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Abs t rac t 

We introduce a general framework for con­
straint solving where classical CSPs, fuzzy 
CSPs, weighted CSPs, partial constraint sat­
isfaction, and others can be easily cast. The 
framework is based on a semiring structure, 
where the set of the semiring specifies the val­
ues to be associated to each tuple of values of 
the variable domain, and the two semiring op­
erations (+ and x) model constraint projec­
tion and combination respectively. Local con­
sistency algorithms, as usually used for clas­
sical CSPs, can be exploited in this general 
framework as well, provided that some condi­
tions on the semiring operations are satisfied. 
We then show how this framework can be used 
to model both old and new constraint solving 
schemes, thus allowing one both to formally 
justify many informally taken choices in exist­
ing schemes, and to prove that the local con­
sistency techniques can be used also in newly 
defined schemes. 

1 In t roduc t i on 
Classical constraint satisfaction problems (CSPs) [Mon­
tanari, 1974; Mackworth, 1988] are a very expressive 
and natural formalism to specify many kinds of real-
life problems. In fact, problems ranging from map col­
oring, vision, robotics, job-shop scheduling, VLSI de­
sign, etc., can easily be cast as CSPs and solved using 
one of the many techniques that have been developed 
for such problems or subclasses of them [Freuder, 1978; 
1988; Mackworth and Freuder, 1985; Mackworth, 1977; 
Montanari, 1974]. 

However, they also have evident limitations, mainly 
due to the fact that they are not very flexible when trying 
to represent real-life scenarios where the knowledge is not 
completely available nor crisp. In fact, in such situations, 
the ability of stating whether an instantiation of values 
to variables is allowed or not is not enough or sometimes 
not even possible. For these reasons, it is natural to try 
to extend the CSP formalism in this direction. 

For example, in [Rosenfeld et a/., 1976; Dubois et al, 
1993; Ruttkay, 1994] CSPs have been extended with the 

ability to associate to each tuple, or to each constraint, 
a level of preference, and with the possibility of com­
bining constraints using min-max operations. This ex­
tended formalism has been called Fuzzy CSPs (FCSPs). 
Other extensions concern the ability to model incomplete 
knowledge of the real problem [Fargier and Lang, 1993], 
to solve overconstrained problems [Freuder and Wallace, 
1992], and to represent cost optimization problems. 

In this paper we define a constraint solving framework 
where all such extensions, as well as classical CSPs, can 
be cast. However, we do not relax the assumption of 
a finite domain for the variables of the constraint prob­
lems. The main idea is based on the observation that a 
semiring (that is, a domain plus two operations satisfy­
ing certain properties) is all what is needed to describe 
many constraint satisfaction schemes. In fact, the do­
main of the semiring provides the levels of consistency 
(which can be interpreted as cost, or degrees of prefer­
ence, or probabilities, or others), and the two operations 
define a way to combine constraints together. Specific 
choices of the semiring will then give rise to different 
instances of our framework. 

In classical CSPs, the so-called local consistency tech­
niques [Freuder, 1978; 1988; Mackworth, 1988; 1977; 
Montanari, 1974; Montanari and Rossi, 199l] have been 
proved to be very effective when approximating the solu­
tion of a problem. In this paper we study how to gener­
alize this notion to our framework, and we provide some 
sufficient conditions over the semiring operations which 
guarantee that such algorithms can be fruitfully applied 
also to our scheme. Here for being "fruitfully applica­
ble" we mean that 1) the algorithm terminates and 2) 
the resulting problem is equivalent to the given one and 
it does not depend on the nondeterministic choices made 
during the algorithm. 

