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Abstract

Constraint networks are a simple representation and reasoning framework with diverse
applications. In this paper, we present a new property called constraint tightness that can
be used for characterizing the difficulty of problems formulated as constraint networks.
Specifically, we show that when the constraints are tight they may require less
preprocessing in order to guarantee a backtrack-free solution. This suggests, for example,
that many instances of crossword puzzles are relatively easy while scheduling problems
involving resource constraints arequite hard. Formally, we present a relationship between
the tightness or restrictiveness of the constraints, and the level of local consistency
sufficient to ensure global consistency, thus ensuring backtrack-freeness. Two definitions
of local consistency are employed. The traditional variable-based notion leads to a
condition involving the tightness of the constraints, the level of local consistency, and the
arity of the constraints, while a new definition of relational consistency leads toa condition
expressed in terms of tightness and local-consistency level, alone. New algorithms for
enforcing relational consistency are introduced and analyzed.
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Abstract

Constraint networks are a simple represen
tation and recisoning framework with diverse
applications. In this paper, we present a new
property called constraint tightness that can
be used for characterizing the difficulty of
problems formulated as constraint networks.
Specifically, we show that when the con
straints are tight they may require less pre
processing in order to guarantee a backtrack-
free solution. This suggests, for example,
that many instances of crossword puzzles are
relatively easy while scheduling problems in
volving resource constraints are quite hard.
Formally, we present a relationship between
the tightness or restrictiveness of the con
straints, and the level of local consistency
sufficient to ensure global consistency, thus
ensuring backtrack-freeness. Two definitions
of local consistency are employed. The tradi
tional variable-based notion leads to a con

dition involving the tightness of the con
straints, the level of local consistency, and
the arity of the constraints, while a new
definition of relational consistency leads to
a condition expressed in terms of tightness
and local-consistency level, alone. New al
gorithms for enforcing relational consistency
are introduced and analyzed.

1 Introduction

Constraint networks are a simple representation and
reasoning framework. A problem is represented as a We also present a new definition of local consistency
set of variables, a domeiin of values for each variable, called relational m-consistency. The virtue of this def-
and a set of constraints between the variables, and inition is that, firstly, it allows expressing the relation-
the reasoning task is to find an instantiation of the ship between tightness and local consistency in a way
variables that satisfies the constraints. In spite of the that avoids an explicit reference to the arity of the
simplicity of the framework, many interesting prob- constraints. Secondly, it is operational, thus general-
lems can be formulated as constraint networks, includ- izing the concept of the composition operation defined
ing graph coloring [Montanari, 1974], scene labeling for binary constraints, and can be incorporated natu-
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[Waltz, 1975], natural language parsing [Maruyama,
1990], and temporal reasoning [Allen, 1983; Dechter et
ai, 1991; Meiri, 1991; van Beek, 1992].

Constraint networks are often solved using a back
tracking algorithm. However, backtracking algorithms
are susceptible to "thrashing;" discovering over and
over again the same reason for reaching a dead end in
the search for a solution. To ameliorate this thrash

ing behavior, algorithms for preprocessing a constraint
network by removing local inconsistencies have been
proposed and studied (e.g., [Dechter and Meiri, 1989;
Mackworth, 1977; Montanari, 1974]). Sometimes a
certain level of local consistency is enough to guaran
tee that the network is globally consistent. A network
is globally consistent if any solution for a subnetwork
can always be extended to a solution for the entire
network. Hence, if a network is globally consistent, a
solution CEin be found in a backtrack-free manner.

In this paper, we present a relationship between the
tightness or restrictiveness of the constraints, the ar
ity of the constraints, and the level of local consistency
sufficient to ensure global consistency. Specifically, in
any constraint network where the constraints have ar
ity r or less and the constraints have tightness of m
or less, if the network is strongly ((m -|- l)(r —1) -H I)-
consistent, then the network is globally consistent. In
formally, a network is strongly ^-consistent if any con
sistent instantiation of any t —1 or fewer variables can
be extended consistently to any additional variable.
Also informally, given an r-ary constraint and an in
stantiation of r —1 of the variables that participate in
the constraint, the parameter m is an upper bound on
the number of instantiations of the rth variable that

satisfy the constraint.



other. However, the networks are not 3-consistent. For
example, for the confused 4-queens problem shown in
Fig. la, there is no way to place a queen in the last
column that is consistent with the previously placed
queens. Similarly the networks are not 4-consistent
(see Fig. lb). Finally, every row and every column of
the (0,l)-matrices that define the constraints heis at
most 3 ones. Hence, the networks are 3-tight.

