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Abstract

The successful construction of long time convergent finite difference schemes ap-
proximating highly gravitating systems in general relativity remains an elusive task.
The presence of constraints and the introduction of artificial time-like boundaries
contribute significantly to the difficulty of this problem. Whereas in the absence of
boundaries the Bianchi identities ensure that the constraints vanish during evolution
provided that they are satisfied initially, this is no longer true when time-like bound-
aries are introduced. In this work we consider the linearization around the Minkowski
space-time in Cartesian coordinates of the generalized Einstein-Christoffel system and
analyze different kinds of boundary conditions that are designed to ensure that the
constraints vanish throughout the computational domain: the Neumann, Dirichlet,
and Sommerfeld cases.

In addition to the situation in which the boundary is aligned with a coordinate
surface, we examine the presence of corners in the computational domain. We find
that, at a corner, there are compatibility conditions which the boundary data and its
derivatives must satisfy and that, in general, achieving consistency of a finite differ-
ence scheme can be troublesome. We present several numerical experiments aimed
at establishing or confirming the well-posedness or ill-posedness of a problem and the
consistency of the numerical boundary conditions at the corners. In the case of a
smooth boundary we are able to find stable discretizations for all three cases. How-
ever, when a corner is present no stable discretization was found for the Sommerfeld
case. Finally, we propose an alternative implementation of the Sommerfeld bound-
ary conditions that would preserve the constraints, offer a good approximation for
absorbing boundary conditions, and eliminate the problem of the corners.

vii



Chapter 1

Introduction

In 1993 Joseph Taylor and Russel Hulse won the Nobel Prize “for the discovery of a
new type of pulsar, a discovery that has opened up new possibilities for the study of
gravitation”. By carefully measuring the orbiting period of the binary pulsar, they
indirectly proved the existence of gravitational waves [1]. These ripples in the curved
fabric of space-time are predicted by Einstein’s general theory of relativity (1916)
and are produced whenever two massive objects, such as black holes or neutron stars,
orbit each other and collide.

An entirely new way of studying the Universe, especially its most dramatic events,
will be offered to us by instruments capable of detecting and measuring gravitational
radiation, such as the Laser Interferometer Space Antenna (LISA) and the Laser In-
terferometer Gravitational-Wave Observatory (LIGO), which consists of two facilities,
one near Hanford, Washington, and the other near Livingston, Louisiana. Theoreti-
cal calculations have shown that the strongest gravitational waves that will reach the
Earth will be produced by the coalescence of black holes and neutron stars and will
alternately stretch and shrink distances by a factor of 10−21 (the Earth-Sun distance
would change by roughly the size of an atom). Such a weak signal will be buried in
the detector’s noise. In order to measure it a prior knowledge of the possible kinds
of signals is necessary. While the waveforms generated during the inspiral (before
the coalescence) and the ringdown (after the coalescence) are well understood, the
gravitational radiation generated during the merger of black holes or neutron stars is
not. The only viable way to gain knowledge of these signals is to carry out numerical
simulations on supercomputers.

According to General Relativity, time and space are united to form “space-time”,
a four dimensional manifold with a Lorentzian metric which satisfies Einstein’s equa-
tions,

Gµν = 8πTµν ,
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ten coupled quasilinear equations in the ten components of the metric. One of the
main goals of researchers involved in the field of numerical relativity (see [2] for a
review) is to numerically compute solutions of Einstein’s equations that represent the
collision of two black holes for the extraction of the gravitational wave forms that the
detectors need. This problem has proven to be much more challenging than expected
and there are many issues which remain unsolved.

Casting Einstein’s equations in a form which is suitable for numerical computa-
tions requires the introduction of a space-like foliation of space-time and their decom-
position into two subsystems of equations: constraint equations that must be obeyed
on each time slice, and evolution equations that describe how quantities propagate
from one hypersurface to the next. With some manipulations, the evolution equations
can be cast in symmetric hyperbolic form [3, 4, 5] and integrated numerically on a
computer.

Most numerical simulations of dynamical black hole space-times that do not ex-
ploit any symmetries break down well before the relevant information can be ex-
tracted, for reasons that are not yet fully understood. When a numerical simulation
“crashes”, large constraint violations are observed. Although this is most likely the
effect, rather than the cause, of large errors in the main variables of the system, con-
siderable effort has been directed toward the creation of schemes that, in different
ways, minimize the constraint growth as in, for example, [6]. Particular attention
has been given to the problem of preventing constraint-violating modes from entering
the computational domain through constraint-preserving boundary conditions when
time-like boundaries are present, the hope being that this would prolong the life-time
of current simulations.

Initial data cannot be specified arbitrarily. If they do not satisfy the initial value
constraints, then some of the components of the vacuum Einstein equations will not
be satisfied. An issue that has often been overlooked in the past is that a similar
kind of restriction occurs at the boundaries. If the boundary data does not satisfy
the constraints, or at least a subset of them, then one will not obtain a solution of
the vacuum Einstein’s equations. This is illustrated in Fig. 1.1.

One could argue that if the boundaries are sufficiently far away, one need not
worry about this constraint violation, since the error introduced will mainly affect
the region near the boundaries and the error might be small. The point is that in
3D numerical simulations involving black holes or neutron stars one cannot place the
boundaries too far away, because of lack of computational resources. It is expected
that, at least for another decade, no supercomputer in the world will have sufficient
memory and computational power to allow the placing of boundaries at such great
distances that their effect can be neglected for the desired amount of time. With
today’s technology, the errors introduced by an incorrect boundary treatment are not
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t = 0

Ω

ΩH[0,T ]

D+(Ω)

t

Figure 1.1: Only two of the three spatial dimensions are represented for illustrative
purposes. If the constraints vanish initially in Ω, then they will vanish in D+(Ω), the
domain of dependence (shaded region) of Ω. Using constraint-preserving boundary
conditions ensures that Einstein equations are satisfied inside the whole cylinder.

small and may very well be the cause of the instabilities that numerical relativists
around the world are observing.

Additional complications arise when the computational domain is non-smooth,
as is the case in the commonly used cubical domains. What makes these domains
attractive is the fact that their implementation is relatively straightforward, as they
naturally adapt to the Cartesian grids. However, they come with serious side effects.
Most proofs of well-posedness are based on the smoothness assumption of the bound-
ary and no general existence proofs for hyperbolic problems on non-smooth domains
exist. Furthermore, compatibility conditions arise which cannot be ignored if one is
interested in smooth solutions.

The fact that non-smooth domains appear in most multi-dimensional finite dif-
ference implementations and are commonly used in numerical relativity, makes their
study significant. Fortunately, as was shown in 1995 by Olsson in a series of papers
[7], it is possible to construct finite difference schemes for which stability results in
the presence of corners hold. These schemes are based on operators that satisfy the
summation by parts rule, similar to the integration by parts rule

∫ b

a

du

dx
v dx = −

∫ b

a

u
dv

dx
dx+ (uv)|ba,

and stability is obtained by imposing boundary conditions through an orthogonal
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projection operator. However, in general, constraint-preserving boundary conditions
are not of the class for which Olsson’s proof holds, i.e., they are not in maximally
dissipative form (3.12).

In this dissertation we look at the generalized Einstein-Christoffel system lin-
earized about Minkowski in Cartesian coordinates, given by Eqs. (4.13), (4.14), (4.17),
(4.18), and (4.19). This is a problem with constant coefficients. Here the boundary
data, in order to prevent constraint-violating modes from entering the domain, have
to satisfy conditions that have the form of partial differential equations. These condi-
tions can greatly affect the well-posedness of a problem and the stability of its finite
difference approximation. This research was motivated primarily by the desire to find
the answers to the following two questions:

1. Is it possible to discretize the initial-boundary value problem proposed by Cal-
abrese, Pullin, Sarbach, Reula, Tiglio in reference [8] in a stable manner, par-
ticularly in the presence of corners?

2. Is it possible to discretize Sommerfeld (i.e. radiative) boundary conditions which
preserve the constraints, Eqs. (5.5), (5.6), (5.7), and (5.8), in a stable way in
more than one spatial dimension?

The boundary conditions proposed in [8], for which a proof of well-posedness is
given, required a particular coupling between in- and outgoing modes. This coupling is
likely to introduce large errors in the simulation of an isolated source due to reflections
off the boundary surface. On the other hand, although there is no proof of stability,
in the Sommerfeld case the reflections would be drastically reduced. The strategy
followed in this dissertation consists in simplifying the problem as much as possible
in order to isolate the competing sources of instabilities. We often return to the
simple wave equation, where a large amount of mathematical literature is available,
to understand some of the fundamental issues.

The major obstacle encountered during this research project was understanding
compatibility and consistency conditions that arise when non-smooth domains are
used. To our knowledge there are no examples in the current literature of a dis-
cretization that preserves the constraints and, at the same time, involves corners. In
this work we will provide such a discretization. In addition, we show that constraint-
preserving Sommerfeld boundary conditions are possible, at least for the case of a
smooth boundary.

The work presented in this dissertation makes extensive use of the results obtained
in references [8] and [9]. The dissertation is organized as follows. We begin by
reviewing some of the most influential papers in the field which tackle the problem of
artificial boundaries in general relativity. In chapter 3 we introduce the concepts of
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strong and symmetric hyperbolicity, stress the importance of well-posedness and show
how stable discretizations on rectangular grids can be obtained. The properties of
the generalized Einstein-Christoffel system are discussed in chapter 4. In chapter 5 a
boundary aligned with the Cartesian coordinates is introduced and the three different
types of boundary conditions, the Neumann, the Dirichlet, and the Sommerfeld cases,
are analyzed. The complications due to the presence of a corner in the domain are
investigated in chapter 6. We conclude with chapters 7 and 8 where we summarize our
results, and discuss future lines of research. Important material which, we feel, does
not apply exclusively to any one chapter and which is important for the understanding
of the results, is presented in the appendices.

This project is not directly linked to the numerical simulation of a binary black
hole system and the extraction of gravitational waves, but it is an essential step that
must be taken toward the achievement of this goal.

5



Chapter 2

Literature Review

The construction of constraint-preserving boundary conditions is an ongoing effort.
Results with various degrees of success have been obtained by several research groups,
including the one at LSU.

One of the most prominent works in this field is the article by Friedrich and Nagy,
“The Initial Boundary Value Problem for Einstein’s Vacuum Field Equations”, Com-
mun. Math. Phys., 201, 619-655 (1999) [10]. Their analysis is purely analytical and
is based on a tetrad formulation of Einstein’s equations. They reduce the geometrical
initial boundary value problem for Einstein’s equations to an initial boundary value
problem for a hyperbolic system to which the general result on maximally dissipative
boundary conditions apply. They discuss the issue of controlling the conservation of
the constraints. They also analyze the compatibility conditions between the initial
and boundary data.

The same year Stewart published “The Cauchy problem and the initial bound-
ary value problem in numerical relativity”, Class. Quantum. Grav., 15, 2865-2889
(1998) [11]. He emphasizes the importance of well-posedness for the problem to be
numerically tractable and tries to draw attention to the available literature on partial
differential equations and numerical analysis. He starts by studying the Cauchy prob-
lem and concludes that a problem is numerically tractable if it is well-posed, which is
true if and only if the system in strongly hyperbolic. Stewart also observes that the
constraint evolution equations have to be well-posed. In the presence of boundaries,
he points out, the data has to be given to the incoming variables and he verifies
that the boundary conditions satisfy the uniform Kreiss condition. As an example he
discusses the Frittelli-Reula [12] formulation with unit lapse and zero shift, linearized
about flat space-time. Stewart concludes that, for such system, strong well-posedness
is obtained if and only if the momentum constraints are imposed on the boundary.
He includes no numerical experiments.
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In Calabrese, Lehner, Tiglio, “Constraint-preserving boundary conditions in nu-
merical relativity”, Phys. Rev. D, 65, 104031 (2002) [13] the importance of boundary
conditions which are consistent with the constraints is stressed, particularly for long
term evolutions. The authors consider spherically symmetric black hole space-times
in vacuum or with a minimally coupled scalar field, within the Einstein-Christoffel
symmetric hyperbolic formulation of Einstein’s equations. They analyze the char-
acteristic propagation of the main variables and constraints. After imposing the
incoming constraint at the boundary, they are left with two free modes, one of them
being associated with the scalar field. A numerical scheme is constructed and numer-
ical experiments are done to show stability and second order accuracy. It is claimed
that the procedure can be implemented in a straightforward manner within any hy-
perbolic formulation of gravity in three dimensions. Soon after this work it became
clear that, although it is certainly true that consistent boundary conditions can be
easily formulated in more than one dimension, well-posedness may be hard to obtain.

Most of this dissertation is based on the work of Calabrese, Pullin, Reula, Sar-
bach, and Tiglio, “Well Posed Constraint-Preserving Boundary Conditions for the
Linearized Einstein Equations”, Commun. Math. Phys., 240, 377-395, (2003) [8]. In
this work the issue of specifying boundary conditions for the generalized Einstein-
Christoffel formulation of Einstein’s equations linearized around Minkowski is ad-
dressed. The fundamental idea is that by taking appropriate linear combinations of
ingoing and outgoing characteristic variables it is possible to construct a closed sym-
metric hyperbolic system that lives on the boundary, which includes the evolution of
some zero speed variables. By closing the system one can separate the boundary prob-
lem from the one at the interior. One can, in principle, solve the well-posed problem
at the boundary and, from this, extract the boundary data needed for the evolution
of the system at the interior. This procedure, unfortunately, does not seems to be
extendible to more general scenarios, such as linearizations around a Schwarzschild
black hole. Furthermore, a closed system at the boundary can be obtained only in
the Neumann and Dirichlet cases.

In the paper by Szilágyi and Winicour, “Well-posed initial-boundary evolution in
general relativity”, Phys. Rev. D, 68, 041501(R) (2003) [14], the authors address the
issue of formulating a well-posed initial-boundary value problem for Einstein’s field
equations in harmonic coordinates using maximally dissipative boundary conditions.
The authors are able to show that the problem is well posed for homogeneous bound-
ary data and for data that is small in a linearized sense. They also briefly discuss the
numerical implementation of such a problem with and without Cauchy-characteristic
matching.

In Frittelli and Gómez, “Boundary conditions for hyperbolic formulations of the
Einstein equations”, Class. Quantum Grav., 20 2379-2392 (2003) [15], it is claimed
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that the projection of the Einstein equations along the normal to the boundary yields
necessary and appropriate boundary conditions, since they contain (for a first order
formulation) no derivatives normal to the boundary. This procedure is applied to the
Einstein-Christoffel formulation in spherical symmetry, however no numerical exper-
iments are included and the issue of well-posedness is mentioned but not analyzed.

The extension to 3 + 1 dimensions is presented in “Einstein boundary conditions
for the 3 + 1 Einstein equations”, Phys. Rev. D, 68, 044014 (2003) [16], by the
same authors. They calculate the boundary conditions for the Einstein-Christoffel
formulation obtained by setting the projection of the Einstein tensor along the normal
to zero in the case of vanishing shift. They make no use of the auxiliary system of
propagation of the constraints implied by the evolution equations. Again, they do
not address the issue of whether or not their boundary conditions lead to a well-
posed initial-boundary value problem. Instead, they stress the fact that most of
the formulations being used today are not strongly hyperbolic and therefore their
boundary conditions seem to be the only viable ones. They conclude by conjecturing
that such boundary conditions may extend the run time of numerical simulations.

