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Abstract

Detection and tracking of articulated objects such as hu-

mans is an important task in computer vision. While sig-

nificant advancement has been made on this problem re-

cently, many limitations remain due to the complexity in

handling many of the constraints present in the problem. In

this paper, we present a system that incorporates a variety

of “new” constraints in a unified multi-view framework to

automatically detect and track articulated objects in possi-

bly crowded scenes. These constraints include the occlusion

of one part by another and the high correlation between the

appearance of certain parts (the two arms, for instance).

The graphical structure (non-tree) obtained is optimized in

a nonparametric belief propagation framework. Efficient

methods are presented in order to reduce the complexity of

the problem.

1. Introduction

Detection and tracking of articulated objects such as hu-

mans in crowded scenes is an important, albeit unsolved

problem in computer vision. The problem is hard because

of occlusions, a high dimensional problem space and high

variability in the appearance of humans due to body shape

and clothing. Most prior work has focussed solely on

tracking, where the initialization is given[3, 17]. Recently,

there has been a focus on automatic detection of body pose

that could then be used to initialize/re-initialize tracking

systems[5, 10, 18].

There are a wide range of approaches to human pose es-

timation. Much of the work model the human body as a tree

structure. Here, each part is represented by a node in the tree

and there is an edge joining the parts between which there

are kinematic relations. The edges impose constraints on

the possible locations of different parts. These constraints

may be applied either in 2D [4, 13] or 3D [19]. Felzen-

szwalb et. al. [5] presented a deterministic linear time al-

gorithm using dynamic programming to solve for the best

pose configuration in such tree structures. Other optimiza-

tion approaches like Data Driven Belief Propagation [6] and

Markov Chain Monte Carlo algorithm [10] have also been

used to estimate the probability distributions of the loca-

tions of body parts.

However, there are limitations to a tree structure. Kine-

matic relations between parts that are not connected to each

other cannot be represented. Furthermore, occlusion of one

part by another cannot be modeled nor can the constraint

due to the high correlation between the appearance of cer-

tain parts (e.g. the two hands)[12]. There has been some

recent work to overcome these limitations. Lan et. al [9]

use factor graphs to add constraints like the balance of a

body while walking; Ren et. al [14] use Integer Quadratic

Programming (IQP) to add pairwise constraints such as sim-

ilarity in the appearance of left and right body-parts.

Ioffe et. al [7] proposed using a mixture of trees to han-

dle occlusions. The mixture includes all possible trees re-

sulting from removing nodes from the base tree under dif-

ferent occlusion scenarios. However, modeling the condi-

tionals between non-connected parts is very difficult; it does

not provide very strong constraints, leading to false part lo-

calizations. At the same time, the problem space becomes

very large due to the need to optimize over the entire en-

semble of trees.

The problem can be simplified by assuming that one can

segment the person, say using background subtraction [2, 9,

11]. While this reduces the search space significantly, these

approaches generally do not handle self-occlusion or people

occluding one another.

A complementary approach [1, 16] is to learn pose con-

figurations from training images and sequences. Like all

appearance based techniques, they have difficulty general-

izing to new views or unconventional poses.

In this paper, a multiple camera based approach for es-

timating the 3D pose of humans in a crowded scene is pre-

sented. The system incorporates a variety of constraints, in-

cluding the occlusion of one part by another and appearance

consistency across parts, in a unified framework. Inclusion

of these constraints, however, breaks the tree structure of

the graphical model. Consequently, the optimization be-

comes quite complex, and particle-based belief propagation

is utilized to optimize over the space of possible body con-

figurations and appearances. Messages encoding different



Figure 1. The object model used for human beings. The solid

lines represent edges in set E1 and dashed lines represent edges in

set E2. We have not shown occlusion edges in the above graph.

Every part is connected to all other parts by occlusion constraint

edge.

constraints are passed between parts not directly connected

in a tree structure. Several constructs are also introduced to

efficiently prune the search and locate parts.

The paper is organized as follows. In section 2 we dis-

cuss our human body model followed by a discussion on

how to pass information between the parts in section 3. Sec-

tion 4 provides a description of visibility analysis and like-

lihood computations. We provide a system overview and

extend it to tracking poses in sections 5 and 6 respectively.

