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Constraint SatisfactionConstraint Satisfaction
for Planning & Schedulingfor Planning & Scheduling
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What?What?

What is the topic of the tutorial?

constraint satisfaction techniques useful for P&S

What is constraint satisfaction?

technology for modeling and solving 
combinatorial optimization problems

What is the difference from AI PS02 
tutorial?

focus on constraint satisfaction in general

more explanations but less broad
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Why?Why?

Why you should look at constraint 
satisfaction?

powerful solving technology 

planning and scheduling are coming together 
and constraint satisfaction may serve as bridge

Why you should understand insides of 
constraint satisfaction algorithms?

better exploitation of the technology

design of better (solvable) constraint models
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Tutorial outlineTutorial outline
Constraint satisfaction in a nutshell

domain filtering and local consistencies

search techniques

extensions of a basic constraint satisfaction problem

Constraints for planning and scheduling

constraint models for planning and scheduling

special filtering algorithms (global constraints) for P&S

branching schemes for planning and scheduling

Conclusions

a short survey on constraint solvers

summary
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Constraint satisfaction
in a nutshell
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Constraint technologyConstraint technology

based on declarative problem description via:

variables with domains (sets of possible values)
e.g. start of activity with time windows

constraints restricting combinations of variables
e.g. endA < startB

constraint optimization via objective function
e.g. minimize makespan

Why to use constraint technology?

understandable

open and extendible

proof of concept
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CSPCSP

Constraint satisfaction problem consists of:

a finite set of variables

domains - a finite set of values for each variable

a finite set of constraints

constraint is an arbitrary relation over the set of 
variables

can be defined extensionally (a set of compatible 
tuples) or intentionally (formula)

A solution to CSP is a complete assignment of 
variables satisfying all the constraints.

Constraint Sat isfact ion for Planning and Scheduling 8

today reality

a Star Trek view

CSP as a Holly GrailCSP as a Holly Grail
> Computer, solve the SEND, MORE, MONEY problem!

> Here you are. The solution is 

[9,5,6,7]+[1,0,8,5]=[1,0,6,5,2]

> Sol=[S,E,N,D,M,O,R,Y],

domain([E,N,D,O,R,Y],0,9), domain([S,M],1,9),

1000*S + 100*E + 10*N + D +

1000*M + 100*O + 10*R + E #=

10000*M + 1000*O + 100*N + 10*E + Y,

all_different(Sol),

labeling([ff],Sol).

> Sol = [9,5,6,7,1,0,8,2]
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Using CSPUsing CSP
To solve the problem it is enough to design a constraint 
model, that is to decide about the variables, their 
domains, and constraints!

Example:
Let W be the width of a rectangular area A and H be its 
height. The task is to place N rectangles of height 1 but of 
different widths into the area A in such a way that no two 
rectangles overlap. Let wi be the width of the rectangle i.

Constraint model:
variable Ri describes the row of the rectangle i

Ri in {1,…,H} 

variable Ci describes the first column occupied by the rectangle i
Ci in {1,…,W- wi+1} 

non-overlap constraint
∀i≠j (Ri=Rj) ⇒ (Ci + wi < Cj ∨ Cj + wj < Ci)

4

3

10

9 7

5

8

1

6 2

1

2

3

4

5

6

Rudová (2002)
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Two or more?Two or more?

Binary constraint satisfaction

only binary constraints

any CSP is convertible to a binary CSP

dual encoding (Stergiou & Walsh, 1990)

swapping the role of variables and constraints

Boolean constraint satisfaction

only Boolean (two valued) domains

any CSP is convertible to a Boolean CSP

SAT encoding
Boolean variable indicates whether a given value is 
assigned to the variable



6

Constraint satisfaction

Consistency techniques
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Domain filteringDomain filtering

Example:
Da={1,2}, Db={1,2,3} 

a<b

Value 1 can be safely removed from Db.

Constraints are used actively to remove 
inconsistencies from the problem.

inconsistency = value that cannot be in any 
solution

This is realized via a procedure REVISE that 
is attached to each constraint.
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Arc consistencyArc consistency

We say that a constraint is arc consistent
(AC) if for any value of the variable in the 
constraint there exists a value for the other 
variable(s) in such a way that the constraint 
is satisfied (we say that the value is 
supported).

