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Abstract. Norms constitute a powerful coordination mechanism among
heterogeneous agents. In this paper, we propose means to specify and ex-
plicitly manage the normative positions of agents (permissions, prohibi-
tions and obligations), with which distinct deontic notions and their rela-
tionships can be captured. Our rule-based formalism includes constraints
for more expressiveness and precision and allows the norm-oriented pro-
gramming of electronic institutions: normative aspects are given a pre-
cise computational interpretation. Our formalism has been conceived as
a machine language to which other higher-level normative languages can
be mapped, allowing their execution, as we illustrate with a selection of
examples from the literature.

1 Introduction

A major challenge in multi-agent system (MAS) research is the design and imple-
mentation of open multi-agent systems in which coordination must be achieved
among self-interested agents defined with different languages by several designers
[23]. Norms can be used for this purpose as a means to regulate the observable
behaviour of agents as they interact in pursuit of their goals [5,10,30,51]. There
is a wealth of socio-philosophical and logic-theoretical literature on the subject
of norms (e.g., [40,42]). More recently, much attention has been paid to more
pragmatic and implementational aspects of norms, that is, how norms can be
given a computational interpretation and how norms can be factored in in the
design and execution of MASs (e.g., [4,9,15,16,34]).

Ideally, norms, once captured via some suitable formalism, should be directly
executed, thus realising a computational, normative environment wherein agents
interact. Computational norms are applicable when the current representation
of the system complies with certain conditions. When representing agents from
a social point of view, they are characterised by their observable attributes and
normative position. A normative position [40] is the “social burden” associated
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with individual agents, that is, their obligations, permissions and prohibitions.
Depending on what agents do, their social representation (i.e., the perception
that other agents can have of them, that is, normative positions and observable
attributes) may change – for instance, social reputation can increase, permis-
sions/prohibitions can be revoked or obligations, once fulfilled, removed.

Norm-oriented programming is a programming paradigm aimed at equiping
engineers with means to directly specify via norms how the interaction among
the components of a MAS (viz., the agents and their computational environment)
should be regulated. This regulation can be done in many ways, including, for
instance, directly via general purpose programming languages or agent-oriented
programming languages such as AgentSpeak [11]. However, in this paper we ad-
vocate the explicit use of norms and normative positions to specify how open and
heterogeneous MASs should be regulated. Norm-oriented programming should
be seen as complementary to approaches to model the internal behaviour of the
components of the system like agent-oriented programming [41] or client-server
paradigm. An example of norm-oriented programming for the Internet would be
a firewall that rejects or forwards messages following a set of rules. In this exam-
ple, applications can be either permitted or forbidden to send several types of
messages but since firewalls do not keep track of the obligations of applications,
this example does not fully implement the norm-oriented paradigm.

We try to make headway along this direction by introducing an executable
language to specify agents’ normative positions and manage their changes as
agents interact via speech acts [39]. Our language works as a “machine language”
for norms on top of which higher-level normative languages can be accommo-
dated.

This language has been conceived to represent distinct flavours of deontic
notions and relationships: we can define different normative contexts in which
different deontic notions hold. In our language, we can specify two concurrent
normative contexts such that in one of them prohibitions cannot be violated and
in the other one prohibitions over certain actions can be violated under penalties.

Our language is rule-based and we achieve greater flexibility, expressive-
ness and precision than conventional production systems by allowing constraints
[21,33] over variables to appear in our constructs. Constraints are first-class en-
tities managed explicitly – we accommodate, as we show, constraints in our
semantics using standard constraint solving techniques. Constraints allow for
more sophisticated notions of norms and normative positions to be expressed.
For instance, in a scenario in which a selling agent is obliged to deliver a product
satisfying some quality requirements before a deadline, both the quality require-
ments and the delivery deadline can be regarded as constraints that must be
considered as part of the agent’s obligation. Thus, when the agent delivers the
good satisfying all the constraints, we should regard the obligation as fulfilled.
Notice too that since the deadline might eventually be changed, we also require
the capability of modifying constraints at run-time.

One of the first models of open MAS that regulates the interaction among
agents without assuming any internal feature of the agents are electronic institu-
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tions (EIs) [35,38,12]. Despite being successful in achieving a significant degree
of openness, electronic institutions are strict in the sense that only those interac-
tions which are part of the design can take place. Our normative approach gives
more flexibility to EIs in that we can also capture deviant behaviour. Our work
sets the foundations to specify and implement open regulated MASs via norms.

The structure of this paper is as follows. In the next section we present
desirable properties of normative languages. In section 3 we describe the syntax
and semantics of our normative language – we explain, in various sections, how
our language addresses all these requirements. Section 4 summarises electronic
institutions and explains how we capture normative positions of participating
agents. We put our language to use in sections 5.1 and 5.2 where, respectively, we
define institutional states and rules. We illustrate the usefulness of our language
with a specification of the Dutch Auction protocol in section 5.4. In section 6
we show how our language captures a sample of other contemporary approaches
and in section 7 we compare our approach with other related work. Finally, we
draw conclusions and outline future work in section 8.

2 Desiderata for Norm-Oriented Languages

We aim at a language to support the specification of coordination mechanisms in
MASs via norms. For this purpose, we identify and justify the desirable features
we expect in candidate languages:

– Explicit management of normative positions – We take the stance that
we cannot refer to agents’ mentalistic notions, but only to their observable
actions and their normative positions. Notice that as a result of agents’
observable, social interactions, their normative positions [40] change. Hence,
the first requirement of our language is to support the explicit management
of agents’ normative positions.

– General purpose – Turning our attention to theoretical models of norms,
we notice that there is a plethora of deontic logics with different axioms
to establish relationships among deontic notions. Thus, we require that our
language captures different deontic notions along with their relationships. In
other words, the language must be of general purpose so that it helps MAS
designers to specify the widest range of normative systems as possible.

– Pragmatic – In a sense, we pursue a “machine language” for norms on top
of which alternative higher-level languages can be accommodated. Along this
direction, and from a language designer’s point of view, it is fundamental to
identify the norm patterns (e.g., conditional obligation, time-based permis-
sions and prohibitions, continuous obligation, and so on) in the literature
and ensure that the language supports their encoding. In this way, not only
shall we be guaranteeing the expressiveness of our language, but also ad-
dressing pragmatic concerns by providing design patterns to guide and ease
MAS design.

– Declarative – In order to ease MAS programming, we shall also require our
language to be declarative, with an implicit execution mechanism to reduce
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the number of issues designers ought to concentrate on. As an additional
benefit, we expect its declarative nature to facilitate verification of properties
of the specifications.

3 A Rule-based Language for Managing Normative
Positions

In this section we introduce a rule-based language for the explicit management of
events generated by agents and the effects they cause [17,18,19,20]. We consider
that agents can (directly or indirectly) cause changes in their own normative po-
sitions (e.g., by bidding in an auction), in the normative positions of other agents
(e.g., by delegating or commanding), in the observable attributes of agents (e.g.,
“badmouthing” an agent can decrease its reputation), or in the state of resources
of the environment (e.g., moving a box changes its location). By environment
we mean the shared resources which are not part of the agents and, therefore,
cannot be freely accessed and modified. By state of affairs we mean the repre-
sentation of aspects of the MASs enactment including the set of attributes that
a community of agents can access or modify in an unregulated setting.

In regulated MASs these attributes can only be accessed and modified under
certain conditions. Our rule-based language allows us to represent regulated
changes in an elegant way and also fulfils the requirement that a normative
language should be declarative. The rules depict how the state of affairs changes
as agents interact with each other or the environment.
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l l
ag1 · · · agn

∗
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 · · ·

Fig. 1. Semantics as a Sequence of ∆’s

Figure 1 depicts the computational model we propose. An initial state of
affairs ∆0 (possibly empty) is offered (represented by “V”) to a set of agents
(ag1, · · · , agn). These agents can add their events (Ξ0

1 , · · · , Ξ0
n) to the state of

affairs (via “l”). Ξt
i is the (possibly empty) set of events added by agent i at state

of affairs ∆t and an event is a special case of atomic formula. After a established
amount of time, we perform an exhaustive application of rules (denoted by “ ∗

 ”)
to the modified state, yielding a new state of affairs ∆1. This new state will, on
its turn, be offered to the agents for them to add their events, and the same
process will go on.
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Although our language can be used for regulated MAS in general, in this
paper we concentrate on a specific model, the so called electronic institutions
(cf. section 4). The events in that model are speech acts and time events only,
so we shall focus on these in the rest of this paper.

3.1 Preliminary Definitions

We initially define some basic concepts. The building blocks of our language are
terms:

Definition 1. A term, denoted as τ , is

– Any variable x , y , z (with or without subscripts) or
– Any construct f n(τ1, . . . , τn), where f n is an n-ary function symbol and
τ1, . . . , τn are terms.

Terms f 0 stand for constants and will be denoted as a, b, c (with or without sub-
scripts). We shall also make use of numbers and arithmetic functions to build our
terms; arithmetic functions may appear infix, following their usual conventions.
We adopt Prolog’s convention [3] using strings starting with a capital letter to
represent variables and strings starting with a small letter to represent constants.
Some examples of terms are Price (a variable) and send(a,B ,Price × 1.2) (a
function). We also need to define atomic formulae:

Definition 2. An atomic formula, denoted as α, is any construct pn(τ1, . . . ,
τn), where pn is an n-ary predicate symbol and τ1, . . . , τn are terms.

