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CONSTRAINT-STYLE PRECONDITIONERS FOR REGULARIZED
SADDLE POINT PROBLEMS∗

H. S. DOLLAR†

Abstract. The problem of finding good preconditioners for the numerical solution of an im-
portant class of indefinite linear systems is considered. These systems are of a regularized saddle

point structure [ A BT

B −C
][ xy ] = [ cd ], where A ∈ R

n×n, C ∈ R
m×m are symmetric and B ∈ R

m×n.

In [SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1300–1317], Keller, Gould, and Wathen analyze the
idea of using constraint preconditioners that have a specific 2 by 2 block structure for the case of
C being zero. We shall extend this idea by allowing the (2, 2) block to be symmetric and positive
semidefinite. Results concerning the spectrum and form of the eigenvectors are presented, as are
numerical results to validate our conclusions.
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1. Introduction. Recently, a large amount of work has been devoted to the
problem of solving large linear systems in saddle point form. Such systems arise in
a wide variety of technical and scientific applications. For example, interior point
methods in both linear and nonlinear optimization require the solution of a sequence
of systems in saddle point form [27]. Another popular field, which is a major source of
saddle point problems, is that of mixed finite element methods in engineering fields;
see [9] and [19, Chapters 7 and 9]. An excellent survey of numerical methods for
algebraic saddle point problems has been written by Benzi, Golub, and Liesen [4].

We wish to find the solution of block 2 × 2 linear systems of the form

(1.1)

[
A BT

B −C

]
︸ ︷︷ ︸

A

[
x
y

]
=

[
c
d

]
︸ ︷︷ ︸

b

,

where A ∈ R
n×n, C ∈ R

m×m are symmetric and B ∈ R
m×n. We shall assume

that m ≤ n and ker(C) ∩ ker(BT ) = {0}, thus ensuring that A is nonsingular [4,
Theorem 3.1]. If A and C are positive definite, then the matrix A is a permuted quasi-
definite matrix [26]. Vanderbei has shown that quasi-definite matrices are strongly
factorizable; i.e., a Cholesky-like factorization LDLT exists for any symmetric row
and column permutation of the quasi-definite matrix [26]. The diagonal matrix has
n positive and m negative pivots. However, we shall not confine ourselves to quasi-
definite matrices.

It may be attractive to use iterative methods to solve systems such as (1.1),
particularly for large m and n. In particular, Krylov subspace methods might be used.
It is often advantageous to use a preconditioner, P, with such iterative methods. The
preconditioner should reduce the number of iterations required for convergence but
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not significantly increase the amount of computation required at each iteration [25,
Chapter 13].

In section 2, we shall first review the well-known spectral properties of a technique
commonly known as constraint preconditioning when C = 0 [14, 16]. For the case of
C = 0, a constraint preconditioner exactly reproduces the (constraint) blocks B, BT

and the C = 0 block. It is restrictive to assume that the matrix C in the saddle point
systems is always a zero matrix: a number of situations arise in which C �= 0 [1, 15, 23].
In all these cases, C is positive semidefinite, and hence we shall consider the idea of
extending constraint preconditioners to the case of C being positive semidefinite.
In particular, the preconditioner will exactly reproduce the B, BT and C blocks,
while the A block will be replaced by a symmetric block, which we refer to as G;
this is considered in sections 3 and 4. Such a preconditioner has been considered
before; for example, Perugia and Simoncini consider the case of G being diagonal
and positive definite [18], while G is assumed to be nonsingular in [22] and positive
definite in [3, 8, 24], but we show that these assumptions can be relaxed. In the past
couple of years, the use of implicit factorization preconditioners has been proposed
[7] with the aim of reducing the cost (both in CPU time and memory usage) of
applying a preconditioner of the form suggested in this paper. However, such implicit
factorization preconditioners will frequently generate a matrix G which is symmetric
and singular or indefinite, and thus the analysis of these preconditioners with such a
G is necessary.

2. Constraint preconditioners. Let us initially assume that C = 0. Lukšan
and Vlček [17] and Keller, Gould, and Wathen [14] investigated the spectral properties
of the resulting preconditioned system when we use a preconditioner of the form

(2.1) P =

[
G BT

B 0

]
,

where G is symmetric and approximates but (in general) is not the same as A. In [17],
G is additionally assumed to be positive definite. They were able to prove various
results about the eigenvalues and eigenvectors for the preconditioned systems P−1A,
where A and P are defined in (1.1) and (2.1), respectively. P is called a constraint
preconditioner. The proof of the following theorem can be found in [14].

