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1 Introduction

Many problems in optimization and approximation theory can be recast into one of the following two
types: one is a system of convex inequalities

gi(x) ≤ 0 for each i ∈ I, (1.1)

and the other is a minimization problem

Minimize f(x),
s. t. x ∈ C, gi(x) ≤ 0, i ∈ I,

(1.2)

where C is a convex set, not necessarily closed. Many authors have studied these two problems with
various degrees of generality imposed on the index set I, the family of functions {gi : i ∈ I} or on the
underlying space; see for example [4–6,13–19,21,23,29–36] and references therein.

A special case of (1.1) occurs when each gi is the indicator function of a closed convex set Ci; that is,
one considers a family of closed convex sets {Ci : i ∈ I}. In [13], Deustch, Li and Ward introduced the
notion of the strong conical hull intersection property (the strong CHIP) for a family of finitely many
closed convex sets in a Hilbert space in connection with the reformulation of some best approximation
problems. Their work was recently extended in [32, 34] to the setting of a normed linear space with I

being an infinite set.
For the case when {gi : i ∈ I} is a finite family of continuous convex functions on a finite dimensional

vector space, the notion of basic constraint qualification (BCQ) was introduced by Hiriart-Urrutty and
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2 CONSTRAINT QUALIFICATIONS FOR INEQUALITY SYSTEMS

Lemarechal (see [19]). The notion was extended to cover the case of infinite family of continuous convex
functions with a continuous sup-function supi∈I gi by Li, Nahak and Singer (see [36]), who also studied
many aspects of BCQ in relation to other constraint qualifications. Recall from [32, 33, 36] that the
inequality system (1.1) is said to satisfy the BCQ at x ∈ S := {x ∈ X : gi(x) ≤ 0, i ∈ I} if

NS(x) = cone
⋃

i∈I(x)

∂ gi(x),

(see the next section for notations and definitions). The concept of BCQ relative to C was introduced
in [31–33] in order to take care of the abstract constraint set C. In these papers, under some continuity
assumption as the one used in [36], the system (1.1) with the family {δC ; gi, i ∈ I} was considered in
place of {gi : i ∈ I}.

Constraint qualifications involving epigraphs (first introduced in [8,9]) have been extensively used by
many authors (see for example [4–10, 15, 16, 24–29, 35]). In particular in connection with the study of
a conic programming problem (see Example 2.1 below), Jeyakumar et al. [25, 26, 29] and Boţ et al. [7]
studied several new constraint qualifications (such as what they called the condition (C*) and the CCCQ,
see [26, 29] for their definitions). Inspired by these works as well as that of Dinh, Goberna and López
in [15] (especially in regard with the new optimality conditions for (1.2)), we define the following concept:
the inequality system (1.1) is said to have the conical epigraph hull property (conical EHP) if

epiσS = cone
⋃
i∈I

epi g∗i , (1.3)

where S = {x : gi(x) ≤ 0, ∀i ∈ I}. In particular, (1.3) reduces to the SECQ introduced in [35] if
gi = δCi for some family of closed convex sets {Ci : i ∈ I}. We show that by suitably choosing the
family {gi : i ∈ I}, the conical EHP reduces to the CCCQ defined in [7,26]. In section 4, we derive some
relationships between the EHP, the BCQ and the Pshenichyni-Levin-Valadier property (PLV property).
We also give some applications involving the strong CHIP and the convex Farkas-Minkowski systems
(studied by Li, Nahak and Singer in [36]).

In this paper, we consider (1.2) under minimal assumptions: f is a proper convex lower semicontinuous
function and that {gi : i ∈ I} is a family of proper convex functions (not necessarily lower semicontinuous)
defined on a locally convex Hausdorff topological vector space X with proper sup-function, where I is an
arbitrary index set. The last three sections of this paper are on applications of results obtained in section
4. An optimality condition (of Lagrange type) for (1.2) is established in section 5 and as a consequence
we provide an improved version of [16, Theorem 3] on a characterization of minimizers for the problem
(1.2); our argument differs from [16] and allows us to treat the case when each gi is not necessarily
lower semicontinuous. In particular, our results here cover the interesting conic programming case in
which the feasible solution set is not necessarily closed (as the involved functions are not necessarily
lower semicontinuous). Several known results in the conic programming problem (see [24, 26, 29]) are
extended/improved in section 6. Finally, we study a best approximation problem in section 7.

2 Notations and preliminary results

The notation used in the present paper is standard (cf. [11,19,40]). In particular, we assume throughout
the whole paper (unless otherwise specified) that X is a real locally convex Hausdorff topological vector
space and let X∗ denote the dual space of X, whereas 〈x∗, x〉 denotes the value of a functional x∗ in X∗

at x ∈ X, i.e., 〈x∗, x〉 = x∗(x). Let A be a set in X. The interior (resp. closure, convex hull, convex cone
hull, linear hull, affine hull, boundary) of A is denoted by int A (resp. A, co A, cone A, spanA, aff A,
bd A). The positive polar cone A⊕ and the negative polar cone A	 are defined respectively by

A⊕ := {x∗ ∈ X∗ : 〈x∗, z〉 ≥ 0 for all z ∈ A}
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and
A	 := {x∗ ∈ X∗ : 〈x∗, z〉 ≤ 0 for all z ∈ A}.

The normal cone of A at z0 ∈ A is denoted by NA(z0) and is defined by NA(z0) = (A − z0)	. The
indicator function δA and the support function σA of A are respectively defined by

δA(x) :=
{

0, x ∈ A,

∞, otherwise,

and
σA(x∗) := sup

x∈A
〈x∗, x〉 for each x∗ ∈ X∗.

Let f and g be proper functions respectively defined on X and X∗. Let f∗, g∗ denote their conjugate
functions, that is

f∗(x∗) := sup{〈x∗, x〉 − f(x) : x ∈ X} for each x∗ ∈ X∗,

g∗(x) := sup{〈x∗, x〉 − g(x∗) : x∗ ∈ X∗} for each x ∈ X.

The epigraph of a function f on X is denoted by epi f and defined by

epi f := {(x, r) ∈ X × R : f(x) ≤ r}.

For a proper convex function f , the subdifferential of f at x ∈ X, denoted by ∂f(x), is defined by

∂f(x) := {x∗ ∈ X∗ : f(x) + 〈x∗, y − x〉 ≤ f(y) for each y ∈ X}.

Moreover, the Young’s equality holds (cf. [40, Theorem 2.4.2 (iii)]):

f(x) + f∗(x∗) = 〈x∗, x〉 if and only if x∗ ∈ ∂f(x). (2.1)

In particular,
(x∗, 〈x∗, x〉 − f(x)) ∈ epi f∗ for each x∗ ∈ ∂ f(x). (2.2)

We also define
im ∂f := {y∗ ∈ X∗ : y∗ ∈ ∂f(x) for some x ∈ X}

and
dom ∂f := {x ∈ X : ∂f(x) 6= ∅}.

For a convex subset A of X, the following statements are standard and easily verified:

σA = δ∗A, NA(x) = ∂δA(x) for each x ∈ A, (2.3)

σA(x∗) = 〈x∗, x〉 ⇔ x∗ ∈ NA(x) ⇐⇒ (x∗, 〈x∗, x〉) ∈ epiσA for each (x, x∗) ∈ A×X∗. (2.4)

Moreover, for each (x∗, α) ∈ X∗ × R,

(x∗, α) ∈ epi σA ⇐⇒ 〈x∗, x〉 ≤ α for each x ∈ A. (2.5)

Let {Ai : i ∈ J} be a family of subsets of X containing the origin. The set
∑

i∈J Ai is defined by

∑
i∈J

Ai =
{ {∑

i∈J0
ai : ai ∈ Ai, ∅ 6= J0 ⊆ J being finite

}
if J 6= ∅,

{0} if J = ∅.

In the remainder of this paper, let {gi : i ∈ I} denote a family of proper convex functions on X,
where I is an index set. Let G denote the sup-function of {gi : i ∈ I}, that is,

G(x) := sup{gi(x) : i ∈ I} for each x ∈ X.
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We always assume that the sup-function is proper. Let S denote the solution set of the inequality system
(1.1) defined by {gi : i ∈ I}, that is,

S := {x : gi(x) ≤ 0, ∀ i ∈ I} = {x : G(x) ≤ 0}.

