
Constraint Satisfaction for Test Program Generation

(Preliminary Version)

Daniel Lewin* Laurent Fournier Moshe Levinger Evgeny Roytman Gil Shurek
IBM Israel Science and Technology, Haifa Research Laboratory

MATAM, Haifa 31905, Israel
*dlewin@haifasc3.vnet.ibm.com

Abstract

A central problem in automatic test generation is solving
constraints for memory access generation. A framework, and
an algorithm that has been implemented in the Model-Based
Test-Generator are described. This generic algorithm allows
flexibility in modeling new addressing modes with which
memory accesses are generated. The algorithm currently
handles address constraint satisfaction for complex addressing
modes in the PowerPC, x86, and other architectures.

1. Introduction

The goal of processor verification is to ensure
equivalence of a processor and its architectural
specification. In practice, design verification is carried out
by simulating a relatively small subset of selected test
programs. These are run through the design simulation
model, and the results are compared with the output
predicted by the architecture simulation model.

A recent approach to test generation is Model-Based
Test-Generation (cf. [LMA94]). The MBTG is a generic,
architecture oblivious test generator. At the heart of the
MBTG system lies a formal model of the architecture. A
central problem in automatic test generation is solving
constraints for memory access generation. Constraint
satisfaction is a difficult problem that arises in test case
generation both for hardware verification (cf. [CI92]) and
for software testing (cf. [DO91]). This paper describes a
generic solution for memory access generation
implemented in the MBTG.

The subsystems that control memory accesses
comprise a substantial part of processor design
complexity. Therefore, the need to diligently verify the
implementation of these subsystems motivates much of
test generation methods. In order to effectively probe
mechanisms such as caches and virtual translation, the
addresses of memory accesses are biased to cause
interesting events. Such events are: cache hit/miss, page

fault, memory partition crossing, or any combination of
these. Therefore, a test generator must have the ability to
generate memory accesses that yield such events. In
addition, a test engineer may supply a specific scenario
for a test that includes further restrictions on memory
accesses. A test generation system must be capable of
satisfying such restrictions.

Access to memory in processors is generally carried
out through a number of addressing modes. The
complexity and power of these addressing modes varies
greatly from processor to processor. For example, the x86
(cf. [INTEL]) and VAX (cf. [DEC]) architectures offer a
large number of powerful addressing modes, while
PowerPC architectures (cf. [MSSW84]) generally have a
more modest set of simple modes. A typical addressing
mode specifies how an address is computed from certain
resources which are accessible to the processor (e.g.
registers, memory, immediate values).

2. Generating Memory Accesses

Addressing modes in the MBTG are modeled by an
address expression, which is a simple algebraic expression
over a set of variables. Each variable represents a subset
of processor resources. An address expression, where
each variable has been substituted by a processor
resource, represents how an address is computed from the
resources that appear in the expression. For example, the
following expression, taken from the x86 architecture,
makes use of two register variables (BASE and INDEX),
and three field variables (SCALE, DISP, and IB):

The MBTG generates tests dynamically by a
generation-simulation cycle for each instruction. At the
beginning of the test all the processor resources arefree,
meaning that the generator can initialize resources in any
way desired. As the test progresses, the processor
resources gradually becomeoccupied as a consequence of

EA BASE() INDEX() 2SCALE DISP IB 25⁄() 22×+ +×+=

the generation-simulation cycle of previous instructions.
The Resource Stateis defined to be the status of all
processor resources at a given point during the generation
process. A resource on the resource state is labeled as
free, occupied with a value or as partially occupied with a
value.

While generating a memory access at a certain stage
in a test, the set of addresses that the MBTG may choose
from is constrained by three major factors:

1. Constraints on the set of addressing modes that may
be employed during a particular access. Such a
restriction could be a result of the type of instruction
that is being generated or of the current running mode
of the processor.

2. Constraints on the address itself. These constraints
either originate from biasing on the address that is to
be generated (cache events, reusage of memory
addresses, etc.) or from restrictions on the range of
permissible addresses.

3. Constraints on the resources that take part in various
addressing modes. The first, and most important type
of resource constraint, stems from the fact that a value
assigned to a particular resource may not contradict
the currentResource State. The second type of resource
constraint originates from biasing demands on
resources.

Example: Consider the following address expression:
(BASE) + (INDEX) +DISP.Assume that: BASE is the
register R3, INDEX may be any one of the registers
R1,R2, and DISP is a 2-bit immediate field which is a pos-
itive displacement. Generation and simulation have pro-
ceeded until a point where the following holds: (R1) = 10,
(R2) = 15, and (R3) is constrained to be in the set {4,7}.
DISP may be any value in the set {0,1,2,3}. The set of ad-
dresses that may be reached using the above expression is
then {14,15,...,24,25}. Having an address biasing demand
that the address be 4-byte aligned limits the set of address-
es to {16,20,24}. There are four possible combinations of
resources and values that give an address in the above set:
4+10+2 = 16; 4+15+1 = 20; 7+10+3 = 20; 7+15+2 = 24.
For example, 4+10+2=16 corresponds to the choices (R3)
= 4, INDEX = R1, DISP = 2.

