +4 −3 −22 −6 −6 −15 28 +1 +1 −1 7 0 0 −1

no improvement 2 4 2 −6 −6 −5 −3 −3 −5 10 −10 −10 −5 25 +2 +2 +2

Table B.102. Evaluation of primal heuristics on test set coral.

all instances (36) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 7 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

none 8 7 9 +103 +42 −11 +10 +7 +4 23 +12 +8 +2 4 +3 +2 +2

no round 5 5 6 +26 +9 −23 +7 +5 −4 20 +13 +10 −11 9 +1 +1 +2

no diving 7 3 11 +14 +5 +5 +3 +2 −1 19 +12 +11 +7 9 +2 +1 +1

no objdiving 6 4 5 +25 +9 −1 +4 +3 0 19 +9 +7 +3 10 −2 −2 −3

no improvement 7 0 2 +7 +3 −1 +2 +2 +2 6 +10 +10 +11 23 +1 +1 +2

Table B.103. Evaluation of primal heuristics on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

none 0 2 1 −14 −13 −2 −10 −8 +3 6 −12 −9 +3 1 0 0 0

no round 0 0 0 0 0 0 −4 −2 −4 0 — — — 7 −4 −2 −4

no diving 0 2 1 −17 −17 −19 −12 −13 −17 6 −14 −14 −17 1 0 0 0

no objdiving 0 1 3 +19 +19 +7 +15 +14 0 6 +18 +16 0 1 0 0 0

no improvement 0 0 0 0 0 0 +1 +1 0 0 — — — 7 +1 +1 0

Table B.104. Evaluation of primal heuristics on test set enlight.

all instances (25) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

none 1 12 3 −10 −12 0 −14 −13 −2 18 −19 −17 −5 6 0 0 0

no round 1 0 0 0 0 +1 −1 −1 0 0 — — — 24 −1 −1 0

no diving 1 10 5 −2 −3 0 −4 −2 +1 17 −5 −3 +3 7 0 0 0

no objdiving 1 6 6 −4 −4 +22 0 +3 +26 16 0 +5 +60 8 −1 −2 −2

no improvement 1 0 0 0 0 +1 +2 0 0 0 — — — 24 +2 0 0

Table B.105. Evaluation of primal heuristics on test set alu.
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all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

none 0 2 6 +208 +84 +19 +13 +3 −2 13 +16 +3 −2 3 0 0 0

no round 0 4 4 +71 +35 −1 +9 +1 −2 12 +12 +1 −2 4 0 0 0

no diving 0 1 6 0 0 +5 +6 +4 +3 9 +8 +6 +3 7 +3 +5 +5

no objdiving 0 3 0 −2 −2 −2 0 −2 0 8 −3 −3 0 8 +3 +4 +4

no improvement 0 1 3 +4 +4 0 +5 +4 +5 6 +8 +6 +5 10 +4 +3 +5

Table B.106. Evaluation of primal heuristics on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

none 0 2 5 +957 +151 +427 +42 +35 +48 7 +42 +35 +48 0 — — —

no round 0 0 0 0 0 0 −3 −3 −4 0 — — — 7 −3 −3 −4

no diving 0 2 1 −15 −5 +330 −9 −9 +35 3 −18 −17 +38 4 −1 −1 −1

no objdiving 0 2 5 +1094 +158 +262 +70 +62 +33 7 +70 +62 +33 0 — — —

no improvement 0 0 0 0 0 0 −2 −2 −2 0 — — — 7 −2 −2 −2

Table B.107. Evaluation of primal heuristics on test set acc.

all instances (20) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

none 0 0 20 +1761 +774 +536 +83 +82 +107 20 +83 +82 +107 0 — — —

no round 0 1 13 +274 +139 +60 +19 +21 +24 18 +22 +23 +26 2 −6 −6 −6

no diving 0 0 0 −2 −2 −1 +3 +3 +3 10 +3 +3 +3 10 +3 +3 +3

no objdiving 0 1 0 −2 −2 −6 0 −1 −3 8 −3 −3 −4 12 +2 +2 +2

no improvement 0 2 1 −10 −10 −7 0 0 0 12 −1 −1 0 8 +2 +2 +2

Table B.108. Evaluation of primal heuristics on test set fc.

all instances (23) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

none 0 10 6 +72 +53 +42 +2 +2 −14 23 +2 +2 −14 0 — — —

no round 0 5 5 +18 +10 −9 +1 +1 −9 23 +1 +1 −9 0 — — —

no diving 0 4 7 +6 +5 −5 0 −1 −18 23 0 −1 −18 0 — — —

no objdiving 0 6 5 +5 +4 +12 +1 +1 +6 19 +1 +1 +6 4 −1 −1 0

no improvement 0 5 5 0 +1 +5 +1 +1 −1 13 +3 +3 −2 10 −1 −1 +1

Table B.109. Evaluation of primal heuristics on test set arcset.

all instances (41) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 41 0 0 0

none 2 0 41 +380 +379 +551 +524 +481 +832 39 +519 +487 +950 0 — — —

no round 0 16 21 +24 +24 −8 +29 +23 −1 41 +29 +23 −1 0 — — —

no diving 0 11 6 +10 +10 +22 0 +2 +16 41 0 +2 +16 0 — — —

no objdiving 0 6 10 0 0 +7 +4 +4 +11 41 +4 +4 +11 0 — — —

no improvement 0 1 3 +1 +1 +8 +1 +2 +10 23 +1 +2 +11 18 +1 +1 +1

Table B.110. Evaluation of primal heuristics on test set mik.
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all instances (29) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 28 0 0 0

no RENS 1 4 3 +74 +19 −1 +2 +2 0 11 +8 +9 +8 17 −1 −1 −1

no simple rnd 1 2 1 −1 −1 +1 −2 −2 −3 5 −4 −5 −19 23 −2 −2 −3

no rounding 1 2 0 +3 −1 0 −2 −2 −3 6 −4 −5 −23 22 −1 −1 −2

no shifting 1 3 3 −2 +1 +2 0 −1 −8 10 +2 0 −19 18 −2 −2 −3

no int shifting 1 1 1 +2 +3 +3 +1 +2 0 10 +8 +9 +9 18 −2 −2 −2

octane 1 1 3 −1 −1 0 +3 +2 +2 1 +19 +19 +19 27 +3 +2 +2

Table B.111. Evaluation of rounding heuristics on test set miplib.

all instances (38) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

no RENS 3 1 3 +12 +11 −1 +8 +6 +2 8 +36 +26 +2 27 +2 +2 +3

no simple rnd 3 0 2 0 0 0 0 0 0 0 — — — 35 0 0 0

no rounding 3 0 0 +2 +2 −1 −1 −1 0 6 0 +1 +3 29 −1 −1 0

no shifting 3 5 2 −5 −4 −29 −3 −2 −2 11 −6 −6 −9 24 −1 −1 −1

no int shifting 3 3 2 −7 −6 +1 −2 −2 +1 12 −7 −7 +2 23 +1 +1 +1

octane 3 0 0 0 0 0 0 0 0 2 0 0 +1 33 0 0 0

Table B.112. Evaluation of rounding heuristics on test set coral.

all instances (35) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 6 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

no RENS 6 1 2 +31 +17 +1 +12 +10 +1 3 +229 +183 +14 26 +2 +2 +2

no simple rnd 6 0 0 +1 +1 0 0 0 +1 2 +8 +8 +9 27 −1 −1 0

no rounding 6 1 0 +4 0 −2 −2 −2 −2 3 −12 −12 −26 26 −1 −1 −1

no shifting 6 2 1 −7 −9 −4 −4 −5 −4 6 −23 −24 −33 23 0 0 −1

no int shifting 5 3 4 +2 +3 +1 +1 +1 −2 12 +5 +5 −2 17 −1 0 0

octane 6 0 0 0 0 +3 0 0 0 0 — — — 29 0 0 −1

Table B.113. Evaluation of rounding heuristics on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

no RENS 0 0 0 0 0 0 −1 −2 −3 0 — — — 7 −1 −2 −3

no simple rnd 0 0 0 0 0 0 −1 −1 −4 0 — — — 7 −1 −1 −4

no rounding 0 0 0 0 0 0 −2 −2 −5 0 — — — 7 −2 −2 −5

no shifting 0 0 0 0 0 0 −2 −2 −5 0 — — — 7 −2 −2 −5

no int shifting 0 0 0 0 0 0 −1 −1 −2 0 — — — 7 −1 −1 −2

octane 0 0 0 0 0 0 −2 −2 −5 0 — — — 7 −2 −2 −5

Table B.114. Evaluation of rounding heuristics on test set enlight.
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all instances (24) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

no RENS 0 0 0 0 0 0 +1 +1 +2 0 — — — 24 +1 +1 +2

no simple rnd 0 0 0 0 0 0 −1 −1 −2 0 — — — 24 −1 −1 −2

no rounding 0 0 0 0 0 0 0 0 +1 0 — — — 24 0 0 +1

no shifting 0 0 0 0 0 0 −1 −1 0 0 — — — 24 −1 −1 0

no int shifting 0 0 0 0 0 0 +1 +1 +2 0 — — — 24 +1 +1 +2

octane 0 0 0 0 0 0 +4 +2 +3 0 — — — 24 +4 +2 +3

Table B.115. Evaluation of rounding heuristics on test set alu.

all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

no RENS 0 0 4 +74 +34 +4 +10 +4 +5 12 +13 +5 +5 4 0 0 0

no simple rnd 0 0 6 +14 +13 +7 +12 +12 +12 9 +19 +16 +12 7 +4 +5 +5

no rounding 0 0 0 0 0 0 +2 +2 +3 0 — — — 16 +2 +2 +3

no shifting 0 0 0 0 0 0 0 0 +1 0 — — — 16 0 0 +1

no int shifting 0 0 2 +1 +1 +1 +4 +3 +4 8 +5 +5 +4 8 +3 +4 +4

octane 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

Table B.116. Evaluation of rounding heuristics on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

no RENS 0 0 0 0 0 0 +1 0 0 0 — — — 7 +1 0 0

no simple rnd 0 0 0 0 0 0 −2 −1 −1 0 — — — 7 −2 −1 −1

no rounding 0 0 0 0 0 0 −1 −1 −1 0 — — — 7 −1 −1 −1

no shifting 0 0 0 0 0 0 −2 −2 −1 0 — — — 7 −2 −2 −1

no int shifting 0 0 0 0 0 0 0 0 +1 0 — — — 7 0 0 +1

octane 0 0 0 0 0 0 −3 −2 −2 0 — — — 7 −3 −2 −2

Table B.117. Evaluation of rounding heuristics on test set acc.

all instances (20) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

no RENS 0 2 15 +370 +149 +65 +22 +21 +24 20 +22 +21 +24 0 — — —

no simple rnd 0 0 1 +7 +8 +5 +2 +3 +4 5 +8 +8 +7 15 +1 +1 +1

no rounding 0 0 0 +5 +3 0 +1 0 0 2 +6 +6 +6 18 0 0 0

no shifting 0 2 1 −6 −6 −7 −2 −3 −4 7 −6 −6 −8 13 0 0 0

no int shifting 0 2 2 −10 −11 −1 −1 0 +3 9 0 0 +3 11 −1 −1 −1

octane 0 0 0 0 0 0 +2 +1 +1 0 — — — 20 +2 +1 +1

Table B.118. Evaluation of rounding heuristics on test set fc.

all instances (23) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

no RENS 0 1 3 +30 +18 −2 +3 +3 −3 9 +9 +9 −10 14 0 0 +1

no simple rnd 0 3 5 −1 −1 −2 +3 +2 +2 11 +2 +1 +2 12 +3 +3 +3

no rounding 0 1 2 +3 +2 +2 +1 +1 +4 5 +4 +4 +12 18 0 0 0

no shifting 0 1 2 0 0 +1 +4 +4 +6 6 +6 +7 +12 17 +3 +3 +3

no int shifting 0 1 2 −1 −1 −3 +2 +2 −1 10 +1 0 −5 13 +3 +3 +3

octane 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

Table B.119. Evaluation of rounding heuristics on test set arcset.
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all instances (41) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 41 0 0 0

no RENS 0 3 16 +13 +13 +12 +9 +9 +16 37 +10 +10 +21 4 +2 +2 +2

no simple rnd 0 0 23 +1 +1 +6 +10 +9 +14 38 +10 +9 +14 3 +11 +10 +13

no rounding 0 0 0 0 0 0 0 0 +1 1 +2 +2 +2 40 0 0 +1

no shifting 0 0 0 0 0 +1 0 0 +1 8 0 0 +2 33 0 0 0

no int shifting 0 2 7 −1 −1 +5 +2 +2 +8 41 +2 +2 +8 0 — — —

octane 0 0 0 0 0 0 0 0 0 0 — — — 41 0 0 0

Table B.120. Evaluation of rounding heuristics on test set mik.
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all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

no coef 1 3 6 +1 +1 +3 +1 0 +3 19 +2 +1 +4 10 −1 −1 −2

no frac 1 5 2 −3 −3 −14 −6 −6 −13 18 −9 −9 −20 11 −1 −1 −1

no guided 1 3 1 0 0 −7 −2 −2 −9 14 −3 −3 −13 15 −2 −2 −7

no linesearch 1 1 1 0 0 +1 −1 −1 +1 14 0 0 +3 15 −2 −2 −8

no pscost 1 5 2 −3 −3 −7 −4 −4 −9 19 −6 −6 −13 10 −2 −1 −1

no veclen 1 5 1 −3 −3 −3 −3 −3 −3 16 −5 −4 −4 13 −2 −2 −8

no backtrack 1 6 3 −6 −6 −6 −4 −4 −6 18 −5 −6 −9 11 −2 −1 −1

Table B.121. Evaluation of diving heuristics on test set miplib.

all instances (38) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

no coef 3 15 4 −18 −13 −10 −8 −8 −1 30 −10 −10 −2 5 0 0 0

no frac 3 7 4 −1 0 −12 0 0 0 28 −1 −1 −1 7 +3 +3 +3

no guided 2 9 2 −4 −4 −14 −6 −6 −5 24 −9 −9 −9 11 −1 −1 −1

no linesearch 2 5 6 +4 +4 −4 +4 +4 −1 26 +7 +6 +5 9 +3 +3 +3

no pscost 3 10 3 −9 −5 −12 −3 −3 −3 29 −4 −4 −7 6 −1 −1 −1

no veclen 2 10 4 −8 −7 −22 −7 −7 −15 27 +1 +2 +1 8 0 0 0

no backtrack 3 11 4 +3 +2 −16 −1 −3 −4 29 −2 −3 −7 6 −1 −1 −1

Table B.122. Evaluation of diving heuristics on test set coral.

all instances (35) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 6 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

no coef 6 5 4 −7 −7 +2 −2 −2 +1 18 −8 −8 −10 10 0 0 0

no frac 5 4 4 +4 +4 +2 +1 +1 −1 16 +4 +4 +3 13 −1 0 0

no guided 5 1 8 +16 +16 +2 +11 +10 +9 15 +25 +25 +33 14 +2 +2 +2

no linesearch 6 0 8 +9 +10 0 +6 +6 +5 15 +15 +14 +17 14 0 0 0

no pscost 6 2 4 0 0 −1 +1 0 −1 16 +2 +1 −2 13 −1 −1 −1

no veclen 6 2 2 +2 +2 +6 +1 +2 +2 15 +3 +3 +7 14 0 0 0

no backtrack 5 2 5 +5 +5 +4 +3 +3 0 17 +7 +6 +1 12 +1 +1 +2

Table B.123. Evaluation of diving heuristics on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

no coef 0 2 3 +3 +3 +6 +4 +4 +1 6 +5 +4 +1 1 0 0 0

no frac 0 1 2 +6 +6 −12 +3 −4 −17 6 +4 −5 −17 1 0 0 0

no guided 0 0 0 +2 +2 +2 +2 +2 +2 4 +4 +4 +8 3 0 −1 −1

no linesearch 0 1 2 +12 +13 +30 +10 +13 +28 6 +11 +14 +28 1 0 0 0

no pscost 0 0 3 +19 +19 +11 +19 +18 +11 6 +22 +20 +11 1 0 0 0

no veclen 0 0 3 +12 +12 +17 +10 +9 +14 6 +12 +10 +14 1 0 0 0

no backtrack 0 2 3 +10 +11 +29 +16 +19 +30 6 +19 +21 +30 1 0 0 0

Table B.124. Evaluation of diving heuristics on test set enlight.
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all instances (25) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

no coef 1 2 10 +54 +52 +24 +35 +36 +42 17 +56 +53 +97 7 0 0 0

no frac 1 2 8 +3 +3 +3 0 −1 +3 16 0 −2 +6 8 0 0 0

no guided 1 0 0 0 0 +1 0 0 0 0 — — — 24 0 0 +1

no linesearch 1 4 9 +25 +22 +3 +11 +8 +4 16 +17 +11 +9 8 0 0 0

no pscost 1 5 6 +8 +6 −1 0 −2 −6 16 +1 −3 −14 8 0 0 0

no veclen 1 4 7 +11 +11 +4 +6 +5 +8 16 +9 +7 +19 8 0 0 0

no backtrack 1 8 5 −1 −2 0 −4 −5 +2 16 −6 −7 +4 8 0 0 0

Table B.125. Evaluation of diving heuristics on test set alu.

