Constraint Satisfaction and Fair Multi-Objective Optimization Problems: Foundations, Complexity, and Islands of Tractability

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Optimization Functions in CSPs

- Distribute the goods/ presents to the kids
- Goods are indivisible
- Valuation Function: $\mathcal{F}=\langle w,+\rangle$
- $w\left(\mathrm{~K}_{1} / \mathrm{g}_{1}\right)=3$
- $w\left(\mathrm{~K}_{1} / \mathrm{g}_{2}\right)=10$
- ...
- Value of the Solution

$$
w\left(\mathrm{~K}_{1} / \mathrm{g}_{1}\right)+w\left(\mathrm{~K}_{2} / \mathrm{g}_{4}\right)+w\left(\mathrm{~K}_{3} / \mathrm{g}_{6}\right)=21
$$

- Kids have preferences over the presents
- Optimal (MAX) Solution
- Maximizes the social welfare

Multi-Objective Optimization

- Different Valuations: $\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\right\}$
- Combination Strategies:

Multi-Objective Optimization

- Different Valuations: $\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\right\}$
- Combination Strategies:

Multi-Objective Optimization

- Different Valuations: $\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\right\}$
- Combination Strategies:

- MAX-SUM (social welfare)	10	2	9
-		2	

Multi-Objective Optimization

- Different Valuations: $\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\right\}$
- Combination Strategies:

-	MAX-SUM (social welfare)	10	2	9
	LEX	10	3	2
	PARETO e.g.	3	6	9

Related Literature

- Different Valuations: $\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\right\}$
- Combination Strategies:

MAX-SUM (social welfare)	10	2	9
LEX		10	3
	2		
PARETO	e.g.	3	6

[Bistarelli et al., Rossi et al.]
[Freuder et al.]
[Torrens and Faltings]

Related Literature

Santa's goal is to distribute presents in a way that the least lucky kid is as happy as possible.

Related Literature

The Santa Claus Problem:

Social welfare $=19(\max 21)$

Santa's goal is to distribute presents in a way that the least lucky kid is as happy as possible.

Related Literature

The Santa Claus Problem:

Social welfare $=19(\max 21)$

Santa's goal is to distribute presents in a way that the least lucky kid is as happy as possible.

FAIR OPTIMIZATION

- MAX-MIN
[Snow and Freuder, Dubois and Fortemps, Bouveret and Lematre]

Related Literature

The Santa Claus Problem:

Social welfare $=19(\max 21)$

FAIR OPTIMIZATION

- MAX-MIN

Santa's goal is to distribute presents in a way that the least lucky kid is as happy as possible.

X Limited expressiveness

- functions on one variable/constraint

X No complexity analysis
[Snow and Freuder, Dubois and Fortemps, Bouveret and Lematre]

Overview

The Model

- $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$ is a set of valuation functions
- $\mathcal{F}_{i}=\left\langle w_{i}, \oplus_{i}\right\rangle$ is such that
- $w_{i}: \bar{X}_{i} \times \mathcal{U} \mapsto \mathbb{R}$, with $\bar{X}_{i} \subseteq \operatorname{Var}$
- \bigoplus_{i} is a commutative, associative, and closed binary operator
- $\mathcal{F}_{i}(\theta)=\bigoplus_{\left\{X / u \in \theta \mid X \in \bar{X}_{i}\right\}} w_{i}(X, u)$

$$
\max _{\theta} \min _{\mathcal{F} \in L} \mathcal{F}(\theta)
$$

The Model

- $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$ is a set of valuation functions
- $\mathcal{F}_{i}=\left\langle w_{i}, \oplus_{i}\right\rangle$ is such that
- $w_{i}: \bar{X}_{i} \times \mathcal{U} \mapsto \mathbb{R}$, with $\bar{X}_{i} \subseteq \operatorname{Var}$
- \bigoplus_{i} is a commutative, associative, and closed binary operator
- $\mathcal{F}_{i}(\theta)=\bigoplus_{\left\{X / u \in \theta \mid X \in \bar{X}_{i}\right\}} w_{i}(X, u)$

The Santa Claus Problem:
$\max _{\theta} \min _{\mathcal{F} \in L} \mathcal{F}(\theta)$

The Model

- $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$ is a set of valuation functions
- $\mathcal{F}_{i}=\left\langle w_{i}, \oplus_{i}\right\rangle$ is such that
- $w_{i}: \bar{X}_{i} \times \mathcal{U} \mapsto \mathbb{R}$, with $\bar{X}_{i} \subseteq$ Var
- \bigoplus_{i} is a commutative, associative, and closed binary operator
- $\mathcal{F}_{i}(\theta)=\bigoplus_{\left\{X / u \in \theta \mid X \in \bar{X}_{i}\right\}} w_{i}(X, u)$

The Santa claus Problem:
(possible solutions)

$\left.\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\right\}$		
10	2	9
10	3	2
3	6	9
4	6	6
4	6	9
\vdots	!	\vdots