For each x ∈ X, we define
I(x) = {i ∈ I : gi(x) = G(x) = 0}

and
Ĩ(x) := {i ∈ I : gi(x) = G(x)}.

The consideration of optimization problem (1.2) abounds in the literature. We end this section
with one such example (which will be discussed in detail in section 6). Consider the following conic
programming problem that has been studied in [5], and has also been studied in [2, 7, 24–29] for the
special case when X, Z are Banach spaces and g : X → Z is K-convex continuous.

Example 2.1. Suppose that X, Z are locally convex Hausdorff topological vector spaces, C ⊆ X is a
convex set and K ⊆ Z is a closed convex cone. Define an order on Z by saying y ≤K x if y − x ∈ −K.
We attach a greatest element ∞ with respect to ≤K and denote Z• := Z∪{+∞}. The following operations
are defined on Z•: for any z ∈ Z, z +∞ = ∞+ z = ∞ and t∞ = ∞ for all t ≥ 0.

Consider the following conic programming problem:

Minimize f(x),
s. t. x ∈ C, g(x) ∈ −K,

(2.6)

where f : X → R∪{+∞} is a proper convex lower semicontinuous function and g : X → Z• is K-convex
in the sense that for every u, v ∈ X and every t ∈ [0, 1],

g(tu + (1− t)v) ≤K tg(u) + (1− t)g(v),

(see [2, 4,5, 22,25]). As in [4], we define for each λ ∈ K⊕,

(λg)(x) :=

{
〈λ, g(x)〉 if x ∈ dom g,

+∞ otherwise,
(2.7)

where dom g := {x ∈ X : g(x) ∈ Z}. It is easy to see that g is K-convex if and only if (λg)(·) : X →
R ∪ {+∞} is a convex function for each λ ∈ K⊕. The problem (2.6) can be equivalently stated as

Minimize f(x),
s. t. δC(x) ≤ 0, (λg)(x) ≤ 0 for each λ ∈ K⊕.

Thus (2.6) can be viewed as an example of (1.2) by letting I = K⊕ ∪ {i0} with i0 /∈ I and

gi0 = δC , gλ = λg for each λ ∈ K⊕. (2.8)

3 The Basic Constraint Qualification

We begin with the following definitions adopted from [32, 36]. In the remainder, we shall adopt the
convention that cone A = {0} when A is an empty set.

Definition 3.1. Let C be a convex set in X. The family {gi : i ∈ I} is said to satisfy

(i) the Pshenichyni-Levin-Valadier (the PLV) property at x ∈ X if

∂ G(x) = co
⋃

i∈Ĩ(x)

∂ gi(x); (3.1)
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(ii) the basic constraint qualification (the BCQ) at x ∈ S if

NS(x) = cone
⋃

i∈I(x)

∂ gi(x); (3.2)

(ii′) the BCQ relative to C at x ∈ C ∩ S if

NC∩S(x) = NC(x) + cone
⋃

i∈I(x)

∂ gi(x); (3.3)

(iii) the PLV property (resp. the BCQ, the BCQ relative to C) if (3.1) (resp. (3.2), (3.3)) holds for
each x ∈ X (resp. x ∈ S, x ∈ C ∩ S).

Remark 3.1. In [16, Definition 2] (under the assumption that each gi is lower semicontinuous), the
property that the family {gi : i ∈ I} satisfies the BCQ relative to C was also described as the system
{δC ; gi, i ∈ I} is locally Farkas-Minkowski.

A relationship between the notions (ii) and (ii)′ in Definition 3.1 is shown in the following proposition.

Proposition 3.1. Consider a convex set C and x ∈ C ∩ S. Then the family {gi : i ∈ I} satisfies the
BCQ relative to C at x if and only if the family {δC ; gi, i ∈ I} satisfies the BCQ at x. Consequently,
the family {gi : i ∈ I} satisfies the BCQ relative to C if and only if the family {δC ; gi, i ∈ I} satisfies
the BCQ.

Proof. Take j /∈ I and set gj := δC . Writing J := I ∪{j}, the family {δC ; gi, i ∈ I} becomes {gi : i ∈ J}
such that C ∩ S = {y ∈ X : gi(y) ≤ 0,∀i ∈ J} and J(x) = {j} ∪ I(x), where for x ∈ C ∩ S,

J(x) := {i ∈ J : gi(x) = max{sup
i∈I

gi(x), δC(x)} = 0}.

Then by (2.3),
NC(x) + cone

⋃
i∈I(x)

∂ gi(x) = cone
⋃

i∈J(x)

∂ gi(x).

Thus the first assertion follows. The second follows immediately from the first.

Remark 3.2. (i) We have

∂ G(x) ⊇ co
⋃

i∈Ĩ(x)

∂ gi(x) for each x ∈ X. (3.4)

Indeed, let i ∈ Ĩ(x) and y∗ ∈ ∂ gi(x). Then gi(x) = G(x). Since y∗ ∈ ∂gi(x) and gi is proper,
gi(x) 6= +∞. Now it follows that

〈y∗, y − x〉 ≤ gi(y)− gi(x) ≤ G(y)−G(x) for each y ∈ X. (3.5)

This shows that y∗ ∈ ∂ G(x) and so (3.4) is proved. Thus, the family {gi : i ∈ I} has the PLV
property at x ∈ X if and only if

∂ G(x) ⊆ co
⋃

i∈Ĩ(x)

∂ gi(x). (3.6)

Hence, the family {gi : i ∈ I} has the PLV property if and only if (3.6) holds for each x ∈ dom ∂ G.

(ii) If i ∈ I(x) and y∗ ∈ ∂ g(x), then G(x) = 0. It follows from (3.5) that y∗ ∈ NS(x). Thus

NS(x) ⊇ cone
⋃

i∈I(x)

∂ gi(x) for each x ∈ S. (3.7)

Therefore, the family {gi : i ∈ I} satisfies the BCQ at x ∈ S if and only if

NS(x) ⊆ cone
⋃

i∈I(x)

∂ gi(x). (3.8)
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(iii) Note that if x ∈ intS, then NS(x) = {0}. Recalling our convention cone ∅ = {0} (see Definition 3.1
(ii)), it follows from (3.7) that

{0} = NS(x) = cone
⋃

i∈I(x)

∂ gi(x) for each x ∈ intS.

Hence, the family {gi : i ∈ I} satisfies the BCQ if and only if (3.8) holds for each x ∈ S\intS.

(iv) Applying parts (ii) and (iii) to the family of functions {δC ; gi, i ∈ I} in place of {gi : i ∈ I} and
invoking Proposition 3.1, we obtain that the family {gi : i ∈ I} satisfies the BCQ relative to C at
x if and only if we have

NC∩S(x) ⊆ NC(x) + cone
⋃

i∈I(x)

∂ gi(x), (3.9)

and that the family {gi : i ∈ I} satisfies the BCQ relative to C if and only if (3.9) holds for each
x ∈ (C ∩ S)\int (C ∩ S).

Recall from [13,32,34] that a family of convex sets {Ci : i ∈ I} is said to have the strong conical hull
intersection property (the strong CHIP) at x ∈

⋂
i∈I Ci if

NT
i∈I Ci

(x) =
∑
i∈I

NCi
(x). (3.10)

If (3.10) holds for every x ∈
⋂

i∈I Ci, then we say that the family has the strong CHIP.

Proposition 3.2. Let x ∈ C ∩ S and suppose that the family {gi : i ∈ I} satisfies the BCQ at x. Then
{C,S} has the strong CHIP at x if and only if the family {gi : i ∈ I} satisfies the BCQ relative to C at
x.

Proof. By the given assumption, (3.2) holds. Hence we have the following equivalences:

{C,S} has the strong CHIP at x ⇔ NC∩S(x) = NC(x) + NS(x)

⇔ NC∩S(x) = NC(x) + cone
⋃

i∈I(x)

∂ gi(x)

⇔ {gi : i ∈ I} satisfies the BCQ relative to C at x.

Recall from [21] that the inequality system f ≤ 0 satisfies the weak BCQ at x ∈ Sf\intSf if

NSf
(x) ⊆ cone ∂ f(x) + Ndom f (x), (3.11)

where Sf := {x ∈ X : f(x) ≤ 0}. The following proposition describes a relationship between the BCQ
and the weak BCQ .