Finally, in Calabrese and Sarbach, “Detecting ill posed boundary conditions in
general relativity”, J. Math. Phys., 44, 3888-3899 (2003) [9], the well-posedness of
recently proposed boundary conditions, including those of Frittelli and Gómez, is
analyzed using the Laplace-Fourier technique. This technique, which can be applied
to boundary conditions that are more general than the maximally dissipative ones, is
capable of detecting the presence of ill-posed modes and is applied to the generalized
Einstein-Christoffel system linearized around Minkowski. Interesting results obtained
in this paper are the facts that the original Einstein-Christoffel system is ill posed
when the ingoing constraint variables are set to zero and that strong hyperbolicity
with maximal dissipative boundary conditions does not guarantee well-posedness.
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Chapter 3

First Order Hyperbolic Systems

One of the greatest advantages of writing Einsteins’ equations in hyperbolic form is
that it allows one to benefit from the powerful mathematical machinery developed pri-
marily in the last century. In this chapter we closely follow [17] and review the notion
of hyperbolicity for first order systems of partial differential equations. Hyperbolic
formulations have received a great deal of attention in numerical relativity, notably
for the treatment of (artificial) time-like boundaries. Such boundaries are not deter-
mined by any geometrical or physical consideration. They are introduced to restrict
the calculations to finite grids. As pointed out in [10], a thorough understanding of
the analytical features of the initial-boundary value problem for Einstein’s equations
should be a prerequisite for successful numerical calculations near the boundary.

We discuss the energy method as a tool to prove well-posedness and mention the
Laplace-Fourier technique as a powerful alternative for the constant coefficient case.
We conclude the chapter by illustrating how stable discretizations can be obtained us-
ing finite difference operators satisfying the summation by parts rule [18] and Olsson’s
projector method to impose boundary conditions in maximally dissipative form.

3.1 Strong and Symmetric Hyperbolicity

Consider a linear, first order, system of partial differential evolution equations in three
spatial dimensions,

∂u

∂t
=

3
∑

i=1

Ai ∂u

∂xi
, (t, ~x) ∈ [0, T ] × Ω , (3.1)

where u = u(t, ~x) is a real vector valued function with m components, and Ai is a
constant m×m real matrix. In the following, we will use the abbreviations ∂t = ∂

∂t
,
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∂i = ∂
∂xi and Einstein’s summation convention: we sum over repeated indices. With

this notation, the system above can be written as ∂tu = Ai∂iu. For the solution to
be unique we need to supplement the problem with initial data

u(0, ~x) = f(~x) , ~x ∈ Ω , (3.2)

and, assuming that the boundary of Ω is non-empty, with boundary data

Lu(t, ~x) = g(t, ~x) , (t, ~x) ∈ [0, T ] × ∂Ω . (3.3)

When the domain Ω is equal to R
3, we have an initial value problem. Otherwise, its

boundary is assumed to be either a x1 = const. plane or the surface of a rectangular
parallelepiped [x1

min, x
1
max]×[x2

min, x
2
max]×[x3

min, x
3
max], and we have an initial-boundary

value problem. Notice that in the last case the boundary is a non-smooth surface.
The operator L and the data g that appear in the boundary condition (3.3) will be
defined later.

The system (3.1) is said to be strongly hyperbolic if the matrix

P̂ (~ω) = Ajωj , (3.4)

with ~ω ∈ R3 and |~ω|2 = ω2
1 + ω2

2 + ω2
3 = 1, can brought into real diagonal form

by a transformation T (~ω), such that T (~ω) and T−1(~ω) are uniformly bounded with
respect to ~ω. Moreover, the system is said to be symmetric hyperbolic if there exists
a constant, symmetric, positive definite matrix H, independent of ~ω, such that

HAi = (HAi)T (3.5)

for i = 1, 2, 3. The matrix H is usually called the symmetrizer. If (3.5) holds for
H = 1, then the system is said to be in explicit symmetric form. Clearly, a symmetric
hyperbolic system is also strongly hyperbolic. Strong hyperbolicity is a necessary
condition for well-posedness and consequently for the construction of stable numerical
schemes.

The characteristic speeds in the direction ~n = (n1, n2, n3) ∈ R3, with n2
1+n

2
2+n

2
3 =

1, are the eigenvalues of An ≡ Aini. The maximum value of the characteristic speeds
in the region [0, T ]×Ω can be used to compute an upper bound for the ratio between
the time step and the spatial mesh size.

3.1.1 Well-posedness

The notion of a well-posed problem was first introduced by the French mathematician
Jacques Hadamard in a paper published in 1902 [19]. A well-posed problem is a prob-
lem that is uniquely solvable and is such that the solution depends continuously on
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the data. If the solution depended in a discontinuous way, then small errors, whether
numerical errors, measurement errors, or perturbations caused by noise, could cre-
ate large deviations which would lead to a loss of predictive power. The numerical
treatment of ill-posed problems, which, contrary to what Hadamard claimed in his
paper, can be physically interesting [20], is a great challenge. If given the option,
however, one should certainly try to formulate the problem in a well-posed manner
before proceeding with its discretization.

The specification of boundary conditions requires careful consideration as it can
have a great impact on the well-posedness of a problem. Two of the most commonly
used techniques to prove well-posedness for an initial-boundary value problem are the
energy method and the Laplace-Fourier technique. The first method is quite flexible,
in that it allows for variable coefficients and more generic domains. However, when
it works, it gives only sufficient conditions for well-posedness. The Laplace-Fourier
technique, on the other hand, gives necessary and sufficient conditions and it can be
applied to boundary conditions that are more general. Unfortunately, the application
of this technique to the non-constant coefficient case seems to be rather complicated.

3.1.1.1 The Energy Method

Using the energy method one can easily obtain well-posed boundary conditions [21,
22]. One defines the energy of the system at time t to be

E(t) = ‖u(t, ·)‖2
H =

∫

Ω

uT (t, ~x)Hu(t, ~x) d3x , (3.6)

where H is some constant positive definite m×m symmetric matrix and uT denotes
the transpose of u. To ensure continuous dependence of the solution on the initial
and boundary data, the energy must be bounded in terms of appropriate norms of
the data. The procedure that is typically followed to determine this bound consists
in taking a time derivative of (3.6), with the further assumptions that u is a smooth
solution of (3.1) and that H is a symmetrizer. This gives

d

dt
E(t) =

∫

∂Ω

uTHAnu d2σ , (3.7)

where Gauss’ theorem was used in the right hand side and ni is the outward unit
normal to the boundary ∂Ω. To control the growth of the energy of the solution, we
naturally need to control the boundary integral. For the moment we assume that ∂Ω
is smooth so that ni is well defined.
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The matrix HAn, being symmetric, can be brought into diagonal form by an
orthogonal transformation Q(n),

QT (n)HAnQ(n) = Λ = diag(Λ+,−Λ−, 0) , (3.8)

where Λ± > 0 are positive definite diagonal matrices, the eigenvalues of which do not
necessarily coincide with the characteristic speeds. By introducing the vector

w(n) = (w(+Λ+;n), w(−Λ−;n), w(0;n))T = QT (n)u

one can rewrite the integrand of the boundary integral in Eq. (3.7) as the difference
between two non-negative terms,

uTHAnu = w(+Λ+;n)T Λ+w
(+Λ+;n) − w(−Λ−;n)T Λ−w

(−Λ−;n) . (3.9)

The components of w(n) are the characteristic variables in the direction ~n. In particu-
lar, the components of w(+Λ+;n) are the ingoing characteristic variables, and the com-
ponents of w(−Λ−;n) are the outgoing characteristic variables. We see that prescribing
homogeneous boundary conditions (w(+Λ+;n) = Sw(−Λ−;n), with S sufficiently small,
i.e., STΛ+S ≤ Λ−), ensures that the boundary term in (3.7) will give a non-positive
contribution to the energy growth. The S = 0 case (no coupling) is of particular in-
terest as it usually yields a good approximation for absorbing (Sommerfeld) boundary
conditions.

Thus, for homogeneous boundary conditions we have

d

dt
‖u(t, ·)‖2

H ≤ 0 , (3.10)

which implies that
‖u(t, ·)‖H ≤ ‖f‖H. (3.11)

Similar energy estimates can be obtained for inhomogeneous boundary conditions [21,
22], i.e.,

w(+Λ+;n) = Sw(−Λ−;n) + g , (3.12)

where g can be specified arbitrarily, as long as it satisfies compatibility conditions
with the initial data.

We note that in [23, 24] Sommerfeld boundary conditions are defined for a scalar
wave equation ∂2

t u = c2∇2u in d spatial dimensions as

lim
r→+∞

r−ct=const.

r(d−1)/2

(

∂ru+
1

c
∂tu

)

= 0 .
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where r is the radial coordinate. However, in this work we call Sommerfeld boundary
condition any boundary condition of the form (3.12) with S = 0.

To illustrate the importance of energy estimates such as (3.11) consider the case
with no boundaries and let f̄ = f + δ be the result of a “small” modification of the
initial data and ū the correspondent solution, i.e., ū(0, x) = f̄(x). Since the problem
is linear, the error ū− u, satisfies the estimate

‖ū− u‖H ≤ ‖f̄ − f‖H = ‖δ‖H ,

which shows continuous dependence of the solution on the data. The boundary
conditions (3.12), when applied to a symmetric hyperbolic system, lead to a well
posed problem.

Boundary conditions of the form (3.12) are sometimes referred to as maximally

dissipative boundary conditions [25]. In this case we see that the operator L intro-
duced in (3.3) has the form

L = P (+)QT (n) − SP (−)QT (n) , (3.13)

where P (+)(w(+), w(−), w0)T = (w(+), 0, 0)T and P (−)(w(+), w(−), w0)T = (0, w(−), 0)T .
We note that if the system is symmetric hyperbolic but not written in explicit

symmetric form, one can perform the change of dependent variables w = H1/2u,
which brings it into explicit symmetric form,

∂tw = H1/2AiH−1/2∂iw = Ãi∂iw . (3.14)

After the change of variables, we can construct the energy using the standard L2

norm

E =

∫

Ω

wTw d3x =

∫

Ω

uTHud3x . (3.15)

Let An be symmetrizable, but not in explicit symmetric form, and let T (n) the
transformation that brings An into diagonal form,

T−1(n)AnT (n) = Λ = diag{Λ+,Λ−, 0} , (3.16)

where ±Λ± > 0 is diagonal, and introduce the variables

v = (v+, v−, v0)
T = T−1(n)u . (3.17)

It is sometimes easier to give data directly to these quantities, which are often also
called characteristic variables. To see how control of the energy growth follows, we
notice that the estimate (3.7) gives

d

dt
E =

∫

∂Ω

uTHAnu d2σ =

∫

∂Ω

vTT T (n)HT (n)Λv d2σ . (3.18)
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The matrix T T (n)HT (n) is positive definite and commutes with the diagonal matrix
Λ,

T THTΛ = T THAnT = T T (An)THT = ΛT THT .

This implies that it must be in block diagonal form. We have that

Λ̃ = T T (n)HT (n)Λ = diag{Λ̃+,−Λ̃−, 0}

and therefore
uTHAnu = vT

+Λ̃+v+ − vT
−Λ̃−v− .

3.1.1.2 The Laplace-Fourier Technique

In the constant coefficient case there exists a more powerful technique that gives
necessary and sufficient conditions for well-posedness. It also allows for more general
boundary conditions than the maximally dissipative ones, such as those that often
arise when trying to prevent constraint-violating modes to enter the domain. This
technique has been used to obtain necessary conditions for well-posedness by detecting
the presence of ill-posed modes in [9]. Assuming that the boundary is located at
x = const., ill-posed modes are solutions of the boundary value problem of the form

u(t, x, y, z) = est+i(ωyy+ωzz)ũ(x) ,

where ωy, ωz ∈ Z and s ∈ C with Re(s) > 0 and ũ ∈ L2.

3.2 Stable Discretization on Rectangular Grids

Discretizing the spatial derivatives of the right hand side of system (3.1), but leaving
time continuous, leads to a system of ordinary differential equations (ODEs) called
the semi-discrete system. The method of discretizing only the spatial variables is
called the method of lines. The resulting system of ODEs is then solved numerically
with a standard ODE solver.

In a constant coefficient problem with no lower order terms, the energy defined
by a constant symmetrizer is conserved. By this we mean that the change in energy
of our system is solely due to the boundary term of (3.7), which can be controlled by
using, for example, maximal dissipative boundary conditions (3.12). In particular,
when homogeneous boundary conditions are used, or when no boundaries are present,
the energy cannot increase.
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Consider the domain Ω = R3 with the grid points ~xijk = (ih1, jh2, kh3), for
i, j, k ∈ Z and introduce the following scalar product

(u, v)h = h1h2h3

∑

ijk

uT
ijkvijk , (3.19)

where u and v are vector valued grid functions such that (u, u)h < +∞ and (v, v)h <
+∞. In the constant coefficient case the straightforward discretization ∂tu = AiDiu,
where u now represents a vector valued grid function, and Di is a consistent approx-
imation of ∂i, conserves the discrete energy

E = (u,Hu)h = h1h2h3

∑

ijk

uT
ijkHuijk , (3.20)

if the difference operators satisfy (v,Diu)h + (Div, u)h = 0. Examples of operators
satisfying this property are D0 and D0(1 − h2

6
D+D−), which are second and fourth

order accurate, respectively. Definitions and properties of finite difference operators
are given in appendix A.

Let us now consider a rectangular domain Ω = {(x1, x2, x3) ∈ R3|x1
min ≤ x1 ≤

x1
max, x

2
min ≤ x2 ≤ x2

max, x
3
min ≤ x3 ≤ x3

max}, with the grid points ~xijk = (x1
min +

ih1, x
2
min + jh2, x

3
min + kh3), i = 0, . . . , N1 j = 0, . . . , N2 and k = 0, . . . , N3, and

hs = (xs
max − xs

min)/Ns, s = 1, 2, 3. From the continuum analysis based on the energy
method we expect that boundary data should be given to the incoming characteristic
variables in the direction orthogonal to the boundary surface. We now repeat the
same analysis for the semi-discrete system in order to determine appropriate boundary
conditions for the computational grid. In particular, we examine the application of
boundary conditions at the corner points of the grid.

We define the following one dimensional scalar product between vector valued grid
functions,

(u, v)hs
= hs

Ns
∑

i=0

uT
i viσi , (3.21)

where σi = {1/2, 1, . . . , 1, 1/2}. The two and three dimensional scalar products are

(u, v)hshr
= hshr

Nr
∑

j=0

Ns
∑

i=0

uT
ijvijσiσj , (3.22)

(u, v)h = h1h2h3

N1
∑

i=0

N2
∑

j=0

N3
∑

k=0

uT
ijkvijkσiσjσk . (3.23)
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In the following D(i) represents a finite difference operator approximating ∂i. If
we approximate ∂1 with the second order centered difference operator D

(1)
0 uijk =

(ui+1,jk − ui−1,jk)/(2h1) in the interior (1 ≤ i ≤ N1 − 1, 0 ≤ j ≤ N2, 0 ≤ k ≤ N3)

and with the first order one-sided difference operators D
(1)
+ u0jk = (u1,jk − u0,jk)/h1,

D
(1)
− uN1jk = (uN1,jk − uN1−1,jk)/h1 at the x1 = const. boundary we get

(u,D(1)v)h + (D(1)u, v)h (3.24)

= h3

N3
∑

k=0

h2

N2
∑

j=0

(

h1

N1
∑

i=0

uijkD
(1)vijkσi + h1

N1
∑

i=0

D(1)uijkvijkσi

)

σjσk

= (ui··, vi··)h2h3
|i=N1

i=0 .

Similarly, if D(2) = D
(2)
0 in the interior and D(2) = D

(2)
± at the x2 = const. boundary,

we have that
(u,D(2)v)h + (D(2)u, v)h = (u·j·, v·j·)h1h3

|j=N2

j=0 , (3.25)

and if D(3) = D
(3)
0 in the interior and D(3) = D

(3)
± at the x3 = const. boundary, we

have that
(u,D(3)v)h + (D(3)u, v)h = (u··k, v··k)h1h2

|k=N3

k=0 . (3.26)

If these simple finite difference operators are used in (3.1) to approximate the spatial
derivatives, the time derivative of the discrete energy

E = (u,Hu)h = h1h2h3

∑

ijk

uT
ijkHuijkσiσjσk (3.27)

gives

d

dt
E = (ui··, (HA

1u)i··)h2h3
|i=N1

i=0 +(u·j·, (HA
2u)·j·)h1h3

|j=N2

j=0 +(u··k, (HA
3u)··k)h1h2

|k=N3

k=0 .