2.1 Related work

Much work has been done on identifying relationships
between properties of constraint networks and the level
of local consistency sufficient to ensure global consis
tency. This work falls into two classes; identifying
topological properties of the underlying graph of the
network and identifying properties of the constraints.
Here we review only the literature for constraint net
works with finite domains.

For work that falls into the class of identifying topo
logical properties, Freuder [1982; 1985] identifies a re
lationship between the width of a constraint graph and
the level of local consistency needed to ensure a solu
tion can be found without backtracking. As a special
case, if the constraint graph is a tree, arc consistency
is sufficient to ensure a solution can be found with

out backtracking. Dechter and Pearl [1988] providean
adaptive scheme where the level of local consistency is
adjusted on a node-by-node basis. Dechter and Pearl
[1989] generalize the results on trees to hyper-trees
which are called acyclic databases in the database com
munity [Beeri et al., 1983].

For work that falls into the class of identifying proper
ties of the constraints (the class into which the present
work falls), Montanari [1974] shows that path consis
tency is sufficient to guarantee that a binary network is
globally consistent if the relations are monotone. Van
Beek and Dechter [1994] show that path consistency
is sufficient if the relations are row convex. Dechter

[l992b] identifies a relationship between the sizeof the
domains of the variables, the arity of the constraints,
and the level of local consistency sufficient to ensure
the network is globally consistent. She proves the fol
lowing result.

Theorem 1 (Dechter [l992b]) Any \D\-valued r-
ary constraint network that is strongly (|D|(r— 1)4-1)-
consistent is globally consistent. In particular, any
\D\-valued binary constraint network that is strongly
(|£)| + l)-conststent is globally consistent.

For some networks, Dechter's theorem is tight in that
the level of local consistency specified by the theorem
is really required (graph coloring problems formulated
as constraint networks are an example). For other net
works, Dechter's theorem overestimates. Our results
should be viewed as an improvement on Dechter's the
orem. In particular, our main theorem, by taking into

account the tightness of the constraints, always spec
ifies a level of strong consistency that is less than or
equal to the level of strong consistency required by
Dechter's theorem.

3 Binary constraint networks

In this section we restrict our attention to binary con
straint networks and present a relationship between
the tightness of the constraints and the level of local
consistency sufficient to ensure a network is globally
consistent. The results are generalized to constraint
networks with constraints of arbitrary arity in the next
section.

The following lemma is needed in the proof of the
main result for constraint networks with binary con
straints and in a later proof of the result generalized
to constraint networks with constraints of arbitrary
arity. The lemma is really about the "tightness" of
constraints and the sufficiency of a certain level of con
sistency. We state the lemma in more colloquial terms
to make the proof more understandable.

Lemma 1 Suppose there are fan clubs that like to
meet and talk about famous people, and the following
conditions.

1. There are n fan clubs and d famous people.

2. Each fan club meets and talks about at most m,
m < d, famous people.

3. For every set o/ m -f I or fewer fan clubs, there
exists at least one famous person that every club
in the set talks about.

Then, there must exist at least one famous person that
every fan club talks about.

Proof. The proof is by contradiction and uses a proof
technique discovered by Dechter for Theorem 1. As
sume to the contrary that no such famous person ex
ists. Then, for each famous person, /j, there must
exist at least one fan club that does not talk about fi.
Let Cj denote one of the fan clubs that does not talk
about /,-. By construction, the set c = {cj, C2,..., Cd}
is a set of fan clubs for which there does not exist a

famous person that every club in the set talks about
(every candidate fi is ruled out since Cj does not talk
about fi). For every possible value of m, this leads to
a contradiction.

Case 1 (m = d —1): The contradiction is immediate
as c = {ci, C2,..., Cd} is a set of fan clubs of size m -I-1
for which there does not exist a famous person that
every club in the set talks about. This contradicts
condition (3).

Case 2 (m = d —2): The nominal size of the set
c = {ci, C2,...,c<j} is m -t- 2. We claim, however, that



2. Applying a path consistency algorithm does
tighten the constraints between the variables.
Once the network is made path consistent, each
row has < 2 ones. Now the theorem guaran
tees that if the constraint network is strongly 4-
consistent, the network is globally consistent.

