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Abstract. In this paper, we consider the problem of transmitting bi-
nary messages over data-dependent two-dimensional channels. We pro-
pose a deliberate bit flipping coding scheme that removes channel harmful
configurations prior to transmission. In this method, user messages are
encoded with an error correction code, and therefore the number of bit
flips should be kept small not to overburden the decoder. We formulate
the problem of minimizing the number of bit flips as a binary constraint
satisfaction problem, and devise a generalized belief propagation guided
method to find approximate solutions. Applied to a data-dependent bi-
nary channel with the set of 2-D isolated bit configurations as its harmful
configurations, we evaluated the performance of our proposed method in
terms of uncorrectable bit-error rate.

Keywords: Probabilistic inference · Graphical models · Generalized be-
lief propagation.

1 Introduction

Many of probabilistic inference problems can be reformulated as the computa-
tion of marginal probabilities of a joint probability distribution over the set of
solutions of a constraint satisfaction problem (CSP) [1, 2]. A CSP consists of a
number of variables and a number of constraints, where each constraint specifies
admissible values of a subset of variables. A solution to a CSP is an assign-
ment of variables satisfying all the constraints. Message passing algorithms have
been successfully used for solving hard CSPs [3]. Traditional low-complexity ap-
proximate algorithms for solving these problems are based on belief propagation
(BP) [4, 5] which operate on factor graphs. BP, as an algorithm to compute
marginals over a factor graph, has its roots in the broad class of Bayesian infer-
ence problems [6]. It is well known that the BP algorithm gives exact inference
only on cycle-free graphs (trees). It has been also observed that in some ap-
plications BP surprisingly can provide close approximations to exact marginals
on loopy graphs. However, an understanding of the behavior of BP in the lat-
ter case is far from complete. Moreover, it is known that BP does not perform
well on graphs which contain a large number of short cycles. A new class of
message-passing algorithm called generalized belief propagation (GBP) is intro-
duced in [7] to solve the problem of computing marginal probability distributions
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on factor graphs with short cycles. The algorithm relies on the extension of clus-
ter variation method [8, 9], which is called the region graph method. The GBP
algorithm provides approximate marginals by minimizing the Gibbs free energy
using region graph method. In GBP, messages are sent among clusters of vari-
ables nodes instead of the node-to-node message passing fashion in BP and SP.
More recently GBP has been shown empirically to have good performance, in
either accuracy or convergence properties, for certain applications [10, 11].

In this paper, we consider the problem of transmitting a binary message
over a data-dependent communication channel and recovering it back at the
receiver side. This problem is one of the most fundamental problems in com-
munication theory, and can be considered as an instance of a CSP. Shannon in
his seminal work [12] introduced two coding schemes for reliable transmission
of information over a noisy channel, namely error correction coding and con-
strained coding. The first method protects user messages against random errors,
which are independent of input data, by introducing redundancy in the messages
prior to transmission. On the other hand, a constrained coding method assumes
that channel solely introduces errors in response to specific patterns in input
messages, and removing these problematic patterns makes the channel noiseless.
Recent advances in emerging data storage technologies like magnetic record-
ing systems [13, 14], optical recording devices [15] and flash memory drives [16]
necessitate to study two-dimensional coding (2-D) techniques for reliable stor-
age of information. In these systems, user information bits are arranged into
2-D arrays for storing over the recording channel, and occurrences of specific
patterns in input arrays are the significant cause of errors during read-back
process. These systems require the use of some form of error-correction coding
in addition to constrained coding of the input data or symbol sequences. It is
therefore natural to investigate the interplay between these two forms of coding
and the possibilities for efficiently combining their functions into a single coding
operation. For this purpose, we introduce a generic 2-D channel with a set of
harmful configurations to model patterning effects on an information bit from
its neighboring bits in a 2-D channel input array. In this model, information
bits contained in the harmful configurations are more vulnerable to errors than
the other bits. Different 2-D constrained coding methods have been proposed
to remedy the patterning effects in data-dependent 2-D channels, e.g., [17–22].
The goal of most of these methods is to achieve tighter bounds on the Shannon
noiseless channel capacity of constraint. However, these schemes are non-linear
in nature, and their encoder/decoder has a memory. Therefore, combinations of
these methods with an error-correction coding scheme are challenging, and even
a small number of bit errors can result multiple errors and severely degrade the
performance of an error correction decoder. As an alternative coding scheme to
address the non-linear effects of conventional 2-D constrained coding schemes,
we present a deliberate bit flipping (DBF) coding scheme for data-dependent
2-D channels, where passing through channel specific patterns in inputs are the
main cause of errors. The user message is first encoded by an error correction
code, and is arranged into a 2-D array as an input to the channel. The idea is to
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completely eliminate a constrained encoder and, instead, to remove the harmful
configurations by deliberately flipping the selected bits prior to transmission.
The DBF method relies on the error correction capability of the error correction
code (ECC) being used so that it should be able to correct both deliberate errors
and channel errors. Therefore, it is crucial to keep the number of flipped bits
small in order not to overburden the error correction decoder.