(3.28)
According to the discrete energy estimate above, to control the energy growth

due to the boundary term, one should give data to the incoming variables in the
direction ~n orthogonal to the boundary in maximal dissipative form, as shown in
Fig. 3.1. To define the unit normal at the edges and vertices of the grid we examine
the contribution to the energy estimate due to one of such points [7]. Wee see that,
for example, at the gridpoint belonging to an edge, (N1, N2, k) with 1 ≤ k ≤ N3 − 1,
we have

h2

2
uT

N1N2k(HA
1u)N1N2k +

h1

2
uT

N1N2k(HA
2u)N1N2k =

|h|
2
uT

N1N2k(HA
nu)N1N2k, (3.29)

where |h| =
√

h2
1 + h2

2 and ~n = (h2, h1, 0)/|h| is the unit effective normal at (N1, N2, k)
for k = 1, . . . , N3 − 1. Similar results hold at other corner points.
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Figure 3.1: The energy estimate for the semi-discrete initial-boundary value problem
on non-smooth domains shows that, in order to control the growth due to the bound-
ary term, boundary data must be given to the incoming modes with respect to the
unit normal ~n. At the corner, the unit effective normal depends on the mesh spacings
h1 and h2.

3.2.1 Olsson’s Boundary Conditions

In [7] it is shown how to impose maximally dissipative boundary conditions at the nu-
merical level without spoiling stability. This is done through an orthogonal projector
operator P onto the subspace of gridfunctions satisfying the homogeneous boundary
conditions. Let us consider a specific case. Assume that at the boundary there is
one incoming, one outgoing, and one zero speed mode and that Λ = diag(+1,−1, 0),
where Λ was introduced in (3.8). At each grid point belonging to the boundary,
we determine the outward pointing unit normal ~n = (n1, n2, n3) and carry out the
following steps:

1. Compute (W
(+1;n)
old ,W

(−1;n)
old ,W

(0;n)
old )T = Q(n)−1Π, where Π is the discretized

right hand side and Q(n) is the orthogonal matrix that diagonalizes the bound-
ary matrix HAn, Q(n)−1HAnQ(n) = Λ.

2. If the boundary condition at the continuum is w(+1;n) = Sw(−1;n) + g, overwrite
the ingoing and outgoing modes according to

W (+1;n)
new =

S

1 + S2
(SW

(+1;n)
old +W

(−1;n)
old ) +

1

1 + S2
∂tg
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W (−1;n)
new =

1

1 + S2
(SW

(+1;n)
old +W

(−1;n)
old ) − S

1 + S2
∂tg

and leave the zero speed mode unchanged, W
(0;n)
new = W

(0;n)
old . This will ensure

that W
(+1;n)
new = SW

(−1;n)
new + ∂tg and that the following linear combination of

in- and outgoing modes remains unchanged, SW
(+1;n)
new +W

(−1;n)
new = SW

(+1;n)
old +

W
(−1;n)
old . Note that unless S = 0, the outgoing mode will be modified. When

the exact solution is known, the boundary data required to reproduce it are g =
g(+1,n)−Sg(−1;n), where g(+1;n) and g(−1;n) are ingoing and outgoing characteristic
variables of the exact solution.

3. The new modified right hand side is obtained by multiplying the new vector
(W

(+1;n)
new ,W

(−1;n)
new ,W

(0;n)
new )T by Q(n).

Alternatively, one can use T (n), the transformation that brings An into diagonal form,
in place of Q(n).

Strictly speaking, the proof of stability given in [7] holds only for analytic boundary
data, an assumption which does not hold for most of the experiments of the next
chapters. Energy estimates for the inhomogeneous case are discussed in appendix C.

Furthermore, one should also be aware of the fact that constraint-preserving
boundary conditions are usually not in maximally dissipative form.
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Chapter 4

The Generalized

Einstein-Christoffel System

In this chapter we introduce the generalized Einstein-Christoffel (GEC) system, as
defined in subsection II.J of the article by Kidder, Scheel, and Teukolsky [4]. This is
a two-parameter family of first order symmetric hyperbolic formulations of Einstein’s
equations. This family, or a subset of it, has been used a number of times in the
recent past, particularly to derive and analyze boundary conditions which are meant
to preserve the constraints. See, for example, [8, 9, 13, 15, 16].

Following [4], we outline the derivation of the GEC formulation, starting from
the standard 3 + 1 ADM splitting of Einstein’s equation. We then specialize to the
weak field regime, i.e., we consider the linearization about a Minkowski background
as in [8, 9]. We briefly review the main properties of the evolution equations, the
constraints, and the evolution of the constraints, the latter playing a fundamental
role in the determination of constraint-preserving boundary conditions.

4.1 Casting Einstein’s Equations in First Order

Hyperbolic Form

According to general relativity [26], space-time is a manifold on which there is de-
fined a Lorentz metric, (4)gµν , and its curvature is related to matter distribution by
Einstein’s equations

(4)Rµν −
1

2
(4)gµν

(4)R = 8πTµν , (4.1)

where (4)Rµν and (4)R are the Ricci tensor and the Ricci scalar associated with (4)gµν,
and Tµν is the stress-energy tensor. In this work we only consider the vacuum case,
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i.e., from now on we assume that Tµν = 0.
If we adopt a coordinate system {t, xi} such that the t = const. hypersurfaces are

space-like and denote by nµ the unit normal to these hypersurfaces, nµnµ = −1, then
the Riemannian 3-metric induced on each surface is given by

gµν = (4)gµν + nµnν . (4.2)

The contravariant vector field ∂t, which is tangent to the curves with constant spatial
coordinates, can be decomposed along the normal to the t = const. hypersurface
according to

∂t = αn + β ,

where α is the lapse function and β = βµ∂µ is the shift vector. The proper time
measured by an observer traveling along n from a t = t0 to a t = t0 + δt slice is given
by αδt. A translation in the direction βδt will bring the observer back to a point with
the same spatial coordinates it had at t = t0. The line elements can be written as

ds2 = −α2dt2 + gij(dx
i + βidt)(dxj + βjdt) . (4.3)

The 3 + 1 ADM decomposition of Einstein’s equations [27, 28], used for writing
these equations as an initial value problem, is obtained by projecting (4.1) along the
normal to the t = const. hypersurfaces. The normal components give the Hamiltonian
constraint

C ≡ 1

2
(R−KijK

ij +K2) = 0 , (4.4)

and the momentum constraint

Ci ≡ ∇jKi
j −∇iK = 0 , (4.5)

where ∇i and R are the covariant derivative and scalar curvature associated with the
spatial 3-metric and where Kij is the extrinsic curvature of the spatial surface,

Kij = −1

2
Lngij , (4.6)

defined in terms of the Lie derivative of the 3-metric, and K = gijKij. Intuitively,
the extrinsic curvature corresponds to the bending of the time slice in the spacetime.
Finally, the spatial components of Rµν = 0 give

(∂t − Lβ)Kij = −∇i∇jα + α(Rij − 2KilKj
l +KKij) , (4.7)

where Rij denotes the Ricci tensor of the 3-metric. Equations (4.6) and (4.7) are
called evolution equations.
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Although the evolution equations contain only first time derivatives, second spatial
derivatives appear in (4.4) and the right hand side of (4.7). It is convenient to
reduce the system to a first order one, both in space and time, so that mathematical
theorems regarding the well-posedness of the problem can be more easily applied.
To eliminate the second spatial derivatives from (4.4)–(4.7), one can introduce the
auxiliary variables

dkij ≡ ∂kgij . (4.8)

These variables also satisfy an evolution equation, obtained by taking a time derivative
of (4.8) and using (4.6). For a solution (gij, Kij, dkij) of the evolution equations to be
a solution of Einstein’s equations one has to ensure that the new constraints

Ckij ≡ dkij − ∂kgij (4.9)

vanish.
Interestingly enough, the resulting system of evolution equations is only weakly

hyperbolic, unless the lapse is densitized or some live gauge condition (see, for in-
stance, [29] and references therein) is used and the constraints are judiciously added to
the right hand side of the evolution equations. The lapse is densitized by introducing
the lapse density Q, which is related to α and g = det(gij) via

Q = ln(αg−σ) , (4.10)

where σ is a parameter. The lapse density and the shift vector are arbitrary functions
which do not depend on the dynamical fields. They are considered source terms.

By introducing appropriate linear combinations of Kij and dkij, which we call Pij

and fkij, it is possible to require that the evolution equations have a simple wave-like
form. This yields a two-parameter family, called the generalized Einstein-Christoffel
system. Its principal part is

∂tPij : βl∂lPij − αglm∂lfmij , (4.11)

∂tfkij : βl∂lfkij − α∂kPij . (4.12)

In the next sections we fix one of the parameters and linearize these equations
and the constraints about a Minkowski background in Cartesian coordinates.

4.2 The Evolution Equations

The generalized Einstein-Christoffel vacuum equations have the attractive feature
that when linearized around flat space-time written in Minkowski coordinates they

21



simply reduce to a set of six wave equations, written in first order form:

∂tKij = −∂kfkij , (4.13)

∂tfkij = −∂kKij . (4.14)

Here, Kij denotes the linearized extrinsic curvature and the symbols fkij represent
linear combinations of the auxiliary variables dkij,

fkij =
1

2
dkij +

η − 4

4η
δij(dk − bk) + δk(i(dj) − bj)) , (4.15)

where dk = dkijδ
ij and bj = dkijδ

ki. In terms of the linearized Christoffel symbols
Γkij, we have

fkij = Γ(ij)k + δrs

(

δkiΓ[sj]r + δkjΓ[si]r +
η − 4

2η
δijΓ[sk]r

)

. (4.16)

The shift is set to zero, and the lapse is linearized in such a way that it satisfies
the densitized lapse gauge condition α =

√
g up to second order corrections. The

value of η (which must differ from zero for fkij to be well defined) parametrizes the
family of formulations. The particular case of η = 4 corresponds to the original
Einstein-Christoffel system derived by Anderson and York [30].

4.3 The Constraints

A solution of (4.13), (4.14) is a solution of the linearized Einstein’s equations if and
only if the constraints are satisfied. The linearized constraint variables are

C ≡ η

4
δrs∂rfs , (4.17)

Cj ≡ δrs (∂rKsj − ∂jKrs) , (4.18)

Clkij ≡ 2∂[lfk]ij + η ∂[lδk](ifj) +
η − 4

4
δij∂[lfk] , (4.19)

where fk = δij(fkij − fijk). The constraints are said to be satisfied if C = 0, Cj = 0,
and Clkij = 0.

We note that the generalized Einstein-Christoffel system is similar, but not equiv-
alent to 6 independent second order wave equations written in first order form in the
following sense. When the second order wave equation ∂2

t φ = ∂k∂kφ is written in
first order form by introducing the auxiliary variables K = −∂tφ and fk = ∂kφ, the
constraints Clk ≡ ∂[lfk] = 0 arise. By looking at the four index constraints (4.19) it is
clear that a solution of the GEC system does not necessarily satisfy ∂[lfk]ij = 0. The
Clkij constraints mix different ij components.
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4.3.1 Evolution of the Constraint Variables

The evolution of the constraint variables plays a crucial role in the derivation of
constraint-preserving boundary conditions, as it allows one to identify the ingoing
and outgoing characteristic constraints at the boundary. To compute it, we follow
the analysis in Refs. [8] and [9]. One assumes that the main variables satisfy the
evolution equations (4.13), (4.14), takes a time derivative of the constraint variables
and rewrites the right hand side in terms of the constraint variables. One can show
[8] that the traceless part of Clkij is constant in time, while the remaining constraints
propagate according to

∂tC =
η

4
∂rCr , (4.20)

∂tCj =
4 − 2η

η
∂jC − ∂rTrj , (4.21)

∂tTij = −∂iCj +

(

1 − 3η

4

)

∂jCi +
η

4
δij∂

rCr , (4.22)

∂tVij =

(

7η

4
− 3

)

∂[iCj] , (4.23)

where Tij = (Crij
r + Cijr

r), and Vij = Cijr
r. For η 6= 2 and η 6= 8/3, one can replace

the 12 constraint variables C, Tij, Vij with Cij and Ṽij,

Cij = Tij +
2η − 4

η
δijC , (4.24)

Ṽij =

(

3η

4
− 2

)

Vij −
(

7η

4
− 3

)

T[ij] . (4.25)

In terms of these new variables the evolution of the constraints assumes a particularly
simple form

∂tCj = −∂rCrj , (4.26)

∂tCij = −∂iCj + κ(∂jCi − δij∂
rCr) , (4.27)

∂tṼij = 0 , (4.28)

where we have introduced κ = 1 − 3η/4.
To investigate the well-posedness of system (4.26)–(4.27), we introduce the 12

component column vector

u = (C1, C2, C3, C11, C12, C13, C21, C22, C23, C31, C32, C33)
T .
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We find that ωjA
j is equal to









































0 0 0 −ω1 0 0 −ω2 0 0 −ω3 0 0
0 0 0 0 −ω1 0 0 −ω2 0 0 −ω3 0
0 0 0 0 0 −ω1 0 0 −ω2 0 0 −ω3

−ω1 −κω2 −κω3 0 0 0 0 0 0 0 0 0
κω2 −ω1 0 0 0 0 0 0 0 0 0 0
κω3 0 −ω1 0 0 0 0 0 0 0 0 0
−ω2 κω1 0 0 0 0 0 0 0 0 0 0
−κω1 −ω2 −κω3 0 0 0 0 0 0 0 0 0

0 κω3 −ω2 0 0 0 0 0 0 0 0 0
−ω3 0 κω1 0 0 0 0 0 0 0 0 0

0 −ω3 κω2 0 0 0 0 0 0 0 0 0
−κω1 −κω2 −ω3 0 0 0 0 0 0 0 0 0









































and has eigenvalues +1, −1, and 0, with multiplicity 3, 3, and 6, respectively. Using,
for example, the Maple symbolic algebra system, one can show that the most general
symmetric matrix H that satisfies HAi = (HAi)T for i = 1, 2, 3 is











































1 − κ2 0 0 0 0 0 0 0 0 0 0 0
0 1 − κ2 0 0 0 0 0 0 0 0 0 0
0 0 1 − κ2 0 0 0 0 0 0 0 0 0

0 0 0 (1+κ)2

2κ+1
0 0 0 −κ(1+κ)

2κ+1
0 0 0 −κ(1+κ)

2κ+1

0 0 0 0 1 0 κ 0 0 0 0 0
0 0 0 0 0 1 0 0 0 κ 0 0
0 0 0 0 κ 0 1 0 0 0 0 0

0 0 0 −κ(1+κ)
2κ+1

0 0 0 (1+κ)2

2κ+1
0 0 0 −κ(1+κ)

2κ+1

0 0 0 0 0 0 0 0 1 0 κ 0
0 0 0 0 0 κ 0 0 0 1 0 0
0 0 0 0 0 0 0 0 κ 0 1 0

0 0 0 −κ(1+κ)
2κ+1

0 0 0 −κ(1+κ)
2κ+1

0 0 0 (1+κ)2

2κ+1











































.

(4.29)
The system is symmetric hyperbolic if and only if the eigenvalues of (4.29),

(κ2 − 1)/(2κ+ 1), 1 − κ, 1 − κ2, 1 + κ , (4.30)

are positive. This confirms what was shown in [8], namely that the system is symmet-
ric hyperbolic if the parameter η belongs to the open interval (0, 2) or, equivalently,
if the parameter κ belongs to the open interval (−1/2, 1).
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4.4 Characteristic Speeds and Characteristic Vari-

ables

The characteristic speeds of the main system are +1, −1 and 0, and do not depend
on the direction n.

