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Abstract

It is well-known thatdiversityamong base classifiers is
crucial for constructing a strong ensemble. Most exist-
ing ensemble methods obtain diverse individual learn-
ers through resampling the instances or features. In
this paper, we propose an alternative way for ensem-
ble construction by resampling pairwise constraints that
specify whether a pair of instances belongs to the same
class or not. Using pairwise constraints for ensemble
construction is challenging because it remains unknown
how to influence the base classifiers with the sampled
pairwise constraints. We solve this problem with a two-
step process. First, we transform the original instances
into a new data representation using projections learnt
from pairwise constraints. Then, we build the base clas-
sifiers with the new data representation. We propose
two methods for resampling pairwise constraints fol-
lowing the standard Bagging and Boosting algorithms,
respectively. Extensive experiments validate the effec-
tiveness of our method.

Introduction
Ensemble learning is a learning paradigm where multiple
learners are combined to solve a problem. Since it can sig-
nificantly improve the generalization ability of a single clas-
sifier, ensemble learning has attracted a lot of attentions dur-
ing the past decade (Kuncheva 2004). Generally, the design
of a classifier ensemble contains two subsequent steps, i.e.
constructing multiple base classifiers and then combining
their predictions. In this paper, we focus on the first prob-
lem and adopts a simplemajority votingscheme to combine
predictions of multiple base classifiers.

Many methods have been developed for constructing en-
sembles. Among them,Bagging(Breiman 1996),Boost-
ing (Freund & Schapire 1996), andRandom Subspace(Ho
1998) are three general techniques widely used in many
tasks. Both Bagging and Boosting train base classifiers
by resampling training instances, while Random Subspace
trains classifiers using different random subsets of input fea-
tures. One difference between Bagging and Boosting lies in
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that the former obtains abootstrap replicateby uniformly
sampling with replacement from the original training set,
while the latter resamples or reweights the training data by
emphasizing more on instances that are misclassified by pre-
vious classifiers.

It is known that in order to get a strong ensemble, the
component classifiers should be with high accuracy as well
as high diversity (Kuncheva 2004). However, achieving such
goals is not easy. In this paper, we propose a novel way for
constructing ensembles through resamplingpairwise con-
straints. Here the pairwise constraints specify whether a
pair of instances belong to the same class (must-linkcon-
straints) or not (cannot-linkconstraints). Such kinds of con-
straints have been widely used in several fields of machine
learning, such as semi-supervised clustering (Davidson &
Basu 2007). Pairwise constraints can be given in advance,
or generated from class labels. Givenn labeled instances,
we can derive approximatelyn2 pairwise constraints. Sam-
pling pairwise constraints may help the base learners to have
higher diversity because forn instances, there are at most
2n different results for sampling instances, but at most2n2

different results for sampling constraints. To the best of our
knowledge, no previous ensemble learning research has tried
to build ensembles by exploiting pairwise constraints.

In this paper, we will address the following issues regard-
ing using pairwise constraints to build strong ensembles:

• How to use pairwise constraints to build component clas-
sifiers?

• How to resample pairwise constraints to obtain diverse
classifiers?

• Is the performance of resampling pairwise constraints
comparable with those of resampling instances (such as
Bagging and Boosting) and resampling input features
(such as Random Subspace)?

To answer the first question, we develop a pairwise con-
straints preserving projection and use it to project original
instances into a new data representation, through which we
transfer the information in pairwise constraints into the new
data representation. Then we build base classifiers based
on the new representation. To answer the second question,
we propose two methods for resampling pairwise constraints
following the styles of Bagging and Boosting, respectively.
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Finally, we answer the third question by carrying out exten-
sive experiments on a broad range of benchmark data sets
from the UCI repository (Blake, Keogh, & Merz 1998) to
evaluate the proposed methods.

The rest of this paper is organized as follows: in next sec-
tion, we briefly review some related work. Then we pro-
pose theCOPEN (pairwiseCOnstraintsProjection based
ENsemble) method and report the experimental results, and
finally we conclude this paper and point out some future
work.