When the context makes it clear what n is we can drop it. p0 stands for propo-
sitions. We shall employ arithmetic relations (e.g., =, 6=, and so on) as predicate
symbols, and these will appear in their usual infix notation. We also make use
of atomic formulae built with arithmetic relations to represent constraints on
variables – these atomic formulae have a special status, as we explain below. We
give a definition of our constraints, a subset of atomic formulae:

Definition 3. An arithmetical constraint γ is a binary atomic formula in the
infix form τ C τ ′, where C∈ {=, 6=, >,≥, <,≤}.

In the rest of the paper we will use constraints and arithmetical constraints
indistinctly. We need to differentiate ordinary atomic formulae from constraints.
We shall use ᾱ to denote atomic formulae that are not constraints.

A state of affairs is a set of atomic formulae, representing (as shown below)
the normative positions of agents, observable agent attributes and the state of
the environment1.

Definition 4. A state of affairs ∆ = {α0, . . . , αn} is a a finite and possibly
empty set of implicitly, universally quantified atomic formulae αi , 0 ≤ i ≤ n.

1 We refer to the state of the environment as the subset of atomic formulae representing
observable aspects of the environment in a given point in time.
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3.2 A Language for Rules with Constraints

Our rules are constructs of the form LHS  RHS, where LHS contains a
representation of parts of the current state of affairs which, if they hold, will
cause the rule to be triggered. RHS describes the updates to the current state
of affairs, yielding the next state of affairs:

Definition 5. A rule, denoted as R, is defined as:

R ::= LHS  RHS
LHS ::= LHS ∧ LHS | LHS ∨ LHS | ¬LHS | Lit
RHS ::= U •RHS | U

Lit ::= α | sat(Γ ) | x = {α | LHS}
U ::= ⊕α | 	α

where x is a variable name.

Intuitively, the left-hand side LHS describes the conditions the current state
of affairs oughts to have for the rule to apply. The right-hand side RHS describes
the updates to the current state of affairs, yielding the next state of affairs.

In the next section we define the semantics of each construct above, but
informally, the construct α checks whether the atomic formulae α is in the state
of affairs, sat(Γ ) checks whether Γ (a set of constraints) is satisfied in the state
of affairs. We also make use of a special kind of term, called a set constructor,
represented as {α | LHS}. This construct is useful when we need to refer to all
atomic formulae in the state of affairs (αs) for which LHS holds. For instance,
{p(A,B ,C ) | sat(B > 20) ∧ sat(C < 100)} stands for the set of atomic
formulae p(A,B ,C ) such that B is greater than 20 and C is less than 100. Notice
that {p(A,B ,C ) | B > 20 ∧ C < 100} stands for the set of atomic formulae
p(A,B ,C ) with at least these two constraints associated: B is constrained to
be greater than 20 and C is constrained to be less than 100. That is, it checks
whether both constraints are in the state of affairs. The Us represent updates:
they add to the state of affairs (via operator ⊕) or remove from the state of
affairs (via operator 	) atomic formulae.

3.3 Semantics of Rules

As shown in figure 1, we define the semantics of our rules as a relationship
between states of affairs: rules map an existing state of affairs to a new state of
affairs. In this section we define this relationship. Initially we need to refer to
the set of constraints of a state of affairs. We call Γ = {γ0, . . . , γn} the set of
all constraints in ∆, and formally relate a state of affairs to its constraints as
follows:

Definition 6. Given a state of affairs ∆, relationship constrs(∆,Γ ) holds iff
Γ is the smallest set such that for every constraint γ ∈ ∆ then γ ∈ Γ .

In the definitions below we rely on the concept of substitution, that is, the set of
values for variables in a computation [3,13]:
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Definition 7. A substitution σ = {x0/τ0, . . . , xn/τn} is a finite and possibly
empty set of pairs xi/τi , 0 ≤ i ≤ n.

Definition 8. The application of a substitution to an atomic formulae α is as
follows:

1. c · σ = c for a constant c;
2. x · σ = τ · σ if x/τ ∈ σ; otherwise x · σ = x ;
3. pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).

Definition 9. The application of a substitution to a sequence is the sequence
of the application of the substitution to each element: 〈α1, . . . , αn〉 · σ = 〈α1 ·
σ, . . . , αn · σ〉

We now define the semantics of the LHS of a rule, that is, how a rule is
triggered:

Definition 10. sl(∆,LHS, σ) holds between state ∆, the left-hand side of a rule
LHS and a substitution σ depending on the format of LHS:

1. sl(∆,LHS ∧ LHS′, σ) holds iff sl(∆,LHS, σ′) and sl(∆,LHS′ ·σ′, σ′′) hold
and σ = σ′ ∪ σ′′.

2. sl(∆,¬ LHS, σ) holds iff sl(∆,LHS, σ) does not hold.
3. sl(∆,α, σ) holds iff α · σ ∈ ∆.
4. sl(∆, sat(Γ ), σ) holds iff constrs(∆,Γ ′) and satisfiable((Γ ′ ∪ Γ ) · σ) hold.
5. sl(∆, x = {α | LHS}, σ) holds iff σ = {x/{α · σ1, . . . , α · σn}} for the largest

n ∈ N such that sl(∆,α ∧ LHS, σi), 1 ≤ i ≤ n

Case 1 depicts the semantics of atomic formulae and how their individual
substitutions are combined to provide the semantics for a conjunction. Case 2
introduces the negation by failure. Cases 3 holds when an atomic formulae (a
predicate or constraint) is part of the state of affairs. Case 4 holds if the set
of constraints on the LHS added to the constraints in the state of affairs (Γ ′)
are satisfiable. The substitution σ obtained so far is applied to γ. It uses the
predicate satisfiable/1, that checks whether a set of constraints is satisfiable.2

Case 5 specifies the semantics for set constructors: x is the set of atomic formulae
that satisfy the conditions of the set constructor.

We now define the semantics of the RHS of a rule:

Definition 11. Relation sr (∆,RHS,∆′) mapping a state ∆, the right-hand
side of a rule RHS and a new state ∆′ is defined as:

1. sr (∆, (U ∧ RHS),∆′) holds iff both sr (∆,U,∆1) and sr (∆1, RHS,∆
′) hold.

2. sr (∆,⊕ᾱ,∆′) holds iff ∆′ = ∆ ∪ {ᾱ}.
3. sr (∆,⊕γ,∆′) holds iff constrs(∆,Γ ) and satisfiable(Γ∪{γ}) hold and ∆′ =

∆ ∪ {γ}.
4. sr (∆,	α,∆′) holds iff ∆′ = ∆ \ {α}.
2

Our work builds on standard technologies for constraint solving – in particular, we have been
experimenting with SICStus Prolog [44] constraint satisfaction libraries [22].
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Case 1 decomposes a conjunction and builds the new state by merging the partial
states of each update. Case 2 caters for the insertion of atomic formulae ᾱ which
do not conform to the syntax of constraints. Case 3 defines how a constraint is
added to a state ∆: the new constraint is checked whether it can be satisfied
with the existing constraints Γ and then it is added to ∆′. Case 4 caters for the
removal of atomic formulae (both constraints and non-constraints).

To complete the definition of the rule system, we define the semantics of
our rules as relationships between states of affairs: rules map an existing state
of affairs to a new state of affairs, thus modelling transitions between states
of affairs. We adopt the usual semantics of production rules [27], that is, we
exhaustively apply each rule by matching its LHS against the current state of
affairs and use the values of variables obtained in this match to instantiate RHS
via sr .

3.4 An Interpreter for Rules with Constraints

The semantics above provide a basis for the implementation of a rule interpreter.
Although we have implemented it with SICStus Prolog [44] we show how a rule
is interpreted in figure 2 as a logic program, interspersed with built-in Prolog
predicates; for easy referencing, we show each clause with a number on its left.

1. sl(∆, (LHS ∧ LHS′), σ)← sl(∆, LHS, σ′), sl(∆, LHS′ · σ′, σ′′), σ = σ′ ∪ σ′′

2. sl(∆,¬ LHS, σ)← ¬ sl(∆, LHS, σ)
3. sl(∆, α, σ)← member(α · σ, ∆)
4. sl(∆, sat(Γ ), σ)← constrs(∆, Γ ′), append(Γ, Γ ′, Γ ′′), satisfiable(Γ ′′ · σ)
5. sl(∆, x = {α | LHS}, {x/AllAtfs})← findall(α · σ, sl(∆, α ∧ LHS, σ), AllAtfs)
6. sr (∆, (U •RHS), ∆′′)← sr (∆, U, ∆′), sr (∆

′, RHS, ∆′′)
7. sr (∆,⊕ᾱ, ∆′)← ∆′ = {ᾱ} ∪∆
8. sr (∆,⊕γ, ∆′)← constrs(∆, Γ ), satisfiable({γ} ∪ Γ ), ∆′ = {γ} ∪∆
9. sr (∆,	α, ∆′)← delete(∆, α, ∆′)

Fig. 2. Interpreter for Rules with Constraints

For each rule, we apply sl(∆,LHS, σ) and sr (∆,RHS · σ,∆′) sequentially
for all the different substitutions σ in the state of affairs such that sl(∆,LHS, σ)
holds. Clauses 1-5 and 6-12 are, respectively, adaptations of the cases depicted
in Def. 10 and Def. 11.