The characteristic variables in the direction n are

v
(+1;n)
ij =

1√
2
(Kij − fnij) , (4.31)

v
(−1;n)
ij =

1√
2
(Kij + fnij) , (4.32)

v
(0;n)
Aij = fAij , (4.33)

where A represents the two directions orthogonal to n, i.e., δijniAj = 0. These
variables are used in the specification of boundary conditions. If n is the outward
pointing unit vector orthogonal to the boundary, then v

(+1;n)
ij and v

(−1;n)
ij represent the

ingoing and outgoing characteristic variables, respectively, and A is tangent to the
boundary surface. When written in terms of the characteristic variables, the evolution
equations have the form

∂tv
(±1;n)
ij = ±∂nv

(±1;n)
ij − 1√

2
∂Av

(0;n)
Aij , (4.34)

∂tv
(0;n)
Aij = − 1√

2
∂A(v

(+1;n)
ij + v

(−1;n)
ij ) . (4.35)

In terms of the characteristic variables in the direction n the primitive variables are
given by the inverse transformation of (4.31)–(4.33),

Kij =
1√
2
(v

(+1;n)
ij + v

(−1;n)
ij ) , (4.36)

fkij =
nk√

2
(−v(+1;n)

ij + v
(−1;n)
ij ) + Akv

(0;n)
Aij . (4.37)

As we saw in the previous section, the characteristic speeds of the evolution of
the constraints are +1, −1, and 0, independent of n. The characteristic constraint
variables in the direction n are

V
(+1;n)
j =

1√
2

(Cj − Cnj) , (4.38)

V
(−1;n)
j =

1√
2

(Cj + Cnj) , (4.39)
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V
(0;n)
Aj = CAj + κ (δnjCnA − δAjCnn) , (4.40)

Ṽ
(0;n)
ij = −7κ+ 2

3
C[ij] + (κ+ 1)Vij , (4.41)

where

Cj = (∂rKrj − ∂jK) , (4.42)

Cij = (∂rfijr − ∂jfir
r) + κ∂jfi − κδij∂

rfr . (4.43)

In the next section we carry out numerical experiments with system (4.26)–(4.27),
confirming that numerical stability can be obtained for essentially all values of the
parameter κ.

4.5 Numerical Tests

Numerical experiments in 3 + 1 dimensions tend to be time consuming and inconclu-
sive. Most of the tests that we perform are meant to establish the well- or ill-posedness
of a problem. It is of fundamental importance to be able to compare simulations done
at different resolutions, including high resolution. For this reason, we make a sym-
metry assumption in the solution and the data of the problem that enables us to
eliminate one of the spatial dimensions. We assume that the initial and boundary
data is z independent. This allows us to eliminate all the ∂z terms from the problem
and to reduce it to a two dimensional one.

The evolution equations are identical to the ones obtained by reducing the second
order wave equation to first order. Their numerical properties, in the absence of
boundaries, are well known. If the partial derivatives are approximated using second
order difference operators and the time integration is done with third or fourth order
Runge-Kutta, then the Courant factor, the maximum ratio between the time step
and the spatial mesh size that gives stability, is

√

3/d and
√

8/d, respectively, where
d is the dimensionality of the space. See Appendix C of [31] for more details.

In this section we report on numerical experiments done to confirm that a consis-
tent and stable discretization of the evolution of the constraint variables is possible
for essentially all values of the parameter κ.

In Fig. 4.1 the L2 norm of the constraints ‖C‖2 = (
∑

ij(CrC
r + CrsC

rs)h1h2)
1/2

is monitored for about 10 crossing times for different values of η. Notice that for
the particular case of η = 4/3 (κ = 0) the discrete L2 norm is conserved. The time
integrator is the classical fourth order Runge-Kutta and the Courant factor used is
λ = 2.0. The domain is Ω = [0, 1] × [0, 1] with 200 gridpoints in each direction.
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Figure 4.1: The Euclidean L2 norm of the constraints confirms that the initial value
problem for the evolution of the constraints (4.26)–(4.27) is well-posed. For η = 4/3
the norm is precisely conserved, since H = 1.
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Chapter 5

The Half-space Problem

Chapter 4 was devoted to the study of the initial value problem for the linearized
GEC system. We pointed out that, whereas the system of evolution equations for
the main variables is symmetric hyperbolic for any choice of the free parameter η,
the evolution of the constraint variables is symmetric hyperbolic for η ∈ (0, 2) and
only strongly hyperbolic otherwise. In the absence of boundaries the linearized GEC
system is well posed and thus can be discretized in a stable (and consistent) way, as
the numerical experiments confirm.

Now we assume that the domain is the half-space Ω = {(x, y, z) ∈ R3|x ≥ 0}. As
before, we want to find solutions of the evolution equations which satisfy the con-
straints. The half-space problem now needs, in addition to initial data, appropriate
boundary data at x = 0 for t ≥ 0. The issue of how to specify appropriate boundary
data for the Einstein evolution equations such that (i) the constraints are preserved
and (ii) the resulting initial-boundary value problem (IBVP) is well-posed is a prob-
lem of active interest in numerical relativity. Using maximal dissipative boundary
conditions, Friedrich and Nagy [10] were able to find well posed constraint-preserving
boundary conditions for a particular formulation of the full nonlinear vacuum equa-
tions. However, the generalized Einstein-Christoffel formulation, as most of the hy-
perbolic formulations used in numerical relativity, use a different set of variables than
those of Ref. [10]. For these formulations the derivation of well posed constraint-
preserving boundary conditions seems to be more difficult and, so far, results are
limited to homogeneous boundary data or to linearization around a Minkowski back-
ground.

In addition to the two requirements above one would also like the boundary, which
is a purely artificial boundary, to have as little influence as possible on the solution in
the interior. By this we mean that, ideally, the solution obtained with the boundary
should be the same as the one obtained with a larger domain. Unfortunately, it does
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not seem to be possible to determine the boundary data that would yield the same
solution at the interior without actually solving the enlarged problem or introducing
some global boundary condition (see [23]).

The most commonly used technique to obtain constraint-preserving boundary
conditions is based on the analysis of the evolution of the constraints. Once the
incoming constraint variables are identified, one has to translate them into conditions
for the incoming fields of the main system. These conditions are restrictions on the
derivatives of the main variables.

Another method used in the derivation of constraint-preserving boundary condi-
tions is the one recently proposed by Frittelli and Gómez in [15] and [16]. They obtain
boundary equations from the vanishing of the projection of the Einstein tensor along
the normal to the boundary surface. Although very appealing from the geometrical
point of view, the well-posedness of such boundary conditions cannot be taken for
granted. This issue is addressed, for example, in [9], where it is shown that the par-
ticular initial-boundary formulation proposed in [15] suffers from the presence of ill
posed modes.

It is important to realize that the way boundary data is specified, i.e., the bound-
ary conditions, can greatly affect the well-posedness of a problem. As was shown in
[9], there are cases in which a well-posed initial value problem becomes an ill-posed
IBVP when a boundary is introduced and a what might appear to be very innocuous
boundary condition, such as setting to zero the incoming modes, is used. As we will
show, the ill-posedness of certain boundary conditions that attempt to preserve the
constraint can be so severe that no numerical simulation is possible.

In section 5.1 we briefly illustrate the derivation of boundary conditions that
are designed to preserve the constraints based on the characteristic analysis of the
evolution of the constraint variables. We focus on three different types of boundary
conditions, which differ in terms of how the ingoing and outgoing fields are coupled.
The three cases are:

1. Sommerfeld;

2. Neumann;

3. Dirichlet.

Whereas a proof of well-posedness is available for the Neumann and Dirichlet cases,
in the Sommerfeld case only proofs of ill-posedness for certain values of the parameter
η are available. Section 5.3 is devoted to the understanding of the convergence rates
of the solution and its first derivatives. This is needed for the interpretation of the
numerical results.
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In the next chapter we will complicate the problem even further by considering
the case of a non-smooth boundary, i.e., we will look at the quarter-space problem in
which the domain is of the form Ω = {(x, y, z) ∈ R

3|x ≥ 0 ∧ y ≥ 0}. We note that
what is typically called quarter-space problem in the mathematical literature, such
as [22] is what we have called half-space problem.

5.1 The Boundary Conditions for the GEC System

For the constraints to be satisfied everywhere, when boundaries are present, one has
to ensure that no constraint-violating mode enters the domain. In order to guarantee
this, we follow the analysis of Refs. [13], [8] and [9], based on the fact that, if the
main variables satisfy the evolution equations, the constraint variables propagate
hyperbolically. To ensure that the constraints vanish for all t ≥ 0 one has to (i) set
them to zero initially and (ii) set the incoming characteristic constraint variables to
zero (or proportional to the outgoing ones). In terms of the main variables the first
requirement simply means that the initial data has to satisfy the constraints. The
second one means that one cannot freely specify all the incoming fields for the main
system.

If n is the outward unit normal to the boundary, the ingoing and outgoing con-
straints are given by Eqs. (4.38) and (4.39). These equations involve normal deriva-
tives, which cannot be controlled in hyperbolic problems. To circumvent this difficulty
one typically trades the normal derivatives with time and tangential derivatives using
the evolution equations. Generally, this leads to partial differential equations, which
have to be satisfied by the incoming modes of the main system.

In terms of the characteristic variables for the main system, the in- and outgoing
constraint variables are given by

V (+1;n)
n = ∂Bv

(+1;n)
Bn − ∂nv

(+1;n)
BB +

κ√
2
∂BfB , (5.1)

V
(+1;n)
A = ∂nv

(+1;n)
nA + ∂Bv

(+1;n)
BA − ∂Av

(+1;n)
kk − κ√

2
∂Afn , (5.2)

V (−1;n)
n = ∂Bv

(−1;n)
Bn − ∂nv

(−1;n)
BB − κ√

2
∂BfB , (5.3)

V
(−1;n)
A = ∂nv

(−1;n)
nA + ∂Bv

(−1;n)
BA − ∂Av

(−1;n)
kk +

κ√
2
∂Afn , (5.4)

where A and B are vectors tangent to the boundary, fB ≡ fBkk − fkkB = v
(0;n)
Bkk −

v
(0;n)
AAB + 1√

2
(v

(+1;n)
nB −v(−1;n)

nB ) and fn ≡ fnBB −fBBn = − 1√
2
(v

(+1;n)
BB −v(−1;n)

BB )−v(0;n)
BBn. We

need to impose that the incoming characteristic constraint variables, V
(+1;n)
j , vanish
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at the boundary either by setting them to zero or by setting them proportional to
the outgoing variables, V

(−1;n)
j . In the derivation of (5.1)–(5.4) the components ni,

Ai, and Bi, are assumed to be constant.

5.1.1 Sommerfeld Case

The boundary conditions that result by setting the ingoing constraints to zero are

V (+1;n)
n = 0 : ∂tv

(+1;n)
BB = ∂Bv

(+1;n)
Bn − 1√

2
∂Av

(0;n)
ABB +

κ√
2
∂BfB , (5.5)

V
(+1;n)
A = 0 : ∂tv

(+1;n)
nA = −∂Bv

(+1;n)
BA + ∂Av

(+1;n)
kk − 1√

2
∂Bv

(0;n)
BnA +

κ√
2
∂Afn ,(5.6)

v(+1;n)
nn = gnn , (5.7)

v̂
(+1;n)
AB = ĝAB , (5.8)

where gnn and ĝAB are freely specifiable quantities, and

∂nv
(±1;n)
ij = ±∂tv

(±1;n)
ij ± 1√

2
∂Av

(0;n)
Aij (5.9)

was used to trade the normal derivatives with time and tangential derivatives in (5.1)
and (5.2). These boundary conditions probably represent the most natural way of ob-
taining constraint-preserving boundary conditions and have the great advantage that
for vanishing boundary data they yield a good approximation to radiative boundary
conditions. Unfortunately, to our knowledge there is currently no result showing that
the resulting IBVP is well-posed. However, in [9], it was proved using the Laplace-
Fourier technique that, if the parameter η lies outside the closed interval [0, 8/3], the
problem is ill-posed. It is interesting to notice that, in particular, the problem is
ill-posed for the original Einstein-Christoffel system (η = 4).

In 2001, after having successfully carried out numerical experiments with the
original Einstein-Christoffel in spherical symmetry [13], numerical tests with the
three dimensional problem linearized about Minkowski clearly pointed to the fact the
boundary conditions being used, Eqs. (5.5)–(5.8), were making the problem ill-posed.
This stimulated the collaboration that resulted in [8], where well-posed constraint-
preserving boundary conditions were obtained for two different cases, Neumann and
Dirichlet.

5.1.2 Neumann Case

The idea behind the derivation of well-posed constraint-preserving boundary condi-
tions in [8] is that, for certain couplings of in- and outgoing characteristic variables
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and in- and outgoing constraints, it is possible to obtain a closed symmetric hyperbolic
system that lives on the boundary. Remarkably, once some source terms are given,
the boundary data can be obtained by solving this closed system without knowing
anything about the solution in the interior (apart from the initial data). It is this
decomposition of the problem that ensures continuous dependence on the initial and
boundary data.

One of the combinations of in- and outgoing constraints that were used in [8] is

1√
2
(V (+1;n)

n + V (−1;n)
n ) = Cn = ∂BKBn − ∂nKBB , (5.10)

1√
2
(V

(+1;n)
A − V

(−1;n)
A ) = −CnA = −∂nfnnA − ∂BfnAB + ∂Afnkk − κ∂Afn .(5.11)

By using the evolution equations

∂nfnij = −∂tKij − ∂BfBij , (5.12)

∂nKij = −∂tfnij , (5.13)

we can eliminate the normal derivatives. After the trading we have

Cn : ∂tfnBB = −∂BKBn , (5.14)

CnA : ∂tKnA = −∂BfBnA + ∂BfnAB − ∂Afnkk + κ∂Afn . (5.15)

In [8] it was observed that, if supplemented with the evolution of some zero speed
modes, fABn, the system can be closed:

∂tfnBB = −∂AKnA , (5.16)

∂tKnA = −1

2
∂AfnBB − ∂CfCAn − κ∂A(fBBn − fnBB) (5.17)

−∂Afnnn + ∂B f̂nAB ,

∂tfABn = −∂AKnB . (5.18)

Eqs. (5.16)–(5.18) form a 7 × 7 symmetric hyperbolic system for the variables fnBB ,
KnA, and fABn. The quantities fnnn and f̂nAB = fnAB− 1

2
δABfnCC are to be considered

source terms which can be freely specified.

5.1.3 Dirichlet Case

An alternative combination of in- and outgoing constraints that was considered in [8]
is

1√
2
(V (+1;n)

n − V (−1;n)
n ) = −Cnn = −∂BfnnB + ∂nfnBB + κ∂BfB , (5.19)
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1√
2
(V

(+1;n)
A + V

(−1;n)
A ) = CA = ∂nKnA + ∂BKBA − ∂AKkk . (5.20)

After the trading, one obtains the boundary conditions

Cnn : ∂tKBB = −∂BfnnB − ∂AfABB + κ∂BfB , (5.21)

CA : ∂tfnnA = ∂BKBA − ∂AKkk . (5.22)

By introducing the following combination of zero speed modes,

hA = (1 − κ)fABB + κ(fBBA − fAnn) ,

it is possible to construct a closed system with equations (5.21) and (5.22):

∂tKBB = −(1 + κ)∂AfnnA − ∂AhA , (5.23)

∂tfnnA = −1

2
∂AKBB − ∂AKnn + ∂BK̂AB , (5.24)

∂thA =
(κ

2
− 1
)

∂AKBB + κ(∂AKnn − ∂BK̂BA) . (5.25)

Eqs. (5.23)–(5.25) form a 5 × 5 symmetric hyperbolic system for the variables KBB ,
fnnA, and hA. The quantities Knn and K̂AB = KAB − 1

2
δABKCC are to be considered

source terms which can be freely specified.

5.2 Compatibility Conditions Between Initial and

Boundary Data

Giving smooth initial data and smooth boundary data does not guarantee that the
solution of the initial-boundary value problem is smooth. In general, there are addi-
tional conditions that the data have to satisfy.

Consider, for example, the one way wave equation

∂tu = ∂xu (5.26)

in Ω = [0, 1] for t ≥ 0 with initial data

u(0, x) = f(x) , 0 ≤ x ≤ 1 ,

and boundary data
u(t, 1) = g(t) , t ≥ 0 .
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Clearly, for u to be a (single-valued) function we must have that f(1) = g(0). Addi-
tional requirements, called compatibility conditions, between the initial and boundary
data arise if we demand that the solution of the problem be of class Cr.