all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

no coef 0 2 1 −3 −3 −1 −2 −3 −3 9 −5 −5 −3 7 +1 +2 +2

no frac 0 0 3 +1 +1 +4 +5 +4 +8 8 +5 +5 +8 8 +4 +5 +6

no guided 0 2 0 −3 −4 −1 −2 −3 −1 8 −5 −5 −1 8 +1 +1 +1

no linesearch 0 0 1 0 0 0 +2 +2 +2 8 +2 +2 +2 8 +2 +3 +3

no pscost 0 0 1 +1 +1 +3 +1 +1 +2 8 +2 +2 +2 8 +1 +1 +1

no veclen 0 2 1 −2 −2 −3 +1 0 +1 8 0 −1 +1 8 +3 +4 +4

no backtrack 0 1 0 −3 −3 −7 0 −2 −4 8 −2 −3 −4 8 +3 +4 +4

Table B.126. Evaluation of diving heuristics on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

no coef 0 1 2 +37 +72 +498 +18 +19 +95 3 +53 +54 +105 4 −3 −3 −3

no frac 1 1 2 +28 +48 +458 +12 +13 +77 2 −39 −39 −31 4 −2 −2 −2

no guided 0 0 0 0 0 0 −2 −2 −2 0 — — — 7 −2 −2 −2

no linesearch 1 2 1 +29 +48 +582 +14 +15 +78 2 −34 −34 −30 4 −3 −3 −3

no pscost 1 1 2 +49 +73 +441 +40 +42 +142 2 +30 +30 +57 4 −2 −2 −2

no veclen 0 0 2 +35 +50 +135 +16 +16 +30 3 +40 +40 +33 4 +1 +1 0

no backtrack 0 2 1 +14 +26 +314 +12 +12 +39 3 +27 +27 +43 4 +1 +1 +1

Table B.127. Evaluation of diving heuristics on test set acc.

all instances (20) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

no coef 0 1 0 −2 −2 −8 −1 −1 −2 10 −2 −2 −3 10 0 0 0

no frac 0 0 0 0 −1 0 0 0 0 10 0 0 0 10 0 0 0

no guided 0 0 0 0 0 −1 0 0 0 6 0 0 −1 14 0 0 0

no linesearch 0 0 0 0 0 −1 0 0 0 6 0 0 0 14 0 0 0

no pscost 0 0 0 +1 +1 +2 0 +1 +1 10 +1 +1 +2 10 0 0 0

no veclen 0 0 1 +1 +1 +8 +1 +1 +2 8 +1 +1 +2 12 +1 +1 0

no backtrack 0 1 0 −1 −1 −3 0 0 −1 8 0 −1 −1 12 +1 +1 +1

Table B.128. Evaluation of diving heuristics on test set fc.

all instances (23) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

no coef 0 6 6 +7 +6 +12 +6 +5 −7 23 +6 +5 −7 0 — — —

no frac 0 5 2 −6 −6 −9 −3 −3 −8 20 −3 −3 −8 3 +1 +1 +1

no guided 0 4 3 0 0 −4 +1 +1 −4 16 0 0 −4 7 +2 +2 +2

no linesearch 0 4 4 +2 +2 0 +1 +1 0 16 0 +1 0 7 +1 +1 +1

no pscost 0 3 5 +8 +8 +18 +9 +10 +5 20 +10 +11 +5 3 +3 +3 +3

no veclen 0 6 3 −7 −8 −3 −5 −5 +4 20 −6 −6 +4 3 0 0 0

no backtrack 0 5 6 +11 +11 +12 +6 +6 +4 22 +6 +6 +4 1 +2 +2 +2

Table B.129. Evaluation of diving heuristics on test set arcset.
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all instances (41) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

no coef 0 5 9 0 0 +6 +2 +2 +7 41 +2 +2 +7

no frac 0 6 9 0 0 +3 +2 +1 +6 41 +2 +1 +6

no guided 0 2 1 0 0 +1 +1 0 +1 20 0 0 +2

no linesearch 0 5 6 0 0 +11 +3 +4 +15 41 +3 +4 +15

no pscost 0 4 7 −1 −1 +8 +2 +2 +11 41 +2 +2 +11

no veclen 0 7 6 −2 −2 +1 0 0 +3 41 0 0 +3

no backtrack 0 4 10 +4 +4 +7 +2 +2 +7 41 +2 +2 +7

Table B.130. Evaluation of diving heuristics on test set mik.
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all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

no obj pscost diving 1 3 0 −1 −1 −1 −2 −3 −5 15 −4 −4 −7 14 −1 −2 −7

no rootsol diving 1 3 3 +3 +3 −4 +1 +1 −4 14 +5 +4 −6 15 −2 −2 −8

no feaspump 2 3 5 +66 +37 +3 +17 +19 +47 10 +18 +19 +42 18 −3 −3 −6

Table B.131. Evaluation of objective diving heuristics on test set miplib.

all instances (38) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

no obj pscost diving 2 12 6 −1 −1 −22 −3 −4 −14 27 0 0 −3 8 +3 +3 +3

no rootsol diving 2 12 6 −3 −3 −18 −3 −3 −10 26 −2 −2 −3 9 +3 +3 +3

no feaspump 3 6 4 +3 −3 0 0 0 +1 17 +1 +1 +3 18 −1 −1 +1

Table B.132. Evaluation of objective diving heuristics on test set coral.

all instances (36) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 7 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

no obj pscost diving 7 1 6 +12 +12 −14 +6 +6 +5 14 +10 +10 +6 14 +1 +1 +1

no rootsol diving 7 2 4 +7 +7 −1 +2 +2 +4 14 +2 +2 +5 14 −1 0 0

no feaspump 7 5 2 +13 −2 0 0 −1 −1 11 +1 −2 −4 18 −1 −1 −1

Table B.133. Evaluation of objective diving heuristics on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

no obj pscost diving 0 1 2 +10 +10 +21 +11 +15 +19 6 +13 +16 +19 1 0 0 0

no rootsol diving 0 2 2 +1 +1 −2 +3 +4 −4 6 +4 +5 −4 1 0 0 0

no feaspump 0 0 1 +5 +5 +13 +3 +3 +7 5 +4 +4 +7 2 0 0 0

Table B.134. Evaluation of objective diving heuristics on test set enlight.

all instances (25) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

no obj pscost diving 1 1 7 +17 +18 +3 +15 +15 +6 16 +24 +21 +14 8 0 0 0

no rootsol diving 1 3 8 +18 +19 0 +13 +13 +1 16 +21 +18 +3 8 0 0 0

no feaspump 1 1 5 +17 +17 +4 +10 +10 +10 16 +16 +15 +24 8 0 0 0

Table B.135. Evaluation of objective diving heuristics on test set alu.

all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

no obj pscost diving 0 1 1 −2 −2 +4 0 −1 +5 8 −2 −2 +5 8 +2 +3 +3

no rootsol diving 0 0 0 +1 +1 +2 +1 0 +4 8 +1 +1 +4 8 +1 +1 +1

no feaspump 0 0 0 0 0 0 +2 +2 +2 0 — — — 16 +2 +2 +2

Table B.136. Evaluation of objective diving heuristics on test set fctp.
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all instances (7) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

no obj pscost diving 0 2 1 +14 +24 +217 +8 +9 +31 3 +20 +20 +34

no rootsol diving 0 2 1 +16 +28 +262 +14 +15 +66 3 +38 +39 +73

no feaspump 0 0 7 +1447 +239 +440 +117 +107 +126 7 +117 +107 +126

Table B.137. Evaluation of objective diving heuristics on test set acc.

all instances (20) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

no obj pscost diving 0 0 0 0 0 0 −1 −1 −1 7 −2 −2 −2 13 0 0 0

no rootsol diving 0 0 0 0 0 −2 0 0 0 7 0 0 −1 13 +1 +1 0

no feaspump 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

Table B.138. Evaluation of objective diving heuristics on test set fc.

all instances (23) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

no obj pscost diving 0 5 5 +6 +6 +6 +5 +6 −3 18 +6 +6 −3 5 +3 +3 +3

no rootsol diving 0 3 7 +7 +7 +12 +8 +8 +11 18 +9 +10 +12 5 +4 +4 +4

no feaspump 0 1 4 +9 +9 +10 +8 +8 +9 8 +22 +21 +20 15 +1 +1 +1

Table B.139. Evaluation of objective diving heuristics on test set arcset.

all instances (41) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 41 0 0 0

no obj pscost diving 0 9 5 0 0 +12 −2 −1 +10 41 −2 −1 +10 0 — — —

no rootsol diving 0 6 7 −1 −1 +3 +2 +2 +7 41 +2 +2 +7 0 — — —

no feaspump 0 0 0 0 0 0 +2 +1 +1 1 −9 −9 −9 40 +2 +2 +2

Table B.140. Evaluation of objective diving heuristics on test set mik.
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all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

no oneopt 1 2 2 −3 −4 −11 0 −1 −6 8 +4 −1 −22 21 −2 −2 −3

no crossover 1 2 1 −2 −2 −6 −4 −4 −7 5 −15 −17 −18 24 −1 −1 −1

local branching 1 2 5 −4 −4 −7 +1 0 −4 7 −8 −10 −16 22 +4 +4 +7

RINS 1 1 2 −1 −1 −8 −1 −1 −7 8 −1 −3 −15 21 −1 −1 −2

mutation 1 3 1 −2 −2 −9 0 −1 −7 9 −5 −7 −16 20 +2 +1 +3

Table B.141. Evaluation of improvement heuristics on test set miplib.

all instances (37) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 34 0 0 0

no oneopt 3 1 1 −1 −1 −2 +1 +1 +1 4 −6 −7 −13 30 +2 +2 +2

no crossover 3 3 1 −4 −4 0 −2 −2 0 8 −12 −12 −3 26 +1 +1 +2

local branching 3 2 3 −4 −4 0 +1 +1 +1 8 −6 −6 +2 26 +3 +3 +2

RINS 2 4 0 −9 −9 −10 −5 −5 −13 10 −8 −7 −3 24 +2 +2 +3

mutation 3 3 0 −4 −4 −1 −3 −3 −1 10 −10 −9 −5 24 0 0 +1

Table B.142. Evaluation of improvement heuristics on test set coral.

all instances (35) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 6 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

no oneopt 6 0 0 +5 +2 +1 −1 0 0 2 +2 +2 +1 27 −1 −1 −1

no crossover 6 0 2 +2 +2 0 +1 +1 +2 5 +9 +9 +11 24 0 0 0

local branching 6 0 8 +1 +1 −2 +6 +5 +4 6 +14 +14 +16 23 +5 +5 +4

RINS 6 0 2 0 0 −2 +2 +2 +2 7 +5 +5 +9 22 +1 +1 +1

mutation 6 0 1 +1 +1 +7 +2 +1 +1 5 +4 +4 +3 24 +1 +1 +2

Table B.143. Evaluation of improvement heuristics on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

no oneopt 0 0 0 0 0 0 −3 −3 −6 0 — — — 7 −3 −3 −6

no crossover 0 0 0 0 0 0 +1 −1 −2 0 — — — 7 +1 −1 −2

local branching 0 0 1 0 0 0 +6 +1 −1 0 — — — 7 +6 +1 −1

RINS 0 0 0 0 0 0 +2 +1 +2 0 — — — 7 +2 +1 +2

mutation 0 0 0 0 0 0 −2 −2 −5 0 — — — 7 −2 −2 −5

Table B.144. Evaluation of improvement heuristics on test set enlight.

all instances (24) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

no oneopt 0 0 0 0 0 0 −1 −1 −1 0 — — — 24 −1 −1 −1

no crossover 0 0 0 0 0 0 +1 0 +1 0 — — — 24 +1 0 +1

local branching 0 0 0 0 0 0 −1 −1 −1 0 — — — 24 −1 −1 −1

RINS 0 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

mutation 0 0 0 0 0 0 +1 0 +1 0 — — — 24 +1 0 +1

Table B.145. Evaluation of improvement heuristics on test set alu.
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all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

no oneopt 0 0 0 0 0 +2 +4 +3 +6 1 +9 +9 +9 15 +4 +2 +3

no crossover 0 1 2 +3 +3 −4 +3 +2 0 6 +5 +3 0 10 +3 +2 +3

local branching 0 1 4 +3 +3 −4 +7 +6 +4 6 +13 +10 +4 10 +4 +5 +4

RINS 0 2 2 −5 −5 −3 0 −1 +2 8 −2 −1 +2 8 +2 +3 +3

mutation 0 1 1 +3 +3 −1 +1 0 0 6 +2 0 0 10 0 0 0

Table B.146. Evaluation of improvement heuristics on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

no oneopt 0 0 0 0 0 0 −2 −2 −2 0 — — — 7 −2 −2 −2

no crossover 0 0 0 0 0 0 −1 −1 −1 0 — — — 7 −1 −1 −1

local branching 0 0 0 0 0 0 −2 −1 −1 0 — — — 7 −2 −1 −1

RINS 0 0 0 0 0 0 −2 −2 −2 0 — — — 7 −2 −2 −2

mutation 0 0 0 0 0 0 −1 −1 −1 0 — — — 7 −1 −1 −1

Table B.147. Evaluation of improvement heuristics on test set acc.

all instances (20) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

no oneopt 0 2 1 −10 −10 −7 0 0 +1 12 −1 −1 +1 8 0 +1 +1

no crossover 0 0 0 +1 +1 +2 +1 +1 +1 3 +2 +2 +2 17 0 0 0

local branching 0 0 8 +1 +1 +2 +10 +12 +16 3 +26 +24 +22 17 +7 +9 +13

RINS 0 0 0 +1 +1 0 +2 +2 +2 4 +2 +2 +2 16 +2 +2 +2

mutation 0 0 0 +1 +1 +2 +2 +2 +2 3 +4 +4 +4 17 +2 +1 +1

Table B.148. Evaluation of improvement heuristics on test set fc.

all instances (23) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

no oneopt 0 2 3 −1 −1 −1 +4 +3 +1 7 +5 +4 0 16 +3 +3 +3

no crossover 0 7 2 −1 −1 −4 −4 −4 −9 8 −6 −6 −14 15 −4 −3 −1

local branching 0 6 4 −1 −1 −4 −1 −1 −6 8 −1 −2 −12 15 −2 −1 +1

RINS 0 3 5 −3 −3 −7 +5 +4 0 8 +2 0 −5 15 +7 +7 +6

mutation 0 3 2 −1 −1 −5 +1 +1 −2 8 0 0 −6 15 +2 +2 +2

Table B.149. Evaluation of improvement heuristics on test set arcset.

all instances (41) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 41 0 0 0

no oneopt 0 0 4 0 0 +3 +3 +3 +7 11 +2 +3 +11 30 +3 +3 +4

no crossover 0 3 0 −1 −1 +2 −4 −4 −1 16 −6 −5 0 25 −3 −3 −3

local branching 0 2 8 −1 −1 +2 +2 +2 +3 16 +4 +4 +6 25 +1 +1 +1

RINS 0 2 2 −1 −1 +1 −1 −1 +1 17 −1 −1 +2 24 −1 −1 −1

mutation 0 2 4 −1 −1 +2 +4 +3 +7 16 +3 +3 +9 25 +4 +4 +4

Table B.150. Evaluation of improvement heuristics on test set mik.
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all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

all (5 %) 0 23 0 −97 −89 −92 −72 −62 −79 27 −66 −55 −71 2 +1 +1 0

none (5 %) 1 21 4 −6 −39 −88 −35 −34 −43 27 −33 −33 −62 1 −4 −4 −4

all (20 %) 0 25 0 −99 −95 −98 −82 −72 −84 28 −78 −67 −78 1 −2 −2 −2

none (20 %) 1 19 4 −50 −64 −96 −53 −48 −47 27 −52 −48 −68 1 +4 +4 +4

Table B.151. Evaluation of primal heuristics to reach a predefined solution quality on test set
miplib.

