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Abstract

We introduce a general framework for con-
straint solving where classical CSPs, fuzzy
CSPs, weighted CSPs, partial constraint sat-
isfaction, and others can be easily cast. The
framework is based on a semiring structure,
where the set of the semiring specifies the val-
ues to be associated to each tuple of values of
the variable domain, and the two semiring op-
erations (+ and x) model constraint projec-
tion and combination respectively. Local con-
sistency algorithms, as usually used for clas-
sical CSPs, can be exploited in this general
framework as well, provided that some condi-
tions on the semiring operations are satisfied.
We then show how this framework can be used
to model both old and new constraint solving
schemes, thus allowing one both to formally
justify many informally taken choices in exist-
ing schemes, and to prove that the local con-
sistency techniques can be used also in newly
defined schemes.

1 Introduction

Classical constraint satisfaction problems (CSPs) [Mon-
tanari, 1974; Mackworth, 1988] are a very expressive
and natural formalism to specify many kinds of real-
life problems. In fact, problems ranging from map col-
oring, vision, robotics, job-shop scheduling, VLSI de-
sign, etc., can easily be cast as CSPs and solved using
one of the many techniques that have been developed
for such problems or subdasses of them [Freuder, 1978;
1988; Mackworth and Freuder, 1985; Mackworth, 1977;
Montanari, 1974].

However, they also have evident limitations, mainly
due to the fact that they are not very flexible when trying
to represent real-life scenarios where the knowiedge is not
completely available nor crisp. In fact, in such situations,
the ability of stating whether an instantiation of values
to variables is allowed or not is not enough or sometimes
not even possible. For these reasons, it is natural to try
to extend the CSP formalism in this direction.

For example, in [Rosenfeld et a/., 1976; Dubois et al,
1993; Ruttkay, 1994] CSPs have been extended with the

624 CONSTRAINT SATISFACTION

ability to associate to each tuple, or to each constraint,
a level of preference, and with the possibility of com-
bining constraints using min-max operations. This ex-
tended formalism has been called Fuzzy CSPs (FCSPs).
Other extensions concem the ability to model incomplete
knowledge of the real problem [Fargier and Lang, 1993],
to solve overconstrained problems [Freuder and Wallace,
1992], and to represent cost optimization problems.

In this paper we define a constraint solving framework
where all such extensions, as well as classical CSPs, can
be cast. However, we do not relax the assumption of
a finite domain for the variables of the constraint prob-
lems. The main idea is based on the observation that a
semiring (that is, a domain plus two operations satisfy-
ing certain properties) is all what is needed to describe
many constraint satisfaction schemes. In fact, the do-
main of the semiring provides the levels of consistency
(which can be interpreted as cost, or degrees of prefer-
ence, or probabilities, or others), and the two operations
define a way to combine constraints together. Specific
choices of the semiring will then give rise to different
instances of our framework.

In classical CSPs, the so-called local consistency tech-
niques [Freuder, 1978; 1988; Mackworth, 1988; 1977;
Montanari, 1974; Montanari and Rossi, 199I] have been
proved to be very effective when approximating the solu-
tion of a problem. In this paper we study how to gener-
alize this notion to our framework, and we provide some
sufficient conditions over the semiring operations which
guarantee that such algorithms can be fruitfully applied
also to our scheme. Here for being "fruitfully applica-
ble" we mean that 1) the algorithm terminates and 2)
the resulting problem is equivalent to the given one and
it does not depend on the nondeterministic choices made
during the algorithm.

The advantage of our framework, that we call SCSP
(for Semiring-based CSP), is that one can just see his
own constraint solving framework as an instance of SCSP
over a certain semiring, and can immediately inherit the
results obtained for the general framework. In particu-
lar, in this case, one can immediately see whether a local
consistency technique can be applied or not. This allows
one also to justify many informally taken choices in exist-
ing constraint solving schemes. In this paper we study
several known and new constraint solving frameworks,
casting them as instances of SCSP, and for some of them



we prove the possibility of applying k-consistency algo-
rithms.