Proposition 3.3. Let f be a proper convex function on X and x ∈ Sf\intSf . Then the family {f, δdom f}
satisfies the BCQ at x if and only if the inequality system f ≤ 0 satisfies the weak BCQ at x.

Proof. Write g1 = f and g2 = δdom f . If x satisfies, in addition, that f(x) < 0, then both the necessary
condition and the sufficient condition in the statement of the proposition are satisfied. In fact, since
x /∈ int Sf , [21, Lemma 2.2] states that

NSf
(x) = Ndom f (x).

Consequently (3.11) holds, and the family {f, δdom f} satisfies the BCQ at x because of (2.3) and I(x) =
{2} (as f(x) < 0).
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Therefore, to complete our proof we need only consider the case when f(x) = 0. For this case note
that I(x) = {1, 2}. Thus, by (2.3), the family {f, δdom f} satisfies the BCQ at x if and only if

NSf
(x) = cone ∂ f(x) + Ndom f (x). (3.12)

Since the inclusion NSf
(x) ⊇ cone ∂ f(x) + Ndom f (x) holds trivially (thanks to f(x) = 0 and Re-

mark 3.2(ii) as applied to {f, δdom f}), (3.11) and (3.12) are equivalent. This completes the proof.

4 The Epigraph Hull Property

Recall that the meaning of {gi : i ∈ I}, G,X, S and I has been specified in section 2. The sup-function
G is sometimes denoted by supi∈I gi. Recall also that we always assume that G is proper.

Definition 4.1. The family {gi : i ∈ I} is said to have

(i) the convex epigraph hull property (the convex EHP) if

epi (sup
i∈I

gi)∗ = co
⋃
i∈I

epi g∗i ; (4.1)

(ii) the conical epigraph hull property (the conical EHP) if

epiσS = cone
⋃
i∈I

epi g∗i . (4.2)

Remark 4.1. It is routine to show that

epi (supi∈I gi)∗ ⊇ co
⋃

i∈I epi g∗i and epiσS ⊇ cone
⋃

i∈I epi g∗i .

Thus the family has the convex EHP (resp. conical EHP) if and only if

epi (supi∈I gi)∗ ⊆ co
⋃

i∈I epi g∗i , (resp. epiσS ⊆ cone
⋃

i∈I epi g∗i .)

Results in the following proposition are known: for (i) see [35] and for (ii) see [16,23,30]. Recall that
we have assumed that supi∈I gi is proper.

Proposition 4.1. Suppose in addition that each gi is lower semicontinuous. Then the following asser-
tions regarding epigraphs hold:

(i)

epi (sup
i∈I

gi)
∗ = co

⋃
i∈I

epi g∗i
w∗

. (4.3)

(ii)

epiσS = epi δ∗S = cone
⋃
i∈I

epi g∗i
w∗

if S is nonempty. (4.4)

Corollary 4.1. Let {gi : i ∈ I} be as in the preceding proposition. Then the following assertions are
valid:

(i) {gi : i ∈ I} has the convex EHP if and only if

co
⋃
i∈I

epi g∗i is w∗-closed;
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(ii) {gi : i ∈ I} has the conical EHP if and only if

cone
⋃
i∈I

epi g∗i is w∗-closed,

provided that S 6= ∅.

Proof. Since G = supi∈I gi is proper, (4.3) holds. Thus (i) is seen to hold. Similarly, (ii) holds by (4.4)
provided that S 6= ∅.

Remark 4.2. In [16, Definition 1] and [17, Definition 3.1] (under the assumption that each gi is lower
semicontinuous), the system {δC ; gi, i ∈ I} is said to be Farkas-Minkowski if

epiσC + cone
⋃
i∈I

epi g∗i is w∗-closed.

Letting i0 /∈ I and writing gi0 := δC , one sees that {δC ; gi, i ∈ I} being Farkas-Minkowski is equivalent
to {gi, i ∈ I ∪ {i0}} having conical EHP.

The following example shows that the lower semicontinuity assumption for {gi : i ∈ I} cannot be
dropped in Proposition 4.1. In other words, Corollary 4.1 fails without lower semicontinity assumption
on {gi : i ∈ I}.

Example 4.1. Consider the real Hilbert space l2 of square-summable series and let Ω+ be the convex
subset defined by

Ω+ := {x ∈ l2 : xi ≥ 0, ∀i ∈ N, xi 6= 0 for at most finitely many i},

where xi denotes the ith coordinate of x. Let I = {t ∈ R : t > 0} and define a family {gt : t ∈ I} of
proper convex functions by

gt(x) :=

{
−t

∑∞
i=1 ixi if x ∈ Ω+

+∞ otherwise
for each t ∈ I.

Note in particular that gt(·) ≤ 0 on dom gt, dom gt = Ω+, and {x : gt(x) ≤ 0} = Ω+ for each t ∈ I.
Thus S :=

⋂
t∈I{x : gt(x) ≤ 0} = Ω+.

Let y := (1, 1
2 , · · · , 1

n , · · · ) and yn := (1, 1
2 , · · · , 1

n , 0, · · · ) for each natural number n. Then y ∈ l2\Ω+

and yn ∈ Ω+ for each n. Furthermore, one has that yn → y and

lim gt(yn) = lim
n→∞

−nt = −∞ < gt(y) = +∞ for each t ∈ I

(so each gt is not lower semi-continuous); consequently, gt(y) = −∞, where gt denotes the closure of the
function gt (cf. [40, Page 62]). Since g∗t = gt

∗ by [40, Theorem 2.3.1(iv)], we see that

g∗t (x∗) = gt
∗(x∗) ≥ 〈x∗, y〉 − gt(y) = +∞ for each x∗ ∈ l2 and t ∈ I.

Thus
epi g∗t = ∅ for each t ∈ I.

On the other hand, (supt∈I gt)∗ = σΩ+ which is proper since Ω+ 6= ∅. Hence the lower semicontinuity
assumption in Proposition 4.1 cannot be dropped.

Proposition 4.2. The family {gi, δdom gi : i ∈ I} has the conical EHP if and only if the family
{tgi, δdom gi

: i ∈ I, t > 0} has the convex EHP.
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Proof. By definition, the family {gi, δdom gi
: i ∈ I} has the conical EHP if and only if

epiσS = cone
⋃
i∈I

(epi g∗i ∪ epiσdom gi
) , (4.5)

while the family {tgi, δdom gi
: i ∈ I, t > 0} has the convex EHP if and only if

epiσS = co
⋃
i∈I

[⋃
t>0

epi (tgi)∗ ∪ epiσdom gi

]
, (4.6)

thanks to the easily checked equality δS = supt>0,i∈I tgi. It suffices to prove that the sets on the
right hand side of (4.5) and of (4.6) are equal. To do this, recall from [40, Theorem 2.3.1 (v)] that
(tG)∗(x∗) = tG∗(x∗

t ) for each t > 0 and x∗ ∈ X∗. It follows that

epi (tgi)∗ = t epi g∗i for each i ∈ I and t > 0.

Since epiσdom gi is a cone, it follows that

co
⋃
i∈I

[⋃
t>0

epi (tgi)∗ ∪ epiσdom gi

]
= co

⋃
i∈I

[⋃
t>0

t epi g∗i ∪ epiσdom gi

]
= co

⋃
i∈I

⋃
t>0

t (epi g∗i ∪ epiσdom gi
)

= co
⋃
i∈I

⋃
t≥0

t (epi g∗i ∪ epiσdom gi
)

= cone
⋃
i∈I

(epi g∗i ∪ epiσdom gi
) ,

where the third equality holds because (0, 0) ∈ epiσdom gi
for each i ∈ I. This completes the proof.

Remark 4.3. The first part of the second conclusion of the following theorem was also independently
obtained in [16, Corollary 2] for the special case when gi were assumed to be lower semicontinuous.

Theorem 4.1. The following assertions are valid:

(i) If the family {gi : i ∈ I} has the convex EHP, then it has the PLV property. The converse
implication also holds if dom G∗ ⊆ im ∂ G.

(ii) Suppose S 6= ∅. If the family {gi : i ∈ I} has the conical EHP, then it satisfies the BCQ. The
converse implication also holds if dom σS ⊆ im ∂ δS.