Related Work
Kuncheva (2004) summarized four fundamental approaches
for building ensembles of diverse classifiers: 1) using differ-
ent combination schemes; 2) using different base classifiers;
3) using different feature subsets; 4) using different data sub-
sets. We are more interested in the last two approaches, i.e.
constructing classifier ensembles by manipulating the data
(including features and data samples). In fact, most existing
methods fall into these two categories. For example, Bag-
ging and Boosting belong to the 4th category, and Random
Subspace belongs to the 3rd category. Another ensemble
method of the 3rd category isensemble feature selection
(Opitz 1999), which uses a genetic algorithm to generate
feature subsets instead of random sampling in Random Sub-
space.

Some methods jointly manipulate feature (or subspace)
and data samples. For example, Breiman’s (2001)Random
Forest integrated both merits of Bagging and Random Sub-
space, using decision trees as the base classifiers. Zhou
and Yu (2005) proposed a multimodal perturbation on fea-
tures, data samples and base classifier parameters to ensem-
ble nearest neighbor classifiers. Rodrı́guezet al. (2006)
proposed theRotation Forestmethod which first randomly
partitions feature sets intoK subsets, performs principal
component analysis (PCA) on each subsets of a bootstrap
replicate, and then reassembles those PCA projective vectors
into a rotation matrix to form new features for a base clas-
sifier. Wang and Tang (2006) proposed a new random sub-
space method by randomly sampling PCA projective vectors
and integrated it with Bagging for subspace face recogni-
tion. More recently, Garcı́a-Pedrajaset al. (2007) proposed
a nonlinear boosting projections method for ensemble con-
struction, where neural networks were used to learn a pro-
jection with more emphasis on previously misclassified in-
stances similarly as in Boosting.

Pairwise constraints (also called asside information) have
been popularly used in areas such as semi-supervised clus-
tering (Davidson & Basu 2007). Recently, pairwise con-
straints are also used for semi-supervised dimensionality re-
duction. Bar-Hillelet al. (2005) proposed the relevant com-
ponent analysis (RCA) method using only equivalent (must-
link) constraints. Tanget al. (2007) proposed a feature pro-
jection method using cannot-link constraints. Zhanget al.
(2007) proposed the semi-supervised dimensionality reduc-
tion using both must-link and cannot-link constraints as well
as unlabeled data. More recently, Liuet al. (2007) pro-
posed a boosting framework for semi-supervised clustering.

All above mentioned methods aimed at using pairwise con-
straints for semi-supervised learning, which is apparently
different from our goal in this paper.

The COPEN Method
In this section, we describe our pairwise constraints based
ensemble learning algorithm, calledCOPEN. Before that, we
first introduce theConstraint Projectionalgorithm, which is
one of the key ingredients of COPEN. We derive two ver-
sions of the algorithm,COPEN.bag andCOPEN.boost,
following the standard Bagging and Boosting methods, re-
spectively.

Constraint Projection
Given a set ofp-dimensional dataX = {x1, x2, ..., xn},
and the corresponding pairwise must-link constraint set
M={(xi, xj)|xi andxj belong to the same class} and pair-
wise cannot-link constraint setC={(xi, xj)|xi andxj be-
long to different classes}, Constraint Projection seeks a set
of projective vectorsW = [w1, w2, ..., wd], such that the
pairwise constraints inC andM are most faithfully pre-
served in the transformed lower-dimensional representations
zi = W

T
xi. That is, examples involved byM should

be close while examples involved byC should be far in the
lower-dimensional space.

Define the objective function as maximizingJ(W ) w.r.t.
W

T
W = I,

J(W ) =
1

2nC

∑

(xi,xj)∈C

‖W T
xi − W

T
xj‖

2

−
γ

2nM

∑

(xi,xj)∈M

‖W T
xi − W

T
xj‖

2 (1)

wherenC andnM are the cardinality of the cannot-link con-
straint setC and the must-link constraint setM, respectively,
andγ is a scaling coefficient.