Due to space limitations, some of the formal defini-
tions, theorems, and proofs have been omitted or just
informally sketched.

2 C-semirings and their properties

We associate a semiring to the standard definition of con-
straint problem, so that different choices of the semir-
ing represent different concrete constraint satisfaction
schemes. Such semiring will give us both the domain
for the non-crisp statements and also the allowed oper-
ations on them. More precisely, in the following we will
consider ¢-semirings, that is, semirings with additional
ptoperties of the two operations.
Definition 1 A semiring is a tuple (A, 4, x,0,1) suck
that

e Aisaseland 0,16 A;

s +, called the additive operation, is a closed {i.e.,
a b€ A implies a+ b € A), commutative (i.c., a +
b=14+4 a) and associative (ie., a+{b+c)=(a+
b)+ ¢) operation such that a+0=a=0+a {i.e,
0 13 its unit element);
x, called the multiplicative operation, i5 a closed and
associalive operation such that 1 ig its unil element
and a x 0 = 0 = 0xa {ie, 0 is ils absorbing
element);

» x distributes over + (ie, ax (b+c) = (axb) +

{a x¢))

A c-semiring is ¢ semiring suck that + s idempotent,
x is commulative, and 1 is the absorbing element of +.
jw]

The idemnpotence of the + operation ia needed in order
to define a partial ordering <s over the set A, which will
enable us to compare different elements of the semiring.
Such partial order is defined as follows: a <g biffa+b =
a. Intuitively, @ €5 b means that a is "better” than &.
This will be used later to choose the “best” solution in
our constraint problems. It is important to notice that
both + and x are monolone on such ordering.

The comimutativity of the x operation is desirable
when such operation is used to combine several con-
strainls. In fact, were 11 nol commutative, it would mean
that different orders of the constraints give different re-
sults.

1f 1 is also the absorbing element of the additive oper-
ation, then we have that 1 <z a for all a. Thus 1 is the
minimum (i.e., the best) element of the partial ordering.
This implies that the x operation is ezlensive, that is,
that @ € @ x b. This is important since it means that
combining mote constraints leads to a worse {w.r.t. the
<5 ordering) result. The fact that 0 is the unit element
of the additive operation implies that 0 is the maximum
element of the ordering. Thus, for any a € A, we have
l<sa<s0.

In the following we will sometimes need the x op-
eration to be closed on a certain finite subset of the
¢-semiring. More precisely, given any c-semiring § =
(A,+, %,0,1), consider a finite get § C A. Then, x is
F-closed if, for any a,b e 1, {ax b) € [.

3 Constraint systems and problems

A constraint system provides the c-semiring to be used,
the aet of all variables, and their domain D. Then, 2
constraint over & given constraint system specifies the
involved variables and the *allowed” values for them.
More precisely, for each tuple of values of D for the in-
volved variables, a corresponding element of the semiring
is given. This element can be interpreted as the tuple
weight, or cost, or level of confidence, or else, Finally, a
constraint problem is then just a set of constraints over
a given constraint system, plus a selected set of vari-
ables. These are the variables of interest in the problem,
i.e., the variables of which we want to know the possible
assignments compatibly with all the constraints.

Definition 2 A constraint system is a tuple C5 =
{5, D,V), where S is & c-semiring, D is o finite set, and
V 13 an ordered sel of variables. Given o constraini sys-
tem CS = (5§, DV}, where § = (4,4,%,0,1), a con-
straint over CS is a pair (def,con), wherecon C V and
it is colled the type of the comstraint, ond def - DF — A
{where k is the size of con, that is, the number of vari-
ables in i1), and 1 is called the value of the consiraint.
Moreover, ¢ constraint problem P over CS s a pair
P = {C,eon), where C is a set! of constrainis over CS
and con C V. D

In the following we will consider a fixed constraint sys-
tem C§ = (5,1, V), where § = (4, +,x,0,1). Note
that when all variables are of interest, like in many
approaches to classical CSP, con contains all the vari-
ables involved in any of the constraints of the problem.
This set will be denoted by V{P) and can be recovered
by looking at the variables involved in each constraint:
V(‘P) = Uldef,ﬂm*:lEC con’,