Proof. (i) Suppose that the family {gi : i ∈ I} has the convex EHP. By Remark 3.2(i), it suffices to
show that (3.6) holds for each x ∈ dom ∂ G. Take x∗ ∈ ∂ G(x). By (2.2), (x∗, 〈x∗, x〉 − G(x)) ∈ epiG∗.
Now (4.1) implies that (x∗, 〈x∗, x〉 −G(x)) can be represented as

(x∗, 〈x∗, x〉 −G(x)) =
∑
i∈J

λi(x∗i , αi),

for some finite subset J ⊆ I, (x∗i , αi) ∈ epi g∗i , i ∈ J and 0 < λi ≤ 1 with
∑

i∈J λi = 1. This implies

〈x∗, x〉 −G(x) =
∑
i∈J

λiαi ≥
∑
i∈J

λig
∗
i (x∗i ) ≥

∑
i∈J

λi(〈x∗i , x〉 − gi(x)). (4.7)

The equalities hold throughout (4.7) because 〈x∗, x〉 =
∑

i∈J λi〈x∗i , x〉 and gi(x) ≤ G(x) for each i. As
λi 6= 0 for each i ∈ J , it follows that gi(x) = G(x) and g∗i (x∗i ) = 〈x∗i , x〉 − gi(x) for each i ∈ J . Thus
J ⊆ Ĩ(x) and x∗i ∈ ∂ gi(x) for i ∈ J , thanks to (2.1). Hence

x∗ =
∑

i∈Ĩ(x)

λix
∗
i ∈ co

⋃
i∈Ĩ(x)

∂ gi(x),
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i.e. the family {gi : i ∈ I} has the PLV property. This proves the first part of (i).
Now we assume dom G∗ ⊆ im ∂ G and prove the converse implication. In view of Remark 4.1, we only

need to show that
epiG∗ ⊆ co

⋃
i∈I

epi g∗i . (4.8)

Take (y∗, α) ∈ epiG∗. Then y∗ ∈ dom G∗ and by assumption there exists x ∈ X such that y∗ ∈ ∂ G(x).
Now (3.1) implies that y∗ can be represented as

y∗ =
∑
i∈J

λiy
∗
i

for some finite subset J ⊆ Ĩ(x), y∗i ∈ ∂ gi(x) for each i ∈ J and 0 < λi ≤ 1 with
∑

i∈J λi = 1. Note that,
for each i ∈ J , 〈y∗i , x〉 −G(x) = g∗i (y∗i ) because y∗i ∈ ∂ gi(x) and G(x) = gi(x). Since

α ≥ 〈y∗, x〉 −G(x) =
∑
i∈J

λi(〈y∗i , x〉 − gi(x)),

there exists a set {αi : i ∈ J} of real numbers such that

α =
∑
i∈J

λiαi and g∗i (y∗i ) = 〈y∗i , x〉 − gi(x) ≤ αi for each j ∈ J.

This implies that (y∗i , αi) ∈ epi g∗i for each i and thus (y∗, α) ∈ co
⋃

i∈I epi g∗i . Hence (4.8) is proved.
(ii) Suppose that the family has the conical EHP. We wish to show that it satisfies the BCQ, that is,

to show that (3.8) holds for each x ∈ S\intS (see Remark 3.2(iii)). Take x ∈ S\intS and x∗ ∈ NS(x).
Since the set on the right hand side of (3.8) contains the origin, we assume without loss of generality
that x∗ 6= 0. By (2.4), (x∗, 〈x∗, x〉) ∈ epiσS . Now (4.2) implies that (x∗, 〈x∗, x〉) can be represented as

(x∗, 〈x∗, x〉) =
∑
i∈J

λi(x∗i , αi),

for some finite subset J ⊆ I, (x∗i , αi) ∈ epi g∗i , λi > 0, i ∈ J . Then we have

〈x∗, x〉 =
∑
i∈J

λiαi ≥
∑
i∈J

λig
∗
i (x∗i ) ≥

∑
i∈J

λi(〈x∗i , x〉 − gi(x)). (4.9)

Since 〈x∗, x〉 =
∑

i∈J λi〈x∗i , x〉 and gi(x) ≤ 0 for each i ∈ J , the equalities in (4.9) hold throughout. Since
λi 6= 0 for each i ∈ J , we obtain that for each i ∈ J

gi(x) = 0, (4.10)

and
g∗i (x∗i ) = 〈x∗i , x〉. (4.11)

It follows from (4.10) that J ⊆ I(x). Also, summing up (4.10) and (4.11), we obtain for each i ∈ J that

g∗i (x∗i ) + gi(x) = 〈x∗i , x〉,

which, by (2.1), is equivalent to x∗i ∈ ∂gi(x). Thus we have

x∗ =
∑
i∈J

λix
∗
i ∈ cone

⋃
i∈I(x)

∂ gi(x).

Therefore the family {gi : i ∈ I} satisfies the BCQ.
We now turn to the converse implication. Assume dom σS ⊆ im ∂ δS . In view of Remark 4.1, we only

need to show that,
epiσS ⊆ cone

⋃
i∈I

epi g∗i . (4.12)
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Take (y∗, α) ∈ epiσS . Since (0, 0) clearly belongs to the right hand side of (4.12), we assume without
loss of generality that (y∗, α) 6= (0, 0). Now, since y∗ ∈ dom σS ⊆ im ∂ δS , there exists x0 ∈ S such that
y∗ ∈ ∂ δS(x0) = NS(x0) by (2.3). The definition of BCQ implies that y∗ can be expressed as

y∗ =
∑
i∈J

λiy
∗
i

for some finite subset J ⊆ I(x0), y∗i ∈ ∂ gi(x0) and λi ≥ 0 for each i ∈ J . Note that, for each i ∈ J ,
〈y∗i , x0〉 = g∗i (y∗i ) because y∗i ∈ ∂ gi(x0) and gi(x0) = G(x0) = 0. On the other hand, since α ≥ 〈y∗, x0〉 =∑

i∈J λi〈y∗i , x0〉, there exists a set {αi : i ∈ J} of real numbers such that

α =
∑
i∈J

λiαi and g∗i (y∗i ) = 〈y∗i , x0〉 ≤ αi for each i ∈ J.

This implies that (y∗i , αi) ∈ epi g∗i for each i and thus (y∗, α) ∈ cone
⋃

i∈I epi g∗i . Hence (4.12) is proved.

Recall from [35] that a family of convex sets {Ci : i ∈ I} in X with nonempty intersection satisfies
the sum of epigraphs constraint qualification (SECQ) if

epiσT
i∈I Ci

=
∑

i∈I epiσCi
. (4.13)

The following proposition is on the relationships between the strong CHIP, the SECQ for a family of
convex sets, and the conical EHP for the family consisting of the corresponding indicator functions.

Proposition 4.3. Let {Ci : i ∈ I} be a family of convex sets in X with nonempty intersection. Then
the following assertions are valid:

(i) The family {Ci : i ∈ I} has the strong CHIP if and only if the family of functions {δCi
: i ∈ I}

has the BCQ;

(ii) The family {Ci : i ∈ I} satisfies the SECQ if and only if the family of functions {δCi
: i ∈ I} has

the conical EHP.

Proof. Consider the family of functions {δCi
: i ∈ I}, i.e. gi := δCi

for each i ∈ I. Then,

S := {x : sup
i∈I

δCi
(x) ≤ 0} = {x : δT

i∈I Ci
(x) ≤ 0} =

⋂
i∈I

Ci 6= ∅.

Also, G(x) := supi∈I δCi
(x) = δT

i∈I Ci
(x) and that G(x) = 0 for each x ∈ S. Moreover, since δCi

(x) = 0
for each x ∈ S and each i ∈ I, it follows that I(x) = I for each x ∈ S.

(i) For each x ∈ S, we have from (2.3) that

cone
⋃

i∈I(x)

∂ δCi
(x) = cone

⋃
i∈I

∂ δCi
(x) = cone

⋃
i∈I

NCi
(x) =

∑
i∈I

cone NCi
(x) =

∑
i∈I

NCi
(x).

Therefore, when {δCi
: i ∈ I} replaces {gi : i ∈ I}, we see that (3.2) and (3.10) are equivalent and so

(i) is proved.
(ii) Note that each epi σCi

is a cone and so

cone
⋃
i∈I

epiσCi
=

∑
i∈I

cone (epiσCi
) =

∑
i∈I

epiσCi
.