A CSP is arc consistent if all the 
constraints are arc consistent. 
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Making problems ACMaking problems AC

How to establish arc consistency in CSP?

Every constraint must be revised!

Example: X in [1,..,6], Y in [1,..,6], Z in [1,..,6], X<Y, Z<X-2

Doing revision of every constraint just once is not 
enough!

Revisions must be repeated until any domain is 
changed (AC-1).

X in [1,..,6]
Y in [1,..,6] 
Z in [1,..,6]

X in [1,..,6]
Y in [1,..,6] 
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6] 
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6] 
Z in [1,..,6]

X<Y

X in [4,5]
Y in [2,..,6] 
Z in [1,2]

X in [4,5]
Y in [2,..,6] 
Z in [1,2]

Z<X-2

X in [4,5]
Y in [5,6] 
Z in [1,2]

X in [4,5]
Y in [5,6] 
Z in [1,2]

X<Y
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Algorithm ACAlgorithm AC--33
Uses a queue of constraints that should be revised

When a domain of variable is changed, only the constraints 
over this variable are added back to the queue for re-
revision.

procedure AC-3(V,D,C)
Q ← C
while non-empty Q do

select c from Q
D’ ← c.REVI SE(D)
if any domain in D’ is empty then return ( fail,D’)
Q ← Q ∪ { c’∈C |  ∃x∈var(c’)  D’x≠Dx}  – { c}
D ← D’

end while
return ( true,D)

end AC-3

Mackworth (1977)
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ACAC--3 in practice3 in practice
Uses a queue of variables with changed domains.

Users may specify for each constraint when the constraint revision 
should be done depending on the domain change.

The algorithm is sometimes called AC-8.

procedure AC-8(V,D,C)
Q ← V
while non-empty Q do

select v from Q
for c∈C such that v is constrained by c do

D’ ← c.REVI SE(D)
if any domain in D’ is empty then return ( fail,D’)
Q ← Q ∪ { u∈V |  D’u≠Du}
D ← D’

end for
end while
return ( true,D)

end AC-8
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Other AC algorithmsOther AC algorithms
AC-4 (Mohr & Henderson, 1986)

computes sets of supporting values
optimal worst-case time complexity O(ed2)

AC-5 (Van Hentenryck, Deville, Teng, 1992)

generic AC algorithm covering both AC-4 and AC-3

AC-6 (Bessière, 1994)

improves AC-4 by remembering just one support

AC-7 (Bessière, Freuder, Régin, 1999)

improves AC-6 by exploiting symmetry of the constraint

AC-2000 (Bessière & Régin, 2001)

an adaptive version of AC-3 that either looks for a support or 
propagates deletions

AC-2001 (Bessière & Régin, 2001)

improvement of AC-3 to get optimality (queue of variables)

AC-3.1 (Zhang & Yap, 2001)

improvement of AC-3 to get optimality (queue of constraints)

…
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Path consistencyPath consistency
Arc consistency does not detect all inconsistencies!

Let us look at several constraints together!

The path (V0,V1,…, Vm) is path consistent iff for every 
pair of values x∈D0 a y∈Dm satisfying all the binary 
constraints on V0,Vm there exists an assignment of variables 
V1,…,Vm-1 such that all the binary constraints between the 
neighboring variables  Vi,Vi+1 are satisfied.

CSP is path consistent iff every path is consistent.

Some notes:

only the constraints between the neighboring 
variables must be satisfied

it is enough to explore paths of length 2 (Montanary, 
1974)

X

Y
Z

X≠Z
X≠Y

Y≠Z

{1,2}

{1,2} {1,2}
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Path revisionPath revision
Constraints represented extensionally via matrixes.

Path consistency is realized via matrix operations

Example:

A,B,C in { 1,2,3} , B> 1

A< C, A= B, B> C-2 A<C

B>C-2

A=B

B>1

C

A

& * *

011
001
000

100
010
001

000
010
001

110
111
111

=

000
001
000
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Algorithm PCAlgorithm PC--11
How to make the path (i,k,j) consistent?

Rij ← Rij & (Rik *  Rkk *  Rkj)  

How to make a CSP path consistent?