all instances (38) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

all (5 %) 1 19 0 −94 −83 −94 −66 −59 −56 25 −75 −66 −56 10 +2 +2 +3

none (5 %) 1 24 3 −63 −64 −93 −63 −57 −58 34 −61 −54 −56 1 −5 −5 −5

all (20 %) 1 28 0 −98 −93 −97 −81 −73 −62 31 −83 −74 −64 4 +4 +4 +5

none (20 %) 1 26 2 −79 −78 −95 −70 −65 −62 34 −68 −62 −63 1 −3 −3 −3

Table B.152. Evaluation of primal heuristics to reach a predefined solution quality on test set
coral.

all instances (36) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 7 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

all (5 %) 5 12 0 −74 −51 −25 −52 −48 −32 19 −61 −58 −53 10 +1 +1 +2

none (5 %) 5 15 7 −5 −27 −40 −35 −36 −32 25 −25 −27 −40 3 0 0 0

all (20 %) 2 20 0 −95 −88 −44 −79 −75 −63 22 −78 −75 −65 7 −1 0 0

none (20 %) 3 17 7 −72 −75 −50 −64 −62 −49 25 −50 −51 −52 3 −2 −1 0

Table B.153. Evaluation of primal heuristics to reach a predefined solution quality on test set
milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

all (5 %) 0 0 0 0 0 0 +1 0 −1 1 −2 −2 −2 6 +1 0 −1

none (5 %) 0 2 1 −14 −13 −2 −12 −10 −2 6 −14 −11 −2 1 0 0 0

all (20 %) 0 0 0 −3 −3 −1 −2 −2 −2 4 −3 −2 −2 3 −1 −1 −2

none (20 %) 0 4 1 −18 −18 −2 −16 −11 −2 6 −19 −12 −2 1 0 0 0

Table B.154. Evaluation of primal heuristics to reach a predefined solution quality on test set
enlight.

all instances (25) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

all (5 %) 1 0 0 0 0 0 +1 +1 +1 0 — — — 24 +1 +1 +2

none (5 %) 1 12 3 −10 −12 +1 −15 −14 −3 18 −21 −18 −6 6 0 0 0

all (20 %) 1 0 0 0 0 +2 −1 −1 −1 0 — — — 24 −1 −1 −1

none (20 %) 1 12 3 −10 −12 0 −15 −14 −3 18 −21 −18 −6 6 0 0 0

Table B.155. Evaluation of primal heuristics to reach a predefined solution quality on test set
alu.
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all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

all (5 %) 0 12 0 −96 −82 −90 −62 −65 −83 14 −67 −67 −83 2 0 0 0

none (5 %) 0 9 4 +23 −25 −78 −40 −56 −80 13 −47 −59 −80 3 0 0 0

all (20 %) 0 12 0 −100 −100 −100 −89 −95 −98 16 −89 −95 −98 0 — — —

none (20 %) 0 9 4 −22 −54 −90 −54 −70 −89 13 −62 −73 −89 3 0 0 0

Table B.156. Evaluation of primal heuristics to reach a predefined solution quality on test set
fctp.

all instances (7) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

all (5 %) 0 0 0 0 0 0 +1 +1 +1 0 — — —

none (5 %) 0 2 5 +957 +151 +427 +40 +34 +45 7 +40 +34 +45

all (20 %) 0 0 0 0 0 0 −3 −3 −3 0 — — —

none (20 %) 0 2 5 +957 +151 +427 +44 +37 +49 7 +44 +37 +49

Table B.157. Evaluation of primal heuristics to reach a predefined solution quality on test set
acc.

all instances (20) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

all (5 %) 0 17 0 −90 −69 −70 −29 −29 −33 20 −29 −29 −33

none (5 %) 0 1 19 +1316 +571 +372 +54 +51 +58 20 +54 +51 +58

all (20 %) 0 20 0 −99 −100 −100 −49 −52 −58 20 −49 −52 −58

none (20 %) 0 2 18 +1234 +531 +313 +48 +43 +44 20 +48 +43 +44

Table B.158. Evaluation of primal heuristics to reach a predefined solution quality on test set fc.

all instances (23) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

all (5 %) 0 23 0 −100 −97 −87 −86 −77 −68 23 −86 −77 −68

none (5 %) 0 20 0 −75 −73 −64 −62 −57 −67 23 −62 −57 −67

all (20 %) 0 23 0 −100 −100 −100 −95 −89 −88 23 −95 −89 −88

none (20 %) 0 20 0 −85 −82 −77 −66 −62 −76 23 −66 −62 −76

Table B.159. Evaluation of primal heuristics to reach a predefined solution quality on test set
arcset.

all instances (41) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

all (5 %) 0 41 0 −100 −100 −100 −97 −96 −98 41 −97 −96 −98

none (5 %) 0 27 9 −57 −57 −73 −40 −41 −58 41 −40 −41 −58

all (20 %) 0 41 0 −100 −100 −100 −98 −98 −99 41 −98 −98 −99

none (20 %) 0 36 4 −80 −80 −85 −69 −67 −78 41 −69 −67 −78

Table B.160. Evaluation of primal heuristics to reach a predefined solution quality on test set
mik.
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Presolving

all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

none 2 7 18 +314 +163 +1 +80 +65 +47 27 +50 +39 +23 1 −30 −30 −30

no linear pairs 1 4 1 +5 +2 0 −3 −2 +1 9 −1 −1 +8 20 −4 −2 −3

aggreg linear pairs 1 4 4 −2 −2 0 +1 +2 +2 13 +2 +4 +7 16 +1 0 +1

no knap disaggreg 1 1 1 +4 +3 +1 −1 −1 −1 6 +2 +3 −2 23 −2 −2 −2

Table B.161. Evaluation of constraint specific presolving methods on test set miplib.

all instances (35) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 32 0 0 0

none 7 7 21 +164 +126 +33 +96 +93 +96 27 +45 +42 +69 0 — — —

no linear pairs 3 7 5 −7 −4 −2 −3 −3 −1 17 −6 −5 −4 15 −1 −1 −1

aggreg linear pairs 3 6 9 −5 −6 +29 −5 −5 −3 17 0 0 −4 14 +1 +1 +2

no knap disaggreg 2 2 3 +14 +11 +3 +9 +10 +3 4 +215 +239 +1111 28 −1 −1 −1

Table B.162. Evaluation of constraint specific presolving methods on test set coral.

all instances (35) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 7 0 0 0 0 0 0 0 0 0 — — — 28 0 0 0

none 11 9 16 +288 +128 +7 +99 +82 +31 23 +44 +35 +11 0 — — —

no linear pairs 7 7 7 +21 +10 0 +7 +4 −1 17 +16 +10 −5 11 −2 −2 −1

aggreg linear pairs 6 4 8 +27 +14 −2 +12 +10 −4 15 +37 +30 +8 13 +3 +2 +3

no knap disaggreg 7 1 6 +3 +1 −1 +10 +8 +1 6 +61 +48 +49 22 +3 +2 +1

Table B.163. Evaluation of constraint specific presolving methods on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

none 0 3 2 +51 +50 −26 +7 −7 −54 7 +7 −7 −54 0 — — —

no linear pairs 0 0 0 0 0 0 −1 −1 −3 0 — — — 7 −1 −1 −3

aggreg linear pairs 0 0 0 0 0 0 −2 −2 −4 0 — — — 7 −2 −2 −4

no knap disaggreg 0 0 0 0 0 0 −2 −2 −4 0 — — — 7 −2 −2 −4

Table B.164. Evaluation of constraint specific presolving methods on test set enlight.

all instances (23) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

none 2 4 17 +1058 +398 +373 +366 +248 +429 21 +297 +191 +206 0 — — —

no linear pairs 0 7 10 −31 −23 +13 −8 −6 +11 22 −8 −6 +11 1 0 0 0

aggreg linear pairs 0 13 4 −53 −43 +6 −27 −10 +33 22 −28 −10 +33 1 0 0 0

no knap disaggreg 0 0 0 0 0 0 −1 −1 −2 0 — — — 23 −1 −1 −2

Table B.165. Evaluation of constraint specific presolving methods on test set alu.
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all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

none 1 0 13 +1002 +402 +821 +139 +130 +421 15 +123 +121 +253 0 — — —

no linear pairs 0 0 0 0 0 0 +3 +3 +4 0 — — — 16 +3 +3 +4

aggreg linear pairs 0 0 0 0 0 0 +2 +2 +2 0 — — — 16 +2 +2 +2

no knap disaggreg 0 0 0 0 0 0 −1 0 0 0 — — — 16 −1 0 0

Table B.166. Evaluation of constraint specific presolving methods on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

none 2 3 4 +373 +233 +525 +109 +112 +224 5 +7 +6 +16 0 — — —

no linear pairs 0 1 1 +31 +35 +91 +6 +7 +15 2 +33 +34 +70 5 −3 −2 −2

aggreg linear pairs 0 2 3 +99 +33 +116 +17 +16 +40 6 +20 +19 +41 1 0 0 0

no knap disaggreg 0 0 2 +58 +62 +77 +18 +19 +17 2 +85 +85 +77 5 −1 −1 −2

Table B.167. Evaluation of constraint specific presolving methods on test set acc.

all instances (20) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

none 0 1 19 +5728 +2589 +2101 +341 +372 +601 20 +341 +372 +601 0 — — —

no linear pairs 0 0 0 −8 −8 +1 +1 +1 +2 11 +1 +2 +4 9 0 0 0

aggreg linear pairs 0 0 2 −3 −4 −1 +1 +1 +1 12 +1 +2 +3 8 0 0 0

no knap disaggreg 0 0 0 +1 0 0 0 0 0 2 0 0 0 18 0 0 0

Table B.168. Evaluation of constraint specific presolving methods on test set fc.

all instances (23) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

none 0 4 18 +135 +114 +331 +73 +72 +96 23 +73 +72 +96 0 — — —

no linear pairs 0 6 15 +63 +60 +21 +26 +24 +14 23 +26 +24 +14 0 — — —

aggreg linear pairs 0 4 5 +18 +8 −7 0 −1 −10 9 −6 −6 −24 14 +4 +3 0

no knap disaggreg 0 0 0 0 0 0 +2 +2 +2 0 — — — 23 +2 +2 +2

Table B.169. Evaluation of constraint specific presolving methods on test set arcset.

all instances (41) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 41 0 0 0

none 1 0 41 +204 +204 +215 +509 +458 +587 40 +506 +459 +571 0 — — —

no linear pairs 0 1 18 −1 −1 0 +10 +9 +10 41 +10 +9 +10 0 — — —

aggreg linear pairs 0 0 0 0 0 0 +2 +2 +3 0 — — — 41 +2 +2 +3

no knap disaggreg 0 0 0 0 0 0 −1 −1 −1 0 — — — 41 −1 −1 −1

Table B.170. Evaluation of constraint specific presolving methods on test set mik.
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all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

no int to binary 0 2 1 +2 −1 −10 −3 −3 −14 2 +11 +12 +14 27 −3 −2 −2

no probing 2 9 10 +11 +16 −9 +8 +9 +25 24 +7 +8 +9 4 −7 −9 −11

full probing 2 4 4 −12 −9 −9 +15 +16 +38 8 +5 +4 +20 20 −1 0 −2

no impl graph 1 2 0 −4 −2 0 −2 −2 −1 2 −8 −7 −7 27 −2 −1 −2

no dual fixing 1 4 5 +6 +2 −9 0 −1 −4 10 +5 0 −7 19 −2 −2 −4

Table B.171. Evaluation of generic presolving methods on test set miplib.

all instances (36) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 2 0 0 0 0 0 0 0 0 0 — — — 34 0 0 0

no int to binary 2 1 0 −1 −1 −11 −1 −1 −2 1 −18 −18 −18 33 0 0 0

no probing 3 8 21 +26 +14 +3 +21 +20 +40 29 +16 +15 +49 3 +19 +19 +19

full probing 2 5 12 −34 −17 0 +5 +4 +4 18 −5 −6 −13 16 +17 +17 +19

no impl graph 3 0 1 +2 +2 +3 +5 +5 +16 0 — — — 33 0 0 0

no dual fixing 2 3 4 −18 −6 −28 +5 +7 +8 16 +13 +16 +26 18 0 0 0

Table B.172. Evaluation of generic presolving methods on test set coral.

all instances (35) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 7 0 0 0 0 0 0 0 0 0 — — — 28 0 0 0

no int to binary 7 0 1 +4 +4 +2 +1 +1 0 1 +62 +62 +62 27 −1 −1 −1

no probing 6 12 10 +108 +52 −6 +15 +12 −7 27 +24 +20 −3 1 −3 −3 −3

full probing 8 3 5 +9 +5 +1 +5 +5 +5 10 +6 +7 −4 17 +2 +2 +1

no impl graph 6 1 2 +2 0 0 0 0 −4 6 +10 +10 +12 22 0 0 0

no dual fixing 8 4 9 −3 −5 +2 +5 +3 +5 14 +2 −3 −18 13 +2 +2 +1

Table B.173. Evaluation of generic presolving methods on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

no int to binary 1 0 3 +26 +27 +74 +41 +35 +81 6 +31 +26 +6 0 — — —

no probing 0 1 3 +44 +44 +28 +12 +3 −2 7 +12 +3 −2 0 — — —

full probing 0 0 0 0 0 0 0 0 −1 0 — — — 7 0 0 −1

no impl graph 0 0 0 0 0 0 −2 −2 −3 0 — — — 7 −2 −2 −3

no dual fixing 0 0 0 0 0 0 −2 −2 −5 0 — — — 7 −2 −2 −5

Table B.174. Evaluation of generic presolving methods on test set enlight.

all instances (25) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

no int to binary 1 6 7 −3 −2 +3 +3 −2 +5 23 +3 −2 +12 1 0 0 0

no probing 1 8 13 +58 −8 +12 +14 −2 +16 24 +15 −2 +37 0 — — —

full probing 1 0 0 0 0 0 −1 −1 0 0 — — — 24 −1 −1 0

no impl graph 1 11 5 −45 −37 −8 −25 −22 −16 24 −26 −25 −36 0 — — —

no dual fixing 1 0 0 0 0 +1 −1 −1 −1 0 — — — 24 −1 −1 −1

Table B.175. Evaluation of generic presolving methods on test set alu.
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all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

no int to binary 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

no probing 0 2 2 −3 −6 −3 −3 −4 −3 11 −4 −5 −3 5 0 0 0

full probing 0 2 1 −1 −1 −1 +1 0 +3 8 +1 0 +3 8 +1 +2 +2

no impl graph 0 0 0 0 0 0 +2 +2 +3 0 — — — 16 +2 +2 +3

no dual fixing 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

Table B.176. Evaluation of generic presolving methods on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

no int to binary 0 0 0 0 0 0 +1 +1 +1 0 — — — 7 +1 +1 +1

no probing 3 1 3 +212 +286 +940 +95 +100 +268 1 −67 −67 −67 3 −3 −3 −3

full probing 0 0 2 +265 +32 +7 +41 +36 +4 3 +129 +139 +195 4 −2 −2 −2

no impl graph 0 0 0 0 0 0 +1 +1 +2 0 — — — 7 +1 +1 +2

no dual fixing 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

Table B.177. Evaluation of generic presolving methods on test set acc.

all instances (20) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

no int to binary 0 0 0 0 0 0 0 0 0 0 — — —

no probing 0 3 7 +13 +15 +29 +7 +9 +10 20 +7 +9 +10

full probing 0 0 0 0 0 0 0 0 0 0 — — —

no impl graph 0 0 0 0 0 0 0 0 0 0 — — —

no dual fixing 0 5 8 +9 +10 0 +7 +4 +2 20 +7 +4 +2

Table B.178. Evaluation of generic presolving methods on test set fc.

all instances (23) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

no int to binary 0 0 3 +6 +5 +2 +8 +7 +6 4 +26 +26 +30

no probing 0 5 7 +27 +13 +3 −3 −3 −12 14 −5 −5 −24

full probing 0 4 6 +19 +7 −14 +4 +2 −12 12 +5 +2 −30

no impl graph 0 0 0 0 0 0 +1 +1 +1 0 — — —

no dual fixing 0 9 10 +23 +11 +6 +7 +7 −5 23 +7 +7 −5

Table B.179. Evaluation of generic presolving methods on test set arcset.

all instances (41) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 41 0 0 0

no int to binary 0 11 5 −2 −2 +1 −4 −3 −1 26 −6 −4 −1 15 −2 −1 −1

no probing 0 6 25 +44 +44 +15 +34 +28 +16 41 +34 +28 +16 0 — — —

full probing 0 0 0 0 0 0 +3 +3 +2 0 — — — 41 +3 +3 +2

no impl graph 0 0 0 0 0 0 0 0 0 0 — — — 41 0 0 0

no dual fixing 0 0 0 0 0 0 +2 +2 +3 1 +8 +8 +8 40 +2 +2 +3

Table B.180. Evaluation of generic presolving methods on test set mik.
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all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

no restart 1 3 4 +8 −4 −12 +5 +3 −6 12 +15 +10 −15 17 −1 −1 −2

sub restart 1 1 5 +6 +3 +9 +2 +2 +11 10 +8 +7 +29 19 0 0 0

aggr sub restart 1 1 7 +6 +2 +10 +4 +4 +15 10 +11 +10 +37 19 +1 +1 +1

Table B.181. Evaluation of restarts on test set miplib.