The problem of minimizing the number of deliberate bit flips for removing a
set of configurations from a 2-D array is an instance of a CSP, where variables
are arranged into a 2-D array, and constraints are defined locally over a set of
neighboring variables. Assignments to variables are chosen from encoded mes-
sages of information bits (the codewords of ECC being used), and a constraint is
violated if the realization of the neighboring variables involved in the constraint
belongs to the given set of configurations. An initial realization of variables may
violate some of constraints, and the goal is to change values of minimum number
of variables to make all the constraints satisfied. This is equivalent to removing
the forbidden configurations entirely from the 2-D array by flipping minimum
number of bits. Using a factor graph representation, we devise a constrained com-
binatorial formulation for minimizing the number of bit flips in the DBF scheme
for removing a given set of configurations. We find an approximate solution by
reformulating the minimization problem as a 2-D maximum a posteriori (MAP)
problem using a probabilistic graphical model. In this framework, patterns which
do not contain harmful configurations are assumed to be uniformly distributed,
and each pattern containing a harmful configuration has zero probability. The
GBP algorithm, as a MAP inference method, is used to find the approximate
solution for the 2-D MAP problem. Applied to a data-dependent 2-D channel
with 2-D isolated bit patterns as the set of harmful patterns for the channel, we
have shown the performance of DBF method in terms of uncorrectable bit-error
rate.

The organization of the paper is as follows. Section 2 introduces the data-
dependent 2-D channel model. The DBF coding scheme is presented in Section 3.
Section 4 explains the probabilistic formulation devised for minimizing the num-
ber of bit flips in DBF coding scheme. Numerical results are given in Section 5.

2 Channel Model

In this section, we present a data-dependent 2-D communication channel which
transmits binary rectangular patterns and produces as an output a binary pat-
tern. Passing through the channel, information bits belong to a predefined set of
configurations are more prone to errors than the other bits. The channel is char-
acterized by this set of binary configurations, which is called the set of harmful
configurations and is denoted by F .

The set of channel input patterns and the set of channel output patterns are
denoted by X and Y. An input pattern x = [xi,j ] is chosen uniformly and ran-
domly from X , and is transmitted through the channel. A pattern y = [yi,j ] ∈ Y
is observed through the channel. The input pattern x can be considered as a
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(a) (b)

Fig. 1. Fig. shows (a) Q+(i, j) and (b) Pi,j over the lattice Z
2 for the case of cross-

shaped polyomino.

square binary tiling of a rectangle, where each information bit xi,j on the 2-
D input pattern represents a colored tile (0 (1) refers to a white (black) tile).
The channel is data-dependent, and for each tile xi,j , error is characterized by a
Bernoulli random variable which depends on the realization of polyominoes hav-
ing intersection with this tile. A polyomino of order k is constructed by joining
k square tiles. Here we consider cross-shaped polyominoes of order 5 which are
defined over the 2-D lattice Z

2 as the following

Q+(i, j) = {(i, j − 1), (i− 1, j), (i, j), (i, j + 1), (i+ 1, j)} . (1)

The set of cross-shaped polyominoes that have intersection with tile xi,j over an
m× n rectangle is identified by

Pi,j =
⋃

(i′,j′)∈Q+(i,j)

Q+(i′, j′). (2)

Fig. 1 shows Q+(i, j) and Pi,j on a 2-D lattice Z
2.