Finally, results are presented in section 7 before concluding

in section 8.

2. Modeling the Human Body and Problem
Formulation

Our 3D human body model (Figure 1) consists of n = 10
body parts (head, torso, left upper arm etc.). Each body part

(except the torso which is modeled as a cuboid) is modeled

as a cylinder and is represented by a node in a graph. This

represents a random vector Φi = (li, ψi), where li and ψi

represent the location and appearance parameters of part i
respectively. The location of each part, li, is further param-

eterized by li = (lsi , l
e
i ) where lsi is the 3D position of the

starting point of the limb and lei is the 3D position of the

ending point of the limb.

The nodes of the graph are connected by three types

of edges. The first enforces kinematic constraints be-

tween parts. To obtain a tree model, like those typically

used in the literature, one would only connect parts using

edges of this kind. The second type of edge represents

appearance constraints which are introduced by the sym-

metry of left and right body part appearances. The third

type of edge represents occlusion constraints across parts

that can occlude each other. The model is represented by

θ = (E1, E2, E3, c
1, c2, c3), where the set of edges E1, E2

and E3 indicates which parts are connected by edges of the

first, second and third type respectively; c1, c2 and c3 are

the connection parameters for these edges.

We need to find the probability distribution of the

pose configuration of a human body, given by L ≡
(Φ1,Φ2........Φn). In an M camera setup, if Ij denotes the

image from the jth camera, then P (I1....IM |L) is the like-

lihood of observing the set of images given the 3D locations

and appearances of the body parts. The distribution of P (L)
is the prior over the possible configurations. The goal is to

maximize the posterior distribution, P (L|I1....IM ), which

measures the probability of a particular configuration of the

human body given M views and the object model. Using

Bayes’ rule,

P (L|I1....IM ) ∝ P (I1....IM |L)P (L) (1)

Assuming that the location and appearance priors are in-

dependent of each other, the prior distribution P (L) is

P (L) = P (l1.....ln)P (ψ1.....ψn) (2)

The prior distribution over the object part locations and

appearances are modeled by two separate Markov random

fields with edge sets E1 and E2. The joint distribution for

the tree-structured prior defined by E1 can be expressed as:

P (l1, l2...ln) =

∏
(vi,vj)∈E1

P (li, lj)∏
vi∈V p(li)deg(vi)−1

(3)

where V is the set of nodes in the graph and deg(vi) is the

degree of vertex, vi, in the tree, G = (V,E1) (subgraph

consisting of edges in E1 only). A similar expression can

be written for P (ψ1, ψ2....., ψn). Since any absolute loca-

tion or appearance is not preferred over another, the terms

representing the priors for single part locations can be ne-

glected. Furthermore, as in most prior work[9, 18], poten-

tial functions rather than distributions are used to avoid nor-

malization computations. Then, one obtains:

P (l1, l2......ln) ∝
∏

(vi,vj)∈E1

ϕij(li, lj) (4)

P (ψ1, ψ2....., ψn) ∝
∏

(vi,vj)∈E2

φij(ψi, ψj) (5)

where ϕij and φij are the potential functions over the

clique.

For articulated objects, pair of parts are connected by

flexible joints. Ideally, the distance between the ending-

point of the first part and the starting point of the second

connected part in 3D should be zero. Thus, the clique po-

tential for a pair of parts, connected by edges in E1, can be

modeled as:



ϕij(li, lj) = N(d(li, lj), 0, σ1
ij) (6)

where d(li, lj) denotes the euclidean distance between

the points lei and lsj .

For appearance constraints, let D(ψi, ψj) denote the dis-

tance between two appearance vectors. Ideally, the distance

should be zero, assuming left and right body parts have sim-

ilar appearance. The appearance potential, φij , is modeled

as:

φij(ψi, ψj) = N(D(ψi, ψj), 0, σ2
ij) (7)

Section 4.2 discusses how part appearances are modeled

and how the distance ,D(ψi, ψj), is computed.