Repeated revisions of paths (of length 2) while any domain changes.

procedure PC-1(Vars,Constraints)
n ← | Vars| , Yn ← Constraints
repeat

Y0 ← Yn

for k =  1 to n do
for i =  1 to n do

for j =  1 to n do
Yk

ij ← Yk-1
ij & (Yk-1

ik * Yk-1
kk * Yk-1

kj)
until Yn= Y0

Constraints ← Y0

end PC-1

Mackworth (1977)
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Other PC algorithmsOther PC algorithms

PC-2 (Mackworth, 1977)

revises only paths (i,k,j) for i≤j and after change, only 
relevant paths revised

PC-3 (Mohr & Henderson, 1986)

based on principles of AC-4 (remembering supports), 
but it is not sound (it can delete a consistent value)

PC-4 (Han & Lee, 1988)

a corrected version of PC-3 (incompatible pairs are 
deleted)

PC-5 (Singh, 1995)

based on principles of AC-6 (remember just one 
support)
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Think globallyThink globally
CSP describes the problem locallylocally:

the constraints restrict small sets of variables

+ heterogeneous real- life constraints

- missing global view

weaker domain filtering

Global constraintsGlobal constraints

global reasoning over a local sub-problem

using semantic information to improve time efficiency or 
pruning power

Example:

local (arc)  consistency 
deduces no pruning

but some values can be 
removed

a  b

a  b

a  b  c

≠

≠

≠

X1

X2

X3XX
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a set of binary inequality constraints among all variables
X1 ≠ X2, X1 ≠ X3, …, Xk-1 ≠ Xk

all_different( { X1,…,Xk} )  =  { (  d1,…,dk)  |  ∀i  di∈Di & ∀i≠j di≠dj}

better pruning based on matching theory over bipartite graphs

I nitialization:

1. compute maximum matching

2. remove all edges that do not 
belong to any maximum matching

Propagation of deletions (X1≠a) :

1. remove discharged edges

2. compute new maximum matching

3. remove all edges that do not 
belong to any maximum matching

Inside allInside all--differentdifferent

a

b

c

X1

X2

X3

××

X1

X2

X3

a

b

c

×

×

Régin (1994)
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Singleton consistencSingleton consistencyy

Can we strengthen any consistency technique?

YES! Let’s assign a value and make the rest of the 
problem consistent.

CSP P is singleton A-consistent for some notion 
of A-consistency iff for every value h of any variable 
X the problem P|X=h| is A-consistent.

Features:

+ we remove only values from variable’s domain

+ easy implementation (meta-programming)

– could be slow (be careful when using SC)

Prosser et al. (2000)  
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Constraint satisfaction

Search techniques

Constraint Sat isfact ion for Planning and Scheduling 26

Search / LabelingSearch / Labeling
Consistency techniques are (usually)  incomplete.

We need a search algorithm to resolve the rest!

LabelingLabeling

depth-first search

assign a value to the variable

propagate =  make the problem
locally consistent

backtrack upon failure

X in 1..5 ≈ X= 1 ∨ X= 2 ∨ X= 3 ∨ X= 4 ∨ X= 5

I n general, search algorithm resolves remaining disjunctions!

X= 1 ∨ X≠1 (standard labeling)

X< 3 ∨ X≥3 (domain splitting)

X< Y ∨ X≥Y (variable ordering)
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Labeling skeletonLabeling skeleton

Search is combined with consistency 
techniques that prune the search space

Look-ahead technique

procedure labeling(V,D,C)

if all variables from V are assigned then return V

select not-yet assigned variable x from V

for each value v from Dx do

(TestOK,D’)  ← consistent(V,D,C∪{ x= v} )

if TestOK= true then R ← labeling(V,D’,C)

if R ≠ fail then return R

end for

return fail

end labeling
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Branching schemesBranching schemes

What variable should be assigned first?
first-fail principle

prefer the variable whose instantiation will lead to a failure 
with the highest probability

variables with the smallest domain first

most constrained variables first

defines the shape of the search tree

What value should be tried first?
succeed-first principle

prefer the values that might belong to the solution with the 
highest probability

values with more supporters in other variables

usually problem dependent

defines the order of branches to be explored 
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Systematic searchSystematic search

Chronological backtracking
upon failure backtrack to last but one variable

Backjumping (Gaschnig, 1979)

upon failure jump back to a conflicting variable

Dynamic backtracking (Ginsberg, 1993)

upon failure un-assign only the conflicting 
variable

Backmarking (Haralick & Elliot, 1980)

remember conflicts (no-goods) and use them in 
subsequent search
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Incomplete searchIncomplete search

A cutoff limit to stop exploring a (sub-)tree
some branches are skipped → incomplete search

When no solution found, restart with enlarged cutoff limit.