Theorem 2.1. Let A ∈ R
(n+m)×(n+m) be a symmetric and indefinite matrix of

the form

A =

[
A BT

B 0

]
,

where A ∈ R
n×n is symmetric and B ∈ R

m×n is of full rank. Assume Z is an
n× (n−m) basis for the nullspace of B. Preconditioning A by a matrix of the form

P =

[
G BT

B 0

]
,

where G ∈ R
n×n is symmetric and B ∈ R

m×n is as above, implies that the matrix
P−1A has

• an eigenvalue at 1 with multiplicity 2m,
• n−m eigenvalues λ which are defined by the generalized eigenvalue problem
ZTAZxz = λZTGZxz.
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This accounts for all of the eigenvalues.
If either ZTAZ or ZTGZ is positive definite, then the indefinite preconditioner

P applied to the indefinite saddle point matrix A with C = 0 yields a preconditioned
matrix P−1A which has real eigenvalues [14]. If both ZTAZ and ZTGZ are positive
definite, then we can use a projected preconditioned conjugate gradient method to
find x and y; see [12]. Results about the associated eigenvectors and the Krylov
subspace dimension can also be found in [14].

3. Constraint preconditioners for the case of symmetric and positive
definite C . In this section, we shall assume that the matrix C is symmetric and
positive definite. The term constraint preconditioner was used in [10] and [14] because
the (1, 2) and (2, 1) matrix blocks of the preconditioner are exact representations of
those in A, where these blocks represent constraints. However, we also observe that
the (2, 2) matrix block is an exact representation when C = 0. This motivates the
generalization of the constraint preconditioner to take the form

(3.1) P =

[
G BT

B −C

]
,

where G ∈ R
n×n approximates but is, in general, not the same as A.

We shall use the following assumptions in the theorems of this section.
A1 C ∈ R

m×m is symmetric and positive definite.
A2 A ∈ R

n×n is symmetric.
A3 B ∈ R

m×n (m < n).
A4 G ∈ R

n×n is symmetric.
A5 A ∈ R

(n+m)×(n+m) is as defined in (1.1).
A6 P ∈ R

(n+m)×(n+m) is as defined in (3.1).
In the next section, A1 will be relaxed.

Theorem 3.1. Assume that A1–A6 hold; then the matrix P−1A has
• an eigenvalue at 1 with multiplicity m,
• n eigenvalues which are defined by the generalized eigenvalue problem(

A + BTC−1B
)
x = λ

(
G + BTC−1B

)
x.

This accounts for all of the eigenvalues.
Proof. The eigenvalues of the preconditioned coefficient matrix P−1A may be

derived by considering the generalized eigenvalue problem

(3.2)

[
A BT

B −C

] [
x
y

]
= λ

[
G BT

B −C

] [
x
y

]
.

Expanding this out, we obtain

(3.3) Ax + BT y = λGx + λBT y

and

(3.4) Bx− Cy = λBx− λCy.

Equation (3.4) implies that either λ = 1 or Bx − Cy = 0. If the former holds, then
(3.3) becomes

(3.5) Ax = Gx.
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Equation (3.5) is trivially satisfied by x = 0, and hence there are m linearly inde-
pendent eigenvectors of the form

[
0T yT

]
associated with the unit eigenvalue. If

there exist any x �= 0 which satisfy (3.5), then there will be i (0 ≤ i ≤ n) linearly
independent eigenvectors of the form

[
xT yT

]
, where the components x arise from

the generalized eigenvalue problem Ax = Gx.
If λ �= 1, then (3.4) implies that

y = C−1Bx.

Substituting this into (3.3) yields the generalized eigenvalue problem

(3.6)
(
A + BTC−1B

)
x = λ

(
G + BTC−1B

)
x.

Thus, the nonunit eigenvalues of P−1A are defined as the nonunit eigenvalues of (3.6).
Noting that if (3.6) has any unit eigenvalues, then the values of x(�= 0) which satisfy
this are exactly those which arise from the generalized eigenvalue problem Ax = Gx,
we complete our proof.