In the SCSP framework, the values specified for the
tuples of each constraint are used to compute corre-
sponding values for the tuples of values of the variables
in con, according to the semiring operations: the multi-
plicative operation is used to combine the values of the
tuples of each constraint to get the value of a tuple for
all the variables, and the additive operation is used to
obtain the value of the tuples of the variables of interest.
More precisely, we can define the operations of combi-
nation (@) and projection (|}) over constraints. Anal-
ogous operations have been originally defined for fuzzy
relations in [Zadeh, 1875), and have then been used for
fuzzy CSPs in [Dubois ef ef., 1893]. Our definition is
however more general since we do not consider a specific
c-semiring but a general one.

Definition 3 Given {wo constraints ¢; = {defy, con;}
and cy = {de f2, cona) ever CS, their combination, ¢, ®
ez, 15 the constraint ¢ = {def, con) with con = conyUcony
and def(t) = defy(t 1550} x defy(t 130n.)), where, for
any tuple of values i for the varigbles in a set I, t lff
denoles the projection of t over the variables in the sel
I'. Moreover, given a constraint ¢ = (def, con) over C5,
and a subset w of con, ils projection cver w, wrilten

"Note that, if x is not idempotent, ii is necessary to see

C as a multiset, and not as a set.
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e {y,, is the constratnt {def’, con’} over C'§ with con’ =
w and def'(1') = Dygejeenzpydef(1). o

Using such operations, we can now define the notion
of solution of a SCSP.

Definition 4 Giver a constraint problem P = {C, con)
over a constrainl syslem CX, the solution of P 15 a
constraint defined as Sol( P) = (R C) Ueon, where QC
is the obuvious eziension of the combination operation io
@ s¢l of consiratnis C. (m)

In words, the solution of a 5CSP is the constraint in-
duced on the variables in con by the whole problem.
Such constraint provides, for each tuple of values of D
for the variables in con, an associated value of A. Some-
times, it ia enough to know just the best value associated
to such tuples. In our framework, this is still a constraint
(over an empty set of variables), and will be called the
best [evel of conaistency of the whole problem, where the
meaning of “best” depends on the ordering <g defined
by the additive operation.

Definition 5 Given a SCSP preblem P = {C, con),
we define the best level of consistency of P as
blevel(P) = (R C) Uy. If blevel(P) = {blev,B), then
we say that P is consistent if blev <5 0. Instead, we say
that P is a.consistent if blev = o, u

Informally, the best level of consistency gives us an
idea of how much we can satisfy the constraints of the
given problem. Note that blevel(P) does not depend
on the choice of the distinguished variables, due to the
associative property of the additive operation. Thus,
since a constraint problem is just a set of constraints
plus a set of distinguished variables, we can also apply
function blevel to a set of constraints only. Also, since
the type of constraint blevel(P) iz always an empty set
of variables, in the following we will just write the value
of bevel.

Another interesting notion of solution, more abstract
than the one defined above, but sufficient for many pur-
poses, is the one that provides only the tuples that have
an associated value which coincides with {the def of)
blevel( P). However, this notion makes sense only when
<5 is a total order. In fact, were it not so, we could have
an incomparable set of tuples, whose sum (via +) does
not coincide with any of the summed tuples. Thus it
could be that none of the tuples has an associated value
equal to blevel(P).

By using the ordering <5 over the semiting, we can
also define a corresponding partial ordering on con-
straints with the same type, as well as a preorder and a
notion of equivalence on problems.