Therefore, when {δCi
: i ∈ I} replaces {gi : i ∈ I}, we see that (4.2) and (4.13) are equivalent and so

(ii) is proved.
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Corollary 4.2 (see [35]). Let {Ci : i ∈ I} be a family of convex sets in X with nonempty intersection.
If the family satisfies the SECQ, then it has the strong CHIP. The converse implication also holds if
dom σS ⊆ im ∂ δS, where S =

⋂
i∈I Ci.

Proof. The corollary follows from Proposition 4.3 and Theorem 4.1(ii) (applied to the family of functions
{δCi : i ∈ I} in place of {gi : i ∈ I}).

Adopting a definition given in [36, Definition 5.3] originally in a more restrictive case, we say that a
linear inequality

〈a∗, x〉 ≤ b (4.14)

(where a∗ ∈ X∗ and b ∈ R) is a consequence relation of (1.1) if every x ∈ S satisfies (4.14). Moreover, the
system (1.1) is said to be a convex Farkas-Minkowski (FM) system if every linear consequence relation
of the system (1.1) is also a consequence relation of some finite subsystem of it. The following result
was independently obtained in [16, Proposition 1] under the additional assumption that each gi is lower
semicontinuous.

Proposition 4.4. Suppose that S 6= ∅ and that the family {gi : i ∈ I} has the conical EHP. Then the
system (1.1) is a convex FM system.

Proof. Let a∗ ∈ X∗ and b ∈ R be such that 〈a∗, x〉 ≤ b for each x ∈ S. This means that

(a∗, b) ∈ epiσS

thanks to (2.5). Since the family {gi : i ∈ I} has the conical EHP, it follows from (4.2) that

(a∗, b) ∈ cone
⋃
i∈I

epi g∗i .

Thus, there exists a finite subset J ⊆ I such that

(a∗, b) ∈ cone
⋃
i∈J

epi g∗i ⊆ epiσSJ
,

where SJ := {x ∈ X : gi(x) ≤ 0, ∀i ∈ J} and the inclusion follows from Remark 4.1. Again by (2.5),
one has 〈a∗, x〉 ≤ b for each x ∈ SJ . This completes the proof.

The following corollary was proved by Li, Nahak and Singer in [36, Proposition 5.4] under the addi-
tional assumptions that X = Rn, S is compact and each gi is continuous (recall that if S is a weakly
compact convex set and X is a normed linear space, then domσS ⊆ im ∂δS ; see [35, Proposition 3.1]).
A similar result was obtained in [16, Proposition 3], in which they assumed the family of lower semicon-
tinuous functions to have BCQ at a point z and deduced that every linear consequence relation (4.14) of
the system (1.1) with b = 〈a∗z〉 is a consequence relation of some finite subsystem of it.

Corollary 4.3. Suppose that S 6= ∅ and that the family {gi : i ∈ I} satisfies the BCQ. Suppose further
that dom σS ⊆ im ∂ δS. Then (1.1) is a convex FM system.

Proof. By Theorem 4.1(ii), the assumptions imply that the family {gi : i ∈ I} has the conical EHP.
Hence the conclusion follows from Proposition 4.4.

5 Optimality Conditions

Let X be a locally convex Hausdorff topological vector space as before. We use Γ(X) to denote the class
of all proper convex lower semicontinuous functions on X as in [40]. For a subset of X, we define

FA := {f ∈ Γ(X) : dom f ∩A 6= ∅, epiσA + epi f∗ is w∗-closed}.
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Since epiσA = epi σA for any convex set A,

f ∈ FA ⇔ f ∈ FA. (5.1)

It is known from [6, Theorem 3.2] that if f ∈ FA and closed convex set A are such that epi σA + epi f∗

is w∗-closed, then the subdifferential sum formula holds:

f ∈ FA ⇒ ∂ (f + δA)(x) = ∂ f(x) + ∂ δA(x) for each x ∈ A ∩ dom f.

Thus, (5.1) entails that

f ∈ FA ⇒ ∂ (f + δA)(x) = ∂ f(x) + ∂ δA(x) for each x ∈ A ∩ dom f. (5.2)

As in [40], let Λ(X) denote the class of all proper convex functions on X. Let f ∈ Λ(X), and recall
that the meaning of {gi : i ∈ I}, G,X, S and I has been specified in section 2 and that we always assume
that G is proper. We consider the following minimization problem:

Minimize f(x),
s. t. gi(x) ≤ 0, i ∈ I.

(5.3)

Clearly, x ∈ S is a minimizer of (5.3) if and only if it is a minimizer of (5.4) defined as follows:

Minimize f(x),
s. t. x ∈ S.

(5.4)

The following theorem gives a characterization for a feasible point x to be a minimizer. Note in
particular that it improves a result in [16, Theorem 4] as far as the lower semicontinuity of the functions
gi is relaxed. See also [5] for other related results. For h ∈ Λ(X), let conth denote the set of all points
at each of which h is continuous, that is

cont h := {x ∈ X : h is continuous at x}.

Theorem 5.1. Let x be a feasible point of (5.3). Then the following statements are equivalent:

(i) The family {gi : i ∈ I} satisfies the BCQ at x.

(ii) For each f ∈ FS, x is a minimizer of (5.4) with S in place of S if and only if there exist a finite
subset J ⊆ I(x) and λi ≥ 0, i ∈ J such that

0 ∈ ∂ f(x) +
∑
i∈J

λi∂ gi(x). (5.5)

(iii) For any f ∈ Λ(X) such that cont f ∩ S 6= ∅, x is a minimizer of (5.4) if and only if there exist a
finite subset J ⊆ I(x) and λi ≥ 0, i ∈ J such that (5.5) holds.

(iv) For each continuous linear functional f , x is a minimizer of (5.4) if and only if there exist a finite
subset J ⊆ I(x) and λi ≥ 0, i ∈ J such that (5.5) holds.

Proof. Recall a well known result in convex analysis (cf. [40, Theorem 2.5.7]) that if f ∈ Λ(X) and A is
a convex subset, then

x minimizes f on A ⇐⇒ x minimizes (f + δA) on X ⇐⇒ 0 ∈ ∂(f + δA)(x). (5.6)

We now first prove (i)⇒(ii). Fix f ∈ FS . By (5.2), we have

∂ (f + δS)(x) = ∂ f(x) + ∂ δS(x) for each x ∈ S ∩ dom f. (5.7)
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By (2.3), we know further that

∂ δS(x) = NS(x) = NS(x) for each x ∈ S. (5.8)

Thus by (5.6), (5.7) and (5.8), the assumption (i) implies the following equivalences:

x minimizes f on S ⇐⇒ 0 ∈ ∂ f(x) + NS(x) ⇐⇒ 0 ∈ ∂ f(x) + cone
⋃

i∈I(x)

∂ gi(x).

The implication (i)⇒(ii) is now clear.
Next, we prove (i)⇒(iii). Let f ∈ Λ(X) be such that cont f ∩ S 6= ∅. Then [40, Theorem 2.8.7(iii)]

states that
∂ (f + δS)(x) = ∂ f(x) + ∂ δS(x) for each x ∈ S ∩ dom f. (5.9)

Thus the implication (i)⇒(iii) is seen to hold by (5.6) and (5.9).
To show the implication (ii)⇒(iv), let f be a continuous linear functional on X. Then infx∈S f(x) =

infx∈S f(x) and f ∈ FS by [15, Remark 5.6]. The latter condition is equivalent to f ∈ FS , thanks to
(5.1). Since x ∈ S, the implication (ii)⇒(iv) is clear.

The implication (iii)⇒(iv) is immediate.
Finally, we turn to the proof of (iv)⇒(i). We need to show that (3.8) holds for x = x. Let y∗ ∈ NS(x).

Then x is a minimizer of the following optimization problem:

Minimize −〈y∗, x〉
s. t. x ∈ S.

By (iv), there exist a finite subset J ⊆ I(x) and λi ≥ 0, i ∈ J such that

0 ∈ −y∗ +
∑
i∈J

λi∂ gi(x).

Thus
y∗ ∈

∑
i∈J

λi∂ gi(x) ⊆ cone
⋃

i∈I(x)

∂ gi(x).

Therefore x satisfies (3.8) as required to show. This completes the proof.