The computation of the likelihood P (I1....IM |L) is

tricky due to the consideration of occlusion. The imaging

of every camera is modeled as conditionally independent

processes. Similarly, the observation of different parts is

assumed to be conditionally independent. This allows us to

decompose the likelihood as:

P (I1....IM |L) ∝
n∏

i=1

M∏
j=1

Pi(Ij |l1...ln, ψi) (8)

Note that, due to the possibility of occlusion, the likeli-

hood of each part depends not only on the position of the

part, but also on the positions of other parts. While one may

be able to use the likelihood in this form in tracking appli-

cations, using it for automatic “detection” is prohibitively

expensive. To overcome this, we could introduce a new set

of binary ‘visibility’ variables v
j
i (li), that refer to the visi-

bility of a part i at location li from camera j. While these

visibility variables would be dependent upon the position of

all other parts, the likelihood for part i would be indepen-

dent of the location of other parts if its visibility were given.

Then, one could write the likelihood, P (I1....IM |L), as:

n∏
i=1

M∏
j=1

∑
v

j

i
∈{T,F}

Pi(Ij |li, v
j
i (li))P (vj

i (li)|l1....li−1, li+1....ln)

(9)

The term Pi(Ij |li, v
j
i (li) = TRUE) represents the like-

lihood of observing the image from camera j given that the

part is visible from this camera while Pi(Ij |li, v
j
i (li) =

FALSE) represents the likelihood of observing the image

given that the part is occluded from the camera. However,

parts may be partially visible in which case v
j
i (li) is neither

true nor false. To approximate this, v
j
i (li) is defined as the

visibility of a random point on the skeleton of the part. In

Section 4.1, we will discuss how to compute the visibility

variables and in section 4.3, we will discuss in more detail

how to compute the likelihoods.

3. Particle Based Belief Propagation

In the previous section, a graphical model for human

body parts was developed. In order to solve for the best

configuration in such a graphical model, the framework pro-

posed in [18] can be utilized. Essentially, the system op-

timizes for the posterior of each part and the interactions

between different parts are handled via messages in a non-

parametric belief propagation framework. A variant of the

PAMPAS algorithm is used for non-parametric belief prop-

agation [8]. The framework provides a natural approach for

enforcing constraints across parts, including those of occlu-

sion and appearance matching.

There are, essentially, three kinds of unknowns that need

to be estimated simultaneously: the location of each part,

the appearance of each part and the visibility variables. The

probability densities of part location and appearance are

represented via monte carlo particles while visibility vari-

ables can be computed from probabilistic occlusion maps.

The following messages are used to pass information to

a part:

• The locations of neighboring connected body parts (eg.

location of lower left leg and torso particles is passed

to upper left leg). These location are used to apply

kinematic constraints.

• The appearance of the corresponding symmetric part

(eg. appearance of right upper leg is passed to the left

upper leg).

• The visibility information from other parts that may

occlude this part (eg. upper left leg receives the oc-

clusion map from all other parts in order to update its

likelihood distribution)

At iteration r, a message mij from node i to j along an

edge in E1 or E2 may be represented as:

mr
ij(Φj) =

∫
ϕij(li, lj)φij(ψi, ψj)Pi(I1....IM |L)

∏
k∈E1\j

mr−1
ki (Φi)

∏
o∈E2\j

mr−1
oi (Φi)dli

where vi = (v1
i , ..., vM

i ). Note that ϕij(li, lj) = 1 for mes-

sages along edges in E2 and φij(ψi, ψj) = 1 for messages

along edges in E1. Messages along E3 alter the visibility

variables:

mr
ij(vj) =

∫
Occl(li)Pi(I1....IM |L)

∏
k∈E1\j

mr−1
ki (Φi)

∏
o∈E2\j

mr−1
oi (Φi)dli



where Occl(li) defines the occluding characteristics of part

li and affects the visibility parameters of part j.

Then, the posterior distribution of a body-part Posr(Φi)
can be computed as:

Posr(Φi) ∝ Pi(I1....IM |L)∏
k∈E1\j

mr
ki(Φi)

∏
o∈E2\j

mr
oi(Φi) (10)

To initialize the system, uniform appearance priors and

full visibility of each part is used; that is, it is assumed that

all parts are fully visible. At any iteration, the posterior dis-

tribution of each part is approximated by a set of particles

which are sampled using importance sampling. The set of

these particles is used to generate the messages to be passed

along appropriate edges in order to enforce inter-part rela-

tionships. Updating the parameters for the different parts

in turn, the method eventually leads to a stable parameter

estimation after several iterations. The particle-based belief

propagation is especially effective since the probability dis-

tributions are typically not gaussian in nature, especially in

the initial iterations, and hence using any parametric model

would lead to a loss of information.