$\max _{\theta} \min _{\mathcal{F} \in L} \mathcal{F}(\theta)$

The Model

- $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$ is a set of valuation functions
- $\mathcal{F}_{i}=\left\langle w_{i}, \oplus_{i}\right\rangle$ is such that
- $w_{i}: \bar{X}_{i} \times \mathcal{U} \mapsto \mathbb{R}$, with $\bar{X}_{i} \subseteq \operatorname{Var}$
- \bigoplus_{i} is a commutative, associative, and closed binary operator
- $\mathcal{F}_{i}(\theta)=\bigoplus_{\left\{X / u \in \theta \mid X \in \bar{X}_{i}\right\}} w_{i}(X, u)$

The Santa Claus Problem:
(possible solutions)

$\max _{\theta} \min _{\mathcal{F} \in L} \mathcal{F}(\theta)$
$\operatorname{lexmax}_{\theta} \min _{\mathcal{F} \in L} \mathcal{F}(\theta)$

The Model

- $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$ is a set of valuation functions
- $\mathcal{F}_{i}=\left\langle w_{i}, \oplus_{i}\right\rangle$ is such that
- $w_{i}: \bar{X}_{i} \times \mathcal{U} \mapsto \mathbb{R}$, with $\bar{X}_{i} \subseteq \operatorname{Var}$
- \bigoplus_{i} is a commutative, associative, and closed binary operator
- $\mathcal{F}_{i}(\theta)=\bigoplus_{\left\{X / u \in \theta \mid X \in \bar{X}_{i}\right\}} w_{i}(X, u)$

The Santa Claus Problem:

Overview

Decomposition Methods

Complexity of (LEX)MAX-MIN Solutions

- Constraint satisfaction is NP-hard
- Even without optimization functions...
- Tractable classes of CSPs
- Based on the values in the constraint relations
- Based on the structure of the constraint scopes

Complexity of (LEX)MAX-MIN Solutions

- Constraint satisfaction is NP-hard
- Even without optimization functions...
- Tractable classes of CSPs
- Based on the values in the constraint relations
- Based on the structure of the constraint scopes

O Treewidth [Dechter \& Pearl]

Complexity of (LEX)MAX-MIN Solutions

- Constraint satisfaction is NP-hard
- Even without optimization functions...
- Tractable classes of CSPs
- Based on the values in the constraint relations
- Based on the structure of the constraint scopes
- CONSTRAINT HYPERGRAPH

Complexity of (LEX)MAX-MIN Solutions

- Constraint satisfaction is NP-hard
- Even without optimization functions...
- Tractable classes of CSPs
- Based on the values in the constraint relations
- Based on the structure of the constraint scopes
- CONSTRAINT HYPERGRAPH

Complexity of (LEX)MAX-MIN Solutions

- JOIN TREE
- Vertices correspond to the hyperedges
- Each variable induces a connected subtree

- CONSTRAINT HYPERGRAPH

Complexity of (LEX)MAX-MIN Solutions

- JOIN TREE
- Vertices correspond to the hyperedges
- Each variable induces a connected subtree

- CONSTRAINT HYPERGRAPH

Complexity of (LEX)MAX-MIN Solutions

- JOIN TREE
- Vertices correspond to the hyperedges
- Each variable induces a connected subtree

ACYCLIC CSP

- CONSTRAINT HYPERGRAPH

Complexity of Acyclic Instances

- Restrictions on $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$
- $\max _{\mathcal{F} \in L}|\operatorname{dom}(\mathcal{F})| \leq \mathrm{D}$
- $|L| \leq F$

Complexity of Acyclic Instances

- Restrictions on $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$
a $\max _{\mathcal{F} \in L}|\operatorname{dom}(\mathcal{F})| \leq \mathrm{D}$
- $|L| \leq \mathrm{F}$

Complexity of Acyclic Instances

- Restrictions on $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$
- $\max _{\mathcal{F} \in L}|\operatorname{dom}(\mathcal{F})| \leq \mathrm{D}$
- $|L| \leq \mathrm{F}$

Complexity of Acyclic Instances

- Restrictions on $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$
- $\max _{\mathcal{F} \in L}|\operatorname{dom}(\mathcal{F})| \leq \mathrm{D}$
- $|L| \leq \mathrm{F}$

Complexity of Acyclic Instances

- Restrictions on $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$
- $\max _{\mathcal{F} \in L}|\operatorname{dom}(\mathcal{F})| \leq \mathrm{D}$
- $|L| \leq \mathrm{F}$

Complexity of Acyclic Instances

- Reduction from «Partition»
- Pseudo-polynomial
- Restrictions on $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$
$\square \max _{\mathcal{F} \in L}|\operatorname{dom}(\mathcal{F})| \leq \mathrm{D}$
- $|L| \leq \mathrm{F}$