The intuition behind Eq. 1 is to let the average distance in
the lower-dimensional space between examples involved by
the cannot-link setC as large as possible, while distances be-
tween examples involved by the must-link setM as small as
possible. Since the distance between examples in the same
class is typically smaller than that in different classes, a scal-
ing parameterγ is added to balance the contributions of the
two terms in Eq. 1 and its value can be estimated by

γ =

1
nC

∑
(xi,xj)∈C

‖xi − xj‖
2

1
nM

∑
(xi,xj)∈M

‖xi − xj‖2
(2)

Note that in Eq. 2, we do not necessarily compute all pair-
wise distances because usually only a sample of constraints
will be contained in the constraint setsC andM. With sim-
ple algebra, the objective function in Eq. 1 can be reformu-
lated in a more convenient way as

J(W ) = trace(W T (SC − γSM)W ), (3)

whereSC andSM are respectively defined as

SC =
1

2nC

∑

(xi,xj)∈C

(xi − xj)(xi − xj)
T (4)
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Algorithm 1: COPEN.bag
Input: training data{xi, yi}

n
i=1 with labelsyi ∈ Y =

{1, ..., c}, base learning algorithmLearner, ensemble
sizeL, number of must-link constraintsnM , number of
cannot-link constraintsnC

Initialize: ind = {1, ..., n}.
For l = 1, ..., L

1. LetC = ∅, M = ∅.
2. Randomly draw a pair of numbersi 6= j from ind

with replacement.
3. If (yi = yj and|M| < nM ), add(xi, xj) intoM;

elseif (yi 6= yj and|C| < nC), add(xi, xj) into C.
4. Repeat steps 2-3, until|M| = nM and|C| = nC .
5. Compute the projective matrixWl usingConstraint

Projectionalgorithm withM andC.
6. CallLearner, providing it with the training data set
{W T

l xi, yi}
n
i=1.

7. Get a hypothesishl : W
T
l X → Y .

Output: the final hypothesis
hf (x) = argmax

y∈Y

∑

l:hl(W T
l

x)=y

1

and

SM =
1

2nM

∑

(xi,xj)∈M

(xi − xj)(xi − xj)
T (5)

In this paper, we callSC andSM ascannot-link scatter
matrix andmust-link scatter matrix, respectively, which re-
assembles the concepts ofbetween-class scatter matrixand
within-class scatter matrixrespectively in linear discrimi-
nant analysis (LDA). The difference lies in that the latter
uses class labels to generate scatter matrices, while the for-
mer uses pairwise constraints to generate scatter matrices.

Obviously, the problem expressed by Eq. 3 is a typical
eigen-problem, and can be efficiently solved by computing
the eigenvectors ofSC−γSM corresponding to thed largest
eigenvalues. SupposeW = [W1, W2, ..., Wd] are solutions
to Eq. 3, and the corresponding eigenvalues areλ1 ≥ λ2 ≥
... ≥ λd. DenoteΛ = diag(λ1, λ2, ..., λd), then

trace(W T (SC − γSM)W ) = trace(Λ) =
∑

i

λi (6)

Eq. 6 implies that Eq. 3 achieves the optimal value when
the number of projective vectorsd is set as the number of
non-negative eigenvalues of Eq.3, and thus the value ofd is
determined. Note that since bothSC andSM are positive
semi-definite,SC − γSM is unlikely to be negative definite.

Our Methods
Using Constraint Projection, we can build the base classi-
fiers for ensemble as follows. Given a set of labeled data
{xi, yi}

n
i=1, and assume that we have obtained a set of pair-

wise must-link constraintsM and a set of pairwise cannot-
link constraintsC (we will later discuss how to obtainM
andC). We first useM andC to learn a projective matrix
W by Constraint Projection, and project original dataxi

into a new data representationzi = W
T
xi, through which

we transfer the information in pairwise constraints setsM

Algorithm 2: COPEN.boost
Input: training data{xi, yi}

n
i=1 with labelsyi ∈ Y =

{1, ..., c}, base learning algorithmLearner, ensemble
sizeL, number of must-link constraintsnM , number of
cannot-link constraintsnC , sampling thresholdr(0 < r < 1)
Initialize: ind = {1, ..., n}.
For l = 1, ..., L

1-7. The same as inCOPEN.bag.
8. Update the index set

ind = {i|hl(W
T
l xi) 6= yi, 1 ≤ i ≤ n} .