all instances (38) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 3 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

no restart 3 3 1 −5 −4 −31 −1 −1 −2 6 −10 −11 −18 29 0 0 0

sub restart 3 1 1 +3 +3 +13 0 0 0 3 +7 +6 +2 32 0 0 0

aggr sub restart 3 2 2 +2 +2 +11 +2 +2 +1 4 +5 +4 −9 31 +2 +2 +2

Table B.182. Evaluation of restarts on test set coral.

all instances (36) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 7 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

no restart 7 0 2 +25 +19 0 +12 +10 +2 5 +113 +98 +23 24 +1 +1 +1

sub restart 8 1 6 +14 +15 +1 +11 +12 +10 6 +26 +27 +40 22 0 +1 0

aggr sub restart 8 0 8 +20 +21 +1 +14 +14 +12 7 +41 +40 +77 21 0 0 0

Table B.183. Evaluation of restarts on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

no restart 0 0 0 0 0 0 −1 −1 −3 0 — — — 7 −1 −1 −3

sub restart 0 0 0 0 0 0 0 −1 −1 0 — — — 7 0 −1 −1

aggr sub restart 0 0 0 0 0 0 0 −1 −1 0 — — — 7 0 −1 −1

Table B.184. Evaluation of restarts on test set enlight.

all instances (25) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

no restart 1 0 0 0 0 0 0 0 0 0 — — — 24 0 0 +1

sub restart 1 0 0 −1 0 −1 +2 +1 +1 1 +7 +7 +7 23 +2 +2 +3

aggr sub restart 1 1 1 −16 −13 +8 −4 0 +6 4 −23 −2 +57 20 0 0 +1

Table B.185. Evaluation of restarts on test set alu.

all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

no restart 0 0 0 0 0 0 +3 +3 +4 0 — — — 16 +3 +3 +4

sub restart 0 0 0 −1 0 0 +2 +2 +3 1 0 0 0 15 +2 +2 +3

aggr sub restart 0 0 0 −1 0 0 +1 +1 +1 1 0 0 0 15 +1 +1 +1

Table B.186. Evaluation of restarts on test set fctp.
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all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

no restart 0 0 1 0 0 0 +3 +3 +4 0 — — — 7 +3 +3 +4

sub restart 0 0 0 0 0 0 −2 −1 −1 0 — — — 7 −2 −1 −1

aggr sub restart 0 0 0 0 0 0 +1 +1 +1 0 — — — 7 +1 +1 +1

Table B.187. Evaluation of restarts on test set acc.

all instances (20) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

no restart 0 3 2 +28 +8 +6 −1 +1 +4 12 −2 +2 +10 8 0 0 0

sub restart 0 0 1 −3 −2 0 +1 +1 +1 2 +11 +11 +12 18 0 0 0

aggr sub restart 0 0 2 −10 −8 −14 +3 +2 +1 5 +7 +3 −1 15 +2 +2 +2

Table B.188. Evaluation of restarts on test set fc.

all instances (23) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 23 0 0 0

no restart 0 0 1 +4 +4 +5 +10 +9 +6 1 +238 +238 +238 22 +4 +4 +4

sub restart 0 2 1 −8 −6 −7 −1 −1 +1 3 −27 −27 −40 20 +3 +3 +3

aggr sub restart 0 1 1 −5 −3 +1 0 +1 +2 4 −4 +1 +10 19 +1 +1 +1

Table B.189. Evaluation of restarts on test set arcset.

all instances (41) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 41 0 0 0

no restart 3 0 41 +311 +310 +403 +553 +500 +697 38 +533 +494 +604 0 — — —

sub restart 0 0 0 0 0 0 0 0 0 0 — — — 41 0 0 0

aggr sub restart 0 0 0 0 0 0 +2 +1 +1 0 — — — 41 +2 +1 +1

Table B.190. Evaluation of restarts on test set mik.
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Conflict Analysis

all instances (30) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

prop 2 4 1 −7 −6 +7 −1 0 +15 13 −6 −5 −7 15 −2 −1 −1

prop/inflp 2 1 7 −1 −1 +14 +7 +6 +19 14 +4 +3 +1 14 +5 +2 0

prop/inflp/age 1 4 2 −9 −9 −33 0 0 +7 14 −2 −2 +1 14 −1 −1 −1

prop/lp 3 2 9 −15 −14 −22 +13 +12 +33 18 +13 +11 +14 9 +2 +2 +3

all 3 1 8 −11 −10 −19 +14 +14 +35 21 +14 +13 +20 6 −1 −1 −2

full 2 1 17 −15 −15 −27 +26 +24 +29 22 +33 +31 +42 6 +2 +1 +1

Table B.191. Evaluation of conflict analysis on test set miplib.

all instances (37) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 2 0 0 0 0 0 0 0 0 0 — — — 35 0 0 0

prop 1 10 3 −21 −20 −23 −10 −10 −8 21 −9 −8 +22 14 +3 +3 +2

prop/inflp 2 12 5 −16 −13 −21 −1 −1 +7 26 −3 −4 +3 8 0 0 0

prop/inflp/age 2 11 7 −31 −29 −48 −7 −7 0 26 −2 −3 +12 8 +3 +3 +2

prop/lp 3 11 8 −25 −22 −42 +3 +2 +19 30 −1 −2 +10 4 +1 +1 +2

all 2 9 16 −29 −27 −46 +3 +2 +8 32 +11 +10 +25 2 +2 +2 +2

full 2 5 21 −38 −36 −48 +9 +8 +15 32 +18 +17 +38 2 +2 +2 +2

Table B.192. Evaluation of conflict analysis on test set coral.

all instances (35) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 6 0 0 0 0 0 0 0 0 0 — — — 29 0 0 0

prop 4 2 2 −16 −16 −21 −13 −13 −11 11 −12 −12 −7 18 +1 +1 +2

prop/inflp 3 4 1 −29 −29 −35 −26 −26 −23 12 −14 −15 −14 17 0 0 0

prop/inflp/age 3 7 1 −35 −36 −40 −28 −28 −25 12 −19 −20 −18 17 +2 +2 +2

prop/lp 4 8 5 −47 −48 −51 −31 −31 −32 16 −21 −21 −33 12 +3 +2 +3

all 5 5 8 −44 −45 −46 −24 −24 −23 18 −6 −6 −18 10 +1 +1 +1

full 3 7 12 −46 −47 −58 −19 −18 −23 18 +16 +15 +12 10 −1 0 0

Table B.193. Evaluation of conflict analysis on test set milp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

prop 0 2 1 −30 −29 −25 −12 −11 −7 6 −14 −12 −7 1 0 0 0

prop/inflp 0 4 1 −49 −48 −53 −25 −21 −37 6 −29 −23 −37 1 0 0 0

prop/inflp/age 0 5 0 −79 −79 −96 −46 −49 −79 6 −51 −52 −79 1 0 0 0

prop/lp 0 4 1 −50 −49 −55 −24 −21 −38 6 −28 −23 −38 1 0 0 0

all 0 5 0 −50 −49 −63 −26 −26 −52 6 −30 −28 −52 1 0 0 0

full 0 5 0 −50 −49 −64 −26 −26 −53 6 −29 −28 −53 1 0 0 0

Table B.194. Evaluation of conflict analysis on test set enlight.
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all instances (25) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 1 0 0 0 0 0 0 0 0 0 — — — 24 0 0 0

prop 1 9 3 −63 −61 −39 −30 −28 −4 16 −42 −37 −8 8 0 0 0

prop/inflp 0 13 2 −78 −74 −52 −42 −35 −5 16 −57 −45 0 8 0 0 0

prop/inflp/age 2 10 6 −83 −80 −85 −26 −11 +89 15 −47 −28 +122 8 0 0 0

prop/lp 1 13 2 −79 −75 −56 −44 −39 −10 16 −60 −50 −24 8 0 0 0

all 1 13 1 −83 −78 −57 −45 −39 +2 19 −55 −46 +5 5 0 0 0

full 1 13 1 −82 −77 −53 −45 −38 +4 19 −54 −46 +10 5 0 0 0

Table B.195. Evaluation of conflict analysis on test set alu.

all instances (16) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 16 0 0 0

prop 0 0 1 +1 +1 +1 +1 +1 +1 6 +2 +2 +1 10 +1 +1 +1

prop/inflp 0 0 1 0 0 −2 +3 +2 +1 6 +3 +2 +1 10 +3 +3 +4

prop/inflp/age 0 0 0 0 0 −2 +1 +1 0 6 0 0 0 10 +2 +2 +2

prop/lp 0 0 7 +2 +2 −1 +18 +23 +41 9 +34 +33 +41 7 +1 +2 +2

all 0 1 9 −3 −3 +1 +21 +20 +54 12 +28 +24 +54 4 0 0 0

full 0 1 10 −8 −8 −5 +39 +41 +121 12 +54 +50 +121 4 +3 +4 +4

Table B.196. Evaluation of conflict analysis on test set fctp.

all instances (7) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 7 0 0 0

prop 0 0 2 +35 +51 +179 +18 +19 +38 3 +49 +49 +42 4 −1 −1 −1

prop/inflp 0 2 2 +48 +57 +225 +20 +21 +49 4 +39 +39 +50 3 −2 −2 −2

prop/inflp/age 0 2 2 +46 +52 +188 +16 +17 +28 4 +31 +30 +29 3 −1 −1 −1

prop/lp 0 2 2 +13 +20 +177 −2 −2 +17 4 −3 −3 +18 3 −1 −1 −1

all 0 2 2 −14 −21 −29 −18 −19 −38 4 −29 −29 −39 3 −2 −2 −2

full 0 2 2 +21 +17 +6 +5 +5 +15 4 +10 +10 +15 3 −2 −2 −2

Table B.197. Evaluation of conflict analysis on test set acc.

all instances (20) different path equal path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — — 20 0 0 0

prop 0 0 0 −1 −1 −2 +1 +1 +1 4 +1 0 0 16 +1 +1 +1

prop/inflp 0 0 0 −3 −3 −9 +1 +1 0 9 0 −1 −2 11 +2 +2 +2

prop/inflp/age 0 1 0 −3 −3 −9 0 −1 −2 9 −1 −2 −3 11 +1 +1 +1

prop/lp 0 0 6 +1 +1 0 +7 +9 +14 14 +10 +11 +15 6 +2 +2 +2

all 0 1 6 −14 −15 −16 +8 +9 +13 15 +10 +11 +14 5 +1 +2 +2

full 0 0 8 −22 −24 −35 +14 +18 +25 15 +19 +22 +27 5 −1 −1 −1

Table B.198. Evaluation of conflict analysis on test set fc.

all instances (23) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

prop 0 2 1 −5 −5 −14 +1 +1 −7 13 0 −1 −10

prop/inflp 0 11 4 −16 −16 −21 −6 −6 −18 22 −6 −6 −18

prop/inflp/age 0 9 4 −17 −17 −24 −5 −6 −16 22 −6 −6 −16

prop/lp 0 7 7 −29 −29 −34 −3 −4 −11 23 −3 −4 −11

all 0 6 7 −29 −29 −29 −1 −1 −6 23 −1 −1 −6

full 0 6 7 −34 −34 −38 +1 +1 +21 23 +1 +1 +21

Table B.199. Evaluation of conflict analysis on test set arcset.
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all instances (41) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

default 0 0 0 0 0 0 0 0 0 0 — — —

prop 0 0 12 +1 +1 +13 +7 +7 +22 34 +8 +8 +24

prop/inflp 0 4 11 −6 −5 +3 +4 +4 +19 41 +4 +4 +19

prop/inflp/age 0 5 14 −12 −12 −17 +6 +7 +15 41 +6 +7 +15

prop/lp 0 19 13 −53 −53 −57 −10 −11 −17 41 −10 −11 −17

all 0 22 10 −56 −55 −60 −15 −15 −23 41 −15 −15 −23

full 0 20 13 −60 −60 −59 −16 −17 −13 41 −16 −17 −13

Table B.200. Evaluation of conflict analysis on test set mik.
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Comparison to Cplex

all instances (30) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

Cplex 10.0.1 1 0 0 0 0 0 0 0 0 0 — — —

SCIP 0.90f 1 5 25 −68 −38 −6 +131 +51 +1 28 +202 +94 +25

SCIP 0.90i 1 5 24 −62 −41 −21 +108 +44 −2 28 +164 +81 +12

Table B.201. Evaluation of Cplex 10.0.1, SCIP 0.90f, and SCIP 0.90i on test set miplib.

all instances (37) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

Cplex 10.0.1 4 0 0 0 0 0 0 0 0 0 — — —

SCIP 0.90f 3 8 27 +30 −1 +58 +237 +117 −1 30 +289 +147 +27

SCIP 0.90i 2 13 24 −35 −43 −66 +121 +54 −29 31 +196 +103 +3

Table B.202. Evaluation of Cplex 10.0.1, SCIP 0.90f, and SCIP 0.90i on test set coral.

all instances (36) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

Cplex 10.0.1 1 0 0 0 0 0 0 0 0 0 — — —

SCIP 0.90f 7 5 28 −5 +40 +220 +295 +256 +240 28 +183 +151 +152

SCIP 0.90i 3 9 25 −43 −20 +62 +176 +149 +115 32 +170 +143 +129

Table B.203. Evaluation of Cplex 10.0.1, SCIP 0.90f, and SCIP 0.90i on test set milp.

all instances (7) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

Cplex 10.0.1 1 0 0 0 0 0 0 0 0 0 — — —

SCIP 0.90f 0 1 4 −56 −26 −55 +9 −12 −49 6 +42 +20 +31

SCIP 0.90i 0 3 1 −97 −89 −98 −61 −73 −95 6 −43 −66 −94

Table B.204. Evaluation of Cplex 10.0.1, SCIP 0.90f, and SCIP 0.90i on test set enlight.

all instances (24) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

Cplex 10.0.1 1 0 0 0 0 0 0 0 0 0 — — —

SCIP 0.90f 0 9 12 −90 −70 −75 −14 −10 −64 23 −8 −1 −48

SCIP 0.90i 0 11 8 −99 −97 −97 −68 −63 −71 23 −59 −50 −45

Table B.205. Evaluation of Cplex 10.0.1, SCIP 0.90f, and SCIP 0.90i on test set alu.

all instances (16) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

Cplex 10.0.1 0 0 0 0 0 0 0 0 0 0 — — —

SCIP 0.90f 0 0 12 −1 +10 +1 +109 +82 +49 16 +109 +82 +49

SCIP 0.90i 0 0 12 −12 +11 +11 +90 +72 +50 16 +90 +72 +50

Table B.206. Evaluation of Cplex 10.0.1, SCIP 0.90f, and SCIP 0.90i on test set fctp.
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all instances (7) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

Cplex 10.0.1 0 0 0 0 0 0 0 0 0 0 — — —

SCIP 0.90f 0 1 6 +155 +234 +316 +665 +390 +454 7 +665 +390 +454

SCIP 0.90i 0 1 6 +407 +287 +435 +619 +350 +294 7 +619 +350 +294

Table B.207. Evaluation of Cplex 10.0.1, SCIP 0.90f, and SCIP 0.90i on test set acc.

all instances (20) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

Cplex 10.0.1 0 0 0 0 0 0 0 0 0 0 — — —

SCIP 0.90f 0 0 20 −34 −7 +35 +149 +137 +158 20 +149 +137 +158

SCIP 0.90i 0 0 19 −39 −22 −12 +126 +107 +110 20 +126 +107 +110

Table B.208. Evaluation of Cplex 10.0.1, SCIP 0.90f, and SCIP 0.90i on test set fc.

all instances (23) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

Cplex 10.0.1 0 0 0 0 0 0 0 0 0 0 — — —

SCIP 0.90f 0 4 18 −39 −35 −44 +182 +93 −35 23 +182 +93 −35

SCIP 0.90i 0 7 16 −60 −53 −60 +116 +48 −59 23 +116 +48 −59

Table B.209. Evaluation of Cplex 10.0.1, SCIP 0.90f, and SCIP 0.90i on test set arcset.

all instances (41) different path

setting T fst slw ngm nsgm ntot tgm tsgm ttot # tgm tsgm ttot

Cplex 10.0.1 0 0 0 0 0 0 0 0 0 0 — — —

SCIP 0.90f 0 31 7 −66 −66 −81 −49 −48 −71 41 −49 −48 −71

SCIP 0.90i 0 30 9 −70 −70 −82 −48 −47 −67 41 −48 −47 −67

Table B.210. Evaluation of Cplex 10.0.1, SCIP 0.90f, and SCIP 0.90i on test set mik.