The received tile yi,j is characterized by

yi,j = xi,j ⊕ zi,j , (3)

where zi,j is a Bernoulli random variable which depends on the realization of
Pi,j , xPi,j

, and is defined by

zi,j ∼

{

Bern(αb), xPi,j
∈ F ,

Bern(αg), xPi,j
6∈ F .

(4)

Passing through the channel, colors of input tiles belong to F invert with prob-
ability αb, while colors of other tiles invert with probability αg. Since patterns
belong to the set F are the main source of errors for this communication channel,
we have αb ≫ αg.

The introduced channel has two states where in each state acts as a binary
symmetric channel with a different cross-over probability, and can be considered
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as an instance of the Gilbert-Elliot channel [23]. However, the state transitions
in the introduced channel depends on input data which makes the problem of de-
signing capacity achieving codes difficult. As we explain in the following section,
we introduce a deliberate bit flipping coding strategy for this communication
channel to overcome the effects of harmful configurations.

3 Deliberate Bit Flipping Coding Method

In this section, we characterize the deliberate bit flipping coding strategy for
removing harmful configurations from 2-D channel input patterns before trans-
mission through a data-dependent 2-D channel.

A user binary message m of length K is given. The message m is first en-
coded by an error correction code with rate R = K

N
, and we have the codeword c

of length N . The codeword is arranged into a 2-D array x = [xi,j ] of size m× n,
where xi,j = c(i−1)m+j and N = m× n. For each tile xi,j , a 2-D constraint is
defined over polyominoes having intersection with this tile. The 2-D constraint
S forbids some of the configurations of Pi,j , where the set of these configurations
are denoted by F . These configurations are essentially harmful configurations for
the channel, and they must be removed before transmission. We use a deliberate
error insertion approach to remove the harmful configurations from the input
pattern x before transmission through the channel. Whenever there is a config-
uration from the list F in the input pattern x, the color of selected tiles in x
are inverted to remove the forbidden configurations. In the following, we present
an example to highlight the basic ideas behind the DBF method for removing
a set of predefined configurations from a 7× 7 random binary pattern. In this
example, the set of 2-D isolated bit patterns are required to be removed form
the given random pattern.

Example 1. A 7× 7 random binary pattern x as shown in Fig. 2 is given. The
goal is to use the DBF scheme to remove the 2-D isolated bit configurations. We
assume zero entries (white tiles) outside of x, i.e., xi,j = 0, while i < 1, j < 1,
i > 7, or j > 7. There are two isolated bit patterns in x, which are xQ+(3,6)

and xQ+(7,7). Passing through the channel, the tiles whose belong to these two
patterns are more prone to errors than the other tiles. These tiles are (2, 6),
(3, 5), (3, 6), (3, 7), (4, 6), (6, 7), (7, 6) and (7, 7). For instance, for the tile (2, 6),

P2,6 =
⋃

(i′,j′)∈Q+(2,6)

Q+(i′, j′). (5)

Since Q+(3, 6) ⊂ P2,6 and xQ+(3,6) is a 2-D isolated bit pattern, we have xP2,6

contains a 2-D isolated bit pattern. Similarly, we can verify this for the rest of
tiles in x. 2-D isolated bit configurations can be removed form x by inverting
the colors of tiles (3, 6) and (7, 7).

In the DBF method, the main role is to select tiles whose colors need to
be inverted for removing the harmful configurations. We define a tile-selection

function to determine these tiles.
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Fig. 2. In order to remove the 2-D isolated bit patterns from the given 7× 7 binary
pattern, the colors of tiles (3, 6) and (7, 7) are inverted.

Definition 1 (Tile-Selection Function). The tile-selection function θ : X →
{0, 1}m×n selects tiles whose colors need to be inverted for removing the harmful

configurations from the pattern x.