9. If |ind| < ⌊rn⌋, randomly sample⌊rn⌋ − |ind|
numbers from{1, ..., n}, add them intoind.

Output: the final hypothesis
hf (x) = arg max

y∈Y

∑

l:hl(W T
l

x)=y

1

andC into the new data set{zi, yi}
n
i=1. Then we train base

classifiers using the training data set{zi, yi}
n
i=1. Thus we

have solved the first problem raised in section 1, i.e., how to
build base classifiers using pairwise constraints.

It is noteworthy that the quality and diversity of a base
classifier in one round is directly determined by the training
data set{zi, yi}

n
i=1 in that round. Sincezi is determined by

W , which is further determined by the pairwise constraint
setsM andC used in that round, we can say that the pair-
wise constraint control the property of base classifiers. Thus
we come to the second question raised in Section 1, i.e., how
to resample pairwise constraints to obtain diverse base clas-
sifiers?

In this paper, we propose two methods for resampling
pairwise constraints, inspired by previous methods for re-
sampling instances, i.e., Bagging and Boosting, respectively.
For convenience, we denote COPEN based on those two
resampling methods as COPEN.bag and COPEN.boost, re-
spectively.

COPEN.bag We begin with COPEN.bag, the simpler ver-
sion. The detailed procedure of this algorithm is summa-
rized inAlgorithm 1.

First, we generate randomly the must-link constraint set
M and cannot-link constraint setC for each turn of ensem-
ble. It can be implemented as follows: We draw randomly
with replacement a pair of dataxi andxj from {xi, yi}

n
i=1.

If xi and xj have the same label (yi = yj), we add a
must-link constraint(xi, xj) into M; on the other hand, if
yi 6= yj, we add a cannot-link constraint(xi, xj) intoC. We
repeat this process untilnM must-link constraints andnC

cannot-link constraints are sampled forM andC, respec-
tively. Then, we use Constraint Projection withM andC to
learn the projective matrixW , and build base classifiers on
the data set{W T

xi, yi}
n
i=1.

COPEN.boost Unlike in COPEN.bag where a simple ran-
dom resampling scheme is adopted to generate pairwise con-
straints sets for base classifiers, in COPEN.boost, we resam-
ple pairwise constraints by putting more emphasis on previ-
ously misclassified instances as in Boosting.Algorithm
2 gives the detailed procedure of COPEN.boost.
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We first randomly generate an initial pairwise constraints
set, on which we obtain a base classifier using the same pro-
cedure as in COPEN.bag. Then we classify the training data
with that classifier and obtain a set of misclassified data.
In next round, we resample pairwise constraints from only
those pairwise constraints whose involved instances are both
misclassified by previous base classifier. Finally, in case that
the number of previously misclassified data is very small,
we randomly sample a certain percentage of data from the
whole training data to enlarge the resampling pool such that
in each round the desired number of pairwise constraints
can be correctly generated. Here, we do not use weighting
scheme for the ease of implementation, since maintaining
weights on aboutn2 pairwise constraints will be more ex-
pensive than maintaining weights onn instances in classical
Boosting procedure.

It is noteworthy that the principles of Bagging and Boost-
ing are only used to resample pairwise constraints sets,
which are further used by Constraint Projection algorithm
to learn a projection. Once the projection is learned, we use
it to project original training data into a new representation
and then useall the data to build base classifiers, which is
apparently different from both Bagging and Boosting. This
would be helpful in improving base classifiers’ accuracy as
well as robustness to noises.