Definition 8 Consider {wo consirainis ¢,,cq over C§,
and assume thal cony = cony. Then we define the
constraint ordering Cg as the following partial or-
dering: ¢ s ¢2 if and only &f, for all tuples t of
values from D, defi{t) <5 defy(t}). Notice that, if
ey Cs ¢p and ¢y L5 ¢y, then ¢) = 9. Consider now
twe SCSP problems P, and Py such that Py = {Cy, con)
end P; = {Cz,con). Then we define the problem pre-
order Ep ag! P} Cp Pz ‘If SDJ(P” Cs Sd(PgL If
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P, Cp P and P; Ep Py, then they have the same solu-
Hion. Thus we say thal P, end Py are equivalent and
we wrile P, = Py, o

The notion of problem preorder can also be useful to
show that, as in the classical CSP case, also the SCSP
framework is monotone: (C, ean) Cp (CUCY, con). That
is, if some constraints are added, the solution (as well as
the dievel) of the new problem is worse or equal than
that of the old one.

4 Local Consistency

Computing any one of the previously defined notions
(like the best Jevel of consistency and the solution) is an
NP-hard problem. Thus it can be convenient in many
cases to approximate such notions. In claasical CSP, this
is done using the so-called local consistency techniques.
Such techniques can be extended also to constraing solv-
ing over any semiring, provided that some properties are
gatisfied. Here we define what k-consistency [Freuder,
1978; 1988; Kumar, 1992] meana for SCSP problems. In-
formally, an SCSP problem is k-consistent when, taken
any set W of k-1 variables and any k-th variable, the con-
straint obtained by combining all constraints among the
k variables and projecting it onto W is better or equal
(in the ordering Cg) than that obtained by combining
the constraints among the variables in W only.

Definition 7 Given ¢ SCSP problem P = {C,con) we
say that P it k-consistent if, for all W C V(P) such
that size(W )= k=1, and for allz € (V(P)-W), ((@{« |
ti € C Acon; C (WU {z}h}) dw) Cs (®{ci | c; €C
Acon; C W)Y, where ei = {defi, con;) foralle; € C. 0O

Note that, since % is extensive, in the above formula
for k-consistency we could also replace Cg by =5. In
fact, the extensivity of x assures that the formula always
holds when 2y is used instead of Cg.

Making a problem k-consistent means explicitating
some implicit constraints, thus possibly discovering in-
consistency at a local level. In classical CSP, this is
crucial, since local inconsistency implies global incon-
sistency. This is true also in SCSPs. But here we can be
even more precise, and relate the best level of consistency
of the whole problem to that of its subproblems.

Theorem 8 Consider a aet of consiraints C over CS5,
and any subset O’ of C. If C" t5 a-consistent, then C is
B-consistend, with a <5 .

Proof: If C' is c-consistent, it means that @C Y=
{a,8). Now, C can be seen as C" @ C” for some C*.
By extensivity of x, and the monotonicity of 4, we have

a]

that § = ®(C' ® C*) 4 0 25 ®(C) 4 8 =or.

If a subset of constraints of P is inconsistent (that is,
ita blevel is 0), then the above theorem implies that the
whole problem is inconsistent as well.

We now define a generic k-consistency aigorithm, by
extending the usual cne for classical CSPs [Freuder,
1978; Kumar, 1992), We nssume to start from a SCSP
problem where all constraints of arity k-1 are present.
If some are not present, we just add them with a non-
restricting definition. That is, for any added constraint



¢ = {(def eon), we set def(t) = 1 for all con-tuples t.
This does not change the solution of the problem, since
1 is the unit elernent for the x operation.

The idea of the (naive) algorithm is te tombine any
constraint ¢ of arity k-1 with the projection over such
k-1 variables of the combination of all the constraints
connecting the same k-1 variables plus another one, and
to repeat such operation until no more changes can be
made to any (k-1}-arity constraint.

In doing that, we will use the additional notion of
typed locations. Informally, a typed location is just a
location {as in ordinary imperative programming) which
can be assigned to a constraint of the same type, This
is needed since the constraints defined in Definition 2
are just pairs {def, con), where def is a fired function
and thus not modifiable. In this way, we can also assign
the value of a constraint to a typed location (only if the
type of the location and that of the constraint coincide),
and thus achieve the effect of modifying the value of a
constraint.