We can define satisfiable/2 via the built-in call residue/2 predicate, avail-
able in SICStus Prolog:

satisfiable({γ1, . . . , γn})← call residue((γ1, . . . , γn), )

It is worth mentioning that in the actual Prolog implementation, substitutions
σ appear implicitly as values of variables in terms – the logic program above will
look neater (albeit farther away from the definitions) when we incorporate this.
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3.5 Pragmatics of Rules with Constraints

In this section we illustrate the pragmatics of our rules with some examples:

(event(a,T ) ∧ p(X ))  (	event(a,T ) • 	p(X ) • ⊕p(X + 1)) (1)

(event(b,T ) ∧ (T < D))  

(
	event(b,T )•
	(T < D) • ⊕(T < (D + 10))

)
(2)

(event(c,T ) ∧ q(D) ∧ sat(T > D))  (	event(c,T ) • ⊕s(c,T )) (3)

The first example shows an event a which occurred at time T depicting the
circumstances in which the rule should be applied; in this case, we check that
the formula p(X ) exists and, on the right-hand side we ensure the event is
“consumed” (thus not triggering off the rule indefinitely) and p(X ) is updated to
p(X +1) – we implement a counter for events of type a. Example 2 illustrates the
management of constraints: these can be manipulated like ordinary predicates.
In that example, we show how events of type b can have constraints associated to
the time they occur updated to the previous limit plus ten units of time. Again,
we ensure the event is removed from the state of affairs to prevent the rule from
being used indefinitely. Example 3 illustrates how constraints can additionally
be checked for their satisfaction: when an event of type c occurs and there is
a formula q(D) (storing a deadline) and the time the event occurred is greater
than D (this being checked as a constraint), then we remove the event and add
a record of this situation to the state of affairs.

Our rules manage states of affairs, adding or removing formulae (expressed on
the RHS) when certain conditions (expressed on the LHS) hold. As illustrated
in figure 1, our approach accommodates the participation of agents: they add
atomic formulae onto the current state of affairs – these formulae represent agent-
related events, represented above as event(E ,T ) that, together with further
elaboration on the circumstances, will trigger off rules to update the state of
affairs. Some synchronisation is required in this activity, as we cater for the
agents to concurrently update a shared data structure – a simple synchronisation
mechanism is explained in [17].

There are further concerns to be taken into account when designing rules.
Clearly, what we choose to go in the state of affairs has an immediate influence as
to what should appear in rules. Another concern is how we choose to represent
events generated by agents. We show in this paper a representation proposal
that includes information on who caused the event, the time, and a suitable
description of the event.

4 Electronic Institutions

Human societies deploy institutions [36] to establish how interactions must be
structured within an organization. Institutions represent the “rules of the game”
in a society, including any (formal or informal) constraints devised to shape hu-
man interaction. Institutions are the framework within which human interaction
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takes place, defining what individuals are obliged, forbidden and permitted to do
and under what conditions. Furthermore, human institutions not only structure
human interactions but also enforce individual and social behaviour by obliging
all to act according to the norms.

Electronic institutions (EIs) [35,38,12] are the electronic counterpart of hu-
man institutions – they establish the expected behaviour of agent societies. An
EI defines a set of constraints that articulate agent interactions, defining what
they are permitted to do. An EI defines a regulated environment where hetero-
geneous (human and software) agents can participate by playing different roles
and can interact by means of speech acts [39].

In this section we introduce electronic institutions as defined in [12]. We
implement them in section 5, enriching them with further deontic notions and
relationships among them. Due to space restrictions we cannot provide here a
complete introduction to electronic institutions – we refer readers to [12] for a
comprehensive description. However, to make this work self-contained we have
to explain concepts we make use of later on. Although our discussion is focused
on EIs it can be generalised to various other formalisms that share some basic
features.

In EIs interaction is regulated by means of multi-agent protocols which have
two major features – these are the states in a protocol and illocutions (i.e.,
messages) uttered (i.e., sent) by those agents taking part in the protocol. The
states are connected via edges labelled with the illocutions that ought to be sent
at that particular point in the protocol. Another important feature in EIs are
the agents’ roles: these are labels that allow agents with the same role to be
treated collectively thus helping programmers abstract away from individuals.
We define below the class of illocutions we aim at – these are a special kind of
atomic formulae:

Definition 12. Illocutions I are ground atomic formulae p(ag, r, ag′, r′, τ, t) where

– p is an element of a set of illocutionary particles ( e.g., inform, request, etc.).
– ag, ag′ are agent identifiers.
– r, r′ are role labels.
– τ , an arbitrary ground term, is the actual content of the message, built from

a shared content language.
– t ∈ N is a time stamp.

The intuitive meaning of p(ag, r , ag′, r ′, τ, t) is that agent ag playing role r sent
message τ to agent ag′ playing role r ′ at time t . An example of an illocution
is inform(ag4, seller, ag3, buyer, offer(car, 1200), 10)). Sometimes it is useful
to refer to illocutions that are not fully ground, that is, they may have unin-
stantiated (free) variables within themselves – in the description of a protocol,
for instance, the precise values of the message exchanged can be left unspecified.
During the enactment of the protocol agents will produce the actual values which
will give rise to a (ground) illocution. We can thus define illocution schemes:

Definition 13. An illocution scheme Ī is any atomic formula p(ag, r , ag′, r ′, τ, t)
whose terms are either variables or may contain variables.
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Another important concept in EIs we employ here is that of a scene. Scenes
are self-contained sub-protocols with an initial state where the interaction starts
and a final state where all interaction ceases. Scenes offer means to break down
larger protocols into smaller ones with specific purposes.

For instance, we can have a registration scene where agents arrive and register
themselves with an administrative agent; an auction scene depicts the interac-
tions among agents wanting to buy and sell goods; a payment scene depicts how
those agents who bought something in the auction scene ought to pay those
agents they bought from. We can uniquely refer to the point of the protocol
where an illocution I was uttered by the pair (s,w) where s is a scene name and
w is the state from which an edge labelled with I leads to another state. Differ-
ent formalisms and approaches to protocol specification can be accommodated
in our proposal, provided protocols can be broken down into uniquely defined
states connected by edges; the edges are labelled with messages agents must
send for the protocol to progress. Broadly speaking, an EI is specified as a set of
scenes connected by transitions; these are points where agents may synchronise
their movements between scenes [12].

Although all illocutions of a protocol are permitted some of them may be
deemed inappropriate in certain circumstances. For instance, although a protocol
may contemplate agents leaving the payment scene, it may be inappropriate to
do so if the agent has not yet paid what it owes. Our rules further restrict the
expected behaviour of agents, prohibiting them from uttering an illocution or
adding constraints on the values of variables of illocutions. Rules can be triggered
off by events involving any number of agents and their effects must persist until
they are fulfilled or retracted by another rule.

5 Norm-Oriented Programming of Electronic Institutions

Despite successfully achieving a significant degree of openness, electronic institu-
tions are strict in the sense that only explicitly permitted interactions can take
place. As an initial step we pursue to implement rule-based electronic institu-
tions in which deontic notions are not limited to the existent in the previous
model of electronic institution.

We advocate a separation of concerns: rather than embedding normative as-
pects into the agents’ design (say, by explicitly encoding normative aspects in
the agent’s behaviour) or coordination mechanisms (say, by addressing excep-
tions and deviant behaviour in the mechanism itself), we adopt the view that a
coordination mechanism should be supplemented by an explicit and separate set
of norms that further regulates the behaviour of agents as they take part in the
enactment of a mechanism.

The separation of concerns should facilitate the design of MASs – as systems
become more sophisticated, it becomes harder for engineers to address all the
relevant features. By differentiating kinds of features and exploring them inde-
pendently, engineers can “disentangle” them. However, the different components
(coordination mechanisms and norms) must come together at some point in the
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design process. In our view, norms further restrict the set of behaviours specified
by the coordination mechanisms; a coordination mechanism, on its turn, deter-
mines if a set of norms can be fulfilled by those agents enacting it. Norms should
be studied against their associated coordination mechanism and vice-versa.

In this section we use the language introduced in section 3 to program elec-
tronic institutions based on the notions introduced in section 4. In subsection 5.1
we specify how a state of affairs is represented in an EI, whereas in subsection
5.2 we make explicit the rules to transform such state of affairs at run-time.

5.1 Institutional States

An institutional state is a state of affairs that stores all utterances during the
execution of a MAS, also keeping a record of the state of the environment, all
observable attributes of agents and all obligations, permissions and prohibitions
associated with the agents that constitute their normative positions.

We differentiate seven kinds of atomic formulae in our institutional states ∆,
with the following intuitive meanings:

1. oav(o, a, v) – object (or agent) o has an attribute a with value v .
2. att(s,w , I) – an agent uttered illocution I attempting to get it institutionally

accepted at state w of scene s.
3. utt(s,w , I) – I was accepted as a legal utterance at w of s.
4. old ctr(s,w , t) – the execution of scene s reached state w at time t .
5. ctr(s,w , t) – the execution of scene s is in state w since time t .
6. obl(s,w , Ī) – Ī ought to be uttered at w of s.
7. per(s,w , Ī) – Ī is permitted to be uttered at w of s.
8. prh(s,w , Ī) – Ī is prohibited at w of s.