Experiments
We compare our methods with existing ensemble meth-
ods on a broad range of data sets. In our experiments,
we compare seven ensemble methods, i.e., COPEN.bag,
COPEN.boost, bsLDA, Bagging, Boosting, Random Sub-
space (RS) and Random Forest (RF). Here, bsLDA denotes
the method which applies the popular supervised dimension-
ality reduction approach LDA to bootstrap samples, then
train a base classifier from each sample, and finally com-
bine all the base classifiers by majority voting. Among
them, bsLDA, Bagging and Boosting work by resampling
instances, Random Subspace works by resampling features,
and Random Forest works by resampling both instances and
features. In contrast, our methods, both COPEN.bag and
COPEN.boost, work by resampling pairwise constraints.

Experimental Setup
In this paper, we carry out experiments on a PC with 2.7GHz
CPU and 1GB RAM. We use J48 in WEKA library (Wit-
ten & Frank 2005), a reimplementation of C4.5, as the base
classifier for all ensemble methods, except for the Random
Forest method, which constructs the tree in a different way
by randomly choosing a feature at each node. The imple-
mentations of Bagging, Boosting (we use the multi-class
version AdaBoost.M1 (Freund & Schapire 1996)), Random
Subspace, and Random Forest are all from WEKA. The
parameters of J48, Bagging, AdaBoost.M1, Random Sub-
space and Random Forest were kept at their default values
in WEKA. In the Random Subspace method, half (⌈p/2⌉) of
the features were chosen each time, while for Random For-
est, the number of features to select from at each node is set
to ⌊log2 p + 1⌋. For both COPEN.bag and COPEN.boost,

the number of pairwise constraintsnM andnC were both
set ton, the number of instances. For COPEN.boost, the
sampling thresholdr is set to 0.2. Finally, the ensemble size
L is set to 50 for all compared methods. It is noteworthy
that those parameters are rather usual and have not specially
tuned to improve the performances.

Twenty data sets from the UCI Machine Learning Repos-
itory (Blake, Keogh, & Merz 1998) were used in our exper-
iments. Those data sets have been widely used to evaluate
existing ensemble methods. As our methods are defined for
numeric features, discrete features were first converted to
numeric ones using WEKA’sNorminalToBinaryfilter (Wit-
ten & Frank 2005). For fair comparison, other methods
are also executed on the filtered data. A summary of these
data sets is shown in the left of Table 1(or 2), whereinst,
attr, andclass denote number of instances, attributes, and
classes respectively. For each data set, a5 × 2-fold cross-
validation (Garcı́a-Pddrajas, Garcı́a-Osorio, & Fyfe 2007)
was performed.

Experimental Results
Table 1 presents the error rates of seven ensemble meth-
ods and J48. Note that the table shows the mean errors of
5 × 2-fold cross-validation, and the standard deviations are
not listed due to space limit. From Table 1, we can see that
in most cases, COPEN.bag and COPEN.boost are superior
to the other five ensemble methods as well as the base clas-
sifier. Furthermore, the significance test results, as shown
in bottom of Table 1, indicate that our methods are signif-
icantly better than other five ensemble methods on a lot of
data sets, while are significantly worse only on a few data
sets. Finally, Table 1 indicates that COPEN.boost is slightly
better than COPEN.bag, but the difference is not significant.

To understand how our methods work, we usekappa
measure to plot diversity-error diagram following the ap-
proach in (Rodrı́guez, Kuncheva, & Alonso 2006). Due to
space limit, we only show diagrams of bsLDA, Bagging and
COPEN.bag onIonosphere, as shown in Figure 1. Figure 1
indicates that on this data set, COPEN.bag achieves similar
accuracy but much higher diversity than bsLDA, and simi-
lar diversity but much higher accuracy than Bagging. Since
COPEN.bag’s overall diversity and accuracy is the highest,
it is not strange that it achieves the best performance among
the three methods.

We also test our methods under artificial noise in the class
labels to study their robustness to noise. We choose a frac-
tion of instances and change their class labels to other in-
correct labels randomly. Table 2 shows the results under 20
percent of noise in class labels. It can be seen from Table 2
that both COPEN.bag and COPEN.boost exhibit much bet-
ter robustness to noise than all other algorithms, as shown in
bottom of the Table 2. Left of Figure 2 shows a represen-
tative curve of test error vs. level of noise in labels, which
again validates the effectiveness of our methods.