The advantage of our framework, that we call SCSP 
(for Semiring-based CSP), is that one can just see his 
own constraint solving framework as an instance of SCSP 
over a certain semiring, and can immediately inherit the 
results obtained for the general framework. In particu­
lar, in this case, one can immediately see whether a local 
consistency technique can be applied or not. This allows 
one also to justify many informally taken choices in exist­
ing constraint solving schemes. In this paper we study 
several known and new constraint solving frameworks, 
casting them as instances of SCSP, and for some of them 
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stances of the SCSP framework. More precisely, each 
of such frameworks corresponds to the choice of a spe­
cific constraint system (and thus of a semiring). This 
means that we can immediately know whether one can 
inherit the properties of the general framework by just 
looking at the properties of the operations of the chosen 
semiring, and by referring to the theorems in the pre­
vious section. This is interesting for known constraint 
solving schemes, because it puts them into a single uni­
fying framework and it justifies in a formal way many 
informally taken choices, but it is especially significant 
for new schemes, for which one does not need to prove 
all the properties that it enjoys (or not) from scratch. 
Since we consider only finite domain constraint solving, 
in the following we will only specify the semiring that 
has to be chosen to obtain a particular instance of the 
SCSP framework. 

5.1 Classical CSPs 
A classical CSP problem [Montanari, 1974; Mackworth, 
1988] is just a set of variables and constraints, where 
each constraint specifies the tuples that are allowed for 
the involved variables. Assuming the presence of a subset 
of distinguished variables, the solution of a CSP consists 
of a set of tuples which represent the assignments of the 
distinguished variables which can be extended to total 
assignments which satisfy all the constraints. 

Since constraints in CSPs are crisp, we can model 
them via a semiring with only two values, say 1 and 0: 
allowed tuples will have the value 1, and not allowed ones 
the value 0. Moreover, in CSPs, constraint combination 
is achieved via a join operation among allowed tuple sets. 
This can be modelled here by taking as the multiplica­
tive operation the logical and (and interpreting 1 as true 
and 0 as false). Finally, to model the projection over the 
distinguished variables, as the k-tuples for which there 
exists a consistent extension to an n-tuple, it is enough 
to assume the additive operation to be the logical or. 
Therefore a CSP is just an SCSP where the c-semiring 
in the constraint system CS is SCSP = ({0,1}, V, A,0,1). 
The ordering <s here reduces to 1 <s 0. As predictable, 
all the properties related to k-consistency hold. In fact, 
A is idempotent. Thus the results of Theorems 11 and 
13 apply. Also, since the domain of the semiring is finite, 
the result of Theorem 12 applies as well. 

5.2 Fuzzy CSPs 
Fuzzy CSPs (FCSPs) [Rosenfeld et a/, 1976; Dubois et 
a/., 1993; Ruttkay, 1994; Schiex, 1992] extend the no­
tion of classical CSPs by allowing non-crisp constraints, 
that is, constraints which associate a preference level to 
each tuple of values. Such level is always between 0 
and 1, where 1 represents the best value (that is, the 
tuple is allowed) and 0 the worst one (that is, the tu­
ple is not allowed). The solution of a fuzzy CSP is 
then defined as the set of tuples of values which have 
the maximal value. The value associated to n-tuple is 
obtained by minimizing the values of all its subtuples. 
Fuzzy CSPs are already a very significant extension of 
CSPs. In fact, they are able to model partial constraint 
satisfaction [Freuder and Wallace, 1992], so to get a solu­
tion even when the problem is overconstrained, and also 

prioritized constraints, that is, constraints with different 
levels of importance [Borning et a/., 1989], 

Fuzzy CSPs can be modelled in our framework 
by choosing the c-semiring SFCSP = ({x I x E 
[0, l]},max,mm,0,1). The ordering <s here reduces 
to the > ordering on reals. The multiplicative opera­
tion of SFCSP (that is, min) is idempotent. Thus The-
orem 11 and 13 can be applied. Moreover, min is AD-
closed for any finite subset of [0,1]. Thus, by Theorem 
12, any k-consistency algorithm terminates. Thus FC­
SPs, although providing a significant extension to classi­
cal CSPs, can exploit the same kind of local consistency 
algorithms. An implementation of arc-consistency, suit­
ably adapted to be used over fuzzy CSPs, is given in 
[Schiex, 1992] (although no formal properties of its be-
haviour are proved). 