We differentiate between utterances that are attempted to be accepted (att) and
accepted utterances (utt). Since we aim at heterogeneous agents whose behaviour
we cannot guarantee, Since we cannot guarantee agents’ behaviour we create
a “sandbox” where agents can utter whatever they want (via att formulae).
However, not everything agents say may be in accordance with the rules – the
illegal utterances may be discarded and/or may cause sanctions, depending on
the deontic notions we want or need to implement. The utt formulae are thus
confirmations of the att formulae.

We only allow fully ground attributes, illocutions and state control formulae
(cases 1-4 above) to be present however, in formulae 6–8 s and w may be variables
and Ī may contain variables. We shall use formulae 4 to represent state change
in a scene in relationship with global time passing. We shall use formulae 6–8
above to represent normative positions of agents within EIs.

We do not “hardwire”deontic notions in our semantics: the predicates above
represent deontic operators but not their relationships. These are captured with
rules as we show in section 5.2. We show in figure 3 a sample institutional state.
The utterances show a portion of the dialogue between a buyer agent and a seller
agent – the seller agent ag4 offers to sell a car for 1200 to buyer agent ag3 who
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∆ =






utt(auction,w2, inform(ag4, seller, ag3, buyer, offer(car, 1200), 10)),
utt(auction,w3, inform(ag3, buyer, ag4, seller, buy(car, 1200), 13)),
obl(payment,w4, inform(ag3, payer, ag4, payee, pay(Price), T1)),
prh(payment,w2, ask(ag3, payer, X, adm, leave, T2))
oav(ag3, credit, 3000), oav(car, price, 1200),
1200 ≤ Price, 20 > T1






Fig. 3. Sample Institutional State

accepts the offer. The order among utterances is represented via time stamps
(10 and 13 in the constructs above). In our example, agent ag3 has agreed to
buy the car so it is assigned an obligation to pay at least 1200 to agent ag4 when
the agents move to the payment scene; agent ag3 is prohibited from asking the
scene administrator adm to leave the payment scene. We employ a predicate
oav (standing for object-attribute-value) to store attributes of our state: these
concern the credit of agent ag3 and the price of the car. The constraints restrict
the values for Price, that is, the minimum value for the payment, and the latest
time T1 ag3 is obliged to pay.

5.2 Institutional Rules

In this section we illustrate how expressive and flexible our rules are, yet they
offer precision and ease-of-use. With the following examples we want to illustrate
the generality of our language as required in section 2. Furthermore, we also
provide some guidelines on how to specify the rules to update institutional states.
Henceforth we shall call such rules institutional rules.

Providing Semantics to Deontic Notions We now provide some exam-
ples on how we explicitly manage normative positions of agents in our language
as required in section 2. When specifying a normative system we need to de-
fine relationships among deontic notions. Such relationships should capture the
pragmatics of normative aspects – what exactly these concepts mean in terms of
agents’ behaviour. We do not want to be prescriptive in our discussion and we
are aware that the sample rules we present can be given alternative formulations,
conferring on our approach the generality requirement in section 2. Furthermore,
we notice that when designing institutional rules, it is essential to consider the
combined effect of the whole set of rules over the institutional states – these
should be engineered in tandem.

We can confer different degrees of enforcement on EIs . We start by looking
at those illocutions that agents utter, i.e., att(S ,W , I ); these may become legal
utterances, i.e., utt(S ,W , I ), if they are permitted, as specified by the following
rule:

att(S ,W , I ) ∧ per(S ,W , I ) ⊕utt(S ,W , I ) (4)
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That is, permitted attempts at utterances become legal utterances.
Attempts and prohibitions can be related together by the institutional rule:

att(S ,W , I ) ∧ prh(S ,W , I ) sanction (5)

Where sanction stands for atomic formulae representing sanctions on the agent
who uttered a prohibited illocution. For instance, if the agent’s credit is repre-
sented via oav(Ag, credit, V alue), the following rule applies a 10% fine on those
agents who utter a prohibited illocution:

(
att(S ,W ,P(A1,R1,A2,R2,M ,T ))∧
prh(S ,W ,P(A1,R1,A2,R2,M ,T ))

)
 

(
	oav(A1, credit,C )•

⊕oav(A1, credit,C − C/10)

)
(6)

Another way of relating attempts, permissions and prohibitions is when a
permission granted in general (e.g., to all agents or to all agents adopting a role)
is revoked for a particular agent (e.g., due to a sanction). We can ensure that a
permission has not been revoked via the rule(

att(S ,W , I ) ∧ per(S ,W , I ) ∧ ¬ prh(S ,W , I )
)
 ⊕utt(S ,W , I ) (7)

The rule above states that an utterance is accepted as legal whenever it is per-
mitted and it is not the case that it is forbidden.

We can allow agents to do certain illegal actions (under harsher penalties if
required): (

att(S ,W , inform(Ag1,R,Ag2,R′, info(Ag3,C ),T )) ∧
sat(Ag1 6= Ag2) ∧ sat(Ag1 6= Ag3) ∧ sat(Ag2 6= Ag3)

)
 (
	att(S ,W , inform(Ag1,R,Ag2,R′, info(Ag3,C ),T ))•
⊕utt(S ,W , inform(Ag1,R,Ag2,R′, info(Ag3,C ),T ))

) (8)

The rule above states that if an agent attempts to reveal to Ag2 (private) in-
formation about agent Ag3, it is accepted without taking into account if it is
forbidden or not. In both cases (rules 7 and 8), we can punish agents that vio-
late prohibitions as shown in rule 6.

Dealing with inconsistency We can also capture further relationships among
normative aspects and establish policies to cope with inconsistencies. For in-
stance, we need to specify how to cope with the situation when an illocution
is simultaneously obliged and forbidden – this may occur when an obligation
assigned to agents in general (or to any agents playing a role) is revoked for
a particular subgroup of agents or an individual agent (for instance, due to a
sanction). In this case, we can choose to ignore/override either the obligation
or the prohibition. For instance, without writing any extra rule we override the
obligation and ignore the attempt to fulfil the obligation. The rule below ig-
nores the prohibition and transforms an attempt to utter the illocution I into
its utterance:

att(S ,W , I ) ∧ obl(S ,W , I ) ∧ prh(S ,W , I ) ⊕utt(S ,W , I ) (9)
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A third possibility is to raise an exception via a term which can then be dealt
with at the institutional level. The following rule could be used for this purpose:

att(S ,W , I ) ∧ obl(S ,W , I ) ∧ prh(S ,W , I ) ⊕exception(S ,W , I ) (10)

These examples illustrate how we explicitly manage normative positions of agents
in our language as required in section 2.

5.3 Representing and Enacting Protocols via Institutional Rules

In the rest of the paper we consider scenes, presented in section 4, as the rep-
resentation of protocols in EIs. The purpose of this section is to represent and
build a computational model of the dynamics of an EI enactment, that is, its
execution with our rule-based language. We concentrate our attention on EIs
[12] (see section 4 above) but our approach addresses any protocol specified via
non-deterministic finite-state machines.

We shall represent EIs declaratively as logic programs, as described in [47].
Each edge connecting two states of a scene will be denoted as the fact edge(Scene,
State, IllocutionScheme,NewState), representing that if the control of the en-
actment of Scene is in State and IllocutionScheme is uttered, then the control
should move to NewState. Edges are compact descriptions of what can be said,
i.e., the permitted illocutions, and how the control of the enactment of the scene
(and by extension, of the EI as a whole) should change as illocutions are uttered.

Protocols are permissions of what can be uttered and when it can be uttered.
When permissions are combined with unconfirmed utterances (i.e, att(s,w , Ī), as
captured by formula 4 above) and legal illocutions (i.e, utt(s,w , Ī)) are combined
with updates on the state of the enactment, then the protocol can be fully
captured. In order to represent the control of the protocol enactment we use
the term ctr(Scene, State, T imeStamp), stored in the institutional state, which
informs that at time TimeStamp the interaction enacted in Scene is at State.

The dynamics of the control of the enactment can be captured generically as
the following institutional rule:

 ctr(S ,Wi ,T )
att(S ,Wi , I ) ∧ per(S ,Wi , I ) ∧

¬ prh(S ,Wi , I ) ∧ edge(S ,Wi , I ,Wj )

 


	ctr(S ,Wi ,T ) •
⊕old ctr(S ,Wi ,T ) •
⊕ctr(S ,Wj ,T + 1) •

⊕utt(S ,Wi , I )

 (11)

That is, if the control of the enactment of scene S is now at state Wi and
illocution I has been uttered and there is an edge connecting Wi with Wj labelled
with that illocution, then the control of the enactment at the next time will move
to ctr(S ,Wj ,T+1). We keep track of the time of previous states using the old ctr
predicate.

The permissions of an agent society can be managed in various different
manners. A simple and efficient way is to have permissions unchanged in the
institutional state, that is, they are passed on from state to state without ever
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being removed. Constraints, however, can be added to the variables of obligations
as a result of the interactions among the agents.

We notice that institutional rules are expressive enough to represent norma-
tive aspects as well as institutional protocols (i.e., scenes) and their enactment.
Thus, we can claim that institutional rules addresses the requirements (intro-
duced in section 2) of explicit management of normative positions and being
general purpose and declarative.