Using θ, eDBF is defined to identify the locations of tiles whose colors are
inverted,

eDBF = θ(x) = [eDBF
i,j ], (6)

where eDBF
i,j = 1 if the color of (i, j)-th tile is inverted, otherwise, eDBF

i,j = 0.

Therefore, x ⊕ eDBF does not contain any harmful configurations from the list
F . Furthermore, the number of tiles whose colors are inverted is wH(eDBF).
Now, instead of x, we send x⊕ eDBF over the channel, and the received pattern
is y = x⊕eDBF⊕eCH, where eCH indicates the locations of tiles whose colors are
inverted due to channel errors. A decoder ψ : {0, 1}m×n → X maps a received
pattern y to a pattern x̂ in the input set X . In the following, we define the
average probability of error and the capacity of the method.

Definition 2 (Average Probability of Error). λm = p(m̂ 6= m|m) is the

probability that the decoded message m̂ is different from the actual message m.

The average probability of error is defined by

p(N)
e = p(m̂ 6= m) =

∑

m∈M

λmp(m)=
1

2⌈NR⌉

∑

m

λm. (7)

Definition 3 (Achievable Rate and Capacity). A rate R is said to be

achievable if for some N and ǫN > 0, p
(N)
e ≤ ǫN . The capacity is defined as

the supremum over all achievable rates.

In this communication system with DBF method, there are two types of er-
ror. The first type of error is the deliberate errors which are introduced before
transmission through the channel, and the second type is the random channel
errors. If we assume that the main cause of errors are the presence of harmful
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patterns in input patterns, removing the harmful configurations makes the chan-
nel almost noiseless. Therefore, for the Hamming distance between the input and
received patterns, we have

dH(x,y) = wH(x⊕ y) ≃ wH(eDBF). (8)

Without loss of generality, if we use a bounded-distance decoder, it should be
ideally decode all the messages that

dH (x(m),y) ≃ wH(eDBF) ≤ ⌊
dmin − 1

2
⌋, (9)

where dmin is the minimum distance of the code. Therefore, the main obstacle
for using the DBF method for removing harmful configurations is to keep the
number of deliberate errors small enough not to overburden the decoder. For a
given binary user message and a set of forbidden configurations, we are interested
in finding x̂, that minimizes wH(x̂ ⊕ x) and x̂ ∈ S. This minimization problem
can be considered as a constrained combinatorial optimization problem. Finding
a binary pattern which satisfies a certain local constraints (which do not contain
a predefined set of 2-D configurations), and has the minimum Hamming distance
with the input binary pattern x via an exhaustive search can be computationally
prohibitive for large patterns. This problem can be regarded as an instance of the
Levenshtine distance problem [24], which is known to be a hard combinatorial
problem. In the following section, we present a probabilistic graphical model,
and reformulate the problem as a maximum a-posetriori (MAP) problem to find
an approximation solution for the problem.

4 A Probabilistic Formulation for DBF Method

In this section, we present a probabilistic formulation for the problem of minimiz-
ing the number of bit flips in the DBF scheme. In this framework, the set of input
patterns which do not contain any harmful configurations has uniform distribu-
tion, while the patterns containing harmful configurations have zero probability.
For a given random input pattern, the problem originally is to find the pattern
which does not contain any harmful configurations, and has the minimum Ham-
ming distance with the given input pattern. We translate this problem into the
problem of finding the most likely pattern (that does not contain any harmful
configurations) to the given pattern using a binomial expression.

An input pattern x is given. For each tile xi,j over x, existence of harmful
configurations is determined based on the configuration of Pi,j , xPi,j

. There-
fore, the problem of finding x̂ ∈ S which has the minimum wH(x̂ ⊕ x) can be
break down locally over each Pi,j . We define a local distortion function D over
Pi,j ’s to determine the Hamming distance between x̂Pi,j

and xPi,j
. The func-

tion D : {0, 1}
|Pi,j | × {0, 1}

|Pi,j | → N is defined over the tiles indexed by Pi,j as
follows

D
(

x̂Pi,j
,xPi,j

)

=

{

wH

(

x̂Pi,j
⊕ xPi,j

)

, x̂Pi,j
6∈ F ,

∞, x̂Pi,j
∈ F ,

(10)
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where the patterns belonging to F are specified by∞. One may use the outputs of
this function over the tiles in x to find x⋆ ∈ S which has the minimum Hamming
distance with x. This process can be intractable for large patterns as it needs to
compute the output of D for each tile, which has 2|Pi,j | different configurations,
and take exponentially large memory just to store. In the following, we present
a probabilistic formulation to find approximate solution for this problem using
GBP algorithm.

