Constraint Satisfaction and Fair Multi-Objective Optimization Problems: Foundations, Complexity, and Islands of Tractability

Gianluigi Greco and Francesco Scarcello

Constraint Satisfaction Problems

- Distribute the goods/ presents to the kids
- Goods are indivisible

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Optimization Functions in CSPs

The Santa Claus Problem:

Santa's goal is to distribute presents in a way that the least lucky kid is as happy as possible.

The Santa Claus Problem:

Social welfare = 19 (max 21)

Santa's goal is to distribute presents in a way that the least lucky kid is as happy as possible.

[Snow and Freuder, Dubois and Fortemps, Bouveret and Lematre]

Overview

•
$$L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$$
 is a set of valuation functions
• $\mathcal{F}_i = \langle w_i, \bigoplus_i \rangle$ is such that
• $w_i : \bar{X}_i \times \mathcal{U} \mapsto \mathbb{R}$, with $\bar{X}_i \subseteq Var$
• \oplus_i is a *commutative*, *associative*, and *closed* binary operator
• $\mathcal{F}_i(\theta) = \bigoplus_{\{X/u \in \theta \mid X \in \bar{X}_i\}} w_i(X, u)$

$$\max_{\theta} \min_{\mathcal{F} \in L} \mathcal{F}(\theta)$$

•
$$L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$$
 is a set of valuation functions
• $\mathcal{F}_i = \langle w_i, \bigoplus_i \rangle$ is such that
• $w_i : \bar{X}_i \times \mathcal{U} \mapsto \mathbb{R}$, with $\bar{X}_i \subseteq Var$
• \oplus_i is a *commutative*, *associative*, and *closed* binary operator
• $\mathcal{F}_i(\theta) = \bigoplus_{\{X/u \in \theta \mid X \in \bar{X}_i\}} w_i(X, u)$

The Santa Claus Problem:

(possible solutions)

$$\{\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3\}$$
10
2
9
10
3
2
3
6
9
4
6
6
4
6
9
 \vdots
 \vdots
 \vdots

$$\max_{\theta} \min_{\mathcal{F} \in L} \mathcal{F}(\theta)$$

4

•
$$L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$$
 is a set of valuation functions
• $\mathcal{F}_i = \langle w_i, \oplus_i \rangle$ is such that
• $w_i : \bar{X}_i \times \mathcal{U} \mapsto \mathbb{R}$, with $\bar{X}_i \subseteq Var$
• \oplus_i is a commutative, associative, and closed binary operator
• $\mathcal{F}_i(\theta) = \bigoplus_{\{X/u \in \theta | X \in \bar{X}_i\}} w_i(X, u)$.
The Santa Claus Problem:
(possible solutions)
 $\{\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3\}$
 $10 \ 2 \ 9$
 $10 \ 3 \ 2$
 $3 \ 6 \ 9$
 $4 \ 6 \ 6$
 $4 \ 6 \ 9$
 \vdots \vdots \vdots \vdots \vdots $ux_{\theta} \min_{\mathcal{F} \in L} \mathcal{F}(\theta)$
 $lexmax_{\theta} \min_{\mathcal{F} \in L} \mathcal{F}(\theta)$

Overview

Constraint satisfaction is NP-hard

Even without optimization functions...

Tractable classes of CSPs

- Based on the values in the constraint relations
- Based on the structure of the constraint scopes

Constraint satisfaction is NP-hard

• Even without optimization functions...

Tractable classes of CSPs

- Based on the values in the constraint relations
- Based on the structure of the constraint scopes

Treewidth [Dechter & Pearl]

Constraint satisfaction is NP-hard

Even without optimization functions...

Tractable classes of CSPs

- Based on the values in the constraint relations
- Based on the structure of the constraint scopes

Constraint satisfaction is NP-hard

• Even without optimization functions...

Tractable classes of CSPs

- Based on the values in the constraint relations
- Based on the structure of the constraint scopes

JOIN TREE

- Vertices correspond to the hyperedges
- Each variable induces a connected subtree

JOIN TREE

- Vertices correspond to the hyperedges
- Each variable induces a connected subtree

• Restrictions on
$$L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$$

• $\max_{\mathcal{F} \in L} |\operatorname{dom}(\mathcal{F})| \leq D$
• $|L| \leq F$

• Restrictions on
$$L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$$

• $\max_{\mathcal{F} \in L} |\operatorname{dom}(\mathcal{F})| \leq D$
• $|L| \leq F$

• Restrictions on
$$L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$$

• $\max_{\mathcal{F} \in L} |\operatorname{dom}(\mathcal{F})| \leq D$
• $|L| \leq F$

• Restrictions on
$$L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$$

• $\max_{\mathcal{F} \in L} |\operatorname{dom}(\mathcal{F})| \leq D$
• $|L| \leq F$

• Restrictions on
$$L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$$

• $\max_{\mathcal{F} \in L} |\operatorname{dom}(\mathcal{F})| \leq D$
• $|L| \leq F$

Complexity of Acyclic Instances

Overview

Key Ideas

Decomposition Methods

A set of variables W is a guard for a valuation function if

A set of variables *W* is a *guard* for a valuation function if

• A set of variables *W* is a *guard* for a valuation function if

other valuation functions

is a guard for \mathcal{F}_1 ; in fact, it is also a guard for the other functions

Key Ideas

Decomposition Methods

Decomposition Methods

Common Ideas

- Generalize the notion of graph or hypergraph acyclicity
- Associate a width to each instance, expressing its degree of cyclicity
- Polynomial time algorithms for bounded-width CSP instances, running in O(n w+1· logn)
- Bounded-width CSP instances can be recognized in polynomial time
- Bounded-width decompositions can be computed in polynomial time

Noticeable Examples

- Tree decompositions
- Generalized) Hypertree decompositions

Generalized Hypertree Decompositions

Basic Conditions_(1/2)

Basic Conditions_(2/2)

Connectdness Condition

Hypertree Decompositions (HTD)

HTD = Generalized HTD +Special Condition

Key Ideas

Decomposition Methods

Decomposition Methods and Guards

Decomposition Methods and Guards

An instance is guarded via the given method if there is an output A_i such that each valution function is guarded by some hyperedge

Decomposition Methods and Guards

An instance is guarded via the given method if there is an output A_i such that each valution function is guarded by some hyperedge

is guarded via hypertree decomposition (width k=3)

in **P**, if guarded via Ψ_{hw}

in **P**, if guarded via Ψ_{hw}

(acyclic) instances of this kind are always guarded via $\Psi_{hw}~$ width: h x k+1

Overview