Appendix C

SCIP versus Cplex

In order to give an indication of the performance of SCIP as a black-box MIP
solver, we compare SCIP to the commercial code Cplex 10.0.1 [118], which is one
of the fastest MIP solvers that is currently available. We used Cplex in its default
settings, except that we set the gap dependent abort criteria to mipgap = 0 and
absmipgap = 10−9, which are the corresponding values in SCIP. Note that SCIP
uses Cplex to solve the LP relaxations of the subproblems. This means that our
benchmarks only compare the MIP part of the solver. SCIP is usually much slower
if a non-commercial LP solver, for example SoPlex [219], is employed.

Table C.1 shows a summary of the results on our MIP test sets. One can see how
the performance of the two SCIP versions considered in this thesis, SCIP 0.90f and
SCIP 0.90i, compares to Cplex. As usual, we consider the shifted geometric mean
of the results for the instances of a test set, see Appendix A.3. The numbers in the
table, calculated as in Equation (B.1) on page 325, are the percental differences of
the SCIP results compared to the reference mean values of Cplex. The results for
the individual instances of the test sets are listed in Tables C.2 to C.11.

Overall, SCIP 0.90f is 115 % slower than Cplex, i.e., it takes (in the shifted
geometric mean) a little more than twice as long to solve a MIP instance with
SCIP 0.90f than with Cplex. In contrast, SCIP 0.90i is only 63 % slower than

test set SCIP 0.90f SCIP 0.90i

ti
m

e

miplib +51 +44

coral +117 +54

milp +256 +149

enlight −12 −73

alu −10 −63

fctp +82 +72

acc +390 +350

fc +137 +107

arcset +93 +48

mik −48 −47

total +115 +63

n
o

d
es

miplib −38 −41

coral −1 −43

milp +40 −20

enlight −26 −89

alu −70 −97

fctp +10 +11

acc +234 +287

fc −7 −22

arcset −35 −53

mik −66 −70

total −6 −40

Table C.1. Comparison of Cplex 10.0.1 to SCIP 0.90f and SCIP 0.90i. The values denote the
percental changes in the shifted geometric mean of the runtime (top) and number of branching
nodes (bottom) compared to Cplex. Positive values indicate instances on which SCIP is inferior,
negative values represent superior results.
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Cplex 10.0.1 SCIP 0.90f SCIP 0.90i

Nodes Time Nodes Time Nodes Time

modglob 245 0.5 13 2.0 241 2.6

fiber 72 0.5 29 2.8 10 1.7

p2756 16 0.5 95 5.1 37 4.6

gesa2 39 0.5 3 5.9 8 5.6

set1ch 326 0.5 10 3.3 23 2.6

fixnet6 132 1.0 11 5.3 23 2.6

pp08a 618 1.1 1 196 3.0 1 20 2.9

vpm2 3 269 1.1 5 846 6.8 723 2.2

pp08aCUTS 1 372 2.0 817 3.7 426 2.8

10teams 22 4.4 1 374 43.1 538 39.8

gesa2-o 3 380 4.8 1 8.6 7 8.3

misc07 11 49 9.7 20 982 30.8 25 256 39.3

air05 288 12.4 291 124.8 342 90.9

air04 128 14.8 19 233.6 258 214.6

cap6000 4 565 15.8 3 165 8.6 3 65 8.8

nw04 126 20.1 7 73.1 5 77.7

aflow30a 11 832 30.5 2 180 33.8 2 426 30.2

qiu 2 371 31.6 10 567 185.4 8 697 110.0

mzzv42z 183 52.4 1 404 599.0 1 91 823.8

mod011 45 70.1 2 769 279.7 2 731 200.5

pk1 338 108 83.3 233 736 113.7 228 745 136.4

rout 41 345 91.8 12 542 55.0 28 669 79.1

mas76 660 320 122.5 414 423 142.3 347 197 134.9

disctom 50 195.2 1 98.8 1 94.7

mzzv11 1 873 219.0 1 786 1291.6 3 271 1148.3

harp2 1 71 588 1033.8 1 727 702 1415.0 >4 925 65 >3600.0

mas74 4 451 916 1267.3 4 86 233 2515.1 3 272 670 1477.8

noswot 4 717 721 1528.3 >5 203 78 >3600.0 983 43 2210.9

fast0507 13 997 3141.7 1 424 749.4 1 445 772.8

manna81 >1 177 281 >3600.0 1 4.6 2 5.6

geom. mean 2 556 20.7 818 47.8 963 43.1

sh. geom. mean 3 662 46.8 2 271 70.9 2 178 67.7

arithm. mean 417 142 385.2 391 56 388.1 327 901 377.7

Table C.2. Detailed benchmark results on the miplib test set. Values printed in red and blue
indicate a difference of at least a factor of 2 to the reference Cplex results.

Cplex, which is an almost 25 % performance improvement with respect to the older
version SCIP 0.90f. Thus, the conclusions we draw from our computational experi-
ments and the resulting changes in the default settings indeed lead to a substantial
enhancement in the MIP solving capabilities of SCIP. As a conclusion of the com-
parison to Cplex, we take the results as evidence that the algorithms of SCIP are
close to the state-of-the-art in MIP solving, which substantiates the significance of
our computational experiments on SCIP.



SCIP versus Cplex 379

Cplex 10.0.1 SCIP 0.90f SCIP 0.90i

Nodes Time Nodes Time Nodes Time

neos-583731 1 0.5 2 71 134.8 185 63.2

neos-612125 2 0.9 215 67.6 341 55.7

neos-633273 1 1.1 4 48 1209.2 2 673 481.5

neos-612143 15 1.2 441 92.7 407 56.3

neos-494568 40 1.4 142 22.4 91 45.5

neos-584851 40 2.3 1 408 101.1 521 76.4

neos-717614 734 2.7 >932 392 >3600.0 174 879 710.1

neos-498623 80 3.7 79 38.4 306 54.9

neos-555001 470 4.7 140 7.0 1 4.1

neos-807639 5 90 7.0 16 284 150.6 13 650 147.6

neos-585467 973 9.9 347 23.2 189 17.0

neos-565815 8 11.3 3 26.9 1 41.7

aligninq 1 918 15.0 715 31.6 1 905 24.3

neos-570431 1 124 17.6 1 456 31.6 2 105 38.1

neos-504815 11 72 28.2 10 420 70.5 6 896 52.1

prod1 61 292 34.6 26 784 33.6 25 439 43.0

neos-738098 1 49.9 >199 >3600.0 >68 >3600.0

neos-480878 17 603 57.1 11 512 109.5 7 266 82.7

binkar10_1 7 992 63.4 205 358 844.6 259 288 974.3

neos-512201 21 202 69.5 15 772 179.2 10 720 131.1

neos-538916 55 938 72.6 40 693 113.7 12 731 61.2

neos-530627 823 990 77.6 2 405 10 1146.3 3 0.5

neos-796608 701 625 96.5 4 366 657 1691.7 — —

neos-538867 124 697 119.5 155 214 298.8 42 468 162.2

neos-791021 129 140.0 1 147.7 34 230.6

neos-686190 12 11 155.9 6 320 237.2 6 21 328.3

neos-506422 6 113 163.1 7 233 246.4 1 894 112.0

bienst1 7 918 219.6 12 24 339.0 12 473 55.8

prod2 276 396 299.3 107 299 207.3 69 191 173.9

neos-585192 28 262 476.1 1 690 69.5 903 62.4

neos-476283 3 710 587.8 1 66 1154.3 1 294 1209.1

neos-808072 53 464 1109.4 478 106.1 444 151.6

neos-787933 >20 469 >1967.8 1 102.6 1 99.7

neos-503737 50 438 2087.1 2 53 192.6 4 838 347.6

lrn 365 796 2742.3 >49 410 >3600.0 >66 579 >3600.0

bienst2 >109 661 >3600.0 113 376 1168.9 81 708 344.9

neos-551991 >8 19 >3600.0 3 444 496.4 6 542 785.2

neos-595925 >691 192 >3600.0 232 871 531.9 111 587 348.5

geom. mean 2 323 52.9 2 995 176.4 1 486 116.0

sh. geom. mean 4 720 88.2 4 608 189.3 2 659 134.7

arithm. mean 74 807 578.4 118 53 555.0 25 17 399.3

Table C.3. Detailed benchmark results on the coral test set. Values printed in red and blue
indicate a difference of at least a factor of 2 to the reference Cplex results.
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Cplex 10.0.1 SCIP 0.90f SCIP 0.90i

Nodes Time Nodes Time Nodes Time

neos648910 370 0.7 476 4.3 125 4.1

neos1 1 1.2 1 4.9 14 20.2

neos8 1 4.0 1 150.1 1 152.1

neos4 55 4.9 1 3.2 1 3.1

neos2 951 6.1 13 954 134.8 17 595 76.0

neos10 28 8.7 5 187.2 5 252.1

markshare1_1 179 832 12.5 — — 1 168 136 186.1

swath1 5 69 16.6 2 115 91.5 1 262 85.5

nug08 54 17.3 2 238.8 1 488.3

neos3 4 104 20.7 >537 967 >3600.0 217 360 758.9

neos22 8 41 27.4 2 7.2 1 6.3

neos20 3 516 33.4 1 604 22.9 986 19.6

markshare2_1 468 378 34.6 >12 973 500 >3600.0 3 551 769 545.5

neos21 3 140 43.5 2 634 52.3 1 796 44.7

neos7 14 159 52.6 2 11.2 2 10.2

swath2 26 492 70.8 4 318 131.6 1 960 94.3

mkc1 14 265 71.7 >612 556 >3600.0 >639 263 >3600.0

30:70:4.5:0.5:100 1 78.6 6 221 1315.2 441 1504.5

neos6 1 456 98.4 2 282 333.6 5 877 864.1

bc1 5 834 103.1 5 28 164.8 5 315 290.6

dano3_4 27 116.7 61 296.9 42 240.5

dano3_3 15 122.9 36 205.6 41 225.1

30:70:4.5:0.95:98 59 129.7 16 253.3 29 465.3

30:70:4.5:0.95:100 1 133.8 16 283.9 16 537.8

neos17 92 121 159.3 >1 937 629 >3600.0 16 65 42.6

qap10 10 160.4 2 1760.9 4 656.3

neos11 2 827 167.6 12 214 1021.4 8 523 684.8

neos12 151 215.6 >3 621 >3600.0 >5 35 >3600.0

neos23 214 230 282.8 >2 246 374 >3600.0 2 281 10.4

neos18 46 439 298.6 107 197 1007.0 16 403 202.7

swath3 106 882 327.5 47 271 469.8 107 348 1376.8

dano3_5 367 526.8 287 530.1 278 501.7

seymour1 6 419 740.0 4 167 780.4 5 956 960.4

neos14 375 642 769.5 700 591 3161.5 533 485 1850.8

neos13 1 697 1568.8 22 787 1565.4 9 351 1057.0

neos5 6 233 26 1657.2 >5 259 593 >3600.0 >7 231 78 >3600.0

neos9 >22 794 >3600.0 1 267.4 1 244.7

geom. mean 1 242 74.7 1 176 295.0 711 206.3

sh. geom. mean 2 794 96.7 3 926 344.2 2 241 241.0

arithm. mean 212 739 324.2 680 681 1101.6 343 880 696.6

Table C.4. Detailed benchmark results on the milp test set. Values printed in red and blue
indicate a difference of at least a factor of 2 to the reference Cplex results.

Cplex 10.0.1 SCIP 0.90f SCIP 0.90i

Nodes Time Nodes Time Nodes Time

enlight4 66 0.5 1 0.5 1 0.5

enlight5 940 0.5 1 75 0.5 1 0.5

enlight6 3 628 0.7 3 34 1.3 447 0.7

enlight7 2 951 1.1 4 773 2.5 2 213 2.0

enlight8 80 928 25.0 59 959 36.8 8 855 10.0

enlight9 3 871 450 1253.3 2 748 499 1635.4 43 56 59.1

enlight10 >5 161 291 >3600.0 1 278 955 803.0 121 763 155.5

geom. mean 19 505 11.2 8 528 12.2 643 4.4

sh. geom. mean 22 676 47.5 16 731 41.6 2 398 12.8

arithm. mean 1 303 36 697.3 585 185 354.3 25 190 32.6

Table C.5. Detailed benchmark results on the enlight test set. Values printed in red and blue
indicate a difference of at least a factor of 2 to the reference Cplex results.
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Cplex 10.0.1 SCIP 0.90f SCIP 0.90i

Nodes Time Nodes Time Nodes Time

alu4_2 54 0.5 1 0.5 1 0.5

alu6_6 247 0.5 11 0.7 33 0.8

alu5_6 357 0.5 123 1.4 13 0.5

alu5_2 741 0.5 1 0.5 1 0.5

alu4_6 1 883 1.0 13 0.5 19 1.1

alu6_2 2 584 1.4 1 0.5 1 0.5

alu4_7 1 933 1.6 2 719 3.5 1 0.5

alu4_1 1 944 2.9 8 247 18.2 244 4.1

alu4_8 4 578 2.9 17 873 23.0 1 218 3.5

alu5_7 7 497 4.2 8 457 7.1 1 723 3.4

alu5_8 18 746 11.7 13 501 16.2 2 466 5.9

alu7_2 27 238 14.1 1 0.5 1 0.5

alu7_6 183 0.5 19 0.6 11 0.8

alu6_8 19 56 14.2 417 365 425.3 10 747 26.8

alu6_7 20 237 13.3 133 159 103.2 15 311 32.5

alu5_1 17 954 14.3 22 115 39.0 33 4.1

alu6_1 35 789 27.5 2 901 12.3 215 5.7

alu8_2 37 954 21.3 1 0.5 1 0.5

alu7_7 87 605 63.5 593 37 483.1 36 619 169.2

alu7_8 238 302 220.1 251 409 313.8 53 143 224.2

alu8_6 750 85 314.8 8 469 10.3 21 0.9

alu8_7 2 386 17 1450.3 772 187 577.4 194 977 1702.1

alu7_1 >4 629 57 >3600.0 400 995 630.2 90 4.6

alu8_1 2 240 568 1807.5 14 835 34.6 53 4.1

alu8_8 — — >4 116 714 >3600.0 >471 965 >3600.0

geom. mean 13 179 11.5 1 271 9.8 106 3.7

sh. geom. mean 14 498 29.4 4 357 26.4 496 10.8

arithm. mean 438 775 316.2 111 143 112.6 13 205 91.6

Table C.6. Detailed benchmark results on the alu test set. Values printed in red and blue indicate
a difference of at least a factor of 2 to the reference Cplex results.

Cplex 10.0.1 SCIP 0.90f SCIP 0.90i

Nodes Time Nodes Time Nodes Time

bk4x3 1 0.5 1 0.5 1 0.5

gr4x6 1 0.5 1 0.5 1 0.5

bal8x12 1 0.5 1 0.5 1 0.5

ran10x10b 22 0.5 13 0.7 17 0.6

ran10x10a 43 0.5 28 1.6 3 1.0

ran4x64 63 0.5 29 1.2 17 1.0

ran10x12 1 0.5 1 0.9 1 0.8

ran6x43 122 0.5 78 1.3 139 1.5

ran10x10c 2 5 1.4 1 682 3.6 1 97 3.0

ran17x17 4 651 5.4 1 667 13.0 2 108 11.4

ran12x12 13 218 9.3 22 851 33.5 20 316 28.0

ran8x32 8 993 12.3 14 82 41.8 23 90 52.1

ran13x13 14 535 15.4 69 697 95.0 48 698 65.5

ran10x26 22 86 34.2 30 90 72.3 30 276 62.7

ran12x21 53 156 84.0 110 622 223.7 115 75 201.2

ran16x16 392 768 520.7 263 773 532.3 326 87 601.1

geom. mean 351 3.1 347 6.5 309 5.9

sh. geom. mean 1 381 9.9 1 516 18.1 1 528 17.1

arithm. mean 31 979 42.9 32 163 63.9 35 432 64.5

Table C.7. Detailed benchmark results on the fctp test set. Values printed in red and blue
indicate a difference of at least a factor of 2 to the reference Cplex results.
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Cplex 10.0.1 SCIP 0.90f SCIP 0.90i

Nodes Time Nodes Time Nodes Time

acc-0 1 0.5 1 20.3 1 17.7

acc-1 1 5.0 1 31.2 115 90.9

acc-2 1 7.5 1 38.6 1 44.4

acc-3 29 50.3 572 988.5 115 256.1

acc-4 37 69.7 672 1230.3 418 716.3

acc-5 86 94.4 1 219 546.6 2 322 869.3

acc-6 453 322.4 63 188.7 280 173.7

geom. mean 12 21.3 31 163.1 62 153.2

sh. geom. mean 51 36.4 173 178.0 201 163.6

arithm. mean 86 78.5 361 434.9 464 309.8

Table C.8. Detailed benchmark results on the acc test set. Values printed in red and blue indicate
a difference of at least a factor of 2 to the reference Cplex results.