4. Computing Priors and Likelihoods

4.1. Computing Part Visibility

We discuss how to compute P (vj
i (li)|l1..li−1, li+1, ..ln),

which represents the probability of visibility of a random

point of the skeleton of part i in view j, given the pdf’s of

locations of parts l1 . . . ln. If the exact positions of parts

in 3D were known, computing P (vj
i (li)|l1..li−1, li+1, ..ln)

would be straightforward. However, only the posterior

distributions of the locations of the parts after the previ-

ous iteration are known. To compute the probability, no-

tice that a part is not occluded if and only if it is not oc-

cluded by any of the parts, allowing us to utilize an in-

dependence relation between the occlusion from different

parts. Thus, the probability of visibility of a part i in view

j, P (vj
i (li)|l1..li−1, li+1..ln) represented by Pv

j
i , can be

broken down into product of probability of visibilities from

different parts as:

Pv
j
i =

∏
k=1,2..i−1,i+1...n

P (vj
ik(li)|l1..li−1, li+1..ln)

=
∏

k=1,2..i−1,i+1...n

P (vj
ik(li)|lk) (11)

The above equation requires us to compute

P (vj
ik(li)|lk), which represents the probability that a

part i is not occluded by a part k.

To compute this probability efficiently, “occlusion maps”

are introduced. An occlusion map of a part k, O
j
k(x, y, z),

stores the probability that a 3D point (x, y, z) will be oc-

cluded by part k in view j (Figure 2 illustrates an occlusion

map of a sphere). The occlusion map of a body part depends

on the shape and location of the part. The occlusion maps

have to be updated at every iteration because the probability

distribution of location of each part changes after each iter-

ation. For updating the occlusion map of part k, the region

of occlusion1 for each particle of k is computed. The update

is made using the following equation:

O
r+1,j
k (x, y, z) =

nocc

n
(12)

where r is the iteration number, nocc is the number of

particles that support the fact that a point (x, y, z) will be

occluded by part k in view j, and n is the total number of

particles used for computing the message. Intuitively, the

probability that a 3D point (x, y, z) is occluded by part k is

proportional to the number of particles of part k that occlude

the point.

To provide smoother updates to the occlusion maps and

handle errors in approximating the probability calculations,

it is useful to update the occlusion maps incrementally:

O
r+1,j
k (x, y, z) = (1 − β)Or,j

k (x, y, z) + β(
nocc

n
) (13)

where β determines the rate of change of the occlusion

maps (β = 0.2 was used in our experiments).

Using the occlusion map of part k for view j, the prob-

ability of visibility of a point object i at location, li =
(x, y, z) in view j, can be computed as:

P (vj
ik(li)|lk) = 1 − O

j
k(x, y, z) (14)

In order to address the finite size of the part, P (vj
i (li)|lk)

is approximated by averaging the different visibility proba-

bilities along the part skeleton.

4.2. Part Appearance

The appearance of a part is modeled by computing its

color as a function of height. A single color model fails to

capture the color variation along the part axis. A histogram

would be too expensive to compute for all the hypothesis

and is thus not used. Thus, the appearance of a part can

be represented by a vector that contains n1 different color

vectors along the part. The euclidean distance is used to

compute the distance between two appearance vectors.

4.3. Image Likelihoods

Each body part is modeled as a cylinder. Under ortho-

graphic projection, the image of a cylinder will consist of

parallel lines for two occluding contours of the part, except

the two circular surfaces at the joints which are normally not

1The region of occlusion is the 3D region that will be occluded by the

part



Figure 2. The occlusion map created by a sphere. The cone behind

the sphere is the region of occlusion in 3D. The probability of

visibility is decreased for every 3D point lying within the cone.
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Figure 3. The filter used for finding image likelihoods for paral-

lel lines. w represents the projected width of the body part and

h represents the height of the part. The grey portion represents

the part of image that will not be considered in computing the re-

sponse. The white, black and grey portions have weights 1,-1 and

0 respectively.

detectable. The response of a filter shown in Figure 3 is used

to find such parallel lines. The filter gives high response for

parallel lines separated by distance w and is robust to mod-

erate deviation from the parallel line assumption.