The most general solution of the evolution equation (5.26) is given by u(t, x) =
ψ(t + x), where ψ is an arbitrary function. If we want u to satisfy the initial and
boundary data, then we must have

ψ(z) =







f(z) z < 1
f(1) = g(0) z = 1
g(z − 1) z > 1

(5.27)

The degree of smoothness of u is tied to the degree of smoothness of ψ. The function
ψ is of class Cr if and only if f and g are of class Cr and

lim
x→1−

dnf

dxn
(x) = lim

t→0+

dng

dtn
(t) (5.28)

for n = 0, 1, . . . , r. Condition (5.28) could have been derived by taking the n-th
derivative of the boundary data, using the evolution equations n times, and taking
the limit as t→ 0+.

In a similar manner, one can obtain compatibility conditions for the linearized
GEC system. If we look at the evolution of the constraints system we see that, for
vanishing initial and boundary data, all compatibility conditions are satisfied. For
the main system non trivial compatibility conditions arise for the freely specifiable
data. For example, a first order compatibility condition in the Sommerfeld case is

[∂n(Knn − fnnn) − ∂AfAnn]x=0 =
√

2∂tgnn|t=0 . (5.29)

5.3 Convergence Rates

We emphasize that the constraints are enforced only at time t = 0 by restricting
the set of initial data and, at the boundary, by using constraint-preserving boundary
conditions. In the interior we exclusively use the evolution equations for the main
variables. To test if the initial-boundary value problem can be discretized successfully
one simply monitors the constraints at each time step.

Before we proceed to the testing phase of these boundary conditions, we want
to gain some insight into the expected rate of convergence of the constraints in the
presence of boundaries. We do so by analyzing simple toy models.
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5.3.1 Initial Value Problem

We start with a case in which there are no boundaries. Consider the model problem

∂u

∂t
=

∂u

∂x
, t ≥ 0 , (5.30)

u(0, x) = f(x) . (5.31)

We use the method of lines to obtain the following semi-discrete approximation

dvj

dt
= D0vj , t ≥ 0 , (5.32)

vj(0) = f(xj) . (5.33)

To show that this is a second order accurate approximation we closely follow Ref. [22].
We need to estimate the error at time t, which is given by

wj(t) = u(t, xj) − vj(t) .

Using (5.30) and (5.32) we see that it satisfies the equation

dwj

dt
= ux −D0vj = D0wj + Fj , (5.34)

where Fj = ∂xu(t, xj) − D0u(t, xj) = O(h2). The time derivative of the discrete L2

norm of the error, ‖w‖2
h =

∑

j w
2
jh, satisfies

d

dt
‖w‖2

h ≤ 2‖w‖h‖F‖h . (5.35)

Integrating the inequality, we get

‖w(t)‖h ≤
∫ t

0

‖F (τ)‖hdτ ≈ O(h2) . (5.36)

Thus, the scheme is convergent and, in particular, second order accurate. To obtain
this result we relied on the fact that Fj = O(h2). This condition is satisfied if the
second derivative of u is Lipschitz continuous. In particular, if the exact solution is
of class C3, one has second order convergence.

We now proceed to show that the numerical derivative of vj, D0vj, is a second
order accurate approximation to the derivative of the exact solution, ∂xu. The error
w

(1)
j (t) = ux(t, xj) −D0vj satisfies

dw
(1)
j

dt
= uxx −

d

dt
D0vj = D0w

(1)
j + F

(1)
j (5.37)
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with F
(1)
j = uxx(t, xj) − D0ux(t, xj) = O(h2), if uxxx(t, x) is Lipschitz continuous.

Hence we have the inequality

‖w(1)(t)‖h ≤ ‖w(1)(0)‖h +

∫ t

0

‖F (1)(τ)‖hdτ ≈ O(h2) . (5.38)

In this case w(1)(0), the initial error, is of order of the truncation error, i.e., w(1)(0) ≈
O(h2). The above result is in agreement with [32] and can be easily generalized to

show that the error in the n-th derivative, w
(n)
j (t) = ∂n

xu(t, xj)−Dn
0 vj, is second order

accurate, provided that ∂n+2
x u is Lipschitz continuous.

5.3.2 Initial-boundary Value Problem

We now introduce a boundary and generalize the result of page 476 of [22]. Consider
the scalar model problem

∂u

∂t
=
∂u

∂x
, 0 ≤ x ≤ 1 , t ≥ 0 , (5.39)

u(0, x) = f(x) , (5.40)

u(t, 1) = g(t) , (5.41)

with real solution u. The initial and boundary data satisfy the compatibility condi-
tions dng/dtn(0) = dnf/dxn(1) for n = 0, 1, 2, . . . , r. The semi-discrete approximation
leads to a system of ordinary differential equations

dv0

dt
= D+v0 , (5.42)

dvj

dt
= D0vj , j = 1, . . . , N − 1 , (5.43)

dvN

dt
=

dg

dt
, (5.44)

vj(0) = f(xj) . (5.45)

The error, wj(t) = u(t, xj) − vj(t), satisfies

dw0

dt
= ux −D+v0 = D+w0 + F0 , (5.46)

dwj

dt
= ux −D0vj = D0wj + Fj j = 1, 2, . . . , N − 1 , (5.47)

dwN

dt
= ux −

dg

dt
= 0 , (5.48)

w(0) = 0 , (5.49)
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where

Fj(t) =

{

O(h), j = 0,
O(h2), j = 1, 2, . . . , N − 1

. (5.50)

To estimate the order of accuracy we take a time derivative of the discrete L2-norm
of the error,

d

dt
‖w(t)‖2

h = 2(w,Dw)h + 2(w, F )h (5.51)

= −w2
0 + w0F0h+ 2(w, F )1,N−1 (5.52)

≤ F 2
0 (t)h2 + ‖w(t)‖2

h + ‖F (t)‖2
1,N−1, (5.53)

and integrate the inequality (see appendix B). This gives

‖w(t)‖2
h ≤

∫ t

0

et−τF 2
0 (τ)h2dτ +

∫ t

0

et−τ‖F (τ)‖2
1,N−1dτ (5.54)

= O(h4) , (5.55)

which proves that the approximation is second order accurate, i.e., ‖w(t)‖h = O(h2).
We now want to derive a similar estimate for the discrete derivative. The error

w
(1)
0 (t) = ux(t, x0) −D+v0 , (5.56)

w
(1)
j (t) = ux(t, xj) −D0vj , j = 1, . . . , N − 1 , (5.57)

w
(1)
N (t) = ux(t, xN) − dg

dt
= 0 , (5.58)

(notice that w
(1)
N (t) 6= ux(t, xN ) −D−vN ) satisfies

dw
(1)
0

dt
= uxx(t, x0) −

d

dt
D+v0 = D+w

(1)
0 + F

(1)
0 , (5.59)

dw
(1)
j

dt
= uxx(t, xj) −

d

dt
D0vj = D0w

(1)
j + F

(1)
j , j = 1, . . . , N − 1 , (5.60)

w
(1)
j (0) = f

(1)
j , (5.61)

where

F
(1)
j =

{

O(h), j = 0,
O(h2), j = 1, 2, . . . , N − 1

, f
(1)
j =

{

O(h), j = 0,
O(h2), j = 1, 2, . . . , N − 1

.

(5.62)
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Again, the initial data for the discrete derivative is not exact due to truncation errors.
To obtain an estimate for w(1)(t) we take a time derivative of its norm

d

dt
‖w(1)(t)‖2

h = 2(w(1), Dw(1))h + 2(w(1), F (1))h (5.63)

= −w(1)
0

2 + w
(1)
0 F

(1)
0 h+ 2

N−1
∑

j=1

w
(1)
j F

(1)
j h (5.64)

≤ F
(1)
0

2(t)h2 + ‖w(1)(t)‖2
h + ‖F (1)(t)‖2

1,N−1 (5.65)

and integrate the inequality

‖w(1)(t)‖2
h ≤ ‖f (1)(0)‖2

h +

∫ t

0

et−τF
(1)
0

2(τ)h2dτ +

∫ t

0

et−τ‖F (1)(τ)‖2
1,N−1dτ

= O(h3) .

This shows that the numerical derivative is 3/2 order accurate. Notice that the
dominant contribution comes from the truncation error in the initial data at the
boundary.

An important assumption in the derivation of the order of accuracy for the dis-
cretized derivative was that at the inflow boundary, x = 1, we defined w

(1)
N so that it

vanishes identically. However, for simplicity, when monitoring the constraints for the
linearized GEC system, we will use one sided difference operators wherever a centered
one cannot be used.

5.3.3 The Degree of Differentiability of the Data

It is important to know the minimum degree of smoothness of the initial and boundary
data that ensures that the scheme is second order accurate.

From the analysis of this section, it follows that a sufficient condition to have
second order convergence is that the solution is of class C3. If fact, a weaker condition
is that the second derivative of the exact solution is Lipschitz continuous.

Numerical experiments with a solution that has a Lipschitz continuous second
derivative at a finite number of points and is smooth everywhere else indicate 3/2
order convergence for the discretized derivative.

Furthermore, to have second order convergence, it is necessary that the compati-
bility conditions of order 0, 1 and 2 are satisfied.
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5.4 The Wave Equation

Before we proceed with the numerical experiments with the GEC system, we analyze
the wave equation.

5.4.1 The Semi-discrete System and the Discrete Constraint

Consider the wave equation in two spatial dimensions,

∂2
t φ = ∂2

xφ+ ∂2
yφ . (5.66)

By introducing the auxiliary variables X = ∂xφ, Y = ∂yφ and T = ∂tφ, the second
order system can be written in first order symmetric hyperbolic form

∂tT = ∂xX + ∂yY , (5.67)

∂tX = ∂xT ,

∂tY = ∂yT ,

where the constraint C ≡ ∂yX − ∂xY = 0 has to hold. It is straightforward to see
that the constraint propagates with zero speed, namely ∂tC = 0. This implies that
in the absence of boundaries, if the initial data satisfies the constraint, the solution
at time t will satisfy the constraint. We now introduce the gridfunctions Xij, Yij and
Tij and construct the semi-discrete system by replacing the partial derivatives with
centered difference operators,

∂tTij = D
(x)
0 Xij +D

(y)
0 Yij ,

∂tXij = D
(x)
0 Tij ,

∂tYij = D
(y)
0 Tij . (5.68)

Similarly, the discrete constraint is given by Cij = D
(y)
0 Xij − D

(x)
0 Yij. Since the

system has constant coefficients and [D
(x)
0 , D

(y)
0 ] = 0, the evolution of the discrete

constraint vanishes identically,

∂tCij = [D
(y)
0 , D

(x)
0 ]Tij = 0 . (5.69)

In particular, this means that if initially the discrete constraint is violated to second
order in h, this will remain true during the evolution,

Cij(t) = Cij(0) = O(h2) ,

and that Cij will not grow in time.
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5.4.2 Boundary Conditions

Let us introduce an artificial boundary at x = 0. We want to solve the wave equation
written in first order form in the half-space x ≥ 0. Boundary data must be provided to
the incoming characteristic fields. We use the first order one sided difference operator
D

(x)
+ to approximate ∂x at the boundary. The characteristic variables in the direction

n = (−1, 0), the unit normal to the boundary, are

w(+1;n) = (T −X)/
√

2 , (5.70)

w(−1;n) = (T +X)/
√

2 , (5.71)

w(0;n) = Y . (5.72)

Following Olsson, see page 17, we overwrite the right hand side of the evolution
equations at the boundary according to

∂tT0j =
1

2
D

(x)
+ (X + T )0j +

1

2
D

(y)
0 Y0j +

1√
2
∂tgj ,

∂tX0j =
1

2
D

(x)
+ (X + T )0j +

1

2
D

(y)
0 Y0j −

1√
2
∂tgj ,

∂tY0j = D
(y)
0 T0j . (5.73)

Notice that the first two equations are equivalent to ∂tw
(+1;n)
0j = ∂tgj and ∂tw

(−1;n)
0j =

D
(x)
+ w

(−1;n)
0j + 1√

2
D

(y)
0 w

(0;n)
0j . In other words, while the incoming mode is overwritten by

the boundary data, the outgoing mode is evolved using the evolution equations of the
interior, the normal derivative being computed using a one-sided difference operator.
At the boundary the constraint is discretized as

C0j = D
(y)
0 X0j −D

(x)
+ Y0j . (5.74)

If we compute its time derivative we get

∂tC0j = D
(y)
0

[

−1

2
D

(x)
+ (T −X)0j +

1

2
D

(y)
0 Y0j −

1√
2
∂tgj

]

. (5.75)

Notice that the time derivative of C1j, which involves fields evaluated at the boundary,
is still given by (5.69). This implies that the discretized constraint remains constant
at the interior gridpoints and, in particular, it vanishes if it does so initially. Fur-
thermore, if D

(y)
0 uij = 0 at t = 0 and at the boundary D

(y)
0 gj = 0, then the solution

satisfies D
(y)
0 uij = 0 at later times. This implies that if the initial and boundary data

do not depend on the y coordinate, then the constraint will vanish on the entire grid.
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Assume that compatibility conditions at t = 0, x = 0 are satisfied. For x > 0 we
have ∂t(T −X) = −∂x(T −X) + ∂yY . Taking the limit x → 0+ we get

∂tg = − 1√
2
∂x(T −X) +

1√
2
Yy . (5.76)

This would suggest that at the boundary we have ∂tC0j = O(h). Therefore, we
expect the convergence rate for the discretized constraint to be 3/2. We carry out a
numerical experiment to confirm this.

We numerically evolve system (5.67) in Ω = [0, 1]× [0, 1] using periodic boundary
conditions in the y direction. Boundary data is given to the incoming modes at x = 0
and x = 1 according to

w(+1;n)(t, 0, y) = sin4(2πt) sin3(πy) n = (−1, 0) ,
w(+1;n)(t, 1, y) = 0 n = (+1, 0) ,

(5.77)

with vanishing initial data.
The contribution to the discrete constraints originates purely from the boundary.

As shown in Fig. 5.1 there is a O(h) error at the boundary which gives a global
convergence rate of 3/2. This plot was obtained using a mesh size of h = 1/100. The
global norm is ‖C‖h = (

∑

ij σiσjC
2
ijh1h2)

1/2 and the boundary norm is its restriction

to the boundary, namely, ‖C‖h = (
∑

j σjC
2
0jh2)

1/2.

5.5 Numerical Tests with the GEC System

From the work of [8] we know that both the Neumann and the Dirichlet case are well-
posed provided that the parameter η belongs to the open interval (0, 2). More recently,
in [9], it was proved that the initial-boundary value problem for the Sommerfeld case
is ill-posed if η < 0 or η > 8/3. In this section we summarize the results of numerical
tests carried out to corroborate these statements and to investigate what happens in
the Sommerfeld case for 0 < η ≤ 8/3. In the η = 0 case, the variables fkij are not
defined, see Eq. (4.16), and the case is therefore of no interest. To avoid corners,
periodic boundary conditions in the y direction are used.

Figure 5.2 confirms the result of [9]. The parameter η is set to 2.7 and the

conditions V
(+1;n)
j = 0 are used at the boundary. Time periodic data is given one of

the freely specifiable incoming modes. In this specific case we choose gnn.
Figure 5.3 is obtained by reducing the parameter η to 2.6. The observed stability

suggests that the problem is well-posed.
Figure 5.4 summarizes the results of a parameter search for the Sommerfeld case.

The test seems to confirm that for η < 0 or η > 8/3, the problem is ill posed. It
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Figure 5.1: The error in the discrete constraint Cij ≡ D(y)Xij − D(x)Yij is of order
O(h) at the boundary.

is interesting to note that for sufficiently small but positive values of η the problem
appears to be ill-posed, and that for values close but smaller than 8/3 the problem
appears to be well-posed. The first transition from instability to stability occurs at
η ≈ 0.27. It is interesting to notice that for 0 < η . 0.27 both the main evolution
system and the evolution of the constraint variables are symmetric hyperbolic.