Bounded Backtrack Search (Harvey, 1995)

restricted number of backtracks

Depth-bounded Backtrack Search (Cheadle et al., 2003)

restricted depth where alternatives are explored

I terative Broadening (Ginsberg and Harvey, 1990)

restricted breadth in each node

still exponential!

Credit Search (Cheadle et al., 2003)

limited credit for exploring alternatives

credit is split among the alternatives
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Heuristics in searchHeuristics in search
Observation 1:
The search space for real-life problems is so huge that it cannot be 
fully explored.

Heuristics - a guide of search
they recommend a value for assignment

quite often lead to a solution

What to do upon a failure of the heuristic?
BT cares about the end of search (a bottom part of the search tree)
so it rather repairs later assignments than the earliest ones
thus BT assumes that the heuristic guides it well in the top part

Observation 2:
The heuristics are less reliable in the earlier parts of the search 
tree (as search proceeds, more information is available).

Observation 3:
The number of heuristic violations is usually small.
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DiscrepanciesDiscrepancies
Discrepancy

= the heuristic is not followed

Basic principles of discrepancy search:

change the order of branches to be explored

prefer branches with less discrepancies

prefer branches with earlier discrepancies

heuristic =  go left

heuristic =  go left

is before

is before
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Limited Discrepancy Search (Harvey & Ginsberg, 1995)
restricts a maximal number of discrepancies in the iteration 

I mproved LDS (Korf, 1996)
restricts a given number of discrepancies in the iteration

Depth-bounded Discrepancy Search (Walsh, 1997)
restricts discrepancies till a given depth in the iteration

…

Discrepancy searchDiscrepancy search

1 2345 678

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

910

*  heuristic =  go left

Constraint Sat isfact ion for Planning and Scheduling 34
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Constraint satisfaction

Extensions
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Constraint optimizationConstraint optimization

Constraint optimization problem (COP)
= CSP + objective function

Objective function is encoded in a constraint.

Branch and bound technique
find a complete assignment (defines a new 

bound)
store the assignment
update bound (post the constraint that restricts 

the objective function to be better than a 
given bound which causes failure)

continue in search (until total failure)
restore the best assignment
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Soft problemsSoft problems

Hard constraints express restrictions.

Soft constraints express preferences.

Maximizing the number of satisfied soft constraints

Can be solved via constraint optimization

Soft constraints are encoded into an objective function

Special frameworks for soft constraints

Constraint hierarchies (Borning et al., 1987)

symbolic preferences assigned to constraints

Semiring-based CSP (Bistarelli, Montanary, and Rossi, 1997)

semiring values assigned to tuples (how well/badly a tuple
satisfies the constraint)

soft constraint propagation
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Dynamic problemsDynamic problems

I nternal dynamics (Mittal & Falkenhainer, 1990)

planning, configuration

variables can be active or inactive, only active variables are 
instantiated

activation (conditional)  constraints
cond(x1,…, xn) → activate(xj)

solved like a standard CSP (a special value in the domain to denote 
inactive variables)

External dynamics (Dechter & Dechter, 1988)

on-line systems

sequence of static CSPs, where each CSP is a result of the 
addition or retraction of a constraint in the preceding problem

Solving techniques:
reusing solutions

maintaining dynamic consistency (DnAC-4, DnAC-6, AC|DC).
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Constraints for
planning and scheduling
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TerminologyTerminology

“The planning task is to find out a sequence 
of actions that will transfer the initial state 
of the world into a state where the desired 
goal is satisfied“

“The scheduling task is to allocate known 
activities to available resources and time 
respecting capacity, precedence (and 
other)  constraints“
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Constraints and P&SConstraints and P&S
Scheduling problem is static
all activities are known

variables and constraints are know

standard CSP is applicable

Planning problem is internally dynamic
activities are unknown in advance

variables describing activities are unknown

Solution (Kautz & Selman, 1992):
finding a plan of a given length is a static 
problem

standard CSP is applicable there!
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P&S via CSP?P&S via CSP?