5.3 Probabilistic CSPs 
Probabilistic CSPs (PCSPs) [Fargier and Lang, 1993] 
have been introduced to model those situations where 
each constraint c has a certain independent probability 
p(c) to be part of the given real problem. This allows one 
to reason also about problems which are only partially 
known. The probability of each constraint gives then, 
to each instantiation of all the variables, a probability 
that it is a solution of the real problem. This is done 
by associating to an n-tuple t the probability that all 
constraints that t violates are in the real problem. This 
is just the product of all 1 - p(c) for all c violated by t. 
Finally, the aim is to get those instantiations with the 
maximum probability. 

The relationship between PCSPs and SCSPs is compli­
cated by the fact that PCSPs contain crisp constraints 
with probability levels, while SCSPs contain non-crisp 
constraints. That is, we associate values to tuples, and 
not to constraints. However, it is still possible to model 
PCSPs, by using a transformation which is similar to 
that proposed in [Dubois et a/., 1993] to model priori­
tized constraints via soft constraints in the FCSP frame-
work. More precisely, we assign probabilities to tuples 
instead of constraints: consider any constraint c with 
probability p(c)} and let t be any tuple of values for the 
variables involved in c; then we set p(t) — 1 if t is al­
lowed by c, otherwise p(t) = 1 — p(c). The reasons for 
such a choice are as follows: if a tuple is allowed by c 
and c is in the real problem, then t is allowed in the 
real problem; this happens with probability p(c); if in­
stead c is not in the real problem, then t is still alowed 
in the real problem, and this happens with probability 
1 —p(c). Thus t is allowed in the real problem with prob­
ability p(c) + 1 — p(c) = 1. Consider instead a tuple t 
which is not allowed by c. Then it will be allowed in the 
real problem only if c is not present; this happens with 
probability 1 - p(c). 

To give the appropriate value to an n-tuple t, given the 
values of all the smaller k-tuples, with k < n and which 
are subtuples of t (one for each constraint), we just per­
form the product of the value of such subtuples. By the 
way values have been assigned to tuples in constraints, 
this coincides with the product of all 1 — p(c) for all c 
violated by t. In fact, if a subtuple violates c, then by 
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construction its value is 1 - p(c); if instead a subtuple 
satisfies c, then its value is 1. Since 1 is the unit element 
of x, we have that 1 x a = a for each a. Thus we get 
II(1 - p(c)) for all c that t violates. 

As a result, the c-semiring corresponding to the PCSP 
framework is Sprob = {{x \ x E [0,1]}, max, x,0,1), and 
the associated ordering <s here reduces to > over reals. 
Note that the fact that P' is a-consistent means that in 
P there exists an n-tuple which has probability a to be 
a solution of the real problem. 

The multiplicative operation of Sprob (that is, x) is 
not idempotent. Thus neither Theorem 11 nor Theorem 
13 can be applied. Also, x is not closed on any superset 
of any non-trivial finite subset of [0,1]. Thus Theorem 
12 cannot be applied as well. Therefore, k-consistency 
algorithms do not make much sense in the PCSP frame-
work, since none of the usual desired properties hold. 
However, the fact that we are dealing with a c-semiring 
implies that, at least, we can apply Theorem 8: if a 
PCSP problem has a tuple with probability a to be a 
solution of the real problem, then any subproblem has 
a tuple with probability at least a to be a solution of a 
subproblem of the real problem. This can be fruitfully 
used when searching for the best solution in a branch-
and-bound search algorithm. 

5.4 Weighted CSPs 
While fuzzy CSPs associate a level of preference to each 
tuple in each constraint, in weighted CSPs (WCSPs) tu­
ples come with an associated cost. This allows one to 
model optimization problems where the goal is to min­
imize the total cost (time, space, number of resources, 
...) of the proposed solution. Therefore, in WCSPs the 
cost function is defined by summing up the costs of all 
constraints (intended as the cost of the chosen tuple for 
each constraint). Thus the goal is to find the n-tuples 
(where n is the number of all the variables) which min­
imize the total sum of the costs of their subtuples (one 
for each constraint). 