An exponential dependence of the likelihood on the filter

response is employed, so the likelihood of the image given

that the object-part is visible from the camera is:

Pi(Ij |li, v
j
i (li) = TRUE) ∝ e(1−resp(lj

i
)) (15)

where l
j
i is the location where part i will be projected

in image j. More complicated models and filters can also

be used[15]. Computation of Pi(Ij |li, v
j
i (li) = FALSE)

represents the case when the part is occluded. It can also be

treated as computing the likelihood of observing a random

pattern at location l
j
i with no preference given to one pattern

over another 2. Therefore, the likelihood can be assigned a

2 although this is not entirely true since the observation is correlated to

fixed constant in this case.

5. Efficiency Considerations and System
Overview

We discuss some additional features used to make the

system fast and fully automatic.

Our method requires the computation of the posterior

distribution for each part in the graphical model. The

computation of such a distribution, however, can be pro-

hibitively expensive since it requires search over a large

configuration space. In order to perform this search effi-

ciently, two methods were studied. In the first, the space

is first pruned via priors, while in the second method, it is

pruned via likelihoods. In the first method, the high likeli-

hood parameters of previous parts and anthropometric data

are used to prune the search region for a part in 3D. For ex-

ample, after finding the probability distribution of the upper

arm, one can prune the search area in 3D for the lower arm.

However, the process is too expensive since there are

many cases in which the search space cannot be sufficiently

constrained (the search space becomes especially large for

the four end limbs, for instance). For such cases, likelihood-

based search in 2D is used, which finds the possible limbs

in each 2D image using the responses of the filter. First,

a search region in 2D is determined based on the positions

of the previous parts. Then, regions that give a high filter

response are identified in each image. These high likeli-

hood part hypotheses in 2D are then matched across views

using epipolar constraints. Searching along epipolar lines

for the starting and ending points, the instances where the

response of the filter is above some threshold in both the im-

ages are back-projected to compute the 3D position of these

high likelihood body parts. The posteriors for these part lo-

cations are then computed by integrating the likelihood with

the priors. Both the search methods have been used in our

implementation: the likelihood-based approach for the four

end-limbs and the prior-based approach for other parts.

One can also use “helpers” to obtain a rough localiza-

tion of certain parts and to initialize the search process. The

most discriminative of these parts is perhaps the face, which

may be detected using a face detector (we use a popular one

based on [20]). We apply epipolar constraints and matching

across views in order to obtain a few helpers in 3D that are

used to initiate search in certain high probability regions.

Using these “helpers” allows the system to run automati-

cally and efficiently.

The cameras are placed in a wide-baseline configuration

to reduce occlusions. The system is able to find parts even

if they are visible in only one view and yields a good proba-

bility distribution of part location even when the part is not

visible in other views. This is due to the inclusion of visi-

bility constraints in the likelihood calculations.

The system flow is shown in Figure 4. The helpers are

the apperance of the part that occludes this part.
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Figure 4. System Flowchart

first detected using independent detectors. Then, at each

iteration, the first step is to find the torso and then search for

the other connected parts in turn. The two search methods

described above are used to search for each part. Once the

posterior distribution of all the parts is estimated at the end

of an iteration, messages are passed that update the visibility

variables and apply the appearance constraints across parts.

The process is iterated until the variance of most of the parts

falls below a given threshold.

6. Extension to Tracking in Videos

During tracking, additional temporal consistency con-

straints can be utilized for more accurate and efficient in-

ference. A simple way to incorporate temporal consistency

constraints is to utilize the locations and appearances of dif-

ferent parts at time t−1 in order to create priors for locations

and appearances of parts at time t. One can incorporate such

constraints in a belief propagation framework by adding the

potentials ωt−1,t(Φ
t
i,Φ

t−1
i ). The belief propagation equa-

tions then change to:

mr
ij(Φ

t
j) =

∫
ϕij(l

t
i , l

t
j)φij(ψ

t
i , ψ

t
j)