3. Applying a 4-consistency algorithm results in no
changes as the network is already 4-consistent.
Thus, the network is strongly 4-consistent and
therefore also globally consistent.

Second, suppose that n is odd. This time, after ap
plying path consistency, the networks are still 3-tight
and it can be verified that the networks are not 4-

consistent. Enforcing 4-consistency would require non-
binary constraints, hence Theorem 2 no longer applies.
We take this example up again in the next section
where the results are generalized to non-binary con
straints. There we show that recording 3-ary con
straints is sufficient.

Recall that Nadel [1989] uses confused n-queens prob
lems to empirically compare backtracking algorithins
for finding all solutions to constraint networks. Nadel
states that these problems provide a "non-trivial test-
bed" [1989, p.190]. We believe the above analysis indi
cates that these problems are quite easy and that any
empirical results on these problems should be inter
preted in this light. Easy problems potentially make
even naive algorithms for solving constraint networks
look promising. To avoid this potential pitfall, back
tracking algorithms should be tested on problems that
range from easy to hard. In general, hard problems are
those that require a high level of local consistency to
ensure global consistency. Note also that these prob
lems are trivially satisfiable.

Example 3. The graph Ir-colorability problem can be
viewed as a problem on constraint networks: there is
a variable for each node in the graph; the domains of
the variables are the possible colors, D = {1,...,!:};
and the binary constraints are that two adjacent nodes
must be assigned different colors. Graph fc-colorability
provides examples of networks where both Theorems 1
and 2 give the same bound on the sufficient level of lo
cal consistency (since |£)| = k and m=\D\ —1). Fur
ther, as Dechter [l992b] shows, the bound is tight. For
example, consider coloring a complete graph on five
nodes with four colors. The network is 3-tight and
strongly 4-consistent, but not strongly 5-consistent
and not globally consistent. Hence, when m = |D| —1,
the level of local consistency specified by Theorem 2 is
as strong as possible and cannot be lowered.

We can also construct examples to show that Theo
rem 2 is as strong as possible for all m < 1D| - I.
This can be done by "embedding" graph coloring con
straints into the constraints for the new network. For

example, consider the network where the domains are
D = {!,...,5} and the constraints between all vari

ables is given by,

• 1 0 0 0 1 •

0 0 110

Rij = 0 10 10 .
0 110 0

1 0 0 0 1

The inner 3x3 matrix is the 3-coloring constraint.
The network is 2-tight and strongly 3-consistent, but
not strongly 4-consistent and not globally consistent.

4 R-ary constraint networks

In this section we generalize the results of the previous
section to networks with constraints of arbitrary arity.
We will define m-tightness of r-ary relations, namely
relations having r variables. We use the following no
tations and definitions.

Deiinition 4 (Relations)
Given a set of variables X = {xi,...,x„}, each as
sociated with a domain of discrete values Di,..., Dn,
respectively, a relation (or, alternatively, a constraintj
p over X is any subset

p C Di X D-2 X • •• D„.

Given a relation p on a set X of variables and a subset
Y C X, we denote byY = yorbyyan instantiation
of the variables in Y, called a subtuple and by ffy^yip)
the selection of those tuples in p that agree with Y = y.
We denote by TIy{p) Ihe projection of relation p on the
subset Y. Namely, a tuple over Y appears in ny(p)
if and only if it can be extended to a full tuple in p.
IfY is not a subset of p's variables the projection ts
over the subset of variables that appear both in Y and
in X. The operator is the join operator in relational
databases.

Definition 5 (Constrjiint networks)
A constraint network R over a set X of variables
{xi, X2,..., x„}, is a set of relations Ri,...,Rt, each
defined on a subset of variables Si,.. .,St respectively.
A relation in R specified over Y C X is also denoted
Ry. The set of subsets S = {5i,...,St} on which
constraints are specified is called the scheme of R. The
network R represents its set of all consistent solutions
over X, denoted p{R) or p{X), namely,

p{R) = {x = {Xi X„) IV5i 6 5,ns.(a;) € Ri}.

For non-binary networks the notion of consistency of a
subtuple can be definedin several ways. We will use the
following definition. A subtuple over Y is consistent if
it satisfies all the constraints defined over Y including
all fl's constraints obtained by projection over Y.