Let A be a convex set in X and a ∈ A. In the literature there are several unequivalent conditions on
“the relative interior” of A such as

a ∈ U ∩ aff A ⊆ A (5.10)

and
a ∈ U ∩ aff A ⊆ A, (5.11)

where U is a neighborhood of a. For example, (5.10) was considered in [3, 20] and (5.11) in [2, 40]. As
(5.11) is not needed for our present study, we will follow the terminology of [3,20] to say that a is in the
relative interior of A and denoted by a ∈ riA, if there exists a neighborhood of a such that (5.10) holds.

Remark 5.1. If 0 ∈ riA and x0 ∈ A, then tx0 ∈ riA for each t ∈ [0, 1). To see this, consider the
Minkowski functional pA(x) := inf{λ : λ−1x ∈ A} for each x ∈ spanA. By considering A and A as
subsets of spanA, we have riA = {x ∈ spanA : pA(x) < 1} and A = {x ∈ spanA : pA(x) ≤ 1}
(cf. [40, Proposition 1.1.1(ii)]). Since pA(x0) ≤ 1, we have pA(tx0) = tpA(x0) < 1 for each t ∈ [0, 1).
Thus tx0 ∈ riA as required.

For f ∈ Λ(X), define

contAf = {x ∈ dom f ∩ aff A : f |aff A is continuous at x}.



C. LI, K. F. NG AND T. K. PONG 15

Remark 5.2. If 0 ∈ contA f and x0 ∈ dom f ∩ spanA, then tx0 ∈ contA f for all t ∈ [0, 1). To see this,
consider dom f ∩ spanA as a subset of spanA; in particular, 0 ∈ contA f ⊆ int (dom f ∩ spanA). Since
x0 ∈ dom f ∩ spanA, it follows that tx0 ∈ int (dom f ∩ spanA) for all t ∈ [0, 1). Consequently, by the
convexity of f , tx0 ∈ contA f for all t ∈ [0, 1) thanks to [40, Theorem 2.2.9] because f |span A is continuous
at 0.

Lemma 5.1. Consider the problem (5.4) and let f ∈ Λ(X). Suppose that

(dom f ∩ riS) ∪ (S ∩ contSf) 6= ∅. (5.12)

Then
inf
x∈S

f(x) = inf
x∈S

f(x). (5.13)

Proof. By (5.12), we assume without loss of generality that

0 ∈ (dom f ∩ riS) ∪ (S ∩ contSf).

Let λ > infx∈S f(x) and take x0 ∈ S such that λ > f(x0). To show (5.13) it suffices to show that
λ > infx∈S f(x). By the convexity we have

f(tx0) ≤ tf(x0) + (1− t)f(0) for each t ∈ [0, 1]. (5.14)

Letting t ↑ 1 in (5.14), we obtain

lim sup
t→1−

f(tx0) ≤ lim
t→1−

[tf(x0) + (1− t)f(0)] = f(x0) < λ. (5.15)

This and Remark 5.1 imply that infx∈S f(x) ≤ f(x0) if 0 ∈ riS (so tx0 ∈ riS for each t ∈ [0, 1)). It
remains to consider the case when 0 ∈ S ∩ contSf . But then Remark 5.2 entails that tx0 is a continuity
point of f |span S if t ∈ [0, 1). Noting tx0 ∈ S, it follows from (5.15) that f(xt) < λ for xt ∈ S close enough
to tx0, provided that t < 1 sufficiently near to 1. Therefore infx∈S f(x) < λ in any case. This completes
the proof.

Remark 5.3. For two convex sets A,C in a Banach space X, recall from [34] that an a ∈ A belongs to
rintaff CA if a ∈ B(a, ε) ∩ aff C ⊆ A for some ε > 0. Note that if X is a Banach space and f ∈ Γ(X),
then

rintaff Sdom f ⊆ contS f. (5.16)

To see this we assume without loss of generality that 0 ∈ S. Then aff S = spanS is a Banach space.
Since f |aff S ∈ Γ(aff S), (5.16) follows from [40, Theorem 2.2.20].

Corollary 5.1. Under the assumption of Theorem 5.1, for any x ∈ S, the following statements are
equivalent:

(i) The family {gi : i ∈ I} satisfies the BCQ at x.

(ii′) For each f ∈ FS satisfying (5.12), x is a minimizer of (5.4) if and only if there exist a finite subset
J ⊆ I(x) and λi ≥ 0, i ∈ J such that (5.5) holds.

Proof. Suppose (i) holds. Then Theorem 5.1(ii) holds. Let f ∈ FS satisfy (5.12). Then infx∈S f(x) =
infx∈S f(x) by Lemma 5.1. Since x ∈ S, applying Theorem 5.1(ii) to this f , (ii′) is seen to hold.
Conversely, suppose (ii′) holds. Then part (iv) (and so part (i)) of Theorem 5.1 holds because any
continuous linear functional f on X belongs to FS (by [15, Remark 5.6] and (5.1)), and satisfies (5.12)
(since dom f = X). The proof is complete.
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The following result was proved in [15, Theorem 5.5] under the additional assumption that each gi

is continuous, which was recently extended in [16, Theorem 3] to the setting that some gi are allowed
merely lower semi-continuous.

Corollary 5.2. Suppose that f ∈ FS and that the family {gi : i ∈ I} has the conical EHP. Assume that
either S is closed or the condition (5.12) is satisfied. Let x ∈ S. Then x is a minimizer of (5.4) if and
only if there exist a finite subset J ⊆ I(x) and λi ≥ 0, i ∈ J such that

0 ∈ ∂ f(x) +
∑
i∈J

λi∂ gi(x).

Proof. Since the family {gi : i ∈ I} has the conical EHP, it has the BCQ at x by Theorem 4.1(ii).
Moreover (5.13) holds by the assumptions and Lemma 5.1. Since x ∈ S it follows that x is a minimizer
of (5.4) if and only if x is a minimizer of (5.4) but with S in place of S. Thus the corollary follows from
the implication (i)⇒(ii) in Theorem 5.1.

The following example shows that (5.13) and the related corollaries may fail if the assumption (5.12)
is dropped.

Example 5.1. Define S := {(x, y) ∈ R2 : x ≥ 0}\{(0, y) ∈ R2 : y < 1} and

f(x, y) :=

{
y2

2 if x = 0,

+∞ otherwise.

Then f is proper convex lower semicontinuous, S is convex and S = {(x, y) ∈ R2 : x ≥ 0}. Note that in
this case dom f = {(0, y) ∈ R2 : y ∈ R} which is disjoint from the set riS = int S = {(x, y) ∈ R2 : x > 0}.
It is easy to see that inf(x,y)∈S f(x, y) = f(0, 1) = 1

2 but inf(x,y)∈S f(x, y) = f(0, 0) = 0. Thus (5.13)
fails.

Next we wish to show that f ∈ FS. To do this, note first that for each (x, y) ∈ R2

f∗(x, y) = sup{〈(u, v), (x, y)〉 − f(u, v) : (u, v) ∈ dom f} =
y2

2
,

and that

σS(x, y) = sup
u≥0,v∈R

〈(u, v), (x, y)〉 =

{
0 if x ≤ 0 and y = 0,

+∞ otherwise.

It is easy to see by the definition that

epi f∗ = {(x, y, r) ∈ R3 :
y2

2
≤ r} and epiσS = {(x, 0, r) ∈ R3 : x ≤ 0, r ≥ 0}.

Therefore, epi f∗ + epiσS = epi f∗. This implies that epi f∗ + epiσS is weak∗-closed. Since f is proper
and dom f ∩ S 6= ∅, we see that f ∈ FS.

Now, note that (0, 1) is the minimizer of the following problem:

Minimize f(x, y)
s. t. δS(x, y) ≤ 0.

Note also that ∂ f(0, 1) = {(x, 1) : x ∈ R} and that NS(0, 1) = {λ(−1, 0) : λ ≥ 0}. Hence the optimality
condition (0, 0) ∈ ∂ f(0, 1)+NS(0, 1) fails even though f ∈ FS and the family {δS} has the BCQ property.
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6 Applications to Conic Programming

We continue our study of the conic programming problem with notations as explained in Example 2.1.
It can be checked in a straightforward manner that the following facts are true. They are known when g

is continuous on X; see [24,30]. Some related results can be founded in [17].

Fact 6.1. cone
⋃

λ∈K⊕ epi (λg)∗ =
⋃

λ∈K⊕ epi (λg)∗.

Fact 6.2. cone
⋃

λ∈K⊕ ∂(λg)(x) =
⋃

λ∈K⊕ ∂(λg)(x) for each x ∈ X.