Theorem 3.1 generalizes the results of [8, Theorem 1] by removing the assumption
that G is positive definite. If A + BTC−1B or G + BTC−1B is positive definite,
then the preconditioned system has real eigenvalues. If both A + BTC−1B and G +
BTC−1B are positive definite, then we can apply a projected preconditioned conjugate
gradient method to find x and y [7, 11]. We also observe that if C has a small 2-
norm, ‖A‖2 = O(1) and ‖G‖2 = O(1), then the BTC−1B terms will dominate the
generalized eigenvalue problem (3.6) for Bx �= 0, and hence there will be at least m
further eigenvalues clustered about 1 for ‖C‖2 � 1. This additional clustering of part
of the spectrum of P−1A will often translate into a speeding up of the convergence
of a selected Krylov subspace method [2, section 1.3].

Theorem 3.2. Assume that A1–A6 hold and G + BTC−1B is positive definite;
then the matrix P−1A has n+m eigenvalues as defined in Theorem 3.1 and m+ i+ j
linearly independent eigenvectors. There are

• m eigenvectors of the form
[

0T yT
]

that correspond to the case λ = 1,

• i (0 ≤ i ≤ n) eigenvectors of the form
[
xT yT

]
arising from Ax = Gx for

which the i vectors x are linearly independent and λ = 1,
• j (0 ≤ j ≤ n) eigenvectors of the form

[
xT yT

]
that correspond to the

case λ �= 1.
Proof. The form of the eigenvectors follows directly from the proof of Theorem 3.1.

It remains for us to show that the m + i + j eigenvectors are linearly independent;
that is, we need to show that

[
0 · · · 0

y
(1)
1 · · · y

(1)
m

]⎡⎢⎢⎣
a
(1)
1
...

a
(1)
m

⎤
⎥⎥⎦ +

[
x

(2)
1 · · · x

(2)
i

y
(2)
1 · · · y

(2)
i

]⎡
⎢⎢⎣

a
(2)
1
...

a
(2)
i

⎤
⎥⎥⎦

+

[
x

(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

]⎡
⎢⎢⎣

a
(3)
1
...

a
(3)
j

⎤
⎥⎥⎦ =

⎡
⎢⎣ 0

...
0

⎤
⎥⎦(3.7)

implies that the vectors a(k) (k = 1, 2, 3) are zero vectors. Multiplying (3.7) by P−1A,
and recalling that in (3.7) the first matrix arises from the case λk = 1 (k = 1, . . . ,m),



676 H. S. DOLLAR

the second matrix from the case λk = 1 (k = 1, . . . , i), and the last matrix from
λk �= 1 (k = 1, . . . , j), gives

[
0 · · · 0

y
(1)
1 · · · y

(1)
m

]⎡⎢⎢⎣
a
(1)
1
...

a
(1)
m

⎤
⎥⎥⎦ +

[
x

(2)
1 · · · x

(2)
i

y
(2)
1 · · · y

(2)
i

]⎡
⎢⎢⎣

a
(2)
1
...

a
(2)
i

⎤
⎥⎥⎦

+

[
x

(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

]⎡
⎢⎢⎣

λ1a
(3)
1

...

λja
(3)
j

⎤
⎥⎥⎦ =

⎡
⎢⎣ 0

...
0

⎤
⎥⎦ .(3.8)

Subtracting (3.7) from (3.8), we obtain

[
x

(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

]⎡
⎢⎢⎣

(λ1 − 1)a
(3)
1

...

(λj − 1)a
(3)
j

⎤
⎥⎥⎦ =

⎡
⎢⎣ 0

...
0

⎤
⎥⎦ .

The assumption that G+BTC−1B is positive definite implies that x
(3)
k (k = 1, . . . , j)

are linearly independent and thus that (λk−1)a
(3)
1 = 0 (k = 1, . . . , j). The eigenvalues

λk (k = 1, . . . , j) are nonunit, which implies that a
(3)
k = 0 (k = 1, . . . , j). We also have

linear independence of x
(2)
k (k = 1, . . . , i), and thus a

(2)
k = 0 (k = 1, . . . , i). Equation

(3.7) simplifies to

[
0 · · · 0

y
(1)
1 · · · y

(1)
m

]⎡⎢⎢⎣
a
(1)
1
...

a
(1)
m

⎤
⎥⎥⎦ =

⎡
⎢⎣ 0

...
0

⎤
⎥⎦ .