Cplex 10.0.1 SCIP 0.90f SCIP 0.90i

Nodes Time Nodes Time Nodes Time

fc.30.50.7 1 0.8 4 2.7 35 2.9

fc.60.20.9 59 1.1 5 5.9 5 7.0

fc.60.20.5 62 1.2 3 4.1 7 3.9

fc.30.50.10 81 1.4 6 1.9 12 2.0

fc.30.50.1 176 1.5 62 3.8 28 3.6

fc.30.50.5 6 1.5 4 2.9 3 2.7

fc.30.50.4 210 2.1 266 4.4 383 4.4

fc.30.50.9 82 2.1 43 5.1 36 5.3

fc.30.50.3 275 2.4 425 4.0 216 4.9

fc.30.50.6 264 2.8 436 6.4 138 4.9

fc.30.50.8 45 2.8 47 5.6 40 5.7

fc.30.50.2 334 2.9 35 5.2 13 3.9

fc.60.20.2 1 180 3.9 5 177 33.8 1 385 15.8

fc.60.20.10 139 4.3 581 16.7 1 380 21.3

fc.60.20.3 1 32 6.5 1 837 20.2 1 513 17.7

fc.60.20.8 1 782 6.7 677 13.0 1 207 12.4

fc.60.20.6 2 743 8.4 1 124 14.7 2 502 16.4

fc.60.20.1 2 474 10.7 1 601 20.4 548 14.7

fc.60.20.4 5 85 11.1 10 773 35.9 5 695 19.7

fc.60.20.7 2 544 12.9 1 950 18.0 1 133 13.8

geom. mean 228 3.1 152 7.8 139 7.1

sh. geom. mean 380 4.0 355 9.4 297 8.2

arithm. mean 928 4.4 1 252 11.2 813 9.2

Table C.9. Detailed benchmark results on the fc test set. Values printed in red and blue indicate
a difference of at least a factor of 2 to the reference Cplex results.
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Cplex 10.0.1 SCIP 0.90f SCIP 0.90i

Nodes Time Nodes Time Nodes Time

ns4-pr6 20 0.5 12 683 77.7 12 175 72.3

ns25-pr6 858 2.5 737 12.6 699 13.2

ns60-pr12 1 17 3.7 657 15.7 446 13.3

nu120-pr12 571 4.3 160 29.8 32 23.2

ns60-pr6 1 506 4.8 1 593 25.9 745 16.0

nu120-pr6 383 4.9 11 65.2 5 21.3

ns4-pr12 2 599 6.8 3 993 44.0 3 722 43.4

ns60-pr4 478 8.6 544 32.9 358 16.8

nu60-pr6 1 667 8.9 724 31.5 2 271 52.6

ns4-pr4 3 724 9.2 2 989 24.9 2 483 21.4

nu4-pr12 3 152 9.9 362 15.4 3 95 42.3

nu60-pr12 1 874 9.9 184 34.6 192 34.2

nu25-pr6 2 811 11.1 152 18.5 52 17.2

nu4-pr6 3 983 12.8 5 147 46.4 11 67 122.3

ns25-pr12 4 749 13.0 13 876 117.3 3 131 44.1

ns25-pr4 5 125 36.1 2 914 38.0 2 309 27.9

nu25-pr12 18 837 67.9 7 724 82.5 149 22.6

nu4-pr4 29 936 99.6 24 965 176.4 21 142 168.9

nu60-pr4 7 320 180.7 3 916 125.8 1 848 83.9

nu25-pr4 25 308 335.7 4 660 109.7 3 274 74.3

nu120-pr4 20 117 349.2 31 790 1118.2 9 834 205.2

ns25-pr9 106 732 2235.7 19 971 615.2 15 815 461.2

ns60-pr9 47 746 2759.4 22 802 1167.5 21 453 905.9

geom. mean 3 285 22.5 2 3 63.5 1 314 48.6

sh. geom. mean 3 641 35.9 2 368 69.3 1 721 53.1

arithm. mean 12 631 268.5 7 67 175.0 5 56 108.8

Table C.10. Detailed benchmark results on the arcset test set. Values printed in red and blue
indicate a difference of at least a factor of 2 to the reference Cplex results.
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Cplex 10.0.1 SCIP 0.90f SCIP 0.90i

Nodes Time Nodes Time Nodes Time

mik.250-10-100.3 22 779 11.4 11 56 11.0 10 600 11.3

mik.250-20-75.4 29 335 12.3 157 870 95.2 175 60 104.0

mik.500-5-75.1 22 724 13.6 6 918 6.7 6 654 6.9

mik.250-5-100.1 38 95 15.4 29 666 25.5 15 132 17.9

mik.500-5-75.2 27 549 15.8 18 116 16.2 9 96 8.7

mik.500-10-100.5 23 602 15.9 73 160 50.6 63 810 55.3

mik.250-1-75.4 49 826 16.4 30 470 24.6 14 316 15.5

mik.250-1-100.2 46 81 16.8 14 288 9.2 8 353 8.0

mik.250-20-75.5 55 853 18.6 73 131 35.9 86 365 42.0

mik.500-5-100.3 33 967 19.6 1 870 4.5 2 870 4.5

mik.250-5-75.1 61 46 20.5 14 11 12.0 12 491 10.4

mik.250-5-75.4 65 293 20.9 15 208 13.3 15 708 12.8

mik.250-10-75.2 56 824 21.8 25 286 19.1 29 213 27.0

mik.500-10-100.1 34 205 22.0 55 462 41.0 61 905 52.1

mik.500-20-75.5 27 473 22.7 13 276 11.6 17 998 14.4

mik.250-10-75.1 72 785 24.4 28 938 22.7 45 435 37.4

mik.500-10-75.4 41 72 25.2 9 468 9.7 10 256 11.3

mik.500-20-75.1 33 728 27.1 39 788 31.7 37 244 32.3

mik.500-20-75.4 39 78 29.8 31 639 22.4 55 784 37.2

mik.250-1-75.5 95 260 30.5 32 585 18.7 16 374 14.5

mik.500-1-75.5 71 600 36.0 21 686 15.6 16 183 14.9

mik.500-5-100.2 58 191 36.6 17 778 18.2 13 888 15.9

mik.500-10-75.1 45 868 37.8 13 572 11.7 11 78 11.8

mik.500-5-75.4 76 343 40.4 10 20 8.0 11 958 10.3

mik.500-5-100.5 69 350 46.7 10 21 13.3 16 840 19.3

mik.500-5-75.3 110 762 58.6 21 921 18.7 14 848 13.0

mik.500-1-75.4 127 482 64.0 44 112 34.4 21 573 23.5

mik.250-1-100.4 175 563 64.2 68 722 39.1 37 384 29.6

mik.500-10-75.2 108 113 75.9 61 818 45.5 53 239 49.0

mik.500-10-75.3 132 467 98.8 56 702 44.8 37 204 35.9

mik.250-10-75.4 377 697 119.5 23 7 21.4 25 898 22.6

mik.500-1-100.3 228 923 145.9 82 456 54.4 81 488 74.2

mik.500-1-100.4 232 536 155.8 69 940 43.1 46 481 40.7

mik.500-1-100.2 360 457 232.4 37 624 26.0 27 138 26.2

mik.500-1-75.1 539 310 296.8 179 74 101.7 68 531 56.2

mik.250-1-100.3 1 691 811 710.8 153 606 98.9 80 514 81.1

mik.250-1-100.5 1 649 356 714.0 419 843 317.7 523 143 489.8

mik.500-20-75.3 943 717 805.8 36 765 32.8 60 38 53.2

mik.500-1-100.1 1 337 54 909.1 323 300 208.4 229 752 219.0

mik.500-1-100.5 1 402 912 1039.0 594 77 477.3 697 817 658.9

mik.250-1-100.1 8 98 779 3020.0 656 934 502.9 538 680 529.8

geom. mean 111 50 58.0 37 669 29.8 32 868 30.2

sh. geom. mean 111 133 65.2 37 763 33.6 32 942 34.4

arithm. mean 456 460 222.2 87 443 63.8 80 691 73.1

Table C.11. Detailed benchmark results on the mik test set. Values printed in red and blue
indicate a difference of at least a factor of 2 to the reference Cplex results.



Appendix D

Notation

The notation used in the thesis is specified in Tables D.1 to D.5. Due to the finiteness
of the set of available symbols, some are used with multiple meanings. It should be
clear from the context, however, in which meaning the symbol is used in each case.
Finally, Table D.6 contains a list of common abbreviations that we use throughout
the thesis.

sets
R set of real numbers
Q set of rational numbers
Z set of integer numbers
N set of natural numbers: N = {1, 2, 3, . . .}
RS vectors indexed by a set: x ∈ RS ⇔ x = (xj)j∈S with xj ∈ R
S≥0 subset of non-negative numbers: S≥0 = {s ∈ S | s ≥ 0}
S>0 subset of positive numbers: S>0 = {s ∈ S | s > 0}
S≤0 subset of non-positive numbers: S≥0 = {s ∈ S | s ≤ 0}
S<0 subset of negative numbers: S>0 = {s ∈ S | s < 0}
1 vector of all ones: 1 = (1, . . . , 1)T

conv(S) convex hull of set S
P polyhedron; linear programming polyhedron
PI integer hull: convex hull of integer points in P
X set of solutions to a feasibility or optimization problem instance
XK set of solutions to a knapsack problem instance
PK knapsack polyhedron
XMK set of solutions to a mixed knapsack problem instance
PMK mixed knapsack polyhedron
XSNF set of solutions to a single node flow problem instance

runtime
P class of polynomial solvable problems
NP class of nondeterministic polynomial solvable problems
O(f(n)) class of algorithms with asymptotic runtime of at most f(n), n→∞

operators
x ≤ y vector comparison for x, y ∈ Rn: x ≤ y :⇔ ∀j = 1, . . . , n : xj ≤ yj

x ∈ [a, b] vector range for x, a, b ∈ Rn: x ∈ [a, b] :⇔ a ≤ x ≤ b
a⊕ b exclusive or: a⊕ b :⇔ (a ∨ b) ∧ ¬(a ∧ b)
c = a mod b modulus operator for a ∈ Z, b ∈ Z>0: c = a mod b⇔ a = ⌊a

b
⌋b+ c

scm(q1, . . . , qk) smallest common multiple of q1, . . . , qk ∈ Z>0

gcd(p1, . . . , pk) greatest common divisor of p1, . . . , pk ∈ Z
γ(v1, . . . , vk) geometric mean of v1, . . . , vk with vi ∈ R≥0

γs(v1, . . . , vk) shifted geometric mean of v1, . . . , vk with vi ∈ R≥0

∅(v1, . . . , vk) arithmetic mean of v1, . . . , vk with vi ∈ R

Table D.1. Notation.

385



386 Notation

graphs
d(v) degree of node v in a graph, total degree of node v in a digraph
d+(v) in-degree of node v in digraph D = (V,A): d+(v) = |{(u, v) ∈ A}|
d−(v) out-degree of node v in digraph D = (V,A): d−(v) = |{(v,w) ∈ A}|
δ(v) set of neighbors of of v in a graph or digraph
δ+(v) set of predecessors of v in a digraph
δ−(v) set of successors of v in a digraph

optimization problems
D a domain of a variable: D ⊆ R
D the set of domains: D = {D1, . . . ,Dn}
C a constraint of the problem instance
C the set of constraints in the problem instance
N the set of variables: N = {1, . . . , n}
I the set of integer variables: I ⊆ N
B the set of binary variables: B ⊆ I
C the set of continuous variables: C = N \ I
x the vector of variables of a general optimization problem
x̄j the negation of xj ∈ {0, 1}
ℓj a literal: ℓj ∈ {xj , x̄j}
L the set of literals
l, u global bounds of the variables

l̃, ũ local bounds of the variables
f the objective function of a general optimization problem
c the objective vector of an MIP, LP, or CIP
A the coefficient matrix of an MIP or LP
b the right hand side vector of an MIP or LP
x the primal variable vector vector of an MIP or LP
s the slack vector of an MIP or LP
y the dual variable vector of an LP
r the reduced cost vector of an LP

solutions
X the set of feasible solutions of an optimization or feasibility problem
x⋆ an optimal solution to a problem instance
c⋆ optimal objective value of an MIP or CIP
x̂ the current incumbent solution; a feasible solution; a partial solution
ĉ objective value of current incumbent solution of an MIP or CIP
ẋ an infeasible solution vector
č current global dual (lower) bound of an MIP or CIP
γ relative primal-dual gap
č optimal objective value of an LP or a relaxation of an MIP or CIP
x̌ optimal primal solution of an LP; an optimal solution to a relaxation
š optimal slack solution of an LP
y̌ optimal dual solution of an LP
ř optimal reduced costs of an LP
x̌R optimal primal solution of the root node LP
řR optimal reduced costs of the root node LP
čR objective value of the root node LP relaxation

Table D.2. Notation (continued).
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numerics

δ̂ primal feasibility tolerance of SCIP (default is δ̂ = 10−6)
δ̌ dual feasibility (LP optimality) tolerance of SCIP (default is δ̌ = 10−9)
ǫ zero tolerance of SCIP (default is ǫ = 10−9)

x
.
= y equality within feasibility tolerance: x

.
= y ⇔ |x−y|

max{|x|,|y|,1} ≤ δ̂

constraints
alldiff all-different constraint: all variables must take a different value
element element constraint: selects a single element of a list
nosubtour no-subtour constraint: forbids subtours in a TSP instance
sppc set packing, partitioning, or covering constraint

β, β left and right hand sides of a linear constraint β ≤ aTx ≤ β
a coefficient vector of a linear constraint
α current activity of a linear constraint: α(x) = aTx
α, α activity bounds of a linear constraint w.r.t. the variables’ bounds
F0 current number of variables of a sppc constraint that are fixed to 0
F1 current number of variables of a sppc constraint that are fixed to 1

branch-and-bound
R global problem, root of the search tree
Q current subproblem
S sibling of the current subproblem
p(Q) parent node of subproblem Q
L leaf subproblem in the search tree
S list of siblings of the current subproblem
C list of children of the current subproblem
L list of open subproblems; leaves in the search tree
A active path from the root node to the current subproblem
Qrelax relaxation of subproblem Q
QLP LP relaxation of subproblem Q

simplex algorithm
B set of basic variables
N set of non-basic variables
ā row in the simplex tableau Ā = A−1

B A

data structures
Q clique: set of binary variables of which at most one can set to 1
Q clique table

Table D.3. Notation (continued).
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branching
F branching candidate set: integer variables with fractional LP value
f−, f+ distance to rounded values: f−j = x̌j − ⌊x̌j⌋, f

+
j = ⌈x̌j⌉ − x̌j

∆−j , ∆+
j objective increase in child nodes after branching on xj

Ψ−j , Ψ+
j downwards and upwards pseudocost values for xj

Φ−j , Φ+
j downwards and upwards inference values for xj

λ strong branching lookahead
κ maximal number of strong branching candidates
γ maximal number of simplex iterations for each strong branching LP
ηrel reliability parameter
score score function to map the two child score values to a single score
µ weight of the maximum in the linear score function
sj branching score of variable xj

s∅ current average score values of all variables in the problem instance

node selection
γmax gap closed on the active path for which the current plunge is aborted
eQ pseudocost objective estimate for node Q

eproj
Q projection objective estimate for node Q

propagation and presolving
sig+

i positive signature vector of a linear constraint Ci: sig+
i ∈ {0, 1}

64

sig−i negative signature vector of a linear constraint Ci: sig−i ∈ {0, 1}
64

x ⋆= y x is always equal to y

x Y
⋆
= y x is always unequal to y

x Y
⋆
= y x and y are a pair of negated binary variables

x : ⋆= y aggregation of x and y
τ(g) crushed form of the affine linear function g
ζ−j number of constraints which down-lock xj