3. The Address Constraint Problem

The general framework of address constraint
satisfaction is formally described in the following section.

A resource constraint is a pair (Resource ID, Values)

where Resource ID is the name of a processor resource
(e.g. a register, a memory location), andValues is a list of
values.

A variable constraintis a list of resource constraints.

An expression constraint is a variable constraint for
each variable in an expression.

An assignment from an expression constraint assigns
to each variablex in an expression a resourceR, and a
valueV, such thatR appears in a resource constraint forx,
andV appears in theValues of R. An assignment may not
provide two different values for the same resource.

A combination of an address expression and an
assignment represents an address. This address is
obtained by evaluating the expression with the
assignment.

Using these terms theAddress Constraint Problem is
defined as follows:

Given an address expression E, an expression constraint C,
and a set of addresses B; output a pair (A,S) where A is an ad-
dress, and S is an assignment from C such that:

1. A is an address from the set B.

2. A is the result of evaluating E with the assignment S.

3. The output is chosen from a uniform distribution over all
outputs that satisfy 1, and 2.

The Address Constraint Problem is NP-Complete as
it is obviously in NP, and is NP-Hard by a simple
reduction from the SUBSET SUM problem (cf. [GJ79]).
In spite of its apparent difficulty, a powerful test generator
must contain a solution for a variant of this problem. The
rest of this paper describes an algorithm for an Address
Constraint Solver that has been implemented in the
MBTG.

The Address Constraint Solver algorithm was
designed to solve a particular version of the more general
Address Constraint Problem. The set of address
expressions is restricted to a subset which is powerful
enough to encompass the various addressing modes used
by processors. The core of this subset is generated by the
following simplified grammar:

Furthermore, it is assumed that the number of
algebraic operations in address expressions is relatively
small. These two restrictions allow us to introduce a
practical solution which successfully handles complex
memory access generation

S S S S S S2k S 2k⁄× Resource–+→

4. The Algorithm

The data structure used to represent constraints is a
mask-list. Each mask in a mask-list represents a set of
values which are described by a bit-pattern consisting of
0’s 1’s, and x’s (where x stands for “0 or 1”). A mask-list
represents the set of values that is the union of the values
represented by each of its masks. The sets of addresses,
that represent both legal address ranges, and address
biasing, generally lend themselves to compact
representation by mask-lists. Resource constraints are
also easily represented mask-lists.

A number of mathematical operations on mask lists
are defined: addition, subtraction, intersection,
multiplication by a power of two, and division by a power
of two. For mask listsA andB, the addition is defined as
the mask list that represents the values that can be
obtained by adding one of the values represented byA
with one of the values represented byB. The operations
subtraction, multiplication, and division are likewise
defined. The intersection of two mask listsA andB, is a
list that represents the values that are in bothA andB.

 Efficient algorithms, both in time and space, have
been implemented for each of these elementary
operations on mask-lists. The Address Constraint Solver
algorithm described here is based on these mask-list
operations.

The algorithm does not give a satisfactory solution
for the case where agiven non-occupiedresource appears
more than once in the expression. One solution to this
problem using the current scheme involves disposing
duplicate resources in the expression by bringing them
together. Another solution is to restrict variable
constraints to include only disjoint resources. The latter,
and less powerful solution is currently implemented in
the MBTG.

The idea behind the algorithm is to create an
equation from the address expression and a new variable
which represents the address, and then to find a random
solution to this equation. The solution is found by
eliminating a variable at each stage. Elimination is carried
out in two phases. First the constraints that the equation
induces on the variable to be eliminated are computed.
Then, a random value for this variable that conforms both
to these constraints and to the variable constraints is
chosen.

The input to the algorithm is an expressionE, an
expression constraintC, and a set of addressesB. The
algorithm is described step-by-step as follows:

1. Create a new expressionE’ = E - b whereb is a new
variable.

2. Augment the expression constraintC with the set of
addressesB, as values for the new variableb. The
new expression constraint is denotedC’.