Exploiting state of the art constraint solvers!
faster solver ⇒ faster planner

Constraint model is extendable!
it is possible immediately to add other variables and 
constraints
modeling numerical variables, resource and precedence 
constraints for planning
adding side constraints to base scheduling models

Scheduling algorithms encoded in the 
filtering algorithms for constraints!

fast algorithms accessible to constraint models
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Constraints in P&S

Constraint models
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Planning graphPlanning graph
Planning graph is a layered graph representing 
STRIPS-like plans of a given length.

nodes = propositions + actions

Interchanging propositional and action layers
action is connected to its preconditions in the previous layer 
and to its add effects in the next layer

delete effect is modeled via action mutex (actions cannot 
deleting and adding the same effect cannot be active at the 
same layer)

propositional mutexes generated from action mutexes

no-op actions (same pre-condition as the add effect)
propositional 
layers

action layers

p1

p2

p3

p1

p2

p3

p4

a1

a2a2

a3

p1

p2

p3

p4

a1

a2

a3

only actions that 
are applicable to 
the initial state

all propositions 
from the goal state 
must be present

*  no-ops and mutexes not displayed

Blum & Furst (1997)
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ActivityActivity--based modelbased model
Planning graph of a given length is a static 
structure that can be encoded as a CSP.

Constraint technology is used for plan extraction.

CSP model:
Variables

propositional nodes Pj,m (proposition pj in layer m)

only propositional layers are indexed

Domain

activities that has a given proposition as an add effect

⊥ for inactive proposition

Constraints

connect add effects with preconditions

mutexes

Do & Kambhampati (2000)
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ActivityActivity--based modelbased model
ConstraintsConstraints

P4,m= a ⇒ P1,m-1≠⊥ & P2,m-1≠⊥ & P3,m-1≠⊥
action a has preconditions p1, p2, p3 and an add effect p4

the constraint is added for every add effect of a

Pi,m= ⊥ ∨ Pj,m= ⊥
propositional mutex between propositions pi and pj

Pi,m≠a ∨ Pj,m≠b
actions a and b are marked mutex and pi is added by a and pj is 
added by b

Pi,k≠⊥
pi is a goal proposition and k is the index of the last layer

no parallel actions
maximally one action is assigned to variables in each layer

no void layers
at least one action different from a no-op action is assigned to 
variables in a given layer

Do & Kambhampati (2000)
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Boolean modelBoolean model
Planning graph of a given length is a encoded 
as a Boolean CSP.
Constraint technology is used for plan extraction.

CSP model:
Variables

Boolean variables for action nodes Aj,m and 
propositional nodes Pj,n

all layers indexed continuously from 1
(odd numbers for action layers and even numbers for 
propositional layers)

Domain
value true means that the action/proposition is active

Constraints
connect actions with preconditions and add effects
mutexes

Lopez & Bacchus (2003)
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Boolean modelBoolean model
ConstraintsConstraintsprecondition constraints

Ai,m+ 1 ⇒ Pj,m

pj is a precondition of action ai

next state constraints
Pi,m ⇔ (∨pi∈add(aj)

Aj,m-1)  ∨ (Pi,m-2 & (∧ pi ∈del(a j)
¬Aj,m-1) ) )

pj is active if it is added by some action or if it is active in the previous 
propositional layer and it is not deleted by any action
no-op actions are not used there.
Beware! The constraint allows the proposition to be both added and 
deleted so mutexes are still necessary!

mutex constraints
¬Ai,m ∨ ¬Aj,m for mutex between actions ai and aj at layer m
¬Pi,n ∨ ¬Pj,n for mutex between propositions pi and pj at layer n

goals
Pi,k= true
pi is a goal proposition and k is the index of the last propositional layer

other constraints
no parallel actions – at most one action per layer is active
no void layers – at least one action per layer is active

Lopez & Bacchus (2003)
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Scheduling modelScheduling model
Scheduling problem is static so it can be directly 
encoded as a CSP.