5.4 Example: The Dutch Auction Protocol

In this section, we illustrate the pragmatics of our norm-oriented language by
specifying the auction protocol employed in the fish market described in [35]. Fol-
lowing [35], the fish market can be described as a place where several scenes [12]
take place simultaneously, at different locations, but with some causal continu-
ity. The principal scene is the auction itself, in which buyers bid for boxes of fish
that are presented by an auctioneer who calls prices in descending order, the
so-called downward bidding protocol, a variation of the traditional Dutch auction
protocol that proceeds as follows:

1. The auctioneer chooses a good out of a lot of goods that is sorted according
to the order in which sellers deliver their goods to the sellers’ admitter.

2. With a chosen good , the auctioneer opens a bidding round by quoting offers
downward from the good’s starting price, previously fixed by a sellers’ ad-
mitter, as long as these price quotations are above a reserve price previously
defined by the seller.

3. For each price the auctioneer calls, several situations might arise during the
open round described below.

4. The first three steps are repeated until there are no more goods left.

The situations arising in step 3 are:

Multiple bids – Several buyers submit their bids at the current price. In this
case, a collision comes about, the good is not sold to any buyer, and the
auctioneer restarts the round at a higher price;

One bid – Only one buyer submits a bid at the current price. The good is sold
to this buyer whenever his credit can support his bid. Otherwise, the round
is restarted by the auctioneer at a higher price, the unsuccessful bidder is
fined;

No bids – No buyer submits a bid at the current price. If the reserve price has
not been reached yet, the auctioneer quotes a new price obtained by decreas-
ing the current price according to the price step. Otherwise, the auctioneer
declares the good as withdrawn and closes the round.

Proposed Solution Figure 4 shows the proposed protocol. As we proposed
in section 5.3 the protocols are represented as a set of formula of the type
edge(S ,Wi , I ,Wj ) and the rule 11. The situations arising in step 3 are cap-
tured in equations 12 – 17. For formatting reasons, we will use αi to denote
atomic formulae:
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Fig. 4. The Dutch Auction Protocol

Multiple bids – This rule obliges the auctioneer to inform the buyers, when-
ever a collision comes about, about the collision and to restart the bidding
round at a higher price (in this case, 120% of the collision price). Notice that
X will hold all the utterances at scene dutch and state w4 issued by buyer
agents that bid for an item It at price P at time T0 after the last offer.
We obtain the last offers by checking that there are no further offers whose
time-stamps are greater than the time-stamp of the first one. If the number
of illocutions in X is greater than one, the rule fires the obligation above:
(

X =
{

α0 α1 ∧ ¬ (α2 ∧ sat(T2 > T1)) ∧ sat(T0 > T1)
}
∧

sat(| X |> 1)

)
 

(
⊕α3 • ⊕α4•

⊕(P2 > P ∗ 1.2)

)

where






α0 = utt(dutch, w4, inform(A1, buyer , Au, auct, bid(It, P), T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer , collision(It, P), T2))
α4 = obl(dutch, w3, inform(Au, auct, all, buyer , offer(It, P2), T3))

(12)
One bid/winner determination – If only one bid has occurred during the

current bidding round and the credit of the bidding agent is greater than or
equal to the price of the good in auction, the rule adds the obligation for the
auctioneer to inform all the buyers about the sale:

(
X =

{
α0 α1 ∧ ¬ (α2 ∧ sat(T2 > T1)) ∧ sat(T0 > T1)

}
∧

sat(| X |= 1) ∧ oav(A1, credit, C ) ∧ sat(C ≥ P)

)
 
(
⊕α3

)

where






α0 = utt(dutch, w4, inform(A1, buyer , Au, auct, bid(It, P), T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer , sold(It, P, A1), T4))

(13)

Prevention – We must prevent agents from issuing bids they cannot afford,
that is, their credit is insufficient. The rule below states that if agent Ag’s
credit is less than P (the last offer the auctioneer called for item It , at state
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w3 of scene dutch), then agent Ag is prohibited to bid.

(
α0 ∧ ¬ (α1 ∧ sat(T2 > T)) ∧ oav(Ag, credit, C ) ∧ sat(C < P)

)
 
(
⊕α2

)

where






α0 = utt(dutch, w3, inform(Au, auct, A, buyer , offer(It, P), T))
α1 = utt(dutch, w3, inform(Au, auct, A, buyer , offer(It, P), T2))
α2 = prh(dutch, w4, inform(A, buyer , Au, auct, bid(It, P2), T3))

(14)

Punishment – We must punish those agents when issuing a winning bid they
cannot pay for. More precisely, the rule punishes an agent A1 by decreasing
his credit of 10% of the value of the good being auctioned. The oav predicate
on the LHS of the rule represents the current credit of the offending agent.
The rule also adds an obligation for the auctioneer to restart the bidding
round and the constraint that the new offer should be greater than 120% of
the old price.




X =

{
α0 α1 ∧ sat(T0 > T1) ∧

¬ (α2 ∧ sat(T2 > T1))

}
∧

oav(A1, credit, C ) ∧
sat(| X |= 1) ∧ sat(C < P)



 




	oav(A1, credit, C )•

⊕oav(A1, credit, C − P ∗ 0.1)•
⊕α3





where






α0 = utt(dutch, w4, inform(A1, buyer , Au, auct, bid(It, P), T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer , offer(It, P ∗ 1.2), T3))

(15)

No bids/New Price – We must check if there were no bids and if the next
price is greater than the reservation price. If so, we must add an obligation
for the auctioneer to start a new bidding round. Rule 16 checks that the
current scene state is w5, the last offer occurred before w5 and whether the
new price is greater than reservation price. If so, the rule adds the obligation
for the auctioneer to offer the item at a lower price. By retrieving the last
offer we gather the last offer price. By checking the oav predicates we gather
the values of the reservation price and the decrement rate for item It .





ctr(dutch, w5, Tn) ∧ α0∧
¬ (α1 ∧ sat(T2 > T)) ∧ sat(Tn > T)∧

oav(IT , reservation price, RP)∧
oav(IT , decrement rate, DR) ∧

sat(RP < P −DR)




 
(
⊕α2 • ⊕(P2 = P −DR)

)

where






α0 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(IT , P), T))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(IT , P), T2))
α2 = obl(dutch, w5, inform(Au, auct, all, buyer , offer(IT , P2), T3))

(16)

No bids/withdrawal – We must check if there were no bids and the next
price is less than the reservation price; if so we add the obligation for the
auctioneer to withdraw the item. Rule 17 checks that the current institutional
state is w5, the last offer occurred before w5 and whether the new offer price
is greater than reservation price. If the LHS holds, the rule fires to add the
obligation for the auctioneer to withdraw the item. By checking the last offer
we gather the last offer price. By checking the oav predicates we gather the
values of the reservation price and the decrement rate for the price of item
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It :




ctr(dutch, w5, Tn) ∧ α0∧
¬ (α1 ∧ sat(T2 > T)) ∧ sat(Tn > T)∧

oav(It, reservation price, RP)∧
oav(It, decrement rate, DR) ∧ sat(RP ≥ P −DR)



 
(
⊕α2

)

where






α0 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T2))
α2 = obl(dutch, w5, inform(Au, auct, all, buyer , withdrawn(It), T3))

(17)

This example illustrates how our language addresses the pragmatic concerns
raised in section 2.

6 Expressiveness Analysis

In this section we compare our proposal with other normative languages in the
literature. We concentrate on three different approaches, showing how we can
capture a wide range of normative notions from these formalisms using our rule
language. In doing so, we provide an implementation for these formalisms.

6.1 Conditional Deontic Logic with Deadlines

As shown in the BNF definition of figure 5, a norm as defined in [48] is composed
by several parts. The norm condition is the declaration of the context in which

NORM ::= NORM CONDITION
VIOLATION CONDITION
DETECTION MECHANISM
SANCTIONS
REPAIRS

VIOLATION CONDITION ::= formula
DETECTION MECHANISM ::= {action expressions}

SANCTIONS ::= PLAN
REPAIRS ::= PLAN

PLAN ::= action expression | action expression ; PLAN

Fig. 5. BNF of Norms from [48]

the norm applies. The other fields in the norm description are; 1) the violation
condition which is a formula defining when the norm is violated, 2) the detection
mechanism which describes the mechanisms included in the agent platform that
can be used for detecting violations, 3) the sanctions which defines the actions
that are used to punish the agent(s) violation of the norm, and 4) the repairs
which is a set of actions that are used for recovering the system after the occur-
rence of a violation. As the definition of figure 6 shows, norms can be deontic
notions as either permissions, obligations or prohibitions. Furthermore, norms
can be related to actions or to predicates (states). The former restrict or allow
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NORM CONDITION ::= N(S 〈IF C〉) | OBLIGED(a ENFORCE(N(a, S〈IF C〉)))
N ::= OBLIGED | PERMITTED | FORBIDDEN
J ::= (a, P) | (a DO A)
S ::= J | J TIME | J ACTION
C ::= formula
P ::= predicate
A ::= action expression

TIME ::= BEFORE D | AFTER D
ACTION ::= BEFORE J | AFTER J

Fig. 6. BNF of Norm Conditions

the actions that a set of agents can perform, the latter constrain the results of
the actions that a set of agents can perform. This results are predicates that
can be done true or false. It is forbidden that tom performs the action of smoke
(FORBIDDEN (tom DO smoke)) and it is forbidden that tom brings about that
the air is polluted (FORBIDDEN (tom, polluted(air)))) are two examples of the
types of norm stated above.