However, y
(1)
k (k = 1, . . . ,m) are linearly independent, and thus a

(1)
k = 0 (k =

1, . . . ,m).
Krylov subspace theory states that iteration with any method with an optimality

property, e.g., GMRES [21], will terminate when the degree of the minimal polynomial
is attained. This is also true of some other (nonoptimal) practical iteration methods
such as BiCGTAB as long as failure (for example, through irregular convergence [25,
Chapter 8]) does not occur. In particular, the degree of the minimal polynomial is
equal to the dimension of the corresponding Krylov subspace K

(
P−1A, b

)
(for general

b) [20, Proposition 6.1], where

K
(
P−1A, b

)
= span{b,P−1Ab, (P−1A)2b, . . . , (P−1A)n+m−1b}.

Theorem 3.3. Assume that A1–A6 hold and G + BTC−1B is positive definite;
then the dimension of the Krylov subspace K

(
P−1A, b

)
is at most min{n+2, n+m}.

Proof. As in the proof of Theorem 3.1, the generalized eigenvalue problem is

(3.9)

[
A BT

B −C

] [
x
y

]
= λ

[
G BT

B −C

] [
x
y

]
.

Suppose that the preconditioned matrix P−1A takes the form

(3.10) P−1A =

[
Θ1 Θ3

Θ2 Θ4

]
,
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where Θ1 ∈ R
n×n, Θ2 ∈ R

m×n, Θ3 ∈ R
n×m, and Θ4 ∈ R

m×m. It is straightforward
to show that Θ3 = 0 and Θ4 = I. The precise forms of Θ1 and Θ2 are irrelevant for
the argument that follows.

From the earlier eigenvalue derivation, it is evident that the characteristic poly-
nomial of the preconditioned linear system (3.10) is

(
P−1A− I

)m n∏
i=1

(
P−1A− λiI

)
.

In order to prove the upper bound on the Krylov subspace dimension, we need to show
that the order of the minimal polynomial is less than or equal to min{n + 2, n + m}.
Expanding the polynomial

(
P−1A− I

)∏n
i=1

(
P−1A− λiI

)
of degree n+1, we obtain[

(Θ1 − I)
∏n

i=1 (Θ1 − λiI) 0
Θ2

∏n
i=1 (Θ1 − λiI) 0

]
.

Since Θ1 has a full set of linearly independent eigenvectors, Θ1 is diagonalizable.
Hence,

(Θ1 − I)

n∏
i=1

(Θ1 − λiI) = 0.

We therefore obtain

(3.11)
(
P−1A− I

) n∏
i=1

(
P−1A− λiI

)
=

[
0 0

Θ2

∏n
i=1 (Θ1 − λiI) 0

]
.

If Θ2

∏n
i=1 (Θ1 − λiI) = 0, then the order of the minimal polynomial of P−1A is less

than or equal to min{n + 1, n + m}. If Θ2

∏n
i=1 (Θ1 − λiI) �= 0, then the dimension

of K
(
P−1A, b

)
is at most min{n+2, n+m} since multiplication of (3.11) by another

factor
(
P−1A− I

)
gives the zero matrix.

Theorem 3.3 tells us that with preconditioner

P =

[
G BT

B −C

]

for

A =

[
A BT

B −C

]

the dimension of the Krylov subspace is no greater than min{n + 2, n + m} under
appropriate assumptions. Hence, termination (in exact arithmetic) is guaranteed in
a number of iterations smaller than this.

4. Constraint preconditioners for the case of symmetric and positive
semi-definite C. We shall relax assumption A1 and instead make the following
assumptions in the theorems of this section:

B1 C ∈ R
m×m is symmetric and positive semidefinite, and has rank p, where

0 < p < m.
B2 ker(C) ∩ ker(BT ) = {0}.
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B3 C is factored as C = EDET , where E ∈ R
m×p, and D ∈ R

p×p is symmetric
and positive definite.

B4 The matrix F ∈ R
m×(m−p) is such that its columns span the nullspace of C.

B5
[
E F

]
∈ R

m×m is orthogonal.

B6 The columns of N ∈ R
n×(n−m+p) span the nullspace of FTB.

Observe that assumption B2 implies that FTB has full rank m− p : if Cx = 0, then
we can write x = Fy for some vector y ∈ R

m−p. If also BTx = 0, then substituting
into x = Fy we obtain BTFy = 0. Assumption B2 implies that BTFy = 0 if and only
if y = 0, and hence FTB has full rank m− p.