Finally, we compare the seven ensemble methods under
a range of ensemble sizes. The results onIonosphereare
plotted in right of Figure 2. As can be seen from the figure,
as the ensemble size increases, all ensemble methods except
bsLDA reduce their test errors. It is surprising to see that on
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Figure 1: The diversity-error diagrams onIonosphere. In
each plot,x-axis represents average error of a pair of classi-
fiers, andy-axis represents diversity evaluated by thekappa
measure. The dashed lines show ensemble errors and the up
triangles denote centroids of clouds.
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Figure 2: Results onIonosphere. Left: Test error vs. level
of noise in class labels; Right: Test error vs. ensemble
size. In the legends of both plots, the marks from the top
to bottom are single J48 decision tree (only for left plot),
bsLDA, Bagging, Boosting, Random Subspace, Random
Forest, COPEN.bag and COPEN.boost, respectively.

this data set the error of bsLDA increases. This suggests that
sampling data and then applying feature mapping is not as
effective as sampling pairwise constraints. A close observa-
tion on the figure indicates that for nearly all algorithms, a
rapid change on test errors appears at the beginning, and af-
ter some values of ensemble size, e.g., 50, test errors change
very slowly as ensemble size increases.

Conclusions
In this paper, we present a new approach for ensemble con-
struction based on pairwise constraints. To the best of our
knowledge, this is the first work on using pairwise con-
straints for classifier ensemble. Our approach uses Con-
straint Projection to transfer information in pairwise con-
straints into new data representation and builds base classi-
fiers under the new representation. We propose two meth-
ods inspired by Bagging and Boosting to resample pair-
wise constraints for obtaining diverse base classifiers. Ex-
tensive experiments on a broad range of data sets show
that our COPEN approach achieves better performance than
some state-of-the-art ensemble methods. An important fu-
ture work is to analyze the proposed methods theoretically.
In our experiments we have not finely tuned the parameters
of our methods, by using some parameter selection methods
such as cross validation, a better performance is expected,
which will be studied in the future. We also want to study
that whether there is an optimal number of pairwise con-

straints to be used. Moreover, we will try to apply our meth-
ods to other base classifiers.
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ionosphere (351/34/2) 0.0667 0.0530 0.1322 0.0871 0.0740 0.0786 0.0809 0.1140
iris (150/4/3) 0.0747 0.0747 0.0440 0.0547 0.0667 0.0640 0.0560 0.0587
letter (5000/16/26) 0.1480 0.1396 0.1701 0.1644 0.1137 0.1322 0.1503 0.2635
lung cancer (32/56/3) 0.4518 0.4725 0.5831 0.4878 0.5706 0.5196 0.4922 0.5757
primary tumor (339/23/18) 0.6892 0.6905 0.6914 0.7213 0.7491 0.7214 0.7350 0.7479
segment (2310/19/7) 0.0444 0.0419 0.0526 0.0374 0.0226 0.0326 0.0374 0.0484
sonar (208/60/2) 0.1866 0.1856 0.3180 0.2432 0.2355 0.2240 0.1990 0.3037
spectheart (267/22/2) 0.1850 0.1995 0.2067 0.2353 0.2513 0.2620 0.2299 0.2460
vehicle (846/18/4) 0.2504 0.2499 0.2213 0.2683 0.2490 0.2636 0.2697 0.2981
vowel (990/27/11) 0.0982 0.0820 0.1335 0.1418 0.0824 0.11030.0610 0.2739
waveform (5000/40/3) 0.1346 0.1332 0.1990 0.1747 0.1626 0.1632 0.1768 0.2608
C.boost vs. others Abs. W-L-T 14-5-1 − 14-6-0 17-3-0 15-5-0 16-4-0 16-4-0 19-1-0