ζ+
j number of constraints which up-lock xj

ω(a) weighted support of a linear constraint with coefficient vector a
redlj ,reduj redundancy bounds for a linear constraint

cutting plane separation
R list of cutting planes
r cutting plane r : γ ≤ dTx ≤ γ
γ, γ left and right hand side of a cutting plane
e efficacy of a cutting plane: Euclidean distance to current LP solution
o orthogonality of a cutting plane w.r.t. to all other cuts in R
p parallelism of a cutting plane w.r.t. the objective function
s total score of a cutting plane
V knapsack cover
L0 set of variables selected for up-lifting
L1 set of variables selected for down-lifting
fj fraction of a coefficient value: fj = aj − ⌊aj⌋

primal heuristics
x̃ rounded solution vector; working solution vector of heuristic
∆(x, x̃) Manhattan distance of x and x̃
φ(x̃j) fractionality of x̃j

Table D.4. Notation (continued).
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conflict analysis
λ conflict vertex in the conflict graph
Vr reason side of the conflict graph
Vc conflict side of the conflict graph
VB branching variable vertices in the conflict graph
Vf conflict set
Cf conflict clause
Cu reconvergence clause
BL set of local bound changes
Bf conflicting subset of local bound changes
BC subset of local bound changes that renders the LP infeasible

chip design verification
P property constraint
̺ register
β width of a register (number of bits)
W global size of words
L global size of nibbles
γ width of a word: γ ≤ W
δ width of a nibble: δ ≤ L
ω number of words in a register
η number of nibbles in a register
x[p] bit p in register x
x[q, p] subword ranging from bits q to p in register x, q ≥ p
x
〈
[p] � y

〉
replacing bit p of x by y ∈ {0, 1}

x
〈
[q, p] � y

〉
replacing a subword x[q, p] of x by the bits of y

T set of bit string terms
t1 ≡ t2 equivalence of two terms t1, t2 ∈ T
t|β truncating bit string term t ∈ T to β bits
t1 ⊗ t2 concatenation of two bit string terms t1, t2 ∈ T
βmax maximal widths of the bit string terms
B set of possible term widths: B = {1, . . . , βmax}
≻lex lexicographic (right-left) ordering w.r.t. ≻
≻lrpo lexicographic recursive path ordering w.r.t. ≻

Table D.5. Notation (continued).
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MIP mixed integer program
MBP mixed binary program
BP binary program
IP integer program
LP linear program

CP constraint program
CSP constraint satisfaction problem
CP(FD) finite domain constraint program
CSP(FD) finite domain constraint satisfaction problem

CIP constraint integer program

SAT satisfiability problem
CNF conjunctive normal form
BCP Boolean constraint propagation
DPLL Davis-Putnam-Logemann-Loveland Algorithm

MIR mixed integer rounding
c-MIR complemented mixed integer rounding
GMI Gomory mixed integer cut
CG Chvátal-Gomory cut

RINS relaxation induced neighborhood search heuristic
RENS relaxation enforced neighborhood search heuristic

UIP unique implication point
FUIP first unique implication point
IIS irreducible inconsistent subsystem

SoC Systems-on-Chips
PBC pseudo-Boolean constraint
BDD binary decision diagram
PCP property checking problem

Table D.6. Abbreviations.
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1-FUIP, see unique implication point

Abacus, 13
active problem variable, 39, 40, 135, 146, 148,

157
activity, 83, 90, 119, 134
activity bound residuals, 84, 88, 144, 149–

151
activity bounds, 83, 84, 86, 88–91, 134, 135
aggregated precedence relation, 109, 150
aggregated variable, see variable aggregation
aggregation, see variable aggregation
aggregation of constraints, see constraint
aging, 179, 180
Aimms, 12
algebraic signature, 5, 219–222, 279, 281
All-FUIP, see unique implication point
alldiff constraint, see constraint
Ampl, 12, 133
arithmetical logical unit, 290, 299–301, 308,

311, 312, 316

backdoor variable, 160
backtracking, see branch-and-bound
barrier algorithm, 34
basis, see simplex algorithm
BCP, see Boolean constraint propagation
BDD, see binary decision diagram
BerkMin, 10, 74, 160, 296
best estimate search, see node selection
best first search, see node selection
best first search with plunging, see node se-

lection
best projection, see estimate
binary decision diagram, 187, 211, 299, 300,

390
binary multiplication signature, 219
binary multiplication term algebra, 219
binary program, 11, 60, 74, 120, 171
binary variable, 11, 60, 154, 155, 157, 158
bipartite graph, 19, 26
bit linkinig constraint, see constraint
bit string arithmetics signature, 281, 285
bit/word partitioning constraint, see constraint
BMBF, 185
BMC, see bounded model checking
Boolean constraint propagation, 11, 20, 166,

167, 169, 171, 290, 390
bound consistency, see consistency
bound propagation, 19, 20, 83, 84, 87
bound strengthening, see bound propagation
bounded model checking, 187
bounding, 15–17, 50, 175, 177
branch-and-bound, 2, 4, 15, 16, 17–19, 23,

27, 31, 37, 43, 50–52, 54, 59, 61,
73, 75, 101, 110–114, 117, 121, 122,
160, 163, 165, 171, 180, 187, 195,
258, 290, 295, 296, 316, 387

branch-and-cut, 13, 19, 101, 105, 114, 115,
173, 188

branch-cut-and-price, 6
branching, 2, 6, 10, 12, 15–18, 24, 32, 34–36,

45, 61, 74, 94, 133, 160, 290
on constraints, 61
on special ordered sets, 36
on variables, 61, 74

branching candidate, 62–66
branching rule, 26, 36, 51, 53, 61, 68, 69, 77,

78, 154, 295, 296, 299
full strong branching, 63, 64, 69, 70,

296
hybrid reliability/inference branching,

67, 69, 70
hybrid strong/pseudocost branching, 64,

65, 68–70
inference branching, 2, 66, 67, 69, 70,

319
least infeasible branching, 62, 69, 319
most infeasible branching, 3, 26, 62, 69,

319
pseudocost branching, 3, 26, 63, 64–70
pseudocost branching with strong branch-

ing initialization, 3, 65, 66, 67, 69,
70

random branching, 3, 69, 319
reliability branching, 2, 26, 65, 66–70
strong branching, 3, 4, 26, 63, 64–70,

160, 162, 180, 296
variable state independent decaying sum,

296
branching score, 3, 62, 65, 67, 70, 71
branching tree, 15, 16, 19, 27–29, 34, 37, 43,

44–47, 50, 64, 66, 73, 74, 76, 160,
165, 168, 295

active node, 44, 45
active path, 44–46
ancestor, 43, 45, 46, 73, 93
child node, 3, 17, 31, 34, 35, 43–47, 61,

62, 73, 75–77, 79
dead end, 45
depth level, 33, 43, 44, 64, 65, 99, 120,

168–170, 178
focus node, 44–47
fork, 45–47
junction, 45, 46
leaf node, 15, 26, 31, 32, 44–46, 73–76,

160
leaf priority queue, 44–46, 75, 76
node switching, 46
parent node, 43, 44, 62
probing node, 45
pseudo fork, 45
refocus node, 45
root node, 15, 18, 31, 33, 43–45, 74, 77,

80, 82, 98, 101, 160, 162

405
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sibling, 31, 43–46, 75–77, 79
subroot node, 45

c-MIR, see cutting plane
Cal, 10
CBC, 12, 113
Chaff, 10, 93
child selection, see node selection
Chip, 10
chip design, 10, 185–187
chip design verification, 1, 5, 10, 70, 185–187
chip verification, see chip design verification
Chvátal-Gomory cut, see cutting plane
CIP, see constraint integer program
circuit design, see chip design
circuit operator, 5, 189, 192, 195

add, 190, 191, 193, 195, 197, 203–210,
226, 252, 279–281, 285, 286, 290,
292, 299, 323

and, 186, 190, 197, 218, 226–237, 285,
290–293

concat, 190, 197, 257, 281, 290, 292,
293

domain propagation, see domain prop-
agation

eq, 190, 192, 193, 197, 204, 241, 243–
246, 251, 252, 255, 290, 292

ite, 190, 191, 193, 197, 251–256, 274,
290–293

LP relaxation, see linear programming
lt, 190, 197, 246, 249–251, 290
minus, 190, 197, 204, 281, 290
mult, 5, 190, 195–197, 208, 211–218,

223, 224, 226–228, 252, 260, 279–
281, 285, 286, 290–293, 299, 323

not, 186, 190, 197, 228, 231, 246, 288–
290, 292, 293

or, 186, 190, 197, 231, 232, 237, 285,
290

presolving, see presolving
read, 190, 197, 267, 269–274, 290
shl, 5, 190, 197, 208, 257–261, 263–265,

268, 270, 273, 290, 299, 323
shr, 190, 197, 264, 265, 290, 299, 323
signext, 190, 197, 257, 290
slice, 5, 190, 197, 264–270, 273, 281,

290
sub, 190, 197, 210, 252, 290, 292, 299,

323
uand, 190, 197, 234–237, 251, 285, 286,

290–293
uor, 190, 197, 234, 237, 251, 285, 290
uxor, 190, 197, 234, 237–240, 251, 285,

286, 290–293
write, 190, 197, 272–277, 290
xor, 186, 190, 197, 208, 209, 220, 231–

234, 237, 239, 240, 285, 290–292
zeroext, 190, 197, 256, 290

clause, see constraint
clique cut, see cutting plane
clique disaggregation, see constraint
clique inequality, see cutting plane
clique lifting, see presolving
clique partition, 147, 150, 151

clique residual, 147, 151
clique table, 37, 41, 43, 66, 110, 134, 135,

146–148, 150, 156, 157
CLP, 6
Clp(R), 10
coefficient diving, see primal heuristic
coefficient tightening, see presolving
Coin, 13
column domination, 158
column generation, 26
comb inequality, see cutting plane
complementary slackness, 158
complemented mixed integer rounding, see

cutting plane
computational results, 2–6, 54, 69–71, 78–82,

99, 100, 111–116, 127–132, 161–
163, 178–181, 299–301, 303, 305,
306, 308, 309, 311, 312, 316, 317

cone of influence reduction, 290
conflict analysis, 4, 11, 27, 28, 37, 41, 59, 67,

93, 154, 160, 165, 166, 170, 171,
176, 178–181, 187, 188, 195, 296,
297, 316, 317

conflict clause, 18, 28, 74, 160, 165, 167–170,
178, 296, 297

conflict constraint, 28, 67, 165, 166, 171, 173,
175–179

conflict graph, 41, 67, 110, 165, 167, 168,
169, 171–173, 175, 176, 178

conflict handler, 28
conflict set, 165, 167, 169, 171, 176, 178, 179
conflict side, 167–169, 178, 296
conflict-detecting clause, 167, 171, 173
conjunctive normal form, 10, 28, 299
consistency, 20

arc consistency, 21
bound consistency, 3, 22, 84
global consistency, 20
hyper-arc consistency, 21
interval consistency, 3, 22, 85, 86, 201,

202
local consistency, 3, 21
node consistency, 21

constraint, 14, 23, 38, 44, 47, 50, 83
aggregation, 141–143, 161
alldiff, 19, 20, 26, 39, 387
bit linking, 5, 189, 195, 196, 202, 205
bound disjunction, 177, 179
clause, 10, 13, 15, 19, 20, 93
disaggregation, 150, 161
domination, 140, 142, 158
element, 258, 259, 387
integrality, 26, 36
knapsack, 24, 25, 31, 83, 89–91, 101–

103, 146–151, 161
linear, 14, 19, 30, 83–91, 99, 100, 103,

104, 107, 133–146, 158
nosubtour, 24, 25, 47, 387
pseudo-Boolean, 187, 390
set covering, 13, 83, 93–95, 145, 151,

152, 171, 177, 178
set packing, 91–94, 134, 135, 145, 147,

150–153
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set partitioning, 36, 91–94, 134, 135,
145, 151, 152

signature, 140, 141, 142, 152, 161
sppc, 36, 151, 152, 387
upgrading, 30, 134, 143–146
variable bound, 95–97, 146, 153

constraint enforcement, 34, 35, 36
constraint handler, 23, 24, 25, 27, 28, 30, 33–

38, 40, 41, 47, 48, 86, 90, 91, 96,
102, 103, 133, 144, 159, 195, 279

constraint integer program, 13, 21, 24, 47,
189

constraint integer programming, 1, 5, 15, 23,
188, 295, 299

constraint logic programming, 9
constraint optimization program, see constraint

program
constraint program, 9, 15
constraint programming, 1, 14, 15, 17, 19,

20, 27, 28, 48, 99, 187, 195
constraint propagation, 13, 15, 17, 19, 20
constraint satisfaction problem, 9, 21, 22, 27,

32, 66, 189
continuous variable, 11, 60
convex hull, 18, 60, 102, 104, 107, 229, 231–

233, 235, 238, 253, 385
copying, 43
Coupe, 1
cover cut, see cutting plane
CP, see constraint program
Cplex, ix, 6, 12, 13, 28, 59, 63, 101, 113, 126,

159, 165, 180, 319, 320, 375–384
crossover heuristic, see primal heuristic
crushed form, 39, 40
cut pool, 37, 50
cut-and-branch, 19, 101, 111, 112, 114, 115
cutting plane, 3, 12, 13, 15, 18, 19, 24, 25,

33–35, 41, 48, 50, 101, 160, 165,
195

clique cut, 41, 43, 109, 110, 133–135,
147

comb inequality, 25
cover cut, 24, 101, 102–104, 108
Dantzig cut, 171
efficacy, 48, 49, 111
extended weight inequality, 103
flow cover cut, 95, 108, 113, 143, 154
globally valid, 19
Gomory cut, 13, 18, 25, 101, 105, 106,

107, 111
GUB cover cut, 24
implied bound cut, 109, 161
lift-and-project, 105
locally valid, 19
mixed integer rounding, 4, 25, 95, 104,

105–108, 113, 143, 154
objective parallelism, 116
odd-hole cut, 41
odd-hole inequality, 110
orthogonality, 4, 48, 49, 111, 116
parallelism, 48, 49
selection, 4, 48, 49, 111, 115, 116
separation, 48–50, 54, 101, 119, 133

separator, 25, 27, 34, 40, 43, 47, 48,
103, 105, 110–115

strong Chvátal-Gomory cut, 25, 107
subtour elimination inequality, 25

Dantzig cut, see cutting plane
data path, 187, 188, 234, 241, 246, 251
demultiplexer, see multiplexer
depth first search, see node selection
depth level, see branching tree
dialog handler, 29
Diophantine equation, 137
disaggregation of constraints, see constraint
disjunctive normal form, 219–221
display colum, 29
divide-and-conquer, see branch-and-bound
diving, see node selection
diving heuristic, see primal heuristic
domain propagation, 3, 4, 10, 11, 15, 19, 20,

24, 25, 27, 28, 33, 35, 66, 80, 83,
99, 111, 121, 123, 133, 154–157,
160, 165, 171, 179, 188, 192, 195

add, 205–208, 218
and, 218, 229, 230
bit linking constraint, 198–203, 207
circuit operator, 5, 195, 291, 316
clause, 19
eq, 242, 243
integral cutoff tightening, 97
ite, 253, 254
knapsack constraint, 83, 89, 90, 147,

148
linear constraint, 83, 84, 86–88, 95, 96,

99, 100, 134, 135
lt, 248, 249
mult, 211, 214–221, 223–225, 227, 228,

279
objective propagation, 17, 83, 96, 100
rational cutoff tightening, 98
read, 270, 271
root reduced cost strengthening, 83, 96,

98, 100, 111, 163
set covering constraint, 83, 93, 94, 95,

152, 166
set packing constraint, 91, 92, 152
set partitioning constraint, 91, 92, 152
shl, 260–262
slice, 265, 266
sppc constraint, 152
uand, 235, 236
uxor, 239
variable bound constraint, 95, 96, 97,

153
write, 274, 275
xor, 233

domain propagator, 25, 33
domination of columns, see column domina-

tion
domination of constraints, see constraint
double modeling, 196
down-locks, see variable locks
DPLL, 11, 165–167, 188, 390
DPLL(T), 188
DPLL-algorithm, 10, 11
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dual bound, 12, 15–17, 26, 27, 29, 31–34, 44,
62, 71, 73–79, 114, 296

dual fixing, see presolving
dual linear program, see linear program
dual presolving, see presolving
dual ray, 174, 175
dual reduction, see presolving
dual simplex, see simplex algorithm
dual solution, 5, 104, 175, 176
dynamic programming, 102

efficacy, see cutting plane
element constraint, see constraints
ellipsoid method, 11
equivalence checking problem, 186, 187, 306
equivalence of registers, see register
equivalence of variables, 40, 203, 208–210,