The exact form of the factorization of C in B3 is clearly not relevant and, also,
clearly not unique—a spectral decomposition is a possibility.

Theorem 4.1. Assume that A2–A6 and B1–B6 hold; then the matrix P−1A has
• an eigenvalue at 1 with multiplicity 2m− p,
• n−m+p eigenvalues which are defined by the generalized eigenvalue problem

NT
(
A + BTED−1ETB

)
Nz = λNT

(
G + BTED−1ETB

)
Nz.

This accounts for all of the eigenvalues.
Proof. Any y ∈ R

m can be written as y = Eye + Fyf . Substituting this into the
generalized eigenvalue problem (3.2) and premultiplying by⎡

⎣ I 0
0 ET

0 FT

⎤
⎦ ,

we obtain

(4.1)

⎡
⎣ A BTE BTF

ETB −D 0
FTB 0 0

⎤
⎦
⎡
⎣ x

ye
yf

⎤
⎦ = λ

⎡
⎣ G BTE BTF

ETB −D 0
FTB 0 0

⎤
⎦
⎡
⎣ x

ye
yf

⎤
⎦ .

Noting that the (3, 3) block has dimension (m− p)× (m− p) and is a zero matrix in
both coefficient matrices, we can apply Theorem 2.1 from [14] to obtain that P−1A
has

• an eigenvalue at 1 with multiplicity 2(m− p),
• n−m+ 2p eigenvalues which are defined by the generalized eigenvalue prob-

lem

(4.2) N
T
[

A BTE
ETB −D

]
Nwn = λN

T
[

G BTE
ETB −D

]
Nwn,

where N is an (n + p) × (n−m + 2p) basis for the nullspace of
[
FTB 0

]
∈

R
(m−p)×(n+p), and [

x
ye

]T
= Nwn +

[
BTF

0

]
wb.

Letting N = [N 0
0 I ], then (4.2) becomes

(4.3)

[
NTAN NTBTE
ETBN −D

] [
wn1

wn2

]
= λ

[
NTGN NTBTE
ETBN −D

] [
wn1

wn2

]
.
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This generalized eigenvalue problem is exactly that of the form considered in Theo-
rem 3.1, and so (4.3) has an eigenvalue at 1 with multiplicity p, and the remaining
eigenvalues are defined by the generalized eigenvalue problem

(4.4) NT
(
A + BTED−1ETB

)
Nwn1 = λNT

(
G + BTED−1ETB

)
Nwn1.

Hence, P−1A has an eigenvalue at 1 with multiplicity 2m − p, and the other
eigenvalues are defined by the generalized eigenvalue problem (4.4).

Weaker forms of Theorem 4.1 can be found in [3, section 3.7] and [18, Proposition
5] for the case where G is assumed to be symmetric and positive definite (and diagonal
in [18]). We have relaxed this assumption to G being symmetric and also increased
the lower bound on the number of unit eigenvalues from m to 2m− p.

As for the cases C = 0 and C nonsingular, we are able to obtain conditions which
guarantee that the eigenvalues are real and for which a projected preconditioned con-
jugate gradient method could be applied to find x and y; respectively, these conditions
are

• either NT
(
A + BTED−1ETB

)
N or NT

(
G + BTED−1ETB

)
N is positive

definite,
• both NT

(
A + BTED−1ETB

)
N and NT

(
G + BTED−1ETB

)
N are posi-

tive definite.
Interestingly, the projected preconditioned conjugate gradient method is also derived
by the use of a factorization of C as in assumption B3; transformations are then
used to remove the requirement of needing to factorize C [7]. Additionally, in [7]
the authors show that it can be easy to establish that NT

(
G + BTED−1ETB

)
N is

symmetric and positive definite through the use of implicit factorization constraint
preconditioners: we emphasize that G is often singular or indefinite in these cases.

Similarly to the case p = m, if C has a small 2-norm, ‖A‖ = O(1) and ‖G‖ = O(1),
then the NTBTED−1ETBN terms will dominate the generalized eigenvalue problem
(4.4) for ETBNwn1 �= 0 and hence there will be at least p further eigenvalues clustered
about 1 when ‖C‖2 � 1.