Sig. W-L-T 1-1-18 − 7-2-11 10-1-9 9-2-9 7-3-10 7-0-13 18-0-2
C.bag vs. others Abs. W-L-T − 5-14-1 13-7-0 16-4-0 13-7-0 13-5-2 13-7-0 19-1-0

Sig. W-L-T − 1-1-18 6-1-13 8-2-10 8-2-10 6-3-11 4-2-14 16-0-4

Table 2: Error rates of J48 and seven ensemble methods with 20%noise in class labels on 20 UCI data sets. Bottom rows of the
table present Win-Loss-Tie (W-L-T) comparisons between COPEN (denoted as C.bag and C.boost) against other approaches.
Abs.andSig.present the comparison on W-L-T before and after pairwiset-tests at 95% significance level, respectively.

Data sets (inst/attr/class) C.bag C.boost bsLDA Bagging Boosting RS RF J48
balancescale (625/4/3) 0.1203 0.1277 0.1213 0.1926 0.2947 0.2102 0.2202 0.2538
breastcancer (286/48/2) 0.3049 0.2993 0.3531 0.3462 0.3993 0.3134 0.3596 0.3615
breastw (699/9/2) 0.0366 0.0335 0.0401 0.0567 0.1353 0.0541 0.0916 0.0907
credit g (1000/61/2) 0.2902 0.2962 0.2968 0.2922 0.3330 0.2930 0.2948 0.3604
ecoli (336/7/8) 0.3678 0.3610 0.3313 0.2576 0.3457 0.3796 0.3745 0.4631
heartc (303/22/2) 0.1815 0.1894 0.2686 0.2475 0.2667 0.2237 0.2296 0.2931
hearth (294/22/2) 0.1782 0.1776 0.2116 0.2279 0.2939 0.1993 0.2381 0.2442
heartstatlog (270/13/2) 0.2178 0.2326 0.2333 0.2459 0.2919 0.2185 0.2437 0.3000
hepatitis (155/19/2) 0.1961 0.2077 0.2376 0.2361 0.2979 0.2064 0.2271 0.3044
ionosphere (351/34/2) 0.0946 0.0837 0.1829 0.1350 0.1778 0.1185 0.1237 0.2068
iris (150/4/3) 0.1053 0.0893 0.1200 0.0840 0.19330.0760 0.1080 0.1067
letter (5000/16/26) 0.3471 0.3446 0.3386 0.3550 0.3744 0.3420 0.4245 0.5114
lung cancer (32/56/3) 0.4592 0.5522 0.5463 0.5357 0.5078 0.5529 0.5698 0.5690
primary tumor (339/23/18) 0.6980 0.6934 0.6991 0.7223 0.7337 0.7237 0.7334 0.7561
segment (2310/19/7) 0.0589 0.0571 0.0692 0.0531 0.0960 0.0560 0.0762 0.1169
sonar (208/60/2) 0.2902 0.3076 0.4266 0.2885 0.2921 0.28750.2874 0.3664
spectheart (267/22/2) 0.2023 0.1925 0.2660 0.2367 0.3042 0.2210 0.2510 0.2704
vehicle (846/18/4) 0.2634 0.2707 0.2409 0.2806 0.3040 0.2913 0.3059 0.3818
vowel (990/27/11) 0.1574 0.1404 0.1885 0.2053 0.2311 0.1952 0.2214 0.3766
waveform (5000/40/3) 0.1425 0.1404 0.2636 0.1846 0.1908 0.1749 0.2001 0.3823
C.boost vs. others Abs. W-L-T 12-8-0 − 16-4-0 14-6-0 17-3-0 13-7-0 18-2-0 20-0-0

Sig. W-L-T 0-0-20 − 8-1-11 9-1-10 17-0-3 8-0-12 13-0-7 18-0-2
C.bag vs.others Abs. W-L-T − 8-12-0 17-3-0 16-4-0 19-1-0 16-4-0 19-1-0 20-0-0

Sig. W-L-T − 0-0-20 7-1-12 10-1-9 17-0-3 7-0-13 14-0-6 19-0-1
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