Definition 9 A typed location 5 ar object | : con
whose type is con. The assigment operation | .= ¢, where
¢ s a constraint (def, con), has the meaning of associai-
tng, in the present store, the value def tol. Whenever
a typed location appears in a formula, i will denote iis
value. o

Definition 10 Consider an SCSP prodlem P =
(C,con) and take any subset W C V(P) such that
sizefW) = & — 1 and eny variable € (V{P) - W).
Let us now consider a typed location §; for each con-
straint ¢; = {def;, con;} € C such that I; : con;. Then a
k-consistency algorithm works as follows.

1. Iniziglize all locations by performingl; = ¢; for each
e eC
2. Consider
o W,
¢ AW) =l |econ; C(WUL{z})} L W, and
¢ B(W) = &{l | coni CW}.
Then, if A(W) &5 B(W), perform l; .= l; @ A(W).
3. Repeat step £ on all W and z sntil A(W)C B(W)
for all W.

Upon stability, assume that cack typed locetion I; : con;
has eval(l;) = def!. Then the resull of the algorithm is
a new SCSP problem P' = k-cons(P) = {C’, con} such
thet C' = J;(de f{, con;}. o

Assuming the termination of such algorithm (we will
discuss such issue later), it is obvious to show that the
problem obtained at the end is k-consistent. This is &
very naive algorithm, whose efficiency can be improved
easily by using the methods which have been adopted
for classical k-consistency.

In classical CSP, any k-consisiency algorithm enjoys
some important properties. We now will study these
same properties in our SCSP framework, and point out
the corresponding properties of the semiring operations
which are necessary for them to hold. The desired prop-
erties are as follows: that any k-consistency algorithm
returns a problem which is equivalent to the given one;

that it terminates in & finite number of steps; and that
the order in which the (k-1)-arity subprablems are se-
lected does not influence the resulting problem.

Theorem 11 Consider a SCSP probiem P and a SCSP
problem P' = k-cons(P). Then, P = P’ (that i3, P and
P are equivelent) if x 1s idempotent.

Proof: Assume P = {C,con) and P' = {C",con). Now,
(" is obtained by C by changing the definition of some of
the constraints (via the typed location mechanism}. For
each of such constraints, the change consists of combin-
ing the ald constraint with the combination of other con-
straints. Since the multiplicative operation is commuta-
tive and associative (and thus alse @}, @C’ can also be
written as {®C)@C”, where @C" Cg &C. If x is idem-
polent, then ((®C)@C”) = (®C). Thus (@) = (®L").
Therefore P = P'. u|
Theorem 12 Consider any SCSP problem P where
CS = {5 D,V) and the set AD = U{de!.con}ec R(def),
where R(def) = {a | 3¢ witk def(t) = a}. Then the ap-
plication of the k-consistency algorithm to P terminafes
in g fintle number of steps if AD s contained in o sef [
which is finite and such that + and x are I-closed.

Proof: Each step of the k-consistency algorithm may
change the definition of one constraint by assigning a dif-
ferent value to some of its tuples. Such value is strictly
worse (in terms of <) since x is extensive. Moteover,
it can be & value which is not in AD but in 7 — AD. If
the state of the computation consista of the definitions of
all constraints, then at each step we get a strictly worse
state (in terms of Cg). The sequence of suck compu-
tation states, until stability, has finite length, since by
assumption [ is finite and thus the value associated to
each tuple of each constraint may be changed at most
size{[) times. a

An interesting special case of the above theorem oc-
curs when the chosen semiring has a finite domain A.
In fact, in that case the hypotheses of the theorem hold
with J = A. Another useful result occure when + and
x are AD-closed. In fact, in this case one can also com-
pute the time complexity of the k-consistency algorithm
by just looking at the given problem. More precisely,
if this same algorithm is O(n*) in the classical CSP
case [Freuder, 1978; 1988; Mackworth and Freuder, 1985,
Mackworth, 1977), then here it is Olsize{AD) x n¥) {in
[Dubois et al., 1993) they reach the same conclusion for
the fuzzy CSP caze).