Theorem 4.2. Assume that A2–A6, B1–B6 hold and G+BTED−1ETB is pos-
itive definite; then the matrix P−1A has n+m eigenvalues as defined in Theorem 3.1
and m + i + j linearly independent eigenvectors. There are

• m eigenvectors of the form
[

0T yT
]

that correspond to the case λ = 1,

• i (0 ≤ i ≤ n) eigenvectors of the form
[
xT yT

]
arising from Ax = Gx for

which the i vectors x are linearly independent and λ = 1,
• j (0 ≤ j ≤ n) eigenvectors of the form

[
xT yT

]
that correspond to the

case λ �= 1.
Proof. The proof of the form and linear independence of the m+i+j eigenvectors

is obtained in a similar manner to the proof of Theorem 3.2.
A weaker form of Theorem 4.2 can be found in [3]: this corresponds to the case

of G being symmetric and positive definite.
To show that both the lower and upper bounds on the number of linearly inde-

pendent eigenvectors can be attained, we need only consider variations on Examples
2.5 and 2.6 from [14].

Example 4.1 (minimum bound). Consider the matrices

A =

⎡
⎢⎢⎣

1 2 0 1
2 2 1 0
0 1 0 0
1 0 0 −1

⎤
⎥⎥⎦ , P =

⎡
⎢⎢⎣

1 3 0 1
3 4 1 0
0 1 0 0
1 0 0 −1

⎤
⎥⎥⎦
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such that m = 2, n = 2, p = 1, and G is indefinite. The preconditioned matrix
P−1A has an eigenvalue at 1 with multiplicity 4 but only two linearly independent
eigenvectors which arise from the first case of Theorem 4.2. These eigenvectors may

be taken to be
[

0 0 1 0
]T

and
[

0 0 0 1
]T

.
Example 4.2 (maximum bound). Let A ∈ R

4×4 be as defined in Example 4.1,
but assume that G = A. The preconditioned matrix P−1A has an eigenvalue at 1
with multiplicity 4 and clearly a complete set of eigenvectors. These may be taken to
be the columns of the identity matrix.

The linear independence of the m + i + j eigenvectors allows us to obtain an
upper bound on the dimension of the Krylov subspace K

(
P−1A, b

)
.

Theorem 4.3. Assume that A2–A6, B1–B6 hold and G + BTED−1ETB is
positive definite; then the dimension of the Krylov subspace K

(
P−1A, b

)
is at most

min{n−m + p + 2, n + m}.
Proof. As in the proof of Theorem 3.3, the preconditioned matrix P−1A takes

the form

(4.5) P−1A =

[
Θ1 0
Θ2 I

]
,

where Θ1 ∈ R
n×n, and Θ2 ∈ R

m×n. The precise forms of Θ1 and Θ2 are irrelevant
for the argument that follows.

From the earlier eigenvalue derivation, it is evident that the characteristic poly-
nomial of the preconditioned linear system (4.5) is

(
P−1A− I

)2m−p
n−m+p∏

i=1

(
P−1A− λiI

)
.

In order to prove the upper bound on the Krylov subspace dimension, we need to show
that the order of the minimal polynomial is less than or equal to min{n − m + p +
2, n + m}. Expanding the polynomial

(
P−1A− I

)∏n−m+p
i=1

(
P−1A− λiI

)
of degree

n + 1, we obtain [
(Θ1 − I)

∏n−m+p
i=1 (Θ1 − λiI) 0

Θ2

∏n−m+p
i=1 (Θ1 − λiI) 0

]
.

Since G + BTED−1ETB is positive definite, Θ1 has a full set of linearly inde-
pendent eigenvectors and is diagonalizable. Hence, (Θ1 − I)

∏n−m+p
i=1 (Θ1 − λiI) = 0.

We therefore obtain

(4.6)
(
P−1A− I

) n−m+p∏
i=1

(
P−1A− λiI

)
=

[
0 0

Θ2

∏n−m+p
i=1 (Θ1 − λiI) 0

]
.

If Θ2

∏n−m+p
i=1 (Θ1 − λiI) = 0, then the order of the minimal polynomial of P−1A is

less than or equal to min{n−m+ p+ 1, n+m}. If Θ2

∏n−m+p
i=1 (Θ1 − λiI) = 0, then

the dimension of K
(
P−1A, b

)
is at most min{n−m+p+2, n+m} since multiplication

of (4.6) by another factor
(
P−1A− I

)
gives the zero matrix.