Constraint technology is used for full scheduling.

CSP model:
Variables

position of activity A in time and space

time allocation: start(A) , [p(A) , end(A) ]

resource allocation: resource(A)

Domain

ready times and deadlines for the time variables

alternative resources for the resource variables

Constraints

sequencing and resource capacities
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Scheduling modelScheduling model
ConstraintsConstraints

Time relations

start(A)+ p(A)= end(A)

sequencing 

B<<A

end(B)≤start(A)

Resource capacity constraints

unary resource (activities cannot overlap)

A<<B ∨ B<<A

end(A)≤start(B)  ∨ end(B)≤start(A)

BB

AA
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Constraints in P&S

Filtering algorithms

Constraint Sat isfact ion for Planning and Scheduling 52

ResourcesResources

Resources are used in slightly different 
meanings in planning and scheduling!

scheduling
resource
= a machine (space) for processing the activity

planning
resource
= consumed/produced material by the activity

resource in the scheduling sence is often 
handled via logical precondition (e.g. hand is 
free)
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Resource typesResource types

Unary resource
a single activity can be processed at given time

Cumulative resource
several activities can be processed in parallel
if capacity is not exceeded.

Producible/ consumable resource
activity consumes/produces some quantity of 
the resource

minimal capacity is requested (consumption) 
and maximal capacity cannot be exceeded 
(production)
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Unary resourcesUnary resources

Activities cannot overlap

We assume that activities are uninterruptible

uninterruptible activity occupies the resource 
from its start till its completion

A simple model with disjunctive constraints

A< < B ∨ B< < A

end(A)≤start(B)  ∨ end(B)≤start(A)
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What happens if activity A is not processed first?What happens if activity A is not processed first?

Not enough time for A, B, and C and thus A must be first!Not enough time for A, B, and C and thus A must be first!

4 16

7 15

6 16

Edge findingEdge finding

A (2)

B (4)

C (5)

A (2)
4 7

7 15

6 16
B (4)

C (5)

Baptiste & Le Pape (1996)
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Edge finding rulesEdge finding rules

Some definitions:

The rules:

min(start(Ω)) + p(Ω) + p(A) > max(end(Ω ∪ {A})) ⇒ A<<Ω
A<<Ω ⇒ end(A) ≤ min{ max(end(Ω')) - p(Ω') |  Ω'⊆Ω }

I n practice:

instead of Ω use so called task intervals [A,B]

{C | min(start(A)) ≤min(start(C)) & max(end(C))≤max(end(B))}

time complexity O(n3) 

{ })(min))(min(

,)()(

Astartstart

App

ΩA

A

∈

Ω∈

=Ω

=Ω ∑ activities ofset  a is Ω where

Baptiste & Le Pape (1996)
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NotNot--first/notfirst/not--lastlast
What happens if activity A is processed first?

Not enough time for B and C and thus A cannot be first!

4 16

7 15

6 16
A (2)

C (4)

B (5)

4 16

7 15

8 16
A (2)

C (4)

B (5)

Torres & Lopez (2000)
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NotNot--first/notfirst/not--last ruleslast rules

Not-first rules:
min(start(A)) + p(Ω) + p(A) > max(end(Ω )) ⇒ ¬ A<<Ω
¬ A<<Ω⇒ start(A) ≥ min{ end(B) |  B∈Ω }

Not-last (symmetrical)  rules:
min(start(Ω)) + p(Ω) + p(A) > max(end(A)) ⇒ ¬ Ω<<A

¬ Ω<<A ⇒ end(A) ≤ max{ start(B) |  B∈Ω }

I n practice:

it is possible to use selected sets Ω only

time complexity O(n2)

Torres & Lopez (2000)



30

Constraint Sat isfact ion for Planning and Scheduling 59

Cumulative resourcesCumulative resources

Each activity uses some capacity of 
the resource – cap(A) .

Activities can be processed in parallel if 
a resource capacity is not exceeded.

Resource capacity may vary in time
modeled via fix capacity over time and fixed activities 
consuming the resource until the requested capacity 
level is reached

timeu
s
e
d

 c
a
p

a
c
it

y

fix capacity

fixed activites for making a 
capacity profile
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Where is enough capacity for processing the activity?