Through the condition (C) and temporal operators (BEFORE and AFTER),
norms can be made only applicable to certain situations. Conditions and tem-
poral operators are considered optional. Temporal operators can be applied to
a deadline (D) or to an action or predicate (J).

We now explain the translation of the norms presented above into our rule
language. Since we consider illocutions as the only actions that can be performed
in a electronic institution, actions need to be translated into illocutions uttering
that the action has been done.We call contextualisation to this process. Table
1 shows the translation of general norms into our rules. The permission of an

Norms from [48] Institutional rules
PERMITTED((A DO utter(S , W , I ))) per(S , W , I )
FORBIDDEN((A DO utter(S , W , I ))) prh(S , W , I )
OBLIGED((A DO utter(S , W , I ))) obl(S , W , I )

Table 1. Translation of general norms into predicates

action can be translated into a rule the converts the attempt to utter the I
illocution at state W of scene S (att(S ,W , I )) into the result of the illocution
being uttered (utt(S ,W , I )). The prohibition of an action can be translated
into a rule that ignores the attempt to utter the illocution, and optionally can
sanction the violation (vio(id)). For space reasons, we use the predicate vio to
represent that the proper sanctions and repairs are executed. We assume that
there exists another rule with the vio predicate on the LHS and sanctions and
repairs on the RHS. The obligation of an action needs to be translated into
two rules. The former rule sanctions the obliged agents if they do not utter the
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expected illocution in the scene and state in which they are obliged to do it. The
latter rule removes the obligation once the obliged action has been done.

Table 2 shows the translation of conditional norms into our rules. This trans-

Norms from [48] Institutional rules
PERMITTED((A DO utter(S , W , I )) IF C ) C  per(S , W , I )
FORBIDDEN((A DO utter(S , W , I )) IF C ) C  prh(S , W , I )
OBLIGED((A DO utter(S , W , I )) IF C ) C  obl(S , W , I )

Table 2. Translation of conditional norms into rules

lation can be done in a similar way to the translation done in the previous table
but adding a condition (C ) on the LHS of the rule.

Table 3 shows the translation of norms with the BEFORE time construct into

Norms from [48] Institutional rules
PERMITTED((A DO utter(S , W , I )) BEFORE D) per(S , W , I ) ∧ sat(T < D)
FORBIDDEN((A DO utter(S , W , I )) BEFORE D) prh(S , W , I ) ∧ sat(T < D)
OBLIGED((A DO utter(S , W , I )) BEFORE D) obl(S , W , I ) ∧ sat(T < D)

Table 3. Translation of “BEFORE time” norms into rules

our rules. This translation can be done likewise the translation done in the table
1 but adding in the LHS of the rule the condition that the time in which the
attempt is done (T ) has to be less that the deadline (D). Now in the translation
of obligations we need three rules: one to sanction the agents that do not utter
the expected illocution before the deadline, other to sanction the agents that
utter the expected illocution late and another rule to remove the obligation if
the illocution is uttered before the deadline.

Table 4 shows the translation of norms with the construct AFTER time into
our rules. This translation can be done in a similar way to the translation done

Norms from [48] Institutional rules
PERMITTED((A DO utter(S , W , I )) AFTER D) per(S , W , I ) ∧ sat(T > D)
FORBIDDEN((A DO utter(S , W , I )) AFTER D) prh(S , W , I ) ∧ sat(T > D)
OBLIGED((A DO utter(S , W , I )) AFTER D) obl(S , W , I ) ∧ sat(T > D)

Table 4. Translation of “AFTER time” norms into rules

in the table 1 but adding to the LHS of the rule the condition that the time in
which the attempt is done (T ) has to be greater that the deadline (D). Now in
the translation of obligations we only need one rule to remove the obligation if
the illocution is uttered after the specified time. In the current implementation
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of electronic institutions obligations must be satisfied the first time the agents
are in the expected scene and state. However, as we do not assume that, this
norm cannot be sanctioned.

Table 5 shows the translation of norms with the construct BEFORE action
into our rules. The translation of a permission before another utterance is done

Norms from [48] Institutional rules
PERMITTED((A DO utter(S , W , I )) per(S , W , I ) ∧ utt(S2, W2, I2) 	per(S , W , I )
BEFORE (B DO utter(S2, W2, I2)))

FORBIDDEN((A DO utter(S , W , I )) per(S , W , I ) ∧ utt(S2, W2, I2) 	prh(S , W , I )
BEFORE (B DO utter(S2, W2, I2)))

OBLIGED((A DO utter(S , W , I )) per(S , W , I ) ∧ utt(S2, W2, I2) 	obl(S , W , I )
BEFORE (B DO utter(S2, W2, I2)))

Table 5. Translation of “BEFORE action” norms into rules

by adding two rules that transform an attempt to utter into the illocution being
uttered, first if the second action has not been performed yet or if the second
illocution has been uttered but after the permitted illocution. The translation of
a prohibition before another utterance is also done by adding two rules similar
to the rules for the permitted before case but changing the RHS to sanction
the violation. The translation of an obligation before another utterance is done
by means of four rules; a) sanctions when the permitted illocution has not been
uttered and the deadline illocution has been uttered; b) sanctions when the
deadline illocution has been uttered before the permitted illocution; c) removes
the obligation if it is fulfilled and the deadline illocution has not been uttered;
and d) removes the obligation if it is fulfilled before the deadline illocution has
been uttered.

Table 6 shows the translation of norms with the AFTER action construct into

Norms from [48] Institutional rules
PERMITTED((A DO utter(S , W , I )) utt(S2, W2, I2) ⊕per(S , W , I )
AFTER (B DO utter(S2, W2, I2)))

FORBIDDEN((A DO utter(S , W , I )) utt(S2, W2, I2) ⊕prh(S , W , I )
AFTER (B DO utter(S2, W2, I2)))

OBLIGED((A DO utter(S , W , I )) utt(S2, W2, I2) ⊕obl(S , W , I )
AFTER (B DO utter(S2, W2, I2)))

Table 6. Translation of “AFTER action” norms into rules

our rules. The translation of these type of norms is simply done by checking if
the time when the attempt to utter an illocution is greater than the time of the
deadline illocution.

Hence, the norms defined in [48] can be translated into normative rules by
adding the violation condition into the LHS of the rule and sanctions and repairs
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into the RHS as the following rule schema shows:

VC  S • R

where VC is the violation condition, S and R stands respectively for sanctions
and repairs, all of them extracted from the norm.

6.2 Z Specification of Norms

Although the work in [32,30] proposes a framework that covers several top-
ics of normative multi-agent systems we shall focus on its definition of norm.
Figure 7 shows a norm from [30] composed of several parts. In the schema,

Norm
addresses, beneficiaries : PAgent
normativegoals, rewards, punishments : PGoal
context , exceptions : PEnvState

normativegoals 6= ∅; addresses 6= ∅; context 6= ∅
context ∩ exceptions = ∅; rewards ∩ punishments = ∅

Fig. 7. Z Definition of a Norm from [30]

addressees stands for the set of agents that have to comply with the norm;
beneficiaries stands for the set of agents that profit from the compliance of the
norm; normativegoals stands for the set of goals that ought to be achieved by
addressee agents; rewards are received by addressee agents if they satisfy the
normative goals; punishments are imposed to addressee agent when they do not
satisfy the normative goals; context specifies the preconditions to apply the norm
and exceptions when it is not applicable. Notice that a norm must always have
addressees, normative goals and a context; rewards and punishments are disjoint
sets, and context and exceptions too.

A norm from [30] can be translated into the following rule schema to detect
its violation:

(context ∧ ¬ exception ∧ ¬ goal ′) punishments

where context and exception are predicates obtained through the contextuali-
sation for specifying the context and exceptions mentioned in the norm, goal ′

is the contextualised normative goal (which includes the addressee and possible
beneficiaries). Component punishments are contextualised actions obtained from
the norm. This rule captures that in a particular context which is not an excep-
tion of the norm and whose goal has not yet been fulfilled the actions defined
by punishments should be executed. Rewards can also be specified via the rule
schema:
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(context ∧ ¬ exception ∧ goal ′) rewards

where rewards are also contextualised actions obtained from the norm. This rule
specifies that a reward should be given when
addressee agents comply with the norm, which is when the norm is applicable
and the contextualised normative goal (goal ′) has been achieved.

6.3 Event Calculus

Event calculus is used in [4] for the specification of protocols. Event calculus
is a formalism to represent reasoning about actions or events and their effects
in a logic programming framework and is based on a many-sorted first-order

Predicate Meaning

happens(Act ,T ) Action Act occurs at time T
initially(F = V ) The value of fluent F is V at time 0
holdsAt(F = V ,T ) The value of fluent F is V at time T
initiates(Act ,F = V ,T ) The occurrence of action Act at time T

initiates a period of time for which
the value of fluent F is V

terminates(Act ,F = V ,T ) The occurrence of action Act at time T
terminates a period of time for which
the value of fluent F is V

Fig. 8. Main Predicates of Event Calculus

predicate calculus. Predicates that change with time are called fluents. Figure 9
shows how obligations, permissions, empowerments, capabilities and sanctions
are formalised by means of fluents – prohibitions are not formalised in [4] as a
fluent since they assume that every action not permitted is forbidden by default.