No matter in which order the subsets W of k-1 vari-
ables, ns well as the additional variables z, are chosen
during the k-consisteacy algorithm, the result is always
the same problem. However, this holds in general only
if x is idempotent.

Theorem 13 Consider o SCSP problem P and two dif-
ferent applications of the k-consistency slgorithm o P,
producing respectively P’ and P”. Then P'= P" if x is
idempotent. fal

5 Instances of the framework

We will now show how several known, and also new,
frameworks for constraint solving may be seen as in-
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stances of the SCSP framework. More precisely, each
of such frameworks cormresponds to the choice of a spe-
cific constraint system (and thus of a semiring). This
means that we can immediately know whether one can
inherit the properties of the general framework by just
looking at the properties of the operations of the chosen
semiring, and by referring to the theorems in the pre-
vious section. This is interesting for known constraint
solving schemes, because it puts them into a single uni-
fying framework and it justifies in a formal way many
informally taken choices, but it is especially significant
for new schemes, for which one does not need to prove
all the properties that it enjoys (or not) from scratch.
Since we consider only finite domain constraint solving,
in the following we will only specify the semiring that
has to be chosen to obtain a particular instance of the
SCSP framework.

5.1 Classical CSPs

A classical CSP problem [Montanari, 1974; Mackworth,
1988] is just a set of variables and constraints, where
each constraint specifies the tuples that are allowed for
the involved variables. Assuming the presence of a subset
of distinguished variables, the solution of a CSP consists
of a set of tuples which represent the assignments of the
distinguished variables which can be extended to total
assignments which satisfy all the constraints.

Since constraints in CSPs are crisp, we can model
them via a semiring with only two values, say 1 and 0:
allowed tuples will have the value 1, and not allowed ones
the value 0. Moreover, in CSPs, constraint combination
is achieved via a join operation among allowed tuple sets.
This can be modelled here by taking as the multiplica-
tive operation the logical and (and interpreting 1 as true
and 0 as false). Finally, to model the projection over the
distinguished variables, as the k-tuples for which there
exists a consistent extension to an n-tuple, it is enough
to assume the additive operation to be the logical or.
Therefore a CSP is just an SCSP where the c-semiring
in the constraint system CS is SCSP = ({0,1}, V, A,0,1).
The ordering <s here reduces to 1 <s 0. As predictable,
all the properties related to k-consistency hold. In fact,
A is idempotent. Thus the results of Theorems 11 and
13 apply. Also, since the domain of the semiring is finite,
the result of Theorem 12 applies as well.

52 Fuzzy CSPs

Fuzzy CSPs (FCSPs) [Rosenfeld et a/, 1976; Dubois et
al., 1993; Ruttkay, 1994; Schiex, 1992] extend the no-
tion of classical CSPs by allowing non-crisp constraints,
that is, constraints which associate a preference level to
each tuple of values. Such level is always between 0
and 1, where 1 represents the best value (that is, the
tuple is allowed) and O the worst one (that is, the tu-
ple is not allowed). The solution of a fuzzy CSP is
then defined as the set of tuples of values which have
the maximal value. The value associated to n-tuple is
obtained by minimizing the values of all its subtuples.
Fuzzy CSPs are already a very significant extension of
CSPs. In fact, they are able to model partial constraint
satisfaction [Freuder and Wallace, 1992], so to get a solu-
tion even when the problem is overconstrained, and also
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prioritized constraints, that is, constraints with different
levels of importance [Boming et al., 1989,

Fuzzy CSPs can be modelled in our framework
by choosing the csemiing SFCSP = ({x | x E
[0, I]},max,mm,0,1). The ordering <s here reduces
to the > ordering on reals. The multiplicative opera-
tion of SFCSP (that is, min) is idempotent. Thus The-
orem 11 and 13 can be applied. Moreover, min is AD-
closed for any finite subset of [0,1]. Thus, by Theorem
12, any k-consistency algorithm terminates. Thus FC-
SPs, although providing a significant extension to classi-
cal CSPs, can exploit the same kind of local consistency
algorithms. An implementation of arc-consistency, suit-
ably adapted to be used over fuzzy CSPs, is given in
[Schiex, 1992] (although no formal properties of its be-
haviour are proved).