Pi(I1....IM |Lt)ωt−1,t(Φ
t
i,Φ

t−1
i )∏

k∈E1\j

mr−1
ki (Φt

i)
∏

o∈E2\j

mr−1
oi (Φt

i)

Posr(Φt
i) ∝ Pi(I1....IM |Lt)ωt−1,t(Φ
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The equations above impose the constraint that one does

not expect major changes in location and appearance of a

(a) The Image with likeli-

hood peaks marked

(b) The Image Likelihood

Figure 5. The parallel line feature is very weak as too many paral-

lel lines occur in nature. There is a need of prior based search for

fast and accurate detection of body-parts.

part between two consecutive frames. Also, instead of us-

ing full visibility to initialize the belief propagation itera-

tions, we use the occlusion maps estimated from the pre-

vious frames. Imposition of such constraints speeds up the

inference substantially in tracking applications while also

providing temporal consistency.

7. Experimental Results and Evaluation

The anthropometric data for different people was ac-

quired using hand-labeled images. This anthropometric

data includes ratios of heights and widths of different body-

parts. This data is used for pruning the search area for each

body-part. The angular constraints used on body parts were

based on the possible movement of the parts. For exam-

ple, the maximum possible motion between upper arm and

lower arm was kept at 150 degrees (assuming the same vol-

ume in 3d cannot be occupied by 2 parts). In order to re-

duce false negatives, the constraints obtained from the hand-

labeled images were further relaxed.

We tested the effectiveness of our likelihood model when

the parts are visible. Figure 5 shows the computed likeli-

hood of the torso in the image. The result demonstrates the

need to prune the search areas based on priors.

Several experiments were performed to demonstrate the

importance of the “new” constraints incorporated in our

system. The importance of modeling occlusion is demon-

strated in Figure 6. In this example, the right upper arm

is occluded in view 2 and the right leg is occluded in view

1. Figure 6(a) shows the results of the algorithm in view

1, when occlusion information is not passed and only kine-

matic constraints are used to find the pose parameters. This

would be same as using the algorithm in [18], but using our

likelihood model. The results show that when we do not use

occlusion information the right leg is totally missed by the

algorithm due to confusion with another location. Figures 6

(b) and (c) show the results of the algorithm with all the

constraints and occlusion reasoning. When occlusion infor-



(a) (b)
Figure 7. (a) The lower right hand is missed when appearance con-

straints are not used. b) Appearance consistency with the other

hand helps in peaking the posterior at correct location.

mation is passed between the body-parts, the left leg creates

a region of occlusion which causes an increase in the likeli-

hood of the right leg being present at its actual location.

In an another experiment, the algorithm was tested with-

out using appearance constraints while occlusion informa-

tion and kinematic constraints were still used. It can be seen

from Figure 7(a) that the lower right arm was missed due to

conflicting likelihoods. However, when the appearance con-

straints are added, correct detection of the lower left arm

guides the search for lower right arm as the appearance of

the two are expected to be similar [Figure 7(b))].

The algorithm was also evaluated when multiple people

are present and very close to each other. In such cases, it

would be very difficult to first segment one person from

the image and hence conventional approaches fail. Fig-

ure 8(a) and (b) show the performance of the algorithm in

such cases.

Additional results are shown in Figure 8 (c-d); Fig-

ure 8(d) is a frame from a commonly used sequence from

Brown University [18] .

A few frames of a tracking sequence are shown in Fig-

ure 9 (see accompanying videos).

8. Conclusion

We describe an algorithm for estimating the 3D pose of

articulated structures such as humans. Probabilistic distri-

bution of various parts are used to compute region of oc-

clusions and compute the probability of visibility of each

object part given its location. Unlike previous approaches,

where the image likelihoods are computed using the as-

sumption that each part is visible in the image, we com-

pute the image likelihood considering the visibility of parts

in different views. We also consider the high correlation

between the appearance of left-right part pairs and use it

to better localize the part locations. Experimental results

demonstrate the importance and effectiveness of incorporat-

ing these additional constraints in real scenes with multiple

people.

(a)

(b)

(c)

(d)

Figure 8. (a) and (b)Results from a multiple people sequence

where background subtraction cannot be used. (c) An uncon-

ventional pose (d)Results from a commonly used sequence from

Brown University.
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