How the aggregated demand is constructed?

timeu
s
e
d

 c
a
p

a
c
it

y

Aggregated demandsAggregated demands

resource capacity

aggregated demand

timeu
s
e
d

 c
a
p

a
c
it

y

resource capacity

aggregated demand

activity must be 
processed here

Baptiste et al. (2001)
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Timetable constraintTimetable constraint

How to ensure that capacity is not exceed 
at any time point?*

Timetable for the activity A is a set of 
Boolean variables X(A,t) indicating 
whether A is processed in time t.

yMaxCapacitAcapt

ii AendtAstart

i ≤∀ ∑
≤≤ )()(

)(

),()()(,

)(),(

tAXAendtAstartit

yMaxCapacitAcaptAXt

iii

A

ii

i

⇔≤≤∀

≤⋅∀ ∑
  

  

*  discrete time is expected

Baptiste et al. (2001)

Constraint Sat isfact ion for Planning and Scheduling 62

Alternative resourcesAlternative resources

How to model alternative resources for a 
given activity?

Use a duplicate activity for each resource.

duplicate activity participates in a respective resource 
constraint but does not restrict other activities there

failure means removing the resource from the domain of 
variable res(A)

deleting the resource from the domain of variable res(A) 
means „deleting“ the respective duplicate activity

original activity participates in precedence constraints 
(e.g. within a job)

restricted times of duplicate activities are propagated 
to the original activity and vice versa.
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Relative orderingRelative ordering

When time is relative (ordering of activities)

then edge-finding and aggregated demand deduce nothing

We can still use information about ordering of 
activities and resource production/consumption!

Example:

Reservoir: activities consume and supply items

A

-1 B

-1 C

-1

D
+1
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Resource profilesResource profiles

Activity A „produces“ prod(A) quantity:
positive number means production

negative number means consumption

Optimistic resource profile (orp)
maximal possible level of the resource when A is processed

activities known to be before A are assumed together with the 
production activities that can be before A

orp(A) = InitLevel + prod(A) + ∑B<<A prod(B) + ∑B??A & prod(B)>0 prod(B)

Pesimistic resource profile (prp)
minimal possible level of the resource when A is processed

activities known to be before A are assumed together with the 
consumption activities that can be before A

prp(A) = InitLevel + prod(A) + ∑B<<A prod(B) + ∑B??A & prod(B)<0 prod(B)

* B??A means that order of A and B is unknown yet

Cesta & Stella (1997)
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orporp filteringfiltering

orp(A) < MinLevel ⇒ fail

“despite the fact that all production is planned 
before A, the minimal required level in the 
resource is not reached”

orp(A) – prod(B) – ∑B<<C & C??A & prod(C)>0 prod(C)  < 
MinLevel ⇒ B<<A,

for any B such that B??A and prod(B)>0
“if production in B is planned after A and the 
minimal required level in the resource is not 
reached then B must be before A”

Cesta & Stella (1997)
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prpprp filteringfiltering

prp(A) > MaxLevel ⇒ fail

“despite the fact that all consumption is planned before 
A, the maximal required level (resource capacity) in the 
resource is exceeded”

prp(A) – prod(B) – ∑B<<C & C??A & prod(C)<0 prod(C)  > 

MaxLevel ⇒ B<<A,

for any B such that B??A and prod(B)<0

“if consumption in B is planned after A and the maximal 
required level in the resource is exceeded then B must 
be before A”

Cesta & Stella (1997)
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Temporal problemsTemporal problems

Simple temporal relations:

time(B)-time(A) ≤ dA,B

time(A)-time(B) ≤ dB,A

Solvable in polynomial time (Dechter et al., 1991)

Floyd-Warshall‘ algorithm for computing 
shortest paths

A special version of path consistency

sometimes encoded in a global constraint
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Search strategies
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Branching schemesBranching schemes

Branching =  resolving disjunctions

Traditional scheduling approaches:

take critical decisions first

resolve bottlenecks …

defines the shape of the search tree

recall the first-fail principle

prefer an alternative leaving more flexibility

defines order of branches to be explored

recall the succeed-first principle

How to describe criticality and flexibility formally?
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SlackSlack