230, 233, 239, 244, 256, 260, 285
estimate, 73, 75, 76

best projection, 77
pseudocost-based estimate, 77, 80

Euclidean algorithm, 135, 137
event handler, 20, 28, 86–92, 94–97

facet, 25, 41, 102, 120, 151, 229, 232, 233,
235, 238, 253

feasibility, 5, 32, 82, 112, 117, 129, 131, 159
feasibility pump, see primal heuristic
feasibility test, 35
feasible solution, 18, 50, 74, 76, 77, 80, 158

of a CP, 9
of a MIP, 11, 60, 73
of an LP, 12, 60

file reader, 28, 30
finite domain constraint program, 9
finite domain constraint satisfaction problem,

9
fixed charge network flow problem, 95, 108
fixed variable, 40, 133–135, 147, 148, 152
floating point arithmetic, see numerical sta-

bility
formal verification, see chip design verifica-

tion
Fourier-Motzkin elimination, 188
fractionality diving, see primal heuristic
FUIP, see unique implication point
full strong branching, see branching rule
function graph, 6, 192, 203, 256, 291, 292,

308

Gams, 12
gap, 29, 76, 79, 129
gate level, 186, 187, 300
GLPK, 12
Gomory cut, see cutting plane
graph coloring problem, 91
Grasp, 93
group, 280
GUB cover cut, see cutting plane
guided diving, see primal heuristic

Hall interval, 19, 26
hardware simulation, see simulation
HDPLL, 188

heuristic, see primal heuristic
hybrid node selection, see node selection
hybrid reliability/inference branching, see branch-

ing rule
hybrid strong/pseudocost branching, see branch-

ing rule

IIS, see irreducible inconsistent subsystem
ILOG Solver, 10
implication, 41, 42, 109, 133, 150, 155, 157
implication graph, 25, 37, 41, 42, 47, 66, 67,

109, 110, 150, 155–158, 203, 209,
210, 230, 231, 236, 244, 245, 250,
254–256, 263, 267, 268, 272, 276,
279

implication graph analysis, see presolving
implicit enumeration, see branch-and-bound
improvement heuristic, see primal heuristic
incumbent solution, 17, 50, 51, 96, 98, 110
induced clique, 148
inequality of registers, see register
infeasibility, 4, 5, 18, 28, 43, 79, 80, 82, 87,

90, 92, 94, 95, 134, 135, 137, 157,
159, 160, 165–167, 170, 171, 173–
176, 189, 295, 300, 316

inference branching, see branching rule
inference value, 66, 80, 82, 128
Infineon, ix, 185, 188
init solve stage, 31
init stage, 30
initial constraint, 33
integer hull, 60
integer program, 11, 18, 60
integer programming, see mixed integer pro-

gramming
integer shifting, see primal heuristic
integer variable, 11, 60, 154
integral cutoff tightening, see domain prop-

agation
integrality constraint, see constraint
integrated circuit design, see chip design
interior point algorithm, 34
interval consistency, see consistency
IP, see integer program
irreducible inconsistent subsystem, 173, 174
irrelevance detection, see presolving

knapsack constraint, see constraint
knapsack cover cut, see cutting plane

Lagrange relaxation, 27
least infeasible branching, see branching rule
lexicographic ordering, see ordering
lexicographic recursive path ordering, see or-

dering
lifted cover cut, see cutting plane
lifting, 25, 101–103, 108, 146, 150, 151
Lindo, 12
line search diving, see primal heuristic
linear constraint, see constraint
linear program, 11, 28, 60

dual, 174
linear programming relaxation, 4, 12, 13, 15,

17–19, 24, 25, 27, 28, 32–35, 37,
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45, 47, 48, 50, 66, 74, 83, 98, 118,
120, 121, 133, 138, 160, 166, 171,
173, 174, 176, 177, 295

add, 205
and, 229
bit linking constraint, 198
CIP, 14, 47
circuit operator, 5, 195
CP, 17
dual, 176
eq, 241
ite, 251
lt, 246, 247
MIP, 17, 60, 62, 73
mult, 211–214, 227
read, 269, 270
SAT, 13, 15
shl, 258–260
slice, 265
uand, 235
uxor, 237–239
write, 274
xor, 232

Lingo, 12, 59, 64, 165
literal, 10, 93
local branching, see primal heuristic
local search, see primal heuristic
localization reduction, 290
logic programming, 9
lower bound, see dual bound
LP, see linear program

matching, 19, 26
maximal induced clique, see induced clique
maximum weighted clique problem, 110
memory limit, 32
memory management, 2, 51, 52–54
memory saving mode, 32
message handler, 29
minimal cardinality bound-IIS, see irreducible

inconsistent subsystem
minimal cover, see cutting plane
MiniSat, 10, 160, 299, 303, 305
Minto, 12, 109
MIP, see mixed integer program
Miplib, 43
mixed binary program, 11, 60, 74
mixed integer program, 11, 15, 28, 60
mixed integer programming, 1, 2, 14, 15, 17,

19, 23, 26, 27, 32, 35, 48, 59, 170,
187, 195, 295

mixed integer rounding, see cutting plane
modeling language, 12
modulus operation, 280
Mosek, 6, 12
Mosel, 12
most infeasible branching, see branching rule
MPL, 12
multi-aggregated variable, see variable ag-

gregation
multiplexer, 267, 272, 273
multiplication, see circuit operator
multiplication table, 211, 213, 214, 216–219,

223, 226–228

mutation heuristic, see primal heuristic

negated equivalence of variables, see equiva-
lence of variables

nibble, 211, 212, 213, 214, 227, 260
no-good, see conflict analysis
node preprocessing, 15, 19, 83
node selection, 3, 6, 16, 31, 44, 47, 50, 73,

78, 296, 299
best estimate search, 27, 73, 76, 77–79,

81, 94
best estimate search with plunging, 73,

77, 79
best first search, 3, 27, 32, 73, 74, 75–

79, 81, 94, 114, 160, 296, 297
best first search with plunging, 73, 75,

78, 79
child selection, 74, 76, 80, 81, 122
depth first search, 3, 11, 18, 27, 32, 47,

73, 74–79, 160, 296, 297
diving, 31
hybrid best estimate/best first search,

78, 79
hybrid node selection, 73
interleaved best estimate/best first search,

77, 79
plunging, 31, 32, 47, 114, 122

node selector, 26, 31, 32
non-chronological backtracking, 165, 169, 170,

179
normal form of a term, 282
nosubtour constraint, see constraint
NP-complete, 3, 10, 11, 21, 41, 86
NP-hard, 11, 41, 110, 173, 174
numerical stability, 34, 86, 96, 134, 137, 138,

143, 195, 196, 205

objective cutoff, 96
objective diving heuristic, see primal heuris-

tic
objective feasibility pump, see primal heuris-

tic
objective function, 25–27, 32, 74, 82, 96, 99,

112, 123, 124, 158, 159, 191, 296,
297, 299

non-linear, 14
objective propagation, see domain propaga-

tion
objective pseudocost diving, see primal heuris-

tic
Octane, see primal heuristic
odd-hole inequality, see cutting plane
one opt heuristic, see primal heuristic
OneSpin Solutions, ix, 185, 188, 299, 305,

323
operational stage, 29–31
operators, see circuit operator
OPL, 12
optimal solution, 77, 158, 162

of a MIP, 11, 60
of an LP, 12, 60

optimality gap, see gap
ordering

lexicographic, 220, 221
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lexicographic recursive path, 220, 221,
222, 284

monotonic, 222, 284
partial, 220–222, 284
well-founded, 222, 284

original problem, 30, 37, 38
original variable, 40
orthogonality, see cutting plane
overflow, 195, 204–207, 209, 211–213, 216,

218, 288

parallelism, see cutting plane
partial product, 211–214, 216, 218, 226, 260
pattern matching, 260, 265, 266, 270, 271,

274, 275
PCP, see property checking problem
plugin, 23, 25–31, 38, 47
plunging, see node selection
polyhedron, 60
precedence relation, 282
preprocessing, see presolving
presolved stage, 31
presolver, 25, 30, 37, 41
presolving, 4, 19, 23–25, 28, 30, 37–39, 41,

54, 66, 83, 89, 90, 110, 118, 133,
160–162, 279, 300, 303

add, 207–210
and, 229, 230
bit linking constraint, 202, 203
chip verification, 5
circuit operator, 5, 195, 291
clique lifting, 150, 151
coefficient tightening, 134, 136, 146, 147,

149, 150, 153
concat, 257
dual fixing, 25, 39, 158, 159
dual reduction, 10, 133, 138, 139, 143,

144, 158, 159
eq, 244–246
implication graph analysis, 157, 158, 279
irrelevance detection, 6, 192, 204, 256,

279, 290–293, 296, 308, 309
ite, 253–256
knapsack constraint, 146–151, 161
linear constraint, 133–146, 158, 161
lt, 248, 250
minus, 204
mult, 211, 225–228
not, 228
primal reduction, 10, 133, 158
probing, 41, 66, 67, 110, 154–157, 279,

301, 308, 311, 312
read, 271, 272
set covering constraint, 151, 152
set packing constraint, 151–153
set partitioning constraint, 151, 152
shl, 208, 262–264
shr, 264
signext, 257
slack variable elimination, 138
slice, 267, 268
sppc constraint, 151, 152
sub, 211

term algebra preprocessing, 279, 282,
283, 285–289, 308, 309

uand, 236
uor, 237
uxor, 239, 240
variable bound constraint, 153
write, 276, 277
xor, 233, 234
zeroext, 257

presolving stage, 30
pricing, see variable pricer
pricing storage, 34, 37, 47, 49
primal bound, 16, 26, 27, 29, 45, 73, 76, 77,

176
primal heuristic, 4, 16, 27, 32, 35, 51, 73, 76,

117, 127–132, 154
coefficient diving, 121
crossover, 126, 127
diving heuristic, 27, 76, 117, 119, 120
feasibility pump, 118, 124, 125
fractionality diving, 121
guided diving, 122
improvement heuristic, 27, 51, 117, 122,

125
integer shifting, 120
line search diving, 122, 124
local branching, 27, 125, 126, 127
local search, 27
mutation, 126, 127
objective diving heuristic, 117, 123
objective pseudocost diving, 124
Octane, 118, 120
one opt, 125, 126
probing heuristic, 27
pseudocost diving, 122, 124
RENS, 118, 162
RINS, 126
root solution diving, 124
rounding, 119
rounding heuristic, 27, 117, 118
shifting, 119, 120
simple rounding, 119, 121
solution polishing, 126, 127
tabu search, 27
vector length diving, 123

primal presolving, see presolving
primal reduction, see presolving
primal simplex, see simplex algorithm
primal solution, 16
probing, see presolving
probing heuristic, see primal heuristic
problem specification stage, 30
program slicing, 290
Prolog, 9, 10
propagator, see domain propagation
property, 186, 187, 192, 279
property checking problem, 5, 185–188, 189,

191, 195, 295, 297, 299, 306, 390
pruning, 12, 43, 50, 73, 75, 92, 165, 167, 170,

195
pseudo-Boolean constraint, see constraint
pseudocost branching, see branching rule
pseudocost diving, see primal heuristic
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pseudocosts, 2, 3, 63, 64–66, 70, 77, 78, 80,
81, 122, 124, 128

random branching, see branching rule
ranged row, 83, 142
rapid mathematical prototyping, 12
rational cutoff tightening, see domain prop-

agation
reason side, 167–169, 178
reconvergence, 169, 170, 178
reduced cost strengthening, 34, 35, 98, 110,

111, 114, 162, 163
reduced costs, 26, 110, 158, 175, 176
redundancy, 87, 90, 93–95, 97, 133–136, 141,

142, 144, 149, 152
redundancy bounds, 143, 144
register, 186, 189, 192, 195, 196, 203–205,

208, 212, 281
equivalence, 203, 204, 205, 207, 208,

211, 226, 227, 246, 248, 250, 253–
256, 263, 264, 267, 268, 280, 285,
286, 291

inequality, 204, 205, 207, 208, 210, 228,
244, 246, 248, 250, 253–256, 262–
264, 268

subword, 196, 210, 212, 257, 264, 280
register transfer level, 186–189, 300
relaxation, 16–18, 27
relaxation enforced neighborhood search, see

primal heuristic
relaxation handler, 27
relaxation induced neighborhood search, see

primal heuristic
reliability branching, see branching rule
RENS, see primal heuristic
residual activities, see activity bound resid-

uals
resolution, 20
restart, 4, 11, 160, 162, 163, 297
reverse propagation, 316
ring, 280
ring homomorphism, 280
RINS, see primal heuristic
root reduced cost strengthening, see domain

propagation
root solution diving, see primal heuristic
rounding heuristic, see primal heuristic

SAT, see satisfiability problem
satisfiability problem, 6, 10, 11, 15, 17, 19,

27, 28, 32, 48, 66, 93, 160, 165,
166, 187, 195, 295–297, 299

Sato, 93
SatZ, 66
Scil, 1
SCIP, v, vii, ix, x, 1–4, 6, 13, 15, 20, 23,

25–32, 34, 35, 37–39, 42–44, 48–
53, 59, 61–64, 66, 70, 71, 74, 76,
80, 83, 89, 94, 95, 97, 98, 100–102,
104, 106, 108, 110, 111, 113, 114,
116–118, 121, 122, 125–127, 133,
136, 143, 145, 146, 148, 150, 151,
153–155, 157, 159, 162, 170, 178,
195, 202–205, 207, 209–211, 227,

228, 230, 231, 234, 236, 237, 244–
246, 250, 254, 255, 257, 263, 264,
268, 272, 276, 277, 285, 319, 320,
375–384, 387

search tree, see branching tree
semidefinite relaxation, 27
separation, see cutting plane
separation storage, 34, 37, 47, 48, 50
set covering constraint, see constraint
set covering problem, 123
set packing constraint, see constraint
set packing problem, 42
set partitioning constraint, see constraint
set partitioning problem, 42, 123
shift left, see circuit operator
shifting heuristic, see primal heuristic
Siege, 299, 303
signature, see algebraic signature
signature of a constraint, see constraint
Simpl, 1
simple rounding heuristic, see primal heuris-

tic
simplex algorithm, 13, 34, 35, 64, 65, 68, 74,

110, 121, 124, 188
basis, 34, 35, 47, 74, 106, 110, 120, 124

simulation, 186
SIP, ix, 6, 12, 23, 62–64, 71, 101, 165
Sketchpad, 9
slack variable elimination, see presolving
slice, see circuit operator
SoC, see systems on chip
software simulation, see simulation
solution polishing, see primal heuristic
solution pool, 37, 50, 51
solving stage, 31
SoPlex, 6, 377
special ordered set branching, see branching
sppc constraint, see constraint
stable set polytope, 41, 110
stable set relaxation, 41, 47, 109
standard mode, 32
Steiner tree packing problem, 34
strong branching, see branching rule
strong Chvátal-Gomory cut, see cutting plane
subset sum problem, 86
subtour elimination inequality, see cutting

plane
subword, see register
superadditive function, 102, 107
symbolic propagation, 5, 214, 216, 218, 219,

223–226, 228
symmetry, 158
Symphony, 12
System Verilog, 186
System-C, 186
systems on chip, 185, 390

tabu search, see primal heuristic
TClique, 110
term algebra, 5, 219, 279, 281
term algebra preprocessing, see presolving
term normalization, 5, 282–289
term rewriting, 5, 214, 216, 218–221, 223–

225, 279–282, 285, 290
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termination, 5, 221, 223, 284
trailing, 43
transformed problem, 30, 37–39
transformed stage, 30
transforming stage, 30
transistor level, 186
traveling salesman problem, 24, 25, 28, 63,

73
trivial inequality, 61
two watched literals scheme, 3, 20, 93, 94, 95
two’s complement, 288

UIP, see unique implication point
unbounded ray, see dual ray
unique implication point, 168, 169, 175, 176,

178, 390
unique representative of a variable, 148
unit clause, 20, 166, 167
unitary ring, see ring
unitary ring homomorphism, see ring homo-

morphism
up-locks, see variable locks
upgrading of constraints, see constraint
upper bound, see primal bound

Valse-XT, ix, 185, 305
variable aggregation, 39, 40, 134–139, 154–

157, 202, 203, 207–209, 227, 228
variable aggregation graph, 30, 39, 40, 244,

285
variable bound, 42, 104, 105, 153
variable bound constraint, see constraint
variable domination, see column domination
variable lock, 25, 38, 119, 121, 139, 144, 155,

159
variable lower bound, see variable bound
variable pricer, 26, 28, 30, 33, 34, 47, 49
variable state independent decaying sum, see

branching rule
variable upper bound, see variable bound
VBC Tool, 37
vector length diving, see primal heuristic
Verilog, 186
VHDL, 186

warm start, 28, 34, 45–47, 160
watched literal, see two watched literals scheme
well-founded partial ordering, 5

Xpress, 6, 12, 13, 59, 159, 165

zChaff, 160, 299
Zimpl, 12, 133, 258, 259, 265, 269, 270
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