5.3 Probabilistic CSPs

Probabilistic CSPs (PCSPs) [Fargier and Lang, 1993]
have been introduced to model those situations where
each constraint ¢ has a certain independent probability
p(c) to be part of the given real problem. This allows one
to reason also about problems which are only partially
known. The probability of each constraint gives then,
to each instantiation of all the variables, a probability
that it is a solution of the real problem. This is done
by associating to an n-tuple t the probability that all
constraints that ¢ violates are in the real problem. This
is just the product of all 1 - p(c) for all ¢ violated by t.
Finally, the aim is to get those instantiations with the
maximum probability.

The relationship between PCSPs and SCSPs is compli-
cated by the fact that PCSPs contain crisp constraints
with probability levels, while SCSPs contain non-crisp
constraints. That is, we associate values to tuples, and
not to constraints. However, it is still possible to model
PCSPs, by using a transformation which is similar to
that proposed in [Dubois et a/., 1993] to model priori-
tized constraints via soft constraints in the FCSP frame-
work. More precisely, we assign probabilities to tuples
instead of constraints: consider any constraint ¢ with
probability p(c); and let t be any tuple of values for the
variables involved in c; then we set p(f) — 1 iftis al-
lowed by c, otherwise p(f) = 1 — p(c). The reasons for
such a choice are as follows: if a tuple is allowed by ¢
and c is in the real problem, then t is allowed in the
real problem; this happens with probability p(c); if in-
stead c is not in the real problem, then t is still alowed
in the real problem, and this happens with probability
1—p(c). Thus tis allowed in the real problem with prob-
ability p(c) + 1 — p(c) = 1. Consider instead a tuple ¢
which is not allowed by c. Then it will be allowed in the
real problem only if ¢ is not present; this happens with
probability 1 - p(c).

To give the appropriate value to an n-tuple ¢, given the
values of all the smaller k-tuples, with k < n and which
are subtuples of t (one for each constraint), we just per-
form the product of the value of such subtuples. By the
way values have been assigned to tuples in constraints,
this coincides with the product of all 1 — p(c) for all ¢
violated by t. In fact, if a subtuple violates c, then by



construction its value is 1 - p(c); if instead a subtuple
satisfies c, then its value is 1. Since 1 is the unit element
of x, we have that 1 x a = a for each a. Thus we get
II(1 - p(c)) for all c that ¢ violates.

As aresult, the c-semiring corresponding to the PCSP
framework is Spop = {{x \ x E[0,1]}, max, x,0,1), and
the associated ordering <s here reduces to > over reals.
Note that the fact that P’ is a-consistent means that in
P there exists an n-tuple which has probability a to be
a solution of the real problem.

The multiplicative operation of S, (that is, x) is
not idempotent. Thus neither Theorem 11 nor Theorem
13 can be applied. Also, x is not closed on any superset
of any non-trivial finite subset of [0,1]. Thus Theorem
12 cannot be applied as well. Therefore, k-consistency
algorithms do not make much sense in the PCSP frame-
work, since none of the usual desired properties hold.
However, the fact that we are dealing with a c-semiring
implies that, at least, we can apply Theorem 8: if a
PCSP problem has a tuple with probability a to be a
solution of the real problem, then any subproblem has
a tuple with probability at least a to be a solution of a
subproblem of the real problem. This can be fruitfully
used when searching for the best solution in a branch-
and-bound search algorithm.

54 Weighted CSPs

While fuzzy CSPs associate a level of preference to each
tuple in each constraint, in weighted CSPs (WCSPs) tu-
ples come with an associated cost. This allows one to
model optimization problems where the goal is to min-
imize the total cost (time, space, number of resources,
...) of the proposed solution. Therefore, in WCSPs the
cost function is defined by summing up the costs of all
constraints (intended as the cost of the chosen tuple for
each constraint). Thus the goal is to find the n-tuples
(where n is the number of all the variables) which min-
imize the total sum of the costs of their subtuples (one
for each constraint).