We use a binomial probability expression to reformulate the distortion indi-
cator function defined in Eq. (10), and present a probabilistic formulation for
the problem of minimizing the Hamming distance. We assume that the color of
each tile contained in a harmful configuration is inverted with the probability
0 < λ ≤ 1. For each tile xi,j , we define a functionDp : {0, 1}

Pi,j × {0, 1}
Pi,j → R

[0,1]

over the tiles tiles indexed by Pi,j ,

Dp(xPi,j
, x̂Pi,j

) =

{

λwH(ePi,j
)(1− λ)|Pi,j |−wH(ePi,j

), x̂Pi,j
6∈ F ,

0, x̂Pi,j
∈ F ,

(11)

where ePi,j
= x̂Pi,j

⊕ xPi,j
, and |Pi,j | indicates the number of tiles in Pi,j . This

function is called as the local probabilistic distortion function. For each tile
(i, j) ∈ Am,n, the distortion now is defined as the probability of having a dis-
torted pattern xPi,j

which has the Hamming distance wH(x̂Pi,j
⊕ xPi,j

) with
x̂Pi,j

6∈ F . When x̂Pi,j
∈ F , this probability is set to be zero, as the first con-

straint is to find x̂ ∈ S.
For a given input pattern x and a set of harmful configurations F , the goal is

now to find x̂ ∈ S that maximizes p (x̂|x), which is equivalent to finding x̂ that
minimizes wH (x̂⊕ x). In another word, we are interested in finding

x̂ = argmax
x̂∈S

{p(x̂|x)} . (12)

The a-posteriori probability p (x̂|x) for a fixed λ is factored into

p (x̂|x) =
p (x|x̂) p (x̂)

p (x)

(a)
∝ p (x|x̂)

(b)
=

∏

(i,j)

p
(

xPi,j
|x̂Pi,j

)

,

(c)
=

∏

(i,j)

Dp(xPi,j
, x̂Pi,j

), (13)

where (a) comes from this assumption that the set of patterns which do not
contain harmful configurations has uniform distribution, (b) is established as
harmful configurations can be determined locally over Pi,j ’s, and (c) is obtained
according to the local probabilistic distortion function, Eq. (11). Therefore, we
have

p (x̂|x) =
1

Z(x)

∏

(i,j)∈Am,n

Dp(xPi,j
, x̂Pi,j

), (14)
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where Z(x) is the partition function and defined by

Z(x) =
∑

x

∏

(i,j)∈Am,n

Dp(xPi,j
, x̂Pi,j

). (15)

Providing either exact or approximate solutions for the marginal probabilities
in general is a NP-hard problem [3], as we need to take sum over exponen-
tial number of variables. In [7, 25], it is shown that region-based approximation
(RBA) method provides an approximate solution for the partition function by
minimizing the region-based free energy (as an approximation to the variational
free energy). Therefore, GBP as a method for finding approximate solution for
region-based free energy can be used to solve the problem of minimizing the
number of bit flips in the DBF scheme.

5 Numerical Results

In this section, we present the numerical results, and explain how the DBF
method relies on the error correction capability of the code being used. We first
provide an example of a short BCH code with incorporating DBF method.

5.1 Example of BCH-[15,5,7] Code

Consider the user messages of length 5, m1 = (0, 1, 0, 0, 0), m2 = (1, 0, 0, 0, 0),
m3 = (0, 1, 1, 1, 1) and m4 = (0, 1, 1, 0, 1). The messages are encoded by the
BCH-[15, 5, 7] code, and the codewords are

c1 = (0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0) , c2 = (1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1) ,

c3 = (0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0) , c4 = (0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0) .