We now evolve system (4.26)–(4.27) directly for η = 4 (Einstein-Christoffel sys-

tem) with maximally dissipative boundary conditions V
(+1;n)
j = 0. As initial data

we use a pulse of compact support which represents a “small” perturbation in the
constraints. The same data of class C3,

Cj = Cij =

{

(1 + cos(π|~x− ~x0|/r0))2 |~x− ~x0| ≤ r0,
0 |~x− ~x0| > r0

(5.78)

is given to all constraint components. The results of the numerical simulations are
summarized in Figure 5.5. They confirm what was shown in [9], namely that the
problem is ill-posed for this particular value of the parameter. Similar plots are
obtained for values of η outside the closed interval [0, 8/3].

We explore the one dimensional parameter space 0 < η ≤ 8/3 to see if there are
any values of η for which the system does not exhibit an instability. The plot in
figure 5.7 suggests that setting the incoming constraints to zero leads to a well-posed
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Figure 5.2: The L2 norm of the Hamiltonian constraint at different resolutions con-
firms that the initial-boundary value problem for the evolution equations is ill posed
for η = 2.7. As the the resolution is increased, the rate of exponential growth of the
constraint increases.

problem if 0 < η < 8/3. Here the instability observed in Fig. 5.4 for small but positive
values of η is not present.

Tests for the η = 2.6 and η = 2.7 cases ares shown in Figs. 5.8 and 5.9.
Finally, lack of instability suggested by Fig. 5.10 confirms that, in the Neumann

case, the initial-boundary value problem is well-posed. This figure was obtained with
η = 4/3. Several tests done with 0 < η < 2 and with the Dirichlet case also confirm
stability.
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Figure 5.3: The L2 norm of the Hamiltonian constraint for η = 2.6 in the Sommerfeld
case. The constraint is converging to zero.
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Figure 5.4: The L2 norm of the Hamiltonian constraint for different values of the
parameter η for Sommerfeld boundary conditions at a fixed resolution of 160 × 160.
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Figure 5.5: The Euclidean L2 norm of the constraints confirms that, for η = 4,
the initial-boundary value problem that results by setting the incoming constraints
to zero in (4.26)–(4.27) is ill-posed. As the resolution is increased an exponentially
growing mode with a frequency dependent exponent is triggered and quickly spoils
the simulation. The resolutions are indicated in the legend.
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Figure 5.6: The x component of the momentum constraint, C1, at time t = 0.2 for
η = 4. The frequency dependent exponential growth due to the boundary conditions
is evident.
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Figure 5.7: The Euclidean L2 norm of the constraints indicates exponential growth
for η > 8/3 or η < 0. The grid consists of 160 × 160 points.
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Figure 5.8: The Euclidean L2 norm of the constraints suggests that the IBVP for the
constraints is not ill-posed for η = 2.6. As the resolution is increased, the L2 norm of
the perturbation at time t seems to converge to a finite value.
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Figure 5.9: The Euclidean L2 norm of the constraints confirms that the IBVP for the
constraints is ill-posed for η = 2.7. As the resolution is increased, the L2 norm of the
perturbation increases.
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Figure 5.10: The Euclidean L2 norm of the momentum constraints for η = 4/3 in the
Neumann case suggests that the scheme is stable.
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Chapter 6

The Quarter-space Problem

In this chapter we analyze boundary conditions for the initial-boundary value problem
in the quarter space formed by the set of points of R3 with non negative x and y
components,

Ω = {(x, y, z) ∈ R
3|x ≥ 0 ∧ y ≥ 0} .

Its boundary, ∂Ω, is clearly not smooth everywhere. There are points belonging to
∂Ω at which the unit normal is not well defined. As we will show, this gives rise to a
number of complications. The fact that we would like to preserve the constraints near
the corners, only makes the specification of boundary data at and in a neighborhood
of such points more challenging.

Here are some of the major difficulties:

1. In order to obtain a sufficiently smooth solution, the boundary data has to sat-
isfy compatibility conditions at the corners. These conditions limit the freedom
with which the data can be specified and are similar to the ones that exist
between the initial and boundary data.

2. At the numerical level boundary data has to be specified at the corner of the
computational domain. According to Olsson’s method for maximally dissipative
boundary conditions data has to be given in the 45◦ direction for a uniform
grid. Unless the exact solution is known, these boundary conditions need to be
slightly modified in order to have consistency with the boundary data that is
specified on the adjacent faces.

3. An important step in the derivation of constraint-preserving boundary condi-
tions of the previous chapter was the use of the evolution equations to trade
normal derivatives with time and tangential derivatives. The reason for doing so
was that, since we are solving an hyperbolic problem, we cannot control normal
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derivatives at the boundary. However, at a corner the normal unit vector is not
well defined.

In section 6.1 we derive compatibility conditions for the boundary data for the
two dimensional wave equation up to third order. The compatibility conditions for
the generalized Einstein-Christoffel system are derived in section 6.2. We then look at
the discretized wave equation and analyze the consistency of the boundary conditions
at the corner. Experiments with modifications of the standard Olsson boundary con-
ditions at the corners are summarized in section 6.4. The results of these tests clearly
suggest that in order to obtain a sufficiently smooth solution, both the compatibility
and consistency conditions have to be satisfied. We then test the compatibility condi-
tions proposed in [8] and show that special attention is required in the specification of
the source terms. Finally, we experiment with the Sommerfeld constraint-preserving
boundary conditions in the presence of corners.

6.1 Compatibility Conditions for the Wave Equa-

tion

In this section we analyze the compatibility conditions at the corner for the two
dimensional wave equation written in first order form,

∂tT = ∂iX
i , (6.1)

∂tX
i = ∂iT . (6.2)

The constraint C ≡ ∂[1X2] = 0 must hold. A compatibility condition is a relation
between the derivatives of the data at two adjacent faces that must be satisfied in
order to have a solution with a certain degree of smoothness. We denote with n and
m the outward pointing unit vectors at the adjacent boundary faces, which meet each
other at a right angle (n ·m = 0). The system has the form

∂tT = ∂nX
n + ∂mX

m , (6.3)

∂tX
n = ∂nT , (6.4)

∂tX
m = ∂mT , (6.5)

where ∂n = ni∂i and Xn = niX
i. The boundary conditions at the two sides are

assumed to be in maximal dissipative form, i.e., the incoming mode is set to be equal
to the sum of the outgoing mode multiplied by a sufficiently small coupling constant
and an inhomogeneous term. We impose

T +Xn − s(n)(T −Xn) = g(n) (6.6)
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at the face orthogonal to n, and

T +Xm − s(m)(T −Xm) = g(m) (6.7)

at the face orthogonal to m. A necessary condition for the problem to admit a
solution of class Cr is that all of the compatibility conditions of order j = 0, 1, . . . , r
are satisfied.

The procedure used to derive compatibility conditions of order r at the corner
is the following. One takes time and tangential derivatives of order r of (6.6) and
(6.7) and spatial derivatives of order r − 1 of the constraints. Using the evolution
equations one eliminates the time derivatives of the main variables. One then looks
for vanishing linear combinations.

• Zeroth order

The only 0-th order compatibility condition is g(n) = g(m), if s(n) = s(m) =
−1. In this case we are specifying the variable T on both faces and, unless
limy→0+ T (0, y, z) = limx→0+ T (x, 0, z), the solution cannot be continuous.

• First Order

A vanishing linear combination of constraints and first derivatives of boundary
data is given by

(1 + s(m))(1 + s(n))C = (1 + s(m))∂mg
(n) − (1 + s(n))∂ng

(m) (6.8)

−(1 − s(n))∂tg
(m) + (1 − s(m))∂tg

(n) ,

where C ≡ ∂mX
n − ∂nX

m. We notice that if s(n) = −1 or s(m) = −1 the above
compatibility condition exists even in the absence of constraints.

• Second Order

We now take second time and tangential derivatives of the boundary data. In
this case the compatibility condition is simply the time derivative of the first
order one

0 = (1+ s(m))∂t∂mg
(n) − (1+ s(n))∂t∂ng

(m) − (1− s(n))∂2
t g

(m) + (1− s(m))∂2
t g

(n) .

Furthermore, if s1 = s2 = −1 we have the additional condition

0 = −∂2
t g

(n) + ∂2
ng

(m) + ∂2
mg

(n).
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• Third Order

There are two third order compatibility conditions,

0 = (1 + s(m))∂2
t ∂mg

(n) − (1 + s(n))∂2
t ∂ng

(m)

−(1 − s(n))∂3
t g

(m) + (1 − s(m))∂3
t g

(n) ,

(1 + s(n))(1 + s(m))(∂2
n − ∂2

m)C = (1 − s(m))∂3
t g

(n) − (1 − s(m))∂t∂
2
mg

(n)

−(1 + s(m))∂3
mg

(n) + (1 + s(m))∂2
t ∂mg

(n)

−(1 − s(n))∂t∂
2
ng

(m) − (1 + s(n))∂3
ng

(m) .

6.2 Compatibility Conditions for the Linearized

GEC System

In section 5.1 we showed how to obtain constraint-preserving boundary conditions for
the generalized Einstein-Christoffel system linearized about Minkowski in Cartesian
coordinates in the presence of a boundary aligned with the coordinates. This was
done by appropriately coupling the incoming characteristic constraints to the outgoing
ones. Depending on the coupling, we considered three different types of boundary
conditions: Sommerfeld, Neumann, and Dirichlet. Again, we let n and m denote the
unit normals to the two intersecting faces. The tangent to the edge is denoted by p.
The three vectors n, m, and p, form an orthonormal basis with respect to δij.

For convenience we rewrite these boundary conditions starting from the Sommer-
feld case, in which the ingoing constraints are set directly to zero, V

(+1;n)
j = 0. Three

of the incoming fields, v
(+1;n)
BB and v

(+1;n)
nA , must satisfy a partial differential equation

involving time and tangential derivatives, whereas the remaining three, v
(+1;n)
nn and

v̂
(+1;n)
AB , should be freely specified,

v(+1;n)
nn = gnn ,

∂tv
(+1;n)
BB = ∂Bv

(+1;n)
Bn − 1√

2
∂Av

(0;n)
ABB +

κ√
2
∂BfB ,

∂tv
(+1;n)
nA = −∂Bv

(+1;n)
BA + ∂Av

(+1;n)
kk − 1√

2
∂Bv

(0;n)
BnA +

κ√
2
∂Afn ,

v̂
(+1;n)
AB = ĝAB .

We recall that the capital latin indices denote directions normal to n.
In the Neumann case the boundary conditions are

fnnn = gnn ,
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∂tfnBB = −∂AKnA ,

∂tKnA = −1

2
∂AfnBB − ∂CfCAn − κ∂A(fBBn − fnBB) + ∂B f̂nAB − ∂Afnnn ,

f̂nAB = ĝAB ,

which ensure that Cn = CnA = 0.
In the Dirichlet case the boundary conditions are

Knn = gnn ,

∂tKBB = −(1 + κ)∂AfnnA − ∂A((1 − κ)fABB + κ(fBBA − fAnn)) ,

∂tfnnA = −1

2
∂AKBB − ∂AKnn + ∂BK̂AB ,

K̂AB = ĝAB ,

which guarantee that Cnn = CA = 0.
We now assume that the same boundary conditions are used at the adjacent face

with unit normal m. To obtain the first order compatibility conditions for the bound-
ary data at an edge of the computational domain we follow the same procedure out-
lined in section 6.1. We momentarily neglect the fact that some boundary conditions
are in differential form and assume that data is given directly to the combination

(Kij − fnij) − s
(n)
ij (Kij + fnij) =

√
2(v

(+1;n)
ij − s

(n)
ij v

(−1;n)
ij ) = g

(n)
ij ,

where

s(n)
nn = −s(n)

nA = s
(n)
BB = ŝ

(n)
AB =







0 Sommerfeld
+1 Neumann
−1 Dirichlet

. (6.9)

The data g
(m)
ij and the coupling constants s

(m)
ij of the adjacent face are defined in a

similar manner. As before, the first order compatibility conditions at the edges are
determined by taking time and tangential derivatives of the boundary data. At each
face there are 6 quantities that are being specified, g

(n)
ij , and three possible directions

(t, m and p) in which derivatives of the data can be taken. Thus, we have 18 equations
on each face, giving a total of 36 equations at an edge.

By introducing the 72 component array U ,

UT = (∂nu, ∂mu, ∂pu) ,

which contains all possible spatial derivatives of the 24 primitive variables uT =
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(Kij, fkij), we can write the 36 first derivatives of the boundary data in matrix form





















∂tg
(n)
ij

∂mg
(n)
ij

∂pg
(n)
ij

∂tg
(m)
ij

∂ng
(m)
ij

∂pg
(m)
ij





















= BU . (6.10)

The 22 constraints, (4.17), (4.18) and (4.19), can also be written in matrix form,

C = CU .

If the rank of the 48 × 72 matrix

L =

(

B
C

)

(6.11)

is smaller than 48, then there are first order compatibility conditions. The number
of compatibility conditions is given by 48 − rank(L).

In the remaining part of this section we summarize the results obtained in the
Sommerfeld, Neumann and Dirichlet cases.

• Sommerfeld

In the Sommerfeld case data is given directly to the incoming characteristic
variables Kij − fnij = g

(n)
ij . We find that at the edge which is the intersection

of the faces orthogonal to n and m, the following compatibility condition has
to hold

C̃nm = +∂tg̃
(n) + ∂mg̃

(n) − ∂tg̃
(m) − ∂ng̃

(m) , (6.12)

where

C̃nm = Cnmnn + Cnmmm − 2
3η − 4

η − 4
Cnmpp (6.13)

= 2

(

∂[nfm]nn + ∂[nfm]mm − 2
3η − 4

η − 4
∂[nfm]pp

)

,

g̃(n) = g(n)
nn + g(n)

mm − 2
3η − 4

η − 4
g(n)

pp , (6.14)

g̃(m) = g(m)
nn + g(m)

mm − 2
3η − 4

η − 4
g(m)

pp . (6.15)
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This compatibility condition is an immediate consequence of the fact that the
linear combinations of variables K̃ = Knn+Kmm−23η−4

η−4
Kpp, f̃k = fknn+fkmm−

23η−4
η−4

fkpp, satisfy the first order wave equation, including the constraint C̃kl =

∂[kf̃l] = 0. Condition (6.12) is simply the first order compatibility condition for
the wave equation (6.8).

• Neumann

At the face orthogonal to n and m data is given to a combination of in- and
outgoing modes. This is summarized in Table 6.1.

Table 6.1: In the Neumann case data is given to the following quantities.

face ⊥ n face ⊥ m

−2fnnn = g
(n)
nn −2fmmm = g

(m)
mm

+2Knm = g
(n)
nm +2Kmn = g

(m)
mn

+2Knp = g
(n)
np +2Kmp = g

(m)
mp

−2fnmm = g
(n)
mm −2fmnn = g

(m)
nn

−2fnmp = g
(n)
mp −2fmnp = g

(m)
np

−2fnpp = g
(n)
pp −2fmpp = g

(m)
pp

In the Neumann case there is only one zeroth order compatibility condition,
g

(n)
nm = g

(m)
nm . This condition simply reflects the fact that since we are specifying

Knm on the two adjacent faces, we must ensure that as we approach the edge
on both faces we give the same values. If this condition is violated, the problem
cannot admit a continuous solution.

In this case we find that the rank of L in (6.11) is 41, which means that there
are 7 compatibility conditions containing first derivatives of the boundary data.
These are

0 = ∂t(g
(n)
nm − g(m)

nm ) , (6.16)

0 = ∂p(g
(n)
nm − g(m)

nm ) , (6.17)

0 = ∂tg
(n)
mp − ∂ng

(m)
mp , (6.18)

0 = ∂tg
(m)
np − ∂mg

(n)
np , (6.19)

2Cn = −∂tg
(n)
mm − ∂tg

(n)
pp + ∂mg

(n)
nm + ∂pg

(n)
np , (6.20)

2Cm = −∂tg
(m)
nn − ∂tg

(m)
pp + ∂ng

(m)
nm + ∂pg

(m)
mp , (6.21)
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2C̃nm = ∂mg̃
(n) − ∂ng̃

(m) . (6.22)

If any one of these conditions is violated, the problem cannot have a C1 solution.
Notice that the first two conditions are a trivial consequence of the zeroth order
compatibility condition.