According to this informal description of WCSPs, the
associated c-semiring is SWCSP = ('R’, min,+,+00,0),
with ordering <s which reduces here to < over the reals.
This means that a value is preferred to another one if it
is smaller.

The multiplicative operation of SWCSP (that is, +)
is not idempotent. Thus the k-consistency algorithms
cannot be used (in general) in the WCSP framework,
since none of the usual desired properties hold. However,
again, the fact that we are dealing with a c-semiring
implies that, at least, we can apply Theorem 8: if a
WCSP problem has a best solution with cost a, then
the best solution of any subproblem has a cost smaller
than a. This can be convenient to know in a branch-
and-bound search algorithm.

5.5 Egalitarianism and Utilitarianism:
FCSP + WCSP

The FCSP and the WCSP systems can be seen as two
different approaches to give a meaning to the notion of
optimization. The two models comrespond in fact, re-
spectively, to two definitions of social welfare in utility

theory [Moulin, 1988]: egalitarianism, which maximizes
the minimal individual utility, and utilitarianism, which
maximizes the sum of the individual utilities.

In this section we show how our framework allows
also for the combination of these two approaches. In
fact, we construct an instance of the SCSP framework
where the two approaches coexist, and allow us to dis-
criminate among solutions which otherwise would result
indistinguishable. More precisely, we first compute the
solutions according to egalitarianism (that is, using a
max-min computation as in FCSPs), and then discrim-
inate more among them via utilitarianism (that is, using
a max — sum computation as in WCSPs). The result-
ing c-semiring is Sye = {{(/,k) | ,k E[0,1]}. max, min,
(0,0), (1,0)), where max and min are defined as follows:

= | {hmaz(k), k) il =1y

{h, ki maz{ly, bs) -{ k) il > b
. _f kit k) iflhi =1
“19*’1}.@(12: k2} - { {:2' kz) if Il > 12

That is, the domain of the semiring contains pairs of
values: the first element is used to reason via the max-
min approach, while the second one is used to further
discriminate via the max-sum approach. More precisely,
given two pairs, if the first elements of the pairs differ,
then the max — min operations behave like a normal
max — min, otherwise they behave like max-sum. This
can be interpreted as the fact that, if the first element
coincide, it means that the max-min criteria cannot dis-
criminate enough, and thus the max — sum criteria is
used.

Since min is not idempotent, k-consistency algorithms
cannot in general be used meaningfully in this instance
of the framework.

A kind of constraint solving similar to that consid-
ered in this section is the one presented in [Fargier et al,
1993], where Fuzzy CSPs are augmented with a finer way
of selecting the preferred solution. More precisely, they
employ a lexicographic ordering to improve the discrim-
inating power of FCSPs and avoid the so-called drowing
effect. This approach can be rephrased in our frame-
work as well, yielding an instance where k-consistency
algorithms can be applied.

6 Conclusions

In some of the instances considered, we have shown
that the sufficent conditions for the application of k-
consistency algorithms do not hold. However, this
does not mean that problems defined according to such
schemes are not easily solvable in some special cases. In
fact, one can show that our general framework is always
compatible with the notion of dynamic programming,
which, in the case of classical CSPs with a thick-tree
structure, reduces to that of perfect relaxation [Monta-
nari and Rossi, 1991].

We plan to extend our framework in order to take into
account several dimensions of "preference”. In fact, in
practice one could want, for example, to minimize cost
and time, while maximizing the level of confidence and
some notion of probability. Each of these desires could be
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cast in one c-semiring as shown in this paper, and then
the combination of the four c-semirings (which is again
a c-semiring) can be used to model the entire solving
scheme. However, more attention has to be put now in
the choice of the "best" solutions, since the presence of
several dimensions obviously increases the probability of
tuple incomparability.
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