Complexity of Acyclic Instances

- Reduction from «Partition»
- Pseudo-polynomial
- Restrictions on $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$
$\square \max _{\mathcal{F} \in L}|\operatorname{dom}(\mathcal{F})| \leq \mathrm{D}$
- $|L| \leq \mathrm{F}$

Complexity of Acyclic Instances

- Reduction from «Partition»
- Pseudo-polynomial
- Restrictions on $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$
$\square \max _{\mathcal{F} \in L}|\operatorname{dom}(\mathcal{F})| \leq \mathrm{D}$
- $|L| \leq \mathrm{F}$

Complexity of Acyclic Instances

- Reduction from «Partition»
- Pseudo-polynomial
- Restrictions on $L=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$
- $\max _{\mathcal{F} \in L}|\operatorname{dom}(\mathcal{F})| \leq \mathrm{D}$
- $|L| \leq \mathrm{F}$

Overview

Decomposition Methods

Key Ideas

Guards for Valuation Functions

Decomposition Methods

Guards for Valuation Functions

- A set of variables W is a guard for a valuation function if
- separates the hypergraph in components where its domain variables do not occur together with any variable occurring in other valuation functions

Guards for Valuation Functions

- A set of variables W is a guard for a valuation function if
- separates the hypergraph in components where its domain variables do not occur together with any variable occurring in other valuation functions

Guards for Valuation Functions

- A set of variables W is a guard for a valuation function if
- separates the hypergraph in components where its domain variables do not occur together with any variable occurring in other valuation functions

Guards for Valuation Functions

- A set of variables W is a guard for a valuation function if
- separates the hypergraph in components where its domain variables do not occur together with any variable occurring in other valuation functions

Guards for Valuation Functions

- A set of variables W is a guard for a valuation function if
- separates the hypergraph in components where its domain variables do not occur together with any variable occurring in other valuation functions

Guards for Valuation Functions

is a guard for \mathcal{F}_{1}; in fact, it is also a guard for the other functions

Key Ideas

Guards for Valuation Functions

Decomposition Methods

Decomposition Methods

- Common Ideas
- Generalize the notion of graph or hypergraph acyclicity
- Associate a width to each instance, expressing its degree of cyclicity
- Polynomial time algorithms for bounded-width CSP instances, running in $\mathrm{O}(\mathrm{n} w+1 \cdot \operatorname{logn})$
- Bounded-width CSP instances can be recognized in polynomial time
- Bounded-width decompositions can be computed in polynomial time
- Noticeable Examples
- Tree decompositions
- (Generalized) Hypertree decompositions

Generalized Hypertree Decompositions

$$
\begin{array}{rccc}
a\left(S, X, X^{\prime}, C, F\right) & b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) & c\left(C, C^{\prime}, Z\right) & d(X, Z) \\
e(Y, Z) & f\left(F, F^{\prime}, Z^{\prime}\right) & g\left(X^{\prime}, Z^{\prime}\right) & h\left(Y^{\prime}, Z^{\prime}\right) \\
j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) & p\left(B, X^{\prime}, F\right) & q\left(B^{\prime}, X^{\prime}, F\right)
\end{array}
$$

Basic Conditions ${ }_{(1 / 2)}$

- We group edges

Basic Conditions $_{(2 / 2)}$

Connectdness Condition

Hypertree Decompositions (HTD)

HTD = Generalized HTD +Special Condition

Key Ideas

Guards for Valuation Functions

Decomposition Methods

Decomposition Methods and Guards

Decomposition Methods and Guards

An instance is guarded via the given method if there is an output A_{i} such that each valution function is guarded by some hyperedge

Decomposition Methods and Guards

An instance is guarded via the given method if there is an output A_{i} such that each valution function is guarded by some hyperedge

Main Results

$[\mathrm{D}, \mathrm{F}]$	1	h	∞
1	in \mathbf{P}	in \mathbf{P}	in \mathbf{P}
k	in \mathbf{P}	$\cdots \cdots$	$\mathbf{N P}$-hard
∞	in \mathbf{P}	weakly $\mathbf{N P}$-hard	$\mathbf{N P}$-hard

Main Results

Proof Idea

in \mathbf{P}, if guarded via $\Psi_{h w}$
variables in the domain of \mathcal{F}_{1}

Proof Idea

in \mathbf{P}, if guarded via $\Psi_{h w}$
variables in the domain of \mathcal{F}_{1}

Proof Idea

solutions with optimal values, computed via dynamic programming

variables in the domain of \mathcal{F}_{1}

Proof Idea

acyclic instance, with $\mathbf{1}$ function over \mathbf{n} variables

$$
\mathrm{X}_{1} \text { \& }-\cdots-\cdots \text { 凸 } \mathrm{X}_{n}
$$

solutions with optimal values, computed via dynamic programming

variables in the domain of \mathcal{F}_{1}

Main Results

Main Results

(acyclic) instances of this kind are always guarded via $\Psi_{h w}$ width: $\mathrm{h} \times \mathrm{k}+1$

Main Results

Overview

Thank you!