According to this informal description of WCSPs, the 
associated c-semiring is SWCSP = ("R+, min,+,+oo,0), 
with ordering <s which reduces here to < over the reals. 
This means that a value is preferred to another one if it 
is smaller. 

The multiplicative operation of SWCSP (that is, +) 
is not idempotent. Thus the k-consistency algorithms 
cannot be used (in general) in the WCSP framework, 
since none of the usual desired properties hold. However, 
again, the fact that we are dealing with a c-semiring 
implies that, at least, we can apply Theorem 8: if a 
WCSP problem has a best solution with cost a, then 
the best solution of any subproblem has a cost smaller 
than a. This can be convenient to know in a branch-
and-bound search algorithm. 

5.5 Egalitarianism and Uti l i tar ianism: 
FCSP + WCSP 

The FCSP and the WCSP systems can be seen as two 
different approaches to give a meaning to the notion of 
optimization. The two models correspond in fact, re­
spectively, to two definitions of social welfare in utility 

theory [Moulin, 1988]: egalitarianism, which maximizes 
the minimal individual utility, and utilitarianism, which 
maximizes the sum of the individual utilities. 

In this section we show how our framework allows 
also for the combination of these two approaches. In 
fact, we construct an instance of the SCSP framework 
where the two approaches coexist, and allow us to dis-
criminate among solutions which otherwise would result 
indistinguishable. More precisely, we first compute the 
solutions according to egalitarianism (that is, using a 
max-min computation as in FCSPs), and then discrim­
inate more among them via utilitarianism (that is, using 
a max — sum computation as in WCSPs). The result­
ing c-semiring is Sue = {{(/,k) | l,k E [0,1]}. max , min , 
(0,0), (1,0)), where max and min are defined as follows: 

That is, the domain of the semiring contains pairs of 
values: the first element is used to reason via the max-
min approach, while the second one is used to further 
discriminate via the max-sum approach. More precisely, 
given two pairs, if the first elements of the pairs differ, 
then the max — min operations behave like a normal 
max — min, otherwise they behave like max-sum. This 
can be interpreted as the fact that, if the first element 
coincide, it means that the max-min criteria cannot dis­
criminate enough, and thus the max — sum criteria is 
used. 

Since min is not idempotent, k-consistency algorithms 
cannot in general be used meaningfully in this instance 
of the framework. 

A kind of constraint solving similar to that consid­
ered in this section is the one presented in [Fargier et al, 
1993], where Fuzzy CSPs are augmented with a finer way 
of selecting the preferred solution. More precisely, they 
employ a lexicographic ordering to improve the discrim­
inating power of FCSPs and avoid the so-called drowing 
effect. This approach can be rephrased in our frame-
work as well, yielding an instance where k-consistency 
algorithms can be applied. 

6 Conclusions 
In some of the instances considered, we have shown 
that the sufficent conditions for the application of k-
consistency algorithms do not hold. However, this 
does not mean that problems defined according to such 
schemes are not easily solvable in some special cases. In 
fact, one can show that our general framework is always 
compatible with the notion of dynamic programming, 
which, in the case of classical CSPs with a thick-tree 
structure, reduces to that of perfect relaxation [Monta-
nari and Rossi, 1991]. 

We plan to extend our framework in order to take into 
account several dimensions of "preference". In fact, in 
practice one could want, for example, to minimize cost 
and time, while maximizing the level of confidence and 
some notion of probability. Each of these desires could be 
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cast in one c-semiring as shown in this paper, and then 
the combination of the four c-semirings (which is again 
a c-semiring) can be used to model the entire solving 
scheme. However, more attention has to be put now in 
the choice of the "best" solutions, since the presence of 
several dimensions obviously increases the probability of 
tuple incomparability. 
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