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 K1 → g2  

 K2 → g4 

 K3 → g6 

 Variables 
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 Domain 
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 Constraints 
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Optimization Functions in CSPs 

• Distribute the goods/ 
presents to the kids 

• Goods are indivisible 
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• Kids have preferences 
over the presents 

 

 Valuation Function:       =        + 

   (K1/g1) = 3 

   (K1/g2) = 10 

 … 

 Value of the Solution 

   (K1/g1)  +      (K2/g4)  +       (K3/g6) = 21 

 Optimal (MAX) Solution 

  Maximizes the social welfare 
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FAIR OPTIMIZATION  
 

 MAX-MIN 

[Snow and Freuder, Dubois and Fortemps, Bouveret and Lematre] 

Social welfare = 19 (max 21) 

Limited expressiveness  
• functions on one variable/constraint 
 

No complexity analysis 
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 Restrictions on  

     

   

 

   

 

in P weakly NP-hard 

[Gottlob et al.] 

• Reduction from «Partition» 
• Pseudo-polynomial 

NP-hard in P 

in P 

Reduction from «Set Packing» 

NP-hard 

in P 

Dynamic programming 

in P 
a novel machinery is needed 
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 A set of variables W is a guard for a valuation function if 
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variables do not occur together with any variable occurring in 

other valuation functions 
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Guards for Valuation Functions 

W  defines 3 components 

C1 

C2 

C3 

covers X1, which is in the domain of  

C2 (and C1) does not contain variables in the domain of       and 

is a guard for       ; in fact, it is also a guard for the other functions 
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Decomposition Methods 

 Common Ideas 

 Generalize the notion of graph or hypergraph acyclicity 

 Associate a width to each instance, expressing its degree of cyclicity 

 Polynomial time algorithms for bounded-width CSP instances, running 
in O(n w+1· logn) 

 Bounded-width CSP instances can be recognized in polynomial time 

 Bounded-width decompositions can be computed in polynomial time 

 Noticeable Examples 

 Tree decompositions 

 (Generalized) Hypertree decompositions 

 



Generalized Hypertree Decompositions 

),','(),',()',',,,(

)','()','()',',(),(

),(),',()',',',,(),,',,(

FXBqFXBpYXYXJj

ZYhZXgZFFfZYe

ZXdZCCcFCYYSbFCXXSa





a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 



Basic Conditions(1/2) 

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 
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a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 

• Edges can partially  
   be used 

j(_,_,_,X’,Y’), f(F,F’,Z’) 

Basic Conditions(2/2) 



Connectdness Condition 

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 



Hypertree Decompositions (HTD) 

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 

Does not appear in 
the subtrees rooted at v 

J X Y 

HTD = Generalized HTD +Special Condition 

Each variable not used  
at some vertex v 
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Decomposition Methods and Guards 

An instance is guarded via the given method if there is  an output 
Ai such that each valution function is guarded by some hyperedge  

 

 

 

 

  

Input CSP A1 An 

set of equivalent acyclic instances 

is guarded via hypertree decomposition (width k=3) 
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Proof Idea 

    in P, if guarded via 

guard for  

variables in the domain of  

X1 

solutions with optimal values, computed via dynamic programming 

X1 
Xn 

acyclic instance, with 1 function over n variables 
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