Thus, in exact arithmetic, iteration with any method with an optimality condition
will terminate in at most min{n − m + p + 2, n + m} iterations (in practice, exact
arithmetic is not available, and hence this theoretical bound may be exceeded). We
observe that if p = m, then Theorem 4.3 gives the same bound on the Krylov subspace
dimension as that in Theorem 3.3, and if p = 0, then we obtain the results of [14].
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Fig. 5.1. Distribution of the eigenvalues of P−1A for the CVXQP1 S problem (m = 50, n =
100) with C = 0, C = [0, 0; 0, Im/2], and C = I. The eigenvalues are sorted such that λ1 ≥ λ2 ≥
· · · ≥ λn+m.

5. Numerical results. The CUTEr test set [13] provides a set of quadratic pro-
gramming problems. We shall use a problem from this set to illustrate how changing
the rank of C affects the multiplicity of the unit eigenvalues and the termination of
GMRES. All tests were performed in MATLAB 7.01.

The CVXQP1 S problem from the CUTEr test set is small with n = 100 and
m = 50. It is a convex quadratic program whose constraints are linear; it is a purely
academic problem which has been constructed specifically for test problems. “Barrier”
penalty terms (in this case 1.1) are added to the diagonal of A to simulate systems
that might arise during an iteration of an interior point method for such problems.
We shall set G = diag(A), C = diag(0, . . . , 0, 1, . . . , 1) and vary the number of zeros
on the diagonal of C so as to change its rank.

In Figure 5.1, we illustrate the change in the eigenvalues of the preconditioned
system P−1A for three different choices of C. The eigenvalues are sorted so that

λ1 ≥ λ2 ≥ · · · ≥ λn+m.

When C = 0, we expect there to be at least 2m unit eigenvalues [14]. We observe
that our example has exactly 2m eigenvalues at 1. From Theorem 3.1, when C = I,
there will be at least m unit eigenvalues. Our example has exactly m unit eigenvalues
(Figure 5.1).

When C has rank m
2 , then the preconditioned system P−1A has at least 3m

2 unit
eigenvalues according to Theorem 4.1. Once again, the number of unit eigenvalues
for our example is exactly the lower bound given by the theorem.

Now suppose that we use (full) GMRES preconditioned by our extended con-
straint preconditioner with G = diag(A) and vary the rank of C by changing the



682 H. S. DOLLAR

10 15 20 25 30 35 40 45

60

65

70

75

80

85

90

95

100

105

rank(C)

ite
ra

tio
ns

Upper bound
GMRES

Fig. 5.2. Comparison of upper bound on the Krylov subspace dimension and the number of
iterations required to reduce the residual by 10−12.

number of 1’s along the diagonal of C (all other entries are zero). Figure 5.2 shows
that with this example and choice of G there is a strong correlation between the upper
bound on the Krylov subspace dimension and the number of iterations required to
reduce the residual by at least a factor of 10−12. This has been chosen as an extreme
example, and the number of iterations is often a lot lower than the upper bound on
the Krylov subspace dimension. A comprehensive comparison (taking into account
both CPU times and the number of iterations) for these preconditioners can be found
in [7]: this study reveals the possible advantages of choosing G to be singular or
indefinite.

6. Conclusions. In this paper, we investigated a class of preconditioners for
regularized saddle point matrix systems that incorporate the (1, 2), (2, 1), and
(2, 2) blocks of the original matrix. We showed that the inclusion of these blocks
in the preconditioner clusters at least 2m− p eigenvalues at 1, regardless of the struc-
ture of G. However, the standard convergence theory for Krylov subspace methods
is not readily applicable because, in general, P−1A does not have a complete set of
linearly independent eigenvectors. Using a minimal polynomial argument, we found
a general (sharp) upper bound on the number of iterations required to solve linear
systems of the form (1.1).

To confirm the analytical results of this paper, we used a subset of problems from
the CUTEr test set. We used the CVXQP1 S problem and varied the rank of C to
confirm the lower bound on the number of unit eigenvalues and the upper bound on
the Krylov subspace dimension.

We have assumed that the submatrices B, BT and −C in (1.1) are exactly repro-
duced in the preconditioner. For truly large-scale problems, this will be unrealistic
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[5, 6, 18], but the theorems in this paper may still be of some interest in the inexact
setting as a guide for choosing preconditioners. We wish to investigate this possibility
in our future work.
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