Perhaps the meaning of these conditions becomes clearer after rewriting them
in terms of the primitive variables Kij, fkij. If we write the quantities specified
on the n face on the left hand side and the quantities specified on the m face
on the right hand side, the first order compatibility conditions read

∂tKnm = ∂tKnm , (6.23)

∂pKnm = ∂pKnm , (6.24)

∂tfnmp = −∂nKmp , (6.25)

−∂mKnp = ∂tfmnp , (6.26)

∂tfnmm + ∂tfnpp+ (6.27)

+∂mKnm + ∂pKnp = 0 ,

0 = ∂tfmnn + ∂tfmpp + (6.28)

+∂nKnm + ∂pKmp ,

∂mfnnn + ∂mfnmm+ (6.29)

−2
3η − 4

η − 4
∂mfnpp = ∂nfmnn + ∂nfmmm +

−2
3η − 4

η − 4
∂nfmpp .

In section (6.5) we will discuss the compatibility conditions proposed in [8] and
show that, in general, the last condition (6.29) is not automatically satisfied.

• Dirichlet

In the Dirichlet case boundary data is given according to Table 6.2.

We find that there are 11 compatibility conditions:

0 = ∂t(g
(n)
nn − g(m)

nn ) , (6.30)

0 = ∂p(g
(n)
nn − g(m)

nn ) , (6.31)

0 = ∂t(g
(n)
mm − g(m)

mm) , (6.32)

0 = ∂p(g
(n)
mm − g(m)

mm) , (6.33)

0 = ∂t(g
(n)
pp − g(m)

pp ) , (6.34)
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Table 6.2: In the Dirichlet case data is given to the following quantities.

face ⊥ n face ⊥ m

2Knn = g
(n)
nn 2Kmm = g

(m)
mm

−2fnnm = g
(n)
nm −2fmmn = g

(m)
mn

−2fnnp = g
(n)
np −2fmmp = g

(m)
mp

2Kmm = g
(n)
mm 2Knn = g

(m)
nn

2Kmp = g
(n)
mp 2Knp = g

(m)
np

2Kpp = g
(n)
pp 2Kpp = g

(m)
pp

0 = ∂p(g
(n)
pp − g(m)

pp ) , (6.35)

0 = ∂tg
(n)
np − ∂ng

(m)
np , (6.36)

0 = ∂tg
(m)
mp − ∂mg

(n)
mp , (6.37)

2Cn = ∂tg
(m)
nm + ∂pg

(m)
np − ∂ng

(m)
mm − ∂ng

(m)
pp , (6.38)

2Cm = ∂tg
(n)
nm + ∂pg

(n)
mp − ∂mg

(n)
nn − ∂mg

(n)
pp , (6.39)

2Cp = ∂mg
(n)
mp − ∂pg

(n)
mm + ∂ng

(m)
np − ∂pg

(m)
nn . (6.40)

The first six equations are a consequence of the zeroth order compatibility
conditions g

(n)
nn = g

(m)
nn , g

(n)
mm = g

(m)
mm and g

(n)
pp = g

(m)
pp .

As we did for the Neumann case, we rewrite the compatibility conditions in
terms of the primitive variables

∂tKnn = ∂tKnn , (6.41)

∂pKnn = ∂pKnn , (6.42)

∂tKmm = ∂tKmm , (6.43)

∂pKmm = ∂pKmm , (6.44)

∂tKpp = ∂tKpp , (6.45)

∂pKpp = ∂pKpp , (6.46)

∂tfnnp = −∂nKnp , (6.47)

−∂mKmp = ∂tfmmp , (6.48)

0 = ∂tfmnm − ∂pKnp + (6.49)

+∂nKmm + ∂nKpp ,

∂tfnnm − ∂pKmp+ (6.50)
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+∂mKnn + ∂mKpp = 0 ,

∂mKmp − ∂pKmm = −∂nKnp + ∂pKnn . (6.51)

We analyze the compatibility conditions proposed in [8] in section 6.5.

It is important to realize that, since only three of the six quantities at the boundary
are freely specifiable, the remaining three being determined by differential equations,
it is not obvious how to ensure that the first order compatibility conditions are satisfied
during evolution.

6.3 Consistency of the Boundary Data at Corners

When dealing with a semi-discrete system approximating an initial-boundary value
problem over a non-smooth domain, the additional issue of giving consistent boundary
data at the corners arises.

Let us start with some simple observations. Suppose that, at a corner, data is
given to the incoming mode in the direction n, v(+1;n) = g(n), leaving the outgoing
and zero speed mode unchanged. If we then overwrite the incoming mode in the
m direction, v(+1;m) = g(m), leaving the outgoing and the zero speed modes in the
direction m unchanged, we no longer have that v(+1;n) = g(n). The two operations do
not commute. To see this we use a bar to denote intermediate values and write

K̄ − f̄n = g(n) , (6.52)

K̄ + f̄n = Kold + f old
n , (6.53)

f̄m = f old
m , (6.54)

f̄p = f old
p , (6.55)

and

Knew − fnew
m = g(m) , (6.56)

Knew + fnew
m = K̄ + f̄m , (6.57)

fnew
n = f̄n , (6.58)

fnew
p = f̄p . (6.59)

The result of these two operations is

Knew =
1

2
g(m) +

1

4
g(n) +

1

4
Kold +

1

4
f old

n +
1

2
f old

m , (6.60)
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fnew
n = −1

2
g(n) +

1

2
Kold +

1

2
f old

n , (6.61)

fnew
m = −1

2
g(m) +

1

4
g(n) +

1

4
Kold +

1

4
f old

n +
1

2
f old

m , (6.62)

fnew
p = f old

p . (6.63)

In general, as a result of the second operation, it is no longer true that

Knew − fnew
n 6= g(n) . (6.64)

We emphasize that even for homogeneous boundary data the operations of overwriting
the data in the two directions n and m do not commute. We also note that it is not
possible to simultaneously overwrite data in the n and m directions leaving the two
outgoing modes unchanged. The system

Knew − fnew
n = g(n) , (6.65)

Knew − fnew
m = g(m) , (6.66)

Knew + fnew
n = Kold + f old

n , (6.67)

Knew + fnew
m = Kold + f old

m , (6.68)

is overdetermined and has no solution, unless g(m) − g(n) + f old
m − f old

n = 0.
Let us now consider the wave equation in two dimensions. The characteristic

speeds and characteristic variables in the direction n, with n2
1 + n2

2 = 1 are given by

w(+1;n) = (T +Xn)/
√

2 , (6.69)

w(−1;n) = (T −Xn)/
√

2 , (6.70)

w(0;n) = XA , (6.71)

where A = n⊥ = (−n2, n1). If we introduce w(n) = (w(+1;n), w(−1;n), w(0;n))T , u =
(T,X, Y )T , then the above relation can be expressed in matrix form as w(n) =
Q−1(n)u, where

Q(n) =







1√
2

1√
2

0
n1√

2
− n1√

2
n⊥

1
n2√

2
− n2√

2
n⊥

2






(6.72)

is an orthogonal matrix which satisfies Q−1(n)AnQ(n) = diag(+1,−1, 0). The trans-
formation between two different sets of characteristic variables is given by w(t) =
Q−1(t)Q(n)w(n) = R(t, n)w(n), with

R(t, n) =





(1 + t · n)/2 (1 − t · n)/2 t · n⊥/
√

2

(1 − t · n)/2 (1 + t · n)/2 −t · n⊥/
√

2

−t · n⊥/
√

2 t · n⊥/
√

2 t · n



 . (6.73)
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Notice that R(n, n) = 1 and R(n, t) = R(t, n)−1 = R(t, n)T .
Suppose that boundary data is given at the x = 0 and y = 0 face with unit

normals n and m in maximal dissipative form,

w(+1;n) = s(n)w(−1;n) + g(n) , (6.74)

w(+1;m) = s(m)w(−1;m) + g(m) . (6.75)

We want to determine boundary conditions for the corner that satisfy (6.74) and
(6.75) and give numerical stability. By giving data to the incoming fields at a 45
degree direction, one can bound the discrete energy estimate, as was shown by Olsson.
The boundary conditions (6.74), (6.75), can be written as

(1,−s(n), 0)w(n) = g(n) , (6.76)

(1,−s(m), 0)w(m) = g(m) . (6.77)

In terms of the characteristic variables in the directions t = (n+m)/
√

2, at the corner
we have the following two conditions

(1,−s(n), 0)R(n, t)w(t) = g(n) , (6.78)

(1,−s(m), 0)R(m, t)w(t) = g(m) . (6.79)

Using the fact that t = (n +m)/
√

2 and n ·m = nimjδ
ij = 0, the matrix R(t, n)

becomes

R(n, t) =







1
2
(1 + 1√

2
) 1

2
(1 − 1√

2
) −1

2
m · n⊥

1
2
(1 − 1√

2
) 1

2
(1 + 1√

2
) 1

2
m · n⊥

1
2
m · n⊥ −1

2
m · n⊥ 1√

2






. (6.80)

Similarly, the matrix R(m, t) can be obtained from the one above by exchanging n
with m. The two boundary conditions become

(

1 − s(n)

2
+

1 + s(n)

2
√

2

)

w(+1;t) +

(

1 − s(n)

2
− 1 + s(n)

2
√

2

)

w(−1;t)

−δ1 + s(n)

2
w(0;t) = g(n) ,

(

1 − s(m)

2
+

1 + s(m)

2
√

2

)

w(+1;t) +

(

1 − s(m)

2
− 1 + s(m)

2
√

2

)

w(−1;t)

+δ
1 + s(m)

2
w(0;t) = g(m) ,
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where δ = m ·n⊥. If s(n) 6= −1 and s(m) 6= −1, then one can solve for the ingoing and
the zero speed modes. By multiplying the first equation by (1+ s(m)) and the second
equation by (1 + s(n)) and taking the sum, we get

(

1 − s(n)s(m) +
(1 + s(n))(1 + s(m))√

2

)

w(+1;t) +

(

1 − s(n)s(m) − (1 + s(n))(1 + s(m))√
2

)

w(−1;t) =

= (1 + s(n))g(m) + (1 + s(m))g(n) . (6.81)

A different linear combination gives

δ

(

1 − s(n)s(m) +
(1 + s(n))(1 + s(m))√

2

)

w(0;t) +
√

2(s(n) − s(m))w(−1;t) =

(

1 − s(n) +
1 + s(n)

√
2

)

g(m) −
(

1 − s(m) +
1 + s(m)

√
2

)

g(n) . (6.82)

The first equation can be solved for the ingoing mode w(+1;t) and does not contain the
zero speed mode. The coupling between the ingoing mode, w(+1;t), and the outgoing
mode, w(−1;t), is never greater than 1 in magnitude. The second equation can be
solved for w(0;t). In this case, however, the coupling to the outgoing mode is not
necessarily bounded by 1. Notice that for s(n) = s(m) 6= −1 the outgoing mode
disappears from the second equation.

We now list some particular cases of (6.81) and (6.82), which might be useful for
the linearized GEC system.

For s(n) = s(m) = 0 we get

w(+1;t) = (2
√

2 − 3)w(−1;t) + (2 −
√

2)(g(n) + g(m)) , (6.83)

w(0;t) = δ(g(m) − g(n)) . (6.84)

For s(n) = s(m) = 1 we get

w(+1;t) = w(−1;t) + (g(n) + g(m))/
√

2 , (6.85)

w(0;t) = δ(g(m) − g(n))/2 . (6.86)

For s(n) = 1 and s(m) = −1 we get

w(+1;t) = −w(−1;t) + g(m) , (6.87)

w(0;t) = −
√

2δw(−1;t) + δ(g(m)/
√

2 − g(n)) . (6.88)
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For s(n) = −1 and s(m) = 1 we get

w(+1;t) = −w(−1;t) + g(n) , (6.89)

w(0;t) =
√

2δw(−1;t) − δ(g(n)/
√

2 − g(m)) . (6.90)

For s(n) = 1 and s(m) = 0 we get

w(+1;t) = (3 − 2
√

2)w(−1;t) + (
√

2 − 1)(g(n) + 2g(m)) , (6.91)

w(0;t) = (
√

2 − 2)δw(−1;t) − δg(n)/
√

2 + (2 −
√

2)δg(m) . (6.92)

For s(n) = −1 and s(m) = 0 we get

w(+1;t) = −w(−1;t) + g(n) , (6.93)

w(0;t) =
√

2δw(−1;t) −
(

1 +
1√
2

)

δg(n) + 2δg(m) . (6.94)

Finally, for s(n) = s(m) = −1 we get

w(+1;t) = −w(−1;t) + g(n) . (6.95)

When dealing with a system such as the wave equation, setting to zero the incom-
ing modes at the boundary is a reasonable approximation to a radiative boundary
condition. In addition to some initial data with compact support, it may be tempting
to specify, at the numerical level, boundary conditions that correspond to setting the
incoming modes everywhere to zero, including the ones at the corners. According to
(6.83), setting the incoming mode in the direction t at the corner to zero will lead,
in general, to an inconsistency. The numerical experiments of the next section will
clarify this point.

6.4 Experiments with the Wave Equation

In this section we perform numerical experiments aimed at determining (i) what
type of boundary data should be specified at the corner and (ii) which compatibility
conditions should be enforced to avoid losing the desired order of accuracy. To tackle
the first point we need to isolate it from the second.

To ensure that the compatibility conditions at the corners are automatically sat-
isfied we give vanishing boundary data in a neighborhood of the corners. Numerical
stability can be obtained by giving data to the incoming mode at 45 degrees. However,
since data is provided at the two intersecting faces, it is important that what is done
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at the corner is consistent. We claim that, for the case of the wave equation, data
should be given to both the incoming mode (appropriately coupled to the outgoing
one) and the zero speed mode as illustrated in the previous section.

As usual, we reduce the wave equation to a two dimensional problem by assuming
no dependence on the independent variable z. We use the domain Ω = [0, 1] × [0, 1]
and give zero initial data and zero boundary data to the incoming fields everywhere
except at the face x = 0, where we set

w(+1;n) = sin4(2πt) sin4(2π(y − 1/4)) (6.96)

for 1/4 < y < 3/4 and 0 ≤ t. We are essentially injecting a periodic pulse through
the boundary.

The convergence rate of the constraint at the boundary when the 45 degree modes
at the boundary are set to zero is shown in Fig. 6.1. The loss of convergence is a
symptom of lack of consistency. This is supported by the fact that the maximum of
the discretized constraint is not converging to zero, see Fig. 6.2.

0.0 0.5 1.0 1.5 2.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

||C
||

h / 
||C

||
h/

2

boundary

Figure 6.1: The convergence rate of the discrete constraint Cij ≡ D(y)Xij − D(x)Yij

at the boundary. The lack of convergence is a strong indication that setting to zero
the incoming modes at 45 degrees at the corners is inconsistent.

If, however, the coupling (6.83) is used, there is a noticeable improvement. See
Fig. 6.3 and 6.4.

Although at the interior of a face, giving data to a zero speed modes means that
one is overdetermining the system, numerical experiments seem to suggest that at
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Figure 6.2: The L∞ norm of the discrete constraint reveals that there are gridpoints
at which the constraint is not converging to zero.

the corner of a computational domain this can and should be done. From Fig. 6.5
and 6.6 we see that if the zero speed mode is also overwritten, then the constraint is
of order O(h) at the corner.

We now look at the compatibility issue. If we use the following boundary data
(s(n) = s(m) = 0)

g(n)(t, y) = (1 + cos(4πy))2 sin4(2πt) , y ≤ 1/4 , (6.97)

g(m)(t, x) = 0 , (6.98)

the compatibility condition (6.8) is violated. Fig. 6.7 illustrates what happens to the
constraints at the corner when incompatible data is used.

6.5 Experiments with the Neumann and Dirichlet

Cases

In this section we review and analyze the proposal of [8] for the handling of corners.
The domain is Ω = [0, 1] × [0, 1].

• Neumann
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Figure 6.3: The convergence rate of the discrete constraint Cij ≡ D(y)Xij − D(x)Yij

at the boundary for h = 1/100. The coupling (6.83) between in and out-going modes
was used.