3. Create an equationE’ = 0.

4. Find an assignment forE’ which gives a random
solution to this equation.

5. The value assigned to the new variableb is the
addressA which is output.

6. The assignment without the new variableb makes up
the assignmentS which is output.

The random solution to the equationE’= 0 in step 4,
is found by repeating the following steps until there are
no more variables to be eliminated:

1. Choose at random a variableV to be eliminated.

2. Compute the set of values that the equation induces
on the variableV. This is done by carrying out the
algebraic steps that would be taken to isolate, on the
left side of the equation, the variableV. Whenever an
operation is carried out, compute by elementary mask
operations, the set of masks induced on the right side
of the equation by the operation and the expression
constraintC’.

3. The equation is now in the formV = Q. WhereQ has
associated with it a mask-list that was computed in
step 2. Choose a random valuez which belongs to the
intersection of this mask-list, and the variable
constraint ofV from C’. Note thatz belongs to the
resource constraint of some resourceR, on the variable
V. If the above intersection is empty, then there is no
solution.

4. Update all resource constraints for the resourceR to
contain the single valuez.

5. Make the pair(R,z) the assignment for the variableV.

The implementation of the algorithm is described in
Appendix A.

5. Results

An algorithm for address constraint satisfaction has
been described. Elementary operations on mask-lists play
a central role in this algorithm. The algorithm has been
implemented in the MBTG system, and successfully

handles address constraint satisfaction for a number of
architectures. The flexibility of this algorithm enhances
the capability of the MBTG to rapidly provide automatic
test generation for new architectures.

Acknowledgments

We would like to thank Yossi Malka, and Moshe
Molcho for their involvement in this project, and for
many useful discussions on constraint solving.

 Appendix A: Implementation

Expressions in the MBTG are represented by binary
expression trees. Internal nodes are operations, and leafs
are variables. All constraints are represented by mask-
lists. Following, is pseudo-code for the algorithm
implemented:

SOLVE(Root, Address_Set)
BEGIN

Create new tree for expression E - b with the new ‘-’ node as Ne-
wRoot.
Place Address_Set on the new leaf ‘b’ as a variable constraint.
WHILE there are still free variables
BEGIN

Choose at random a free variable V.
Create a mask list Zero that contains only the zero-mask.
ELIMINATE(NewRoot, Zero, V)
IF elimination failed THEN

return failure
END
Output the value on leaf ‘b’ as the chosen address A.
Output the resource-value pair that is on each resource leaf as the as-
signment S.

END

ELIMINATE(Node, Masks, Variable)
BEGIN

IF Node is a leaf node THEN
BEGIN

node_masks = union of all mask lists in the variable constraints
on Node.
intersected_masks = node_masks Masks
IF intersected_masks = THEN

return failure
ELSE /* intersection not empty */
BEGIN

Choose a random value z that conforms to intersected_masks
Choose at random one of the resources R from the variable con-
straints on Node, whose value list contains z.
Update the variable constraints on Node to be (R, z)
Update all other resource constraints for the resource R to be
the pair (R,z)

END
END
ELSE /* node is internal node */
BEGIN

∩
∅

IF Variable is in left sub-tree THEN
BEGIN

right_masks = GSEC(Node->right)
Let inverse_op be the inverse operation to the operation on
Node
next_masks = inverse_op(masks, right_masks)
ELIMINATE(Node->left, next_masks, Variable)

END
ELSE /* variable is in right sub-tree */
BEGIN

 /*
similar to the above code, where “left” and “right” are inter-
changed.
*/

END
END

END

GSEC(Node) /* Get Subexpression Constraints */
BEGIN

IF Node is not a leaf node THEN
BEGIN

left_masks = GSEC(Node->left)
right_masks = GSEC(Node->right)
Let op be the operation on Node
return op(left_masks, right_masks)

END
ELSE /* Node is leaf */

return union of all mask lists in the variable constraints on Node.
END

References

 [LMA94] Y. Lichtenstein, Y. Malka and A. Aharon,
“Model-Based Test Generation for Processor
Design Verification”, Innovative Applications
of Artificial Intelligence, AAAI Press, 1994.

 [INTEL] Intel, Pentium Processor User’s Manual, Volume 3:
Architecture and Programming Manual,1993.

 [MSSW94] C. May, E. Silha, R. Simpson, and H.
Warren, editors.The PowerPC Architecture.
Morgan Kaufmann, 1994.

 [DEC] Digital Technical J.4 (March), Hudson, Mass,
1987.

 [GJ79] M. Garey and D. Johnson,Computers and
Intractability A Guide to the Theory of NP-
Completeness. W.H. Freeman, 1979.

 [CI92] A.K. Chandra, V.S. Iyengar, “Constraint Solving
for Test Case Generation”, Proceedings of
ICCD-92, Cambridge Mass. 1992.

 [DO91] R.A. DeMillo, A.J. Offutt, “Constraint-Based
Automatic Test Data Generation”, IEEE Trans
on Software Engineering, Vol. 17 No. 9, Sept.
1991.