The codewords are arranged into 3× 5 arrays as four different binary patterns.
These patterns are shown in Fig. 3. We want to remove forbidden configurations
by the 2-D n.i.b. constraint entirely from the patterns with flipping minimum
number of bits. We only focus on these four patterns out of 32 possible binary
patterns with BCH-[15, 5, 7] code as they present all different possible bit flipping
scenarios for removing 2-D isolated bit patterns.

Fig. 3. The input patterns for this example. Outside of these patterns are filled with
white tiles (zero entries).

In Fig. 3(a), the pattern does not contain any of the 2-D isolated bit configu-
rations, therefore there is no need to invert the tile colors, and wH(e(a)) = 0. The
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pattern in Fig. 3(b) contains single 2-D isolated bit pattern, which is xQ+(2,3).
This 2-D isolated bit pattern can be removed by inverting the color of any one
of the tiles in Q+(2, 3), and therefore the minimum wH(e(b)) = 1. For the pat-
tern in Fig. 3(c), there are two overlapping 2-D isolated bit patterns, which are
xQ+(2,3) and xQ+(3,3). These two isolated bit patterns can be removed simulta-
neously by inverting either the color of tile (2, 3) or (3, 3), and therefore for this
case also the minimum wH(e) = 1. In Fig. 3(d), the pattern contains two non-
overlapping 2-D isolated bit patterns, which are xQ+(1,5) and xQ+(3,4). At least
colors of two tiles over this input pattern should be inverted, and for this case
the minimum wH(e(d)) = 2. For the systematic BCH-[15, 5, 7] code (where the
codewords are arranged into 3× 5 arrays and the first row is equipped with the
user bits), in average it needs to flip 0.6563 bits/pattern to remove the forbidden
configurations by the 2-D n.i.b. constraint.

5.2 Uncorrectable Bit-Error Rate

In this section, we present the statistics of the number of bit flips required for
removing 2-D isolated bit configurations from a random 2-D pattern of size
32× 32, and also compute the uncorrectable bit-error rate (UBER) using these
statistics.

The statistics of the number of bit flips are obtained by applying GBP-based
DBF method for removing 2-D isolate bit patterns from a set of 8000 random
2-D patterns of size 32× 32. Similar to the other examples, we assume white tiles
or zero entries outside of patterns. Fig. 4(a) shows the occurrence probability of
the number of flipped bits.

0 5 10 15 20 25

wH (e
DBF )

0

0.02

0.04

0.06

0.08
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0.12

0.14
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(w
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(e
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(a)

15 20 25 30 35 40 45 50
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(b)

Fig. 4. (a) Fig. presents an occurrence probability of the number of bit flips for remov-
ing 2-D isolated bit configurations from a random 2-D pattern of size 32× 32. (b) The
UBER for the DBF scheme with BCH codes of length 1024 is given.
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Using these occurrence probabilities, we can compute the UBER for an ECC
being used, as follows

UBER =







∑

wH(eDBF)>⌊
dmin−1

2
⌋

p
(

wH(eDBF)
)






/NR, (16)

where dmin is the minimum distance of code, N = m× n is the size of the pattern
(length of the code), and R is the rate of the ECC. In fact, we compute the UBER
under the assumptions that the channel only introduces errors in response to
presences of 2-D isolated bit configurations, and removing these configurations
make the channel noiseless. In our introduced channel, this is the case when
αg = 0 and αb 6= 0. As an example, we use BCH codes of length 1024 with
different code rates, and draw the UBER for these codes in Fig. 4(b).

6 Conclusions

We have presented a deliberate bit flipping coding scheme for data-dependent
2-D channels. For this method, we have shown that the main obstacle is the num-
ber of deliberate errors which are introduced for removing harmful configurations
before transmission through the channel. We have devised a combinatorial opti-
mization formulation for minimizing the number of bit flips, and have explained
how this problem can be related to a binary constraint satisfaction problem.
Finally, through an example, we have presented uncorrectable bit-error rate re-
sults of incorporating DBF for removing 2-D isolated-bit configurations from
2-D patterns of certain size.
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