In [8] it was suggested that, for the Neumann case, at an edge of the computa-
tional domain, in addition to specifying the source terms, one should give data
to Knm, where n and m are the normals of the two intersecting faces. This was
obtained by analyzing the closed systems at two adjacent faces and by observing
that the characteristic variables of the boundary system in the direction m (m
is orthogonal to n, δijminj = 0, and therefore tangential to the boundary face)
are given by

w(±
√

3/2;m) = ±Knm −
√

2

3

[

(1 + κ)fmmn + κfppn −
(

κ− 1

2

)

(fnmm + fnpp)

]

,

w(±1;m) = ±Knp − fmpn ,

where p is orthogonal to n and m, δijpinj = δijpimj = 0.

Giving data to Knm at the edge automatically ensures that the zeroth order
and the first two compatibility conditions (6.23) and (6.24) are satisfied.

We also notice that conditions (6.25)–(6.28) are part of the closed system and
therefore will be satisfied. On the other hand, the last condition (6.29) is not
part of the closed system and is not automatically satisfied. In fact, it is easy
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Figure 6.4: The L∞ norm of the discrete constraint.

to give data to the source terms so that this condition is violated. For example,
if we give vanishing initial data and set all source terms to zero, apart from

g(n)
nn (t, y) = sin4(2πt) sin(2πy) , 0 ≤ t ≤ 1 , (6.99)

at x = 0, we obtain Figs. 6.8 and 6.9, confirming that the first order compati-
bility condition (6.29) is violated.

Neglecting the problem of the incompatible source terms, the discretization
appears to be stable. Fig. 6.10 shows a convergence test for the Hamiltonian
constraint with η = 1.

• Dirichlet

In the Dirichlet case the characteristic variables of the boundary system in the
direction m, orthogonal to n, are

w(±
√

3/2;m) = ±KBB −
√

2

3
((1 + κ)fnnm + hm) . (6.100)

The source terms on both faces provide the necessary data at the edge.

As in the Neumann case, it is possible to give data to the source terms so that
one of the first order compatibility conditions is violated. For example, if we
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Figure 6.5: The value of the discrete constraint at the corner, C00 = D
(y)
+ X00−D(x)

+ Y00,
if the zero speed mode is not overwritten.

give vanishing initial data and set all the source terms to zero apart from

g(n)
mp(t, y) = sin4(2πt) sin(2πy) , 0 ≤ t ≤ 1 , (6.101)

at x = 0, we obtain the plot of Fig. 6.11.

Notice that in neither the Neumann nor the Dirichlet case is data given in the 45
degree direction.

6.6 Experiments with the Sommerfeld Case

There does not seem to be a preferred way of treating the corners in the Sommerfeld
case. Whereas in the Neumann and Dirichlet cases the existence of a closed system at
the boundary has proved helpful for the handling of the corners, in the Sommerfeld
case such a closed system cannot be constructed. Again, we resort to numerical
experimentation to establish which boundary conditions lead to a stable or unstable
scheme.

Let us assume that n andm are the normals of the two (orthogonal) faces that meet
at an edge. We denote by t = (n +m)/

√
2 the normal at 45◦ and b = δ(m− n)/

√
2,

where δ = n⊥ ·m, a unit vector orthogonal to t. At the edge we use equations (5.5)–
(5.6) with n replaced by t. We define the tangential directions to be the directions
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Figure 6.6: The value of the discrete constraint at the corner, C00 = D
(y)
+ X00−D(x)

+ Y00,
if the zero speed mode is overwritten. In this case it is of order O(h).

orthogonal to t. Unfortunately, Fig. 6.12 shows that the resulting scheme is unstable
and suffers from exponential growth of the error.

6.6.1 An Alternative Implementation

The lack of success in the Sommerfeld case and the compatibility issues encountered in
the Neumann and Dirichlet cases clearly illustrate the difficulty associated with non-
smooth boundaries and make the idea of using smooth boundaries more attractive.

Assume that ∂Ω is the smooth boundary of the bounded set Ω. Locally, one can
choose a coordinate system adapted to this boundary, i.e., ∂Ω is given by the set of
points in which one of the coordinates is constant. An alternative implementation of
the Sommerfeld case consists in setting the incoming constraint variable to zero for
η ∈ (0, 8/3). The system will have lower order terms and non-constant coefficients.
The experience gained in this work makes it conceivable that the resulting problem
can be discretized in a stable manner using, for example, overlapping grids to cover
the entire domain.

Moreover, one could also try to modify the evolution equations by appropriately
adding constraints to the right hand side, such that the constraints propagate tan-
gentially to the boundary. This technique was used in [10] and heavily relies on the
fact that the boundary is smooth. For metric formulations one might expect to lose
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Figure 6.7: The value of the discrete constraint at the corner, C00 = D
(y)
+ X00−D(x)

+ Y00,
when incompatible boundary data is used. The error is clearly of order O(1).

symmetric hyperbolicity. This will be analyzed further in a future work.

69



0.0 0.5 1.0 1.5 2.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q

C
lkij
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index constraints confirms that with the boundary data (6.99) one of the first order
compatibility conditions, Eq. (6.29), is not satisfied in the Neumann case.
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reproduce a gauge wave traveling in the direction d = (+1,+1, 0)/
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Figure 6.11: The reduced order of convergence for the momentum constraints confirms
that with the boundary data (6.101) one of the first order compatibility conditions,
Eq. (6.51), for the Dirichlet case is not satisfied.
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the same, the growth begins sooner as the resolution is increased.
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Chapter 7

Summary and Results

Einstein’s field equations can be split into evolution equations and constraint equa-
tions. When solving the evolution equations in a portion of space-time with time-like
boundaries, one is essentially dealing with an initial-boundary value problem. In this
work we confined ourselves to strongly hyperbolic formulations, first order in time and
space. In particular, we chose the generalized Einstein-Christoffel system linearized
about Minkowski in Cartesian coordinates, precisely the same system used in [8] and
[9]. Within this formulation, the constraints represent equations involving spatial
derivatives of the main variables. An issue that has not been adequately addressed in
the past, but which is gradually receiving more attention, is that the constraints, in
addition to reducing the freedom that one has in the specification of the initial data,
restrict the choice of boundary data that one can prescribe to the incoming variables.
To determine the nature of this restriction we followed the method used in [8] and
[9], based on the characteristic analysis of the evolution of the constraint variables.
This leads to constraint-preserving boundary conditions.

In addition to the Neumann and Dirichlet cases that were presented in [8], we
looked at the Sommerfeld case. What makes the Sommerfeld case more attractive
than the first two, is the fact that, if it can be implemented in a stable way, it
would provide a good approximation to radiative, constraint-preserving boundary
conditions. Consequently, it would be an excellent candidate for the simulation of
isolated sources. The only result available for this case was the one presented in
[9], where it was proved that, if the free parameter associated with the family of
formulations lies outside a certain range, then the problem is ill-posed. Unfortunately,
it does not shed any light on cases in which the parameter lies inside this range.

By making certain symmetry assumptions we eliminated one of the spatial dimen-
sions from the problem. This proved to be an invaluable method for the investigation
of the stability properties of the discretizations of various boundary conditions. The
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major result of this work was the numerical implementation of the linearized Ein-
stein’s equations with constraint-preserving boundary conditions. A great number
of numerical experiments were conducted and several results of [8] and [9] were con-
firmed, such as the well-posedness of the Neumann and Dirichlet cases with a smooth
boundary. Furthermore, the results clearly suggested that there exists a range of
values in the parameter space in which the Sommerfeld case can be discretized in a
stable way. Unfortunately the last result seems to hold only in the case of a smooth
boundary, i.e., we were not able to find a stable discretization in the presence of
corners. The analysis also revealed that, in the Neumann and Dirichlet cases with
corners, although stability can be obtained, data to the source has to be given with
great care in order to avoid violating compatibility conditions of higher order, which
were not taken into account in [8].

Modulo corners, the result obtained with the Sommerfeld case opens a new window
of possibilities. Provided that one can avoid non-smooth domains, it may very well be
that Sommerfeld constraint-preserving boundary conditions would work in the fully
non-linear case. This is an issue that certainly merits further investigation.

This work forced us to look deeply into the problems that arise when discretizing
a system in the presence of corners. It revealed that, although stability results exists
for maximally dissipative boundary conditions, more needs to be done in order to
achieve consistency. For example, even for the simple case of the wave equation on a
flat background, setting the incoming modes to zero, including the one at the corner,
is inconsistent. In this work we showed that, to avoid such inconsistency, a certain
combination of in- and outgoing variables should be specified at the corner. An aspect
of the problem which was not studied was the presence of vertices, as the symmetry
assumption in the numerical implementation only allowed for edges. More work needs
to be done to investigate this issue.

It is important to realize that no finite number of numerical experiments can
replace an analytical proof of stability. However, in most situations a proof of stability
for the system of interest would be a formidable challenge. It is in these situations that
careful experimentation, especially on simple toy models, could be used, particularly
to rule out unstable schemes.
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Chapter 8

Conclusion

Despite the success in the stable discretization of the Neumann and Dirichlet cases
we feel that such systems are inadequate in terms of their ability to simulate isolated
sources. The coupling between in- and outgoing modes required by these boundary
conditions is such that reflections are essentially guaranteed. The Sommerfeld case,
on the other hand, has proven to be applicable to the smooth boundary case, but not
when corners are present. Although it might be possible to improve on this by further
investigating the problem, we believe that smooth boundaries are preferable anyway.
Implementing a smooth boundary in three dimensions is not trivial. A technique
that is increasingly receiving more and more attention is based on overlapping grids,
which would not only allow for smooth boundaries, but also for moving boundaries,
see [17, 33]. The advantages that a smooth boundary provides outweigh the technical
difficulties involved in the implementation of overlapping grids.

The construction of well-posed constraint-preserving boundary conditions for met-
ric formulations of Einstein’s equations still needs to be improved. So far well-
posedness proofs are only available for a few particular cases, such as those proposed
in [8] and [14]. It is conceivable that using the theory of pseudodifferential operators
might lead to well-posedness proofs for the linear variable coefficient case. However,
preliminary work [34] seems to suggest that this would be prohibitively difficult.

As this dissertation is being completed, Nagy and Sarbach [35] are investigat-
ing modifications of the Friedrich and Nagy work [10], the best result obtained so
far concerning the well-posedness of the initial-boundary value problem for the full
Einstein vacuum equations. The main difference lies in the gauge condition for the
tetrad. Whereas in [10] the tetrad is such that one of the vectors is tangential to
the time-like boundary surface and another one is adapted to the the outward unit
normal, in the recent work of Nagy and Sarbach the last condition is relaxed. As a
consequence, their equations are somewhat simpler. To prevent constraint-violating
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modes from entering the domain, they follow the idea of [10], where constraints are
added to the right hand side so that, at the boundary, the constraints propagate along
the boundary. Both the main evolution system and the evolution of the constraints
system are symmetric hyperbolic.

As progress is made in the research of boundary conditions for numerical relativity,
we will be better able to judge whether constraint-preserving boundary conditions
for metric or tetrad formulations of Einstein’s equations will improve the life-time of
numerical simulations.
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[16] S. Frittelli and R. Gómez, Phys. Rev. D 68, 044014 (2003).

[17] G. Calabrese and D. Neilsen, Spherical excision for moving black holes and sum-

mation by parts for axisymmetric systems, arXiv:gr-qc/0308008

[18] B. Strand, J. Comp. Phys. 110, 47 (1994).
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Appendix A

Basic Properties of Finite

Difference Operators

In this appendix the definition and some important properties of the finite difference
operators D+, D− and D0 are given. For a proof see [22].

For simplicity assume that the domain is the compact set Ω = [0, 1]. Introduce
gridpoints xj = jh, j = 0, 1, . . . , N with h = 1/N and a grid function uj = u(xj). By
definition,

D+uj = (uj+1 − uj)/h , for j = 0, 1, . . . , N − 1 ,

D−uj = (uj − uj−1)/h , for j = 1, 2, . . . , N ,

D0uj = (uj+1 − uj−1)/(2h) , for j = 1, 2, . . . , N − 1 .

Immediate consequences are

uj = ∓hD±uj + uj±1 ,

D0 = (D+ +D−)/2 ,

D±uj = D∓uj±1 ,

D+D−uj = D−D+uj = (uj+1 − 2uj + uj−1)/h
2 ,

(D+D−)2uj = (uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2)/h
4 .

Furthermore, if vj = v(xj), where v is a smooth function, then

D±vj = v′(xj) ±
1

2
v′′(xj)h + O(h2) ,

D0vj = v′(xj) +
1

6
v′′′(xj)h

2 + O(h4) ,
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D+D−vj = v′′(xj) +
1

12
v(4)(xj)h

2 + O(h4) ,

(D+D−)2vj = v(4)(xj) +
1

6
v(6)(xj)h

2 + O(h4) .

With respect to the scalar product and norm

(u, v)r,s =

s
∑

j=r

ujvjh, ‖u‖2
r,s = (u, u)r,s

the difference operators satisfy the following properties:

(u,D+v)r,s = −(D−u, v)r+1,s+1 + ujvj|s+1
r

= −(D+u, v)r,s − h(D+u,D+v)r,s + ujvj|s+1
r ,

(u,D−v)r,s = −(D+u, v)r−1,s−1 + ujvj|sr−1

= −(D−u, v)r,s + h(D−u,D−v)r,s + ujvj|sr−1 ,

(u,D0v)r,s = −(D0u, v)r,s +
1

2
(ujvj+1 + ūj+1vj)|sr−1 .
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Appendix B

A Differential Inequality

Let y be a differentiable function of t. If

dy

dt
≤ ay(t) + f(t) (B.1)

then

y(t) ≤ y(0) +

∫ t

0

ea(t−τ)f(τ)dτ . (B.2)

To prove this (see [21]) we introduce z(t) = e−aty(t) and observe that

dz

dt
= −az + e−atdy

dt
≤ e−atf(t) .

Integrating, we get

z(t) − z(0) ≤
∫ t

0

e−aτf(τ)dτ .

Using the definition of z(t) we get (B.2).
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Appendix C

Inhomogeneous Boundary

Conditions

We analyze inhomogeneous boundary conditions in a simple problem using Olsson’s
method and compute the discrete energy estimate.

Consider the scalar model problem

∂u

∂t
=
∂u

∂x
, 0 ≤ x ≤ 1 , t ≥ 0 , (C.1)

u(0, x) = f(x) , (C.2)

u(t, 1) = g(t) , (C.3)

with real solution u. The initial and boundary data are smooth and satisfy the
compatibility conditions dng/dtn(0) = dnf/dxn(1) for n = 0, 1, 2, . . ..

The time derivative of the energy

E(t) =

∫ 1

0

u2(t, x)dx

gives
d

dt
E = g(t)2 − u(t, 0)2 . (C.4)

Consider now the semi-discrete approximation

dv0

dt
= D+v0 , (C.5)

dvj

dt
= D0vj , j = 1, . . . , N − 1 , (C.6)

dvN

dt
=

dg

dt
, (C.7)

vj(0) = f(xj) , (C.8)
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where xj = hj with h = 1/N . Notice that, as a consequence of the compatibility
condition, g(0) = f(1), we have that vN (t) = g(t) for all t ≥ 0. We define the discrete
energy to be

E = (v, v)h =
h

2
v2
0 + h

N−1
∑

j=1

v2
j +

h

2
v2

N . (C.9)

Its time derivative gives

d

dt
E = −v2

0 + vN−1g + hg
dg

dt
= −v2

0 + g2 + hg

(

dg

dt
−D−vN

)

. (C.10)

To recover the same estimate of the continuum the last term must vanish. In the
homogeneous case (g = 0), this is what happens. However, in general, in the inho-
mogeneous case (g 6= 0) the discrete estimate does not coincide with the continuum
one. In [7] Olsson was able to prove that, with the additional assumption of analyt-
icity of the data, the continuum estimate can be recovered. Most of the numerical
experiments carried out in this dissertation, however, violate this requirement.

Note that at t = 0 we have that dg
dt

− D−uN = O(h) and that, as shown in
subsection 5.3.2, the semi-discrete approximation is convergent.
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