Fact 6.3. cone
⋃

λ∈K⊕

λg(x)=0

∂(λg)(x) =
⋃

λ∈K⊕

λg(x)=0

∂(λg)(x) = Ng(x)0 for each x ∈ X, where Ng(x)0 is defined

by
Ng(x)0 := {u∗ ∈ X∗ : (u∗, u∗(x)) ∈

⋃
λ∈K⊕

epi (λg)∗}.

Generalizing the corresponding notions in [24, 26, 29] to suit our present noncontinuous situation we
make the following definitions (it is a routine to see that the notions in the following definition coincide
with corresponding ones in [24,26,29] in the case when g : X → Z is continuous):

Definition 6.1. For g, C,K as in Example 2.1, we say that

(i) the condition (C*) holds if the family {λg : λ ∈ K⊕} has the conical EHP;

(ii) the closed cone constraint qualification (CCCQ) holds if the family {δC , λg : λ ∈ K⊕} has the
conical EHP;

(iii) the pair {C, g−1(−K)} has the sharpened strong CHIP at x ∈ C ∩ g−1(−K) if NC∩g−1(−K)(x) =
NC(x) + Ng(x)0.

The following notion of K-lower semicontinuity was introduced in [37] and extended in [1, 12] for
functions g : X → Z•. It was also considered in [4].

Definition 6.2. For g,K as in Example 2.1, the function g is said to be K-lower semicontinuous at
x0 ∈ X if for each neighborhood V of zero in Z and any b ∈ Z with b ≤K g(x0), there exists a neighborhood
U of zero in X such that

g(x0 + U) ⊆ b + V + K ∪ {∞}. (6.1)

Clearly, if g : X → Z is continuous, then g is K-convex lower semicontinuous. Below we give an
example of a function that is K-convex lower semicontinuous but not continuous.

Example 6.1. Let X = l1 and Z = l1 respectively under the l∞-norm ‖ · ‖∞ and the l1-norm ‖ · ‖1, and
let g denote the identity map from X into Z. Then g has the desired properties (that g is not continuous
is well-known). To see this, let us fix a nonzero element c ∈ X and let K denote its kernel in Z, that is
K := {z ∈ Z : 〈c, z〉 = 0}. By a well-known result (cf. [39, Page 24]), the distance to each z ∈ Z from
the closed subspace K satisfies the so-called Ascoli formula:

d(z,K) =
|〈c, z〉|
‖c‖∞

, for each z ∈ Z,

and it follows that
d(z,K) ≤ α‖z‖∞, for each z ∈ Z,

where α := ‖c‖1
‖c‖∞ ; in particular we have

d(g(x),K) ≤ α‖g(x)‖∞, for each x ∈ X,

This implies that g is K-lower semicontinuous at x0 := 0 (for ε > 0 and V = {z ∈ Z : ‖z‖1 < ε},
(6.1) holds with U = {x ∈ X : ‖x‖∞ < ε

α}). By the linearity of g, we conclude that g is K-lower
semicontinuous on the whole X.



18 CONSTRAINT QUALIFICATIONS FOR INEQUALITY SYSTEMS

Proposition 6.1. Let g,K be as in Example 2.1. Suppose that g is K-lower semicontinuous and that
dom g is closed. Then for each λ ∈ K⊕, λg is lower semicontinuous.

Proof. Let λ ∈ K⊕\{0} and let x0 ∈ X. To show the lower semicontinuity of λg at x0, we assume without
loss of generality that x0 ∈ dom g (thanks to the assumption that dom g is closed). Let ε > 0. By the
continuity of λ, take a neighborhood V of zero in Z such that |λ(v)| < ε for each v ∈ V . By definition of
K-lower semicontiuity, there exists a neighbourhood U of x0 in X such that (6.1) holds. Let u ∈ x0 + U .
By (6.1), there exist v1 ∈ V and k ∈ K ∪{∞} such that g(u) = g(x0)+ v1 +k. For the case when k ∈ K,
we have

λg(x0) = 〈λ, g(x0)〉 ≤ 〈λ, g(u)− v1〉 < λg(u) + ε.

For the case when k = ∞, one has g(u) = ∞, i.e., u /∈ dom g. Thus, it follows from definition that
λg(x0)− ε < λg(u) = ∞. Therefore, λg is lower semicontinuous at x0.

Example 6.2 below shows that the converse of Proposition 6.1 is not true.

Example 6.2. Let X = L2[0, 1], Z = L2[0, 1] respectively under ‖·‖1-norm and ‖·‖2-norm. Let K = {0}
and let Z• := Z∪{+∞} as in Example 2.1. Let D = {x ∈ X : ‖x‖2 ≤ 1} and let g(x) = x+δD(x). Then
g is not continuous on D (as there exists a sequence {xn} in X such that each ‖xn‖2 = 1 but ‖xn‖1 = 1

n ;
for example, let xn = nχ[0,1/n2] be the characteristic function of the interval [0, 1/n2]), and so g is not
{0}-lower semicontinuous.

Let λ ∈ Z∗ = {0}⊕. We claim that λg is lower semicontinuous. Let r ∈ R and let

Ar := {x ∈ X : λg(x) ≤ r}.

It suffices to show that Ar is closed in X. To do this, let x ∈ X and {xn} be a sequence in Ar such
that ‖xn − x‖1 → 0. By an elementary result in Lebesgue theory (see [38, Page 95, Proposition 18]),
there exists a subsequence {xnk

} convergent to x almost everywhere. By Fatou’s lemma and the fact that
Ar ⊆ D (by (2.7)), it follows that ∫ 1

0

|x|2dt ≤ lim inf
k

∫ 1

0

|xnk
|2dt ≤ 1,

thus x ∈ D. Let ε > 0. Since λ ∈ L2[0, 1], there exists a simple function h such that ‖λ−h‖2 < ε. Noting
‖x− xn‖2 ≤ 2 (as x, xn ∈ D), it follows from the Hölder inequality that

λg(x)− λg(xn) = 〈λ, x− xn〉 = 〈λ− h, x− xn〉+ 〈h, x− xn〉
≤ 2ε + ‖h‖∞‖x− xn‖1 → 2ε.

This implies that
λg(x) ≤ lim inf

n
λg(xn) + 2ε ≤ r + 2ε,

and hence that λg(x) ≤ r as ε > 0 is arbitrary. Therefore x ∈ Ar and Ar is closed as wished to show.

By Fact 6.1, Corollary 4.1 and Proposition 6.1, the following remark is obvious:

Remark 6.1. Let g, C,K be as in Example 2.1. Suppose in addition that g is K-lower semicontinuous
and that dom g is closed. Then the condition (C*) holds if and only if⋃

λ∈K⊕ epi (λg)∗ is w∗-closed;

more generally, the CCCQ holds if and only if

epiσC +
⋃

λ∈K⊕ epi (λg)∗ is w∗-closed.

(Thus, conditions (C*) and CCCQ defined in Definition 6.1 agree with the ones defined in [26, 29] for
the continuous case.)
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Corollary 6.1. The following equivalence holds for any x ∈ C ∩ g−1(−K):

The family {δC , λg : λ ∈ K⊕} satisfies the BCQ at x

⇔{C, g−1(−K)} has the sharpened strong CHIP at x.

Proof. Note first that {x : δC(x) ≤ 0, λg(x) ≤ 0, λ ∈ K⊕} = C ∩ g−1(−K). Hence the family {δC , λg :
λ ∈ K⊕} satisfies the BCQ at x if and only if

NC∩g−1(−K)(x) = NC(x) + cone
⋃

λ∈K⊕

λg(x)=0

∂(λg)(x),

which is equivalent to {C, g−1(−K)} has the sharpened strong CHIP at x, by Fact 6.3.

The next two corollaries were respectively proved in [24, Propositions 3.3 and 3.4] under the additional
assumption that g is continuous.