An example of obligation specified in event calculus extracted from [4] is
shown in figure 10. The obligation that C revokes the floor holds at time T if
C enacts the role of chair and the floor is granted to someone else different from
the best candidate.

If we translate all the holdsAt predicates into uttered predicates, we can
translate the obligations and permissions of the example by including the rest of
conditions in the LHS of the normative rules. However, since there is no concrete
definition of norm, we cannot state that the approach in [4] is fully translatable
into our rules.

Although event calculus models time, the deontic fluents specified in the
example of [4] are not enough to inform an agent about all types of duties. For
instance, to inform an agent that it is obliged to perform an action before a
deadline, it is necessary to show the agent the obligation fluent and the part of
the theory that models the violation of the deadline.
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Fluent Domain Meaning

requested(S ,T ) boolean subject S requested the floor at time T
status {free, granted(S ,T )} the status of the floor: status = free

denotes that the floor is free whereas
status = granted(S ,T ) denotes that the
floor is granted to subject S until time T

best candidate agent identifiers the best candidate for the floor
can(Ag ,Act) boolean agent Ag is capable of performing Act
pow(Ag ,Act) boolean agent Ag is empowered to perform Act
per(Ag ,Act) boolean agent Ag is permitted to perform Act
obl(Ag ,Act) boolean agent Ag is obliged to perform Act
sanction(Ag) Z∗ the sanctions of agent Ag

Fig. 9. Main Fluents from [4]

holdsAt(obl(C , revoke floor(C )) = true,T )←
role of (C , chair), holdsAt(status = granted(S ,T ′),T ), (T ≥ T ′),

holdsAt(best candidate = S ′,T ), (S 6= S ′)

Fig. 10. Example of Obligation in Event Calculus

6.4 Hybrid Metric Interval Temporal Logic

In [9] we find a proposal to represent norms via rules written in a modal logic
with temporal operators called hyMITL±. It combines CTL± with Metric Inter-
val Temporal Logic (MITL) as well as features of hybrid logics. That proposal
uses the technique of formula progression from the TLPlan planning system to
monitor social expectations until they are fulfilled or violated.

Formula 18 below shows an example of rule in hyMITL. This rule states
that if the current state is such that consumer c has just made a payment for a
service, and the current state is within one week after the time the payment is
made (time t) then weekly reports will be sent during the next 52 weeks until
provider p optionally cancels the order.

AG+(Done(c,make payment(c, p, amount , prod num)) ∧ [t , t + 1week)→
↓week w .(↓week cw .(¬ F−[−0,cw ]Done(p, send report(c, prod num, cw))→

F+
[+0,cw+1week]Done(p, send report(c, prod num,w)))

W+
[w+1week,w+53weeks]

Done(c, cancel order(c, p, prod num))))

(18)

Rule 19 shows the translation of the previous hyMITL± rule into our language.
We calculate the number of weeks since the last utterance of payment was made
and the time in which this week ends. If the number of weeks is less than 52 and
the report for that week has not been sent then the agent being paid is obliged
to send a report before the end of the week.
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



α0 ∧ ¬ (α1 ∧ sat(T1 > T0))∧
current date(Tn)∧

sat(W = trunc((Tn − T0)/(6048 ∗ 105)))∧
sat(W < 52) ∧ ¬ α2∧

sat(Tend w = T0 + (W + 1) ∗ (6048 ∗ 105))




 

(
⊕α3•

⊕(Ti < Tend w )

)

where






α0 = utt(paymt ,w0, inform(C , cust ,P , payee, pay(Am,Prod),T0))
α1 = utt(report ,w1, inform(C , cust ,P , payee, cancel(Prod),T1))
α2 = utt(report ,w2, inform(P , payee,C , cust , snd rep(R,W ),T2))
α3 = obl(report ,w2, inform(P , payee,C , cust , snd rep(R,W ),T3))

(19)

Our rules are equivalent to AG+(LHS → X+RHS) where LHS and RHS are
atomic formulae without temporal operators. As we build the next state of affairs
by applying the operations on theRHS of the fired rules, we cannot use any other
temporal operator in the RHS of our rules. Furthermore, since our state of affairs
has non-monotonic features we cannot reason over the past of any formulae. We
can only do it with predicates with time-stamps, like the utt predicate, that are
not removed from the state of affairs.

We can capture the meaning of the X− operator when it is used on the LHS
of the hyMITL rule: X−φ is intuitively equivalent to ctr(S ,W ,Ts) ∧ φ(T0) ∧
sat(T0 = Ts − 1). Moreover, we can also translate the U+ operator when it is
used in the RHS of the hyMITL rule: φ U+ψ is roughly equivalent to ψ  	φ.
Although we cannot use all the temporal operators on the RHS of our rules, we
can obtain equivalent results by imposing certain restrictions in the set of rules.
F+φ can be achieved if ⊕φ appears on the RHS of a rule and it is possible that
the rule fires. G+φ can be achieved after φ is added and no rule that could fire
removes it. Time intervals can be translated into comparisons of time-points as
shown in the previous example.

6.5 Social Integrity Constraints

In [1] the language Social Integrity Constraints (SIC) is proposed. This lan-
guage’s constructs check whether some events have occurred and some condi-
tions hold to add new expectations, optionally with constraints. An example of
a SIC construct is:(

H(request(B ,A,P ,D ,Tr ))∧
H(accept(B ,A,P ,D ,Ta))∧
Tr < Ta

)
→ E(do(A,B ,P ,D ,Td)) : Td < Ta + τ

The construct above intuitively means “if agent B sent a request P to agent A
at time Tr in the context of dialogue D , and A sent an accept to B ’s request
at a later time Ta , then A is expected to do P before a deadline Ta + τ”. The
translation of SICs is based on translating events (H) into our att predicates.
Since we also allow predicates to be restricted by constraints, expectations can
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be translated directly into obligations as the next rule shows:




utt(D, W0, request(B, R, A, R′, P, Tr ))∧
utt(D, W1, accept(A, R′, B, R, P, Ta))∧

sat(Tr < Ta)



 
(
⊕obl(D, W2, inform(A, R′, B, R, P, Td ))•

⊕(Td < Ta + τ)

)

(20)
Although syntactically their language is very similar to ours, they are seman-
tically different. Different from their use of abduction and Constraint Handling
Rules (CHR) to execute their expectations, we use a forward chaining approach.
Despite the fact that expectations they use are quite similar to obligations, SIC
lacks further deontic notions such as permissions or prohibitions. Furthermore,
although they mention how expectations are treated, that is, what happens when
an expectation is fulfilled or when it is not, and state the possibility of SICs be-
ing violated, no mechanism to regulate agents’ behaviour like the punishment of
offending agents or repairing actions are offered.

6.6 Object Constraint Language

The work in [15] proposes the Object Constraint Language (OCL) for the speci-
fication of artificial institutions. The expression below shows an example of norm
written in OCL:

within h : AuctionHouse
on e : InstitutionalRelationChange(h.dutchAuction,

auctioneer , created)
if true then
foreach agent inh.employee →

select(em | e.involved → contains(em))
do makePendingComm(agent ,

DutchInstAgent(notSetCurPrice(
h.dutchAuction.id ,
?p[?p < h.agreement .reservationPrice]),
< now ,now + time of (e1 : InstStateChange(
h.dutchAuction,OpenDA,ClosedDA)) >,∀))

(21)

This norm commits the auctioneer not to declare a price lower than the agreed
reservation price. As shown in section 5.4, we can also express (rule 17) the
case that the auctioneer is obliged to withdraw the good when the call price
becomes lower than the reservation price. As for [15], we cannot perform an
exhaustive analysis of the language because neither the syntax nor the semantics
are specified.

After analysing all these approaches we have found some norm patterns that
they have in common. Norms can be conditional or can have temporal con-
straints, that is, they establish relationships between time-points or events or
they hold periodically. Our rules can capture the patterns from rather disparate
formalisms, thus fulfilling the requirement of general purpose mentioned in sec-
tion 2.
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7 Related Work

Apart from classical studies on law, research on norms and agents has been
addressed by two different disciplines: sociology and philosophy. On the one
hand, contributions from sociology highlight the importance of norms in agent
behaviour (e.g., [8,7,45]) or analyse the emergence of norms in multi-agent sys-
tems (e.g., [50,42]). On the other hand, logic-oriented contributions focus on the
deontic logics required to model normative modalities along with their para-
doxes (e.g., [49,2,28]). The last few years, however, have seen significant work
on norms in multi-agent systems, and norm formalisation has emerged as an
important research topic in the literature (e.g., [10,6,48,14]).

Vázquez-Salceda et al. [48] propose the use of a deontic logic with deadline
operators. These operators specify the time or the event after (or before) which
a norm is valid. This deontic logic includes obligations, permissions and prohi-
bitions, possibly conditional, over agents’ actions or predicates. In their model,
they distinguish norm conditions from violation conditions. This is not necessary
in our approach since both types of conditions can be represented in the LHS of
our rules. Their model of norm also separates sanctions and repairs (i.e., actions
to be done to restore the system to a valid state) – these can be expressed in
the RHS of our rules without having to differentiate them from other normative
aspects of our states. Our approach has two advantages over [48]: one is that we
provide an implementation for our rules and the other is that we offer a more
expressive language with constraints over norms (e.g., an agent can be obliged
to pay an amount greater than some fixed value).