Slack is a formal description of flexibility

Slack for a given order of two activities

„free time for shifting the activities“

slack(A<<B) = max(end(B))-min(start(A))-p({A,B}) 

Slack for two activities

slack({A,B}) = max{slack(A<<B),slack(B<<A)}

Slack for a group of activities

slack(Ω) = max(end(Ω)) - min(start(Ω)) - p(Ω) 

A

B
slack for A<<B slack for A<<B 

Smith and Cheng (1993)
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Order branchingOrder branching

A< < B ∨ ¬A< < B

Which activities should be ordered first?

the most critical pair (first-fail)

the pair with the minimal slack( { A,B} )

What order should be selected?

the most flexible order (succeed-first)

the order with the maximal slack(A??B)

O(n2) choice points

Smith and Cheng (1993)
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First/last branchingFirst/last branching

(A< < Ω ∨ ¬A< < Ω) or (Ω< < A ∨ ¬ Ω< < A)

Should we look for first or last activity?

select a smaller set among possible first or 
possible last activities (first-fail)

What activity should be selected?

If first activity is being selected then the activity 
with the smallest min(start(A) ) is preferred.

If last activity is being selected then the activity 
with the largest max(end(A) ) is preferred.

O(n) choice points

Baptiste et al. (1995)
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Resource slackResource slack

Resource slack is defined as a slack of the 
set of activities processed by the resource.

How to use a resource slack?

choosing a resource on which the activities 
will be ordered first

resource with a minimal slack (bottleneck) preferred

choosing a resource on which the activity will 
be allocated

resource with a maximal slack (flexibility) preferred
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Constraint solversConstraint solvers

It is not necessary to program all the presented 
techniques from scratch!

Use existing constraint solvers (packages)!

provide implementation of data structures for 
modelling variables‘ domains and constraints

provide a basic consistency framework (AC-3)

provide filtering algorithms for many constraints 
(including global constraints)

provide basic search strategies

usually extendible (new filtering algorithms, new 
search strategies)
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SICStusSICStus PrologProlog

www.sics.se/sicstus

a strong Prolog system with libraries for solving 
constraints (FD, Boolean, Real)

arithmetical, logical, and some global constraints

an interface for defining new filtering algorithms

depth-first search with customizable value and 
variable selection (also optimization)

it is possible to use Prolog backtracking

support for scheduling

constraints for unary and cumulative resources

first/last branching scheme
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ECLiPSeECLiPSe
www.icparc.ic.ac.uk/eclipse

a Prolog system with libraries for solving 
constraints (FD, Real, Sets)

integration with OR packages (CPLEX, XPRESS-MP)

arithmetical, logical, and some global constraints
an interface for defining new filtering algorithms

Prolog depth-first search (also optimisation)

a repair library for implementing local search 
techniques

support for scheduling
constraints for unary and cumulative resources

„probing“ using a linear solver

Gantt chart and network viewers
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CHIPCHIP

www.cosytec.com

a constraint solver in C with Prolog as a host 
language, also available as C and C++ libraries

popularized the concept of global constraints

different, order, resource, tour, dependency

it is hard to go beyond the existing constraints

support for scheduling

constraints for unary and cumulative resources

a precedence constraint (several cumulatives with the 
precedence graph)
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ILOGILOG
www.ilog.com/products

the largest family of optimisation products as C++ 
(Java) libraries

ILOG Solver provides basic constraint satisfaction 
functionality

I LOG Scheduler is an add-on to the Solver with 
classes for scheduling objects

activities

state, cumulative, unary, energetic resources; 
reservoirs

alternative resources

resource, precedence, and bound constraints
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MozartMozart

www.mozart-oz.org

a self contained development platform based on 
the Oz language

mixing logic, constraint, object-oriented, 
concurrent, and multi-paradigm programming

support for scheduling

constraints for unary and cumulative resources

first/last branching scheme

search visualization

Constraint Sat isfact ion for Planning and Scheduling 82

SummarySummary

Basic constraint satisfaction framework:

local consistency connecting filtering algorithms 
for individual constraints

search resolves remaining disjunctions

Problem solving:

declarative modeling of problems as a CSP

dedicated algorithms encoded in constraints

special search strategies
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