Corollary 6.2. If g, C,K are as in Example 2.1 and the CCCQ holds, then

NC∩g−1(−K)(x) = NC(x) +
⋃

λ∈K⊕

λg(x)=0

∂ (λg)(x), for each x ∈ C ∩ g−1(−K), (6.2)

that is, {C, g−1(−K)} has the sharpened strong CHIP at each point in C ∩ g−1(−K). In particular, if
the condition (C*) holds, then

Ng−1(−K)(x) =
⋃

λ∈K⊕

λg(x)=0

∂ (λg)(x), for each x ∈ g−1(−K). (6.3)

Proof. We need only prove the first assertion. Define I := K⊕ ∪ {i0}, i0 /∈ K⊕, and consider {gi : i ∈ I}
as defined in (2.8). Then S := {x : gi(x) ≤ 0} is exactly C ∩ g−1(−K) and the active index set I(x)
is exactly {i0} ∪ {λ ∈ K⊕ : λg(x) = 0}. Thus (6.2) simply means that the family {gi : i ∈ I} has the
BCQ, and hence the result follows from Remark 6.1 and Theorem 4.1.

Corollary 6.3. If g, C,K are as in Example 2.1 and the condition (C*) holds, then for each x ∈
C ∩ g−1(−K), the family {C, g−1(−K)} satisfies the strong CHIP at x if and only if it satisfies the
sharpened strong CHIP at x.

Proof. By the given assumption, (6.3) holds, that is, Ng−1(−K)(x) = Ng(x)0 for each x ∈ g−1(−K).
Consequently, the following equivalence holds for each x ∈ C ∩ g−1(−K):

NC∩g−1(−K)(x) = NC(x) + Ng−1(−K)(x) ⇔ NC∩g−1(−K)(x) = NC(x) + Ng(x)0.

Thus the result is clear.

7 Applications to Best Approximation Theory

Let us recall from [14] that for a system of finitely many closed convex sets {D,Ci : i ∈ I} in a Hilbert
space, where Ci = {x ∈ X : 〈ai, x〉 ≤ bi} for some ai ∈ X and bi ∈ R, i ∈ I, the following statements are
equivalent for each x0 ∈ D ∩

⋂
i∈I Ci:

(i) {D,Ci : i ∈ I} has the strong CHIP at each x0.

(ii) For each x ∈ X, PD∩
T

i∈I Ci
(x) = x0 if and only if there exists a finite set I0 ⊆ I such that

PD(x−
∑

i∈I0
ai) = x0,
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where PA(x) denotes the projection of the point x onto a convex set A. This important result has been
extended in many aspects. For example, [32] discussed an extension to the case of an infinite system,
and [31] discussed a family of functions in place of that of closed convex sets.

Recall that for a Banach space X and its dual X∗, the duality map Φ : X ⇒ X∗ is defined by
Φ(x) := {x∗ : ‖x‖2 = ‖x∗‖2 = 〈x∗, x〉} (cf. [40, Section 3.7]). Let {gi : i ∈ I}, X, C, S and I be as in
section 2.

Theorem 7.1. Suppose X is a Banach space and let x0 ∈ C ∩ S. Consider the following statements:

(i) {δC ; gi, i ∈ I} satisfies the BCQ at x0.

(ii) For each x ∈ X, x0 ∈ PC∩S(x) if and only if

Φ(x− x0) ∩

NC(x0) + cone
⋃

i∈I(x0)

∂ gi(x0)

 6= ∅. (7.1)

Then (i)⇒(ii). If we further assume that X is reflexive and smooth, then (ii)⇔(i).

Proof. We regard the family {δC ; gi, i ∈ I} as {gj : j ∈ J} by letting J = I ∪ {i+} and gj := δC , where
i+ /∈ I. It follows that

J(x0) := {j ∈ J : gj(x0) = max{sup
i∈I

gi(x0), δC(x0)}} = {i+} ∪ I(x0).

Suppose (i) holds and let x ∈ X. Note that x0 ∈ PC∩S(x) if and only if x0 minimizes the function
1
2‖ · −x‖2 over the set {x : δC(x) = 0, gi(x) ≤ 0, ∀i ∈ I}. Since Φ(x − x0) = −∂ ( 1

2‖ · −x‖2)(x0)
(cf. [40, Page 230]) and since the family {gj : j ∈ J} satisfies the BCQ at x0, it follows from (2.3) and
Theorem 5.1(iii) that x0 ∈ PC∩S(x) if and only if

Φ(x− x0) ∩

NC(x0) + cone
⋃

i∈I(x0)

∂ gi(x0)

 = Φ(x− x0) ∩

cone
⋃

j∈J(x0)

∂ gj(x0)

 6= ∅.

Thus (ii) holds.
Now we assume in addition that X is reflexive and smooth, and turn to prove (ii)⇒(i). By (3.9), we

need to show that
NC∩S(x0) ⊆ NC(x0) + cone

⋃
i∈I(x0)

∂ gi(x0). (7.2)

To do this, take y∗ ∈ NC∩S(x0). By the given assumptions, Φ is bijective (cf. [40, Theorem 3.7.2 (vi)
and Page 230]). Thus there exists u = Φ−1(y∗) and it follows that x0 ∈ PC∩S(x0 + u) by a well-known
result (cf. [40, Corollary 3.8.5]). Therefore, by (ii), (7.1) holds with x = x0 + u. Thus we obtain from
(7.1) that

y∗ = Φ(x0 + u− x0) ∈ NC(x0) + cone
⋃

i∈I(x0)

∂ gi(x0).

This shows that (7.2) holds as required to show. This completes the proof.

Corollary 7.1. Suppose that X in Theorem 7.1 is a Hilbert space and let x0 ∈ C∩S. Then the following
statements are equivalent:

(i) {δC ; gi, i ∈ I} satisfies the BCQ at x0.

(ii) For each x ∈ X, x0 = PC∩S(x) if and only if

x− x0 ∈ NC(x0) + cone
⋃

i∈I(x0)

∂ gi(x0). (7.3)
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(iii) For each x ∈ X, x0 = PC∩S(x) if and only if there exist finite subset J ⊆ I(x0), λi ≥ 0, ui ∈
∂ gi(x0), i ∈ J such that

x0 = PC(x−
∑
i∈J

λiui).

Proof. The equivalence of (ii) and (iii) is standard in Hilbert spaces. The equivalence of (i) and (ii)
follows from Theorem 7.1 since (7.1) and (7.3) are now identical (because Φ is the identity map for Hilbert
spaces)

Corollary 7.2. Suppose in Corollary 7.1 that the family {δC ; gi, i ∈ I} has the conical EHP. Then for
each x ∈ X and x0 ∈ C ∩ S, PC∩S(x) = x0 if and only if there exist a finite set I0 ⊆ I(x0), xi ∈ ∂ gi(x)
and λi ≥ 0 for each i ∈ I0 such that PC(x−

∑
i∈I0

λixi) = x0.

Proof. Since the family {δC ; gi, i ∈ I} has the conical EHP, it satisfies the BCQ by Theorem 4.1(ii).
The result now follows from Corollary 7.1.

For the next two corollaries, let g, C, and K be as in Example 2.1. These two corollaries were
established respectively in [28] and [29] but under the additional assumption that g is continuous.

Corollary 7.3. Suppose X is a Hilbert space and let x0 ∈ C ∩ g−1(−K). Then the following statements
are equivalent:

(i) {δC , λg : λ ∈ K⊕} satisfies the BCQ at x0.

(ii) The pair {C, g−1(−K)} has the sharpened strong CHIP at x0, that is

NC∩g−1(−K)(x0) = NC(x0) +
⋃

λ∈K⊕

λg(x0)=0

∂ (λg)(x0).

(iii) For each x ∈ X, x0 = PC∩g−1(−K)(x) if and only if x0 = PC(x−l) for some l ∈
⋃

λ∈K⊕

λg(x0)=0

∂ (λg)(x0).

Proof. By Fact 6.3 and Remark 6.1, (i)⇔(ii). The equivalence (i)⇔(iii) follows from Corollary 7.1 as
applied to I := K⊕ and gλ := λg (so I(x0) = {λ ∈ K⊕ : λg(x0) = 0}).

Corollary 7.4. Suppose X is a Hilbert space and that (C*) holds. Let x0 ∈ C ∩ g−1(−K) and x ∈ X.
Assume that {C, g−1(−K)} has the strong CHIP at x0. Then the following statements are equivalent:

(i) x0 = PC∩g−1(−K)(x).

(ii) x0 = PC(x− l) for some l ∈
⋃

λ∈K⊕

λg(x0)=0

∂ (λg)(x0).

Proof. By Corollary 6.3, the given assumptions imply that {C, g−1(−K)} has the sharpened strong CHIP
at x0. By the implication (ii)⇒(iii) in the preceding corollary, the result is now clear.
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