Fornara et al. [14] propose the use of norms partially written in OCL, the
Object Constraint Language which is part of UML (Unified Modelling Language)
[37]. Their commitments are used to represent all normative modalities – of
special interest is how they deal with permissions: they stand for the absence of
commitments. This feature may jeopardise the safety of the system since it is
less risky to only permit a set of safe actions thus forbidding other actions by
default. Although this feature can reduce the amount of permitted actions, it
allows that new or unexpected, risky actions to be carried out. Their within, on
and if clauses can be encoded into the LHS of our rules as they can all be seen
as conditions when dealing with norms. Similarly, foreach in and do clauses can
be encoded in the RHS of our rules since they are the actions to be applied to
a set of agents.

López y López et al. [31] present a model of normative multi-agent system
specified in the Z language. Their proposal is quite general since the normative
goals of a norm do not have a limiting syntax as the rules of Fornara et al.
[14]. However, their model assumes that all participating agents have a homo-
geneous, predetermined architecture. No agent architecture is imposed on the
participating agents in our approach, thus allowing for heterogeneity.

Artikis et al. [4] propose the use of event calculus for the specification of
protocols. Obligations, permissions, empowerments, capabilities and sanctions
are formalised by means of fluents – these are predicates that change with time.
Prohibitions are not formalised in [4] as a fluent since they assume that every
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action not permitted is forbidden by default. Although event calculus models
time, their deontic fluents are not enough to inform an agent about all types of
duties. For instance, to inform an agent that it is obliged to perform an action
before a deadline, it is necessary to show the agent the obligation fluent and the
part of the theory that models the violation of the deadline. In [43] (previous
to the work of Artikis et al. [4]), Stratulat et al. also used event calculus to
model obligations, permissions, prohibitions and violations. Similar to the work
of Artikis et al., that proposal lacks an representation of time that would be
easily processed by agents.

Michael et al. [34] propose a formal scripting language to model the essen-
tial semantics, namely, rights and obligations, of market mechanisms. They also
formalise a theory to create, destroy and modify objects that either belong to
someone or can be shared by others. Their proposal is suitable to model and im-
plement market mechanisms, however, it is not as expressive as other proposals
– for instance, it cannot model obligations with a deadline.

Kollingbaum [24] proposes a language for the specification of normative con-
cepts (i.e., obligations, prohibitions and permissions) and a programming lan-
guage for norm-governed reasoning agents. The normative concepts and the pro-
gramming language are given their operational semantics via the NoA Agent
Architecture [25,26] using Java to explain the meaning of each construct. This
approach addresses practical reasoning agents developed using their language
and architecture – although the approach is practical and has clear advantages
such as the possibility to check for norm conflicts and consistency, heteroge-
neous agents cannot be accommodated. Furthermore, there is no indication of
how the proposal adapts to a distributed scenario, as only individual agents are
addressed.

In [1] the language Social Integrity Constraints (SIC) is proposed. This lan-
guage’s constructs check whether some events have occurred and some conditions
hold to add new expectations, optionally with constraints. Although syntacti-
cally their language is very similar to ours, they are semantically different. Dif-
ferent from their use of abduction and Constraint Handling Rules (CHR) to
execute their expectations, we use a forward chaining approach. Despite the fact
that expectations they use are quite similar to obligations and they mention how
expectations are treated, that is, what happens when an expectation is fulfilled
or when it is not, and state the possibility of SICs being violated, no mecha-
nism to regulate agents’ behaviour like the punishment of offending agents or
repairing actions are offered.

The work in [16] reports on the translation of the normative language pre-
sented in [48] into Jess rules to monitor and enforce norms. This language cap-
tures the deontic notions of permission, prohibition and obligation in several
cases: absolute norms, conditional norms, norms with deadline and norms in
temporal relation with another event. Absolute norms are directly translated
into Jess facts; conditional norms are directly translated into rules that add the
deontic facts when the condition holds; norms with deadline are translated into
rules that add conditional norms after the deadline has passed. Finally, norms in
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temporal relation with other events are translated into rules that check if those
events have occurred.

Our proposal bears strong similarities with the work reported in [29] where
norms are represented as rules of a production system. We notice that our rules
can express their notions of contracts and their monitoring (i.e., fulfilment and
violation of obligations). However, in [29] constraints can only be used to depict
the right-hand side of a rule, that is, the situation(s) when a rule is applicable –
constraints are not manipulated the way we do. Furthermore, in that work there
is no indication as to how individual agents will know about their normative
situation; a diagram introduces the architecture, but it is not clear who/what
will apply the rules to update the normative aspects of the system nor how
agents synchronise their activities.

8 Conclusions, Discussion and Future Work

In this paper we have introduced a formalism for the explicit management of the
normative positions of agents in electronic institutions. Electronic institutions
define a computational model that mediates and regulates the interaction of a
community of agents. The classical model of electronic institution proposed in
[12] is strict in the sense that only permitted illocutions are accepted in the
interactions. We propose a language to implement and extend the notion of
electronic institution by providing them with several flavours of deontic notions.

Ours is a rule language in which constraints can be specified and changed at
run-time, conferring expressiveness and precision on our constructs. The seman-
tics of our formalism defines a production system in which rules are exhaustively
applied to a state of affairs, leading to the next state of affairs. The normative
positions are updated via rules, depending on the messages agents send.

Our formalism addresses the points of a desiderata for normative languages
introduced in section 2: We explicitly manage normative positions with our lan-
guage as facts of our production system. We have explored the pragmatics and
generality of our proposal in sections 3.5 and 5.4 by introducing the type of
expressions that can be specified with the language and by specifying a version
of the Dutch Auction protocol. We also illustrate how our language can provide
other (higher-level) normative languages with a computational model (i.e., an
implementation) thus making it possible for some normative languages proposed
with more theoretical concerns in mind to become executable. Our language is
rule-based thus addressing the requirement that norm-oriented languages should
be declarative laid out in section 2.

We propose norm-oriented programming as a paradigm to regulate the in-
teractions among the components of a system. We notice that it is complemen-
tary to other paradigms that focus on regulating the internal processes of these
components such as agent-oriented programming [41]. We intend to tackle the
engineering of regulation mechanisms of open MAS from a social perspective.

The main advantage of using our language, instead of standard production
systems, to specify and monitor the normative position of the agents conforming
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a MAS is the inclusion of constraint solving techniques in the semantics to handle
with constrained predicates.

As for future work, rather than just considering events as utterances of illo-
cutions (some of them reporting on actions, such as the “bid” message in the
example of section 5.4), we would like to generalise our language to cope with
arbitrary actions, as this would allow us to address any multi-agent system. We
would also like to extend the syntax and semantics of our language to support
temporal operators for the management of time.

We also want to investigate the verification of norms (along the lines of
our work in [46]) expressed in our rule language, with a view to detecting,
for instance, obligations that cannot be fulfilled, prohibitions that will prevent
progress, inconsistencies and so on. We are currently investigating tools to help
engineers preparing their rules – these are norm editors that will support the
design and verification of norm-oriented electronic institutions.
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Wamberto Vasconcelos. Norm-Oriented Programming of Electronic Institutions: A
Rule-based Approach. In Coordination, Organization, Institutions and Norms in
agent systems (COIN’06) in Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems. (AAMAS’06), May 2006.

21. Joxan Jaffar and Michael J. Maher. Constraint Logic Programming: A Survey.
Journal of Logic Programming, 19/20:503–581, 1994.

22. Joxan Jaffar, Michael J. Maher, Kim Marriott, and Peter J. Stuckey. The Semantics
of Constraint Logic Programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

23. Nick R. Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent
research and development. Journal of Agents and Multi-Agents Systems, 1:7–38,
1998.

24. Martin J. Kollingbaum. Norm-Governed Practical Reasoning Agents. PhD the-
sis, Department of Computing Science, University of Aberdeen, United Kingdom,
January 2005.



33

25. Martin J. Kollingbaum and Tim J. Norman. NoA – A Normative Agent Archi-
tecture. In Procs. 18th Int’l Joint Conference on Art. Intelligence (IJCAI), pages
1465–1466, Acapulco, Mexico, 2003. AAAI Press.

26. Martin J. Kollingbaum and Tim J. Norman. Norm Adoption in the NoA Agent
Architecture. In Procs. 2nd Int’l Joint Conf. on Autonomous Agents & Multi-Agent
Systems (AAMAS 2003), Melbourne, Australia, 2003. ACM, U.S.A.

27. Bryan Kramer and John Mylopoulos. Knowledge Representation. In S. C. Shapiro,
editor, Encyclopedia of Artificial Intelligence, volume 1, pages 743–759. John Wiley
& Sons, 1992.

28. Alessio Lomuscio and Donald Nute, editors. Proc. of the 7th Intl. Workshop on
Deontic Logic in Computer Science (DEON’04), volume 3065 of Lecture Notes in
Artificial Intelligence. Springer Verlag, 2004.

29. Henrique Lopes Cardoso and Eugénio Oliveira. Towards an Institutional Envi-
ronment using Norms for Contract Performance. In Multi-Agent Systems and
Applications IV co-located with 4th International Central and Eastern European
Conference on Multi-Agent Systems (CEEMAS 2005), volume 3690 of LNAI, pages
256–265. Springer-Verlag, 2005.
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