Definition 6 (Consistency of a subtuple)
A subtuple Y = y is consistent relative to R iff, for all
S- G S

ns.ny(y) € n5;ny(f2t)-



ri:{oi, m} j;4:{b, d}

X2:{b, o}

J5:{bi, o}

•C3:{b, bi} 'J6:{b, oi}

Figure 3: Example temporal network

variables and their associated domains for our exam

ple. The ternary constraints for our example are given
by,

Ri24 = {(oi,b,b), (oi,o,b), (m,b,b), (m,o,d)},
Ri35 = {(oi,bi,bi), (m,bi,bi), (m,b,o)},
R236 = {(b,b,b), (b,b,oi), (b,bi,b), (o,b,oi), (o,bi,b)},
R456 = {(b,bi,b), (b,o,b), (d,bi,b), (d,o,oi)}.

It can be shown that the network is 1-tight. Therefore,
by Theorem 3, if the network is strongly 5-consistent,
then the network is globally consistent. Suppose
that we attempt to either verify or achieve this level
of strong consistency. The network is strongly 3-
consistent, but not 4-consistent. For example, (b,b,oi)
is a consistent instantiation of {X2,X3, xe), since it sat
isfies the constraint R236 as well as all the constraints
obtained by projection. However, there is no way to
extend the instantiation to X4: (i) X4 <— b is inconsis
tent by the constraint i246 obtained by projecting R456
on {x4, xg}, and (ii) X4 »— d is inconsistent by the con
straint R24 obtained by projecting R124 on {x2,X4}.
The modified constraint R236 is given by,

^236 = {(b,b,b), (b,bi,b), (o,b,oi), (o,bi,b)}.

As well, some 3-ary constraints between previously un
constrained triples of variables need to be introduced.
For example, (oi,o,oi) is a consistent instantiation of
(xi,X2,X6), since it satisfies all the constraints ob
tained by projection. However, there is no way to
extend the instantiation to X3: (i) X3 «— b is incon
sistent by the constraint R13 obtained by projecting
f?i35 on {ri,X3}, and (ii) X3 <— bi is inconsistent by
the constraint f?236- Once the following 3-ary relations
are added, the network is strongly 4-consistent:

Rue = {(oi,b,b), (oi,o,b), (m,b,b), (m,o,b), (m,o.oi)}.
^^234 = {(b,b,b), (b,bi,b), (o,b,d), (o,bi,b), (o,bi,d)},
R25e = {(b,bi,b), (b,o,b), (o,bi,b), (o,o,oi)},
R346 = {(b,b,b), (b,d,oi), (bi,b,b), (bi,d,b)}.

It can now be verified that the network is also strongly
o-consistent. Therefore, by Theorem 3, the network
is globally consistent. The network is also minimal.
A network of r-ary relations is minimal if each tuple
in the relations participates in at least one consistent
instantiation of the network. These two properties,
global consistency and minimality, ensure that we can
efficiently answer some important clrisses of temporal
queries.

4.1 Relational local consistency

In [van Beek and Dechter, 1994] we extended the no
tion of path-consistency to non-binary relations, and
used it to specify an alternative condition under which
row-convex non-binary networks of relations are glob
ally consistent. This definition, since it considers the
relations rather than the variables as the primitive en
tities, does not mention the arity of the constraint ex
plicitly. We now extend this definition even further
and show how it can be used to alternatively describe
Theorem 3.

DeHnition 8 (Relational m-consistency)
Let R be a network of relations over a set of variables
X, let Rsi,..., Rs„_i be m —1, m > 3, relations in
R, where Si C X. We say that Rs,, •• •, are
relational m-consistent relative to variable x iff any
consistent instantiation of the variables in A, where

A = •?, —{x}, has an extension to x that satisfies
Rsi, •.., Rs„-i simultaneously. Namely, if and only if

p{A) C Hx(Mr=7' Rs,)-

(Recall that p{A) is the set of all consistent instan
tiations of the variables in A). A set of relations
Rsi, • • •, Rs„,-i are relational m-consistent iff they
are relational m-consistent relative to each variable in

Si- A network of relations is said to be relational
m-consistent iff every set ofm—l relations is relational
m-consistent. Relational 3-consistency is also called
relational path-consistency. A network is strongly re
lational m-consistent if it is relational i-consistent for
every i < m.

Note that we do not need to define relational 2-

consistency since our definition of consistency of a
subtuple, which takes into account all the networks'
projections, guarantees that einy notion of relational
2-consistency is redundant.

Example 7. Consider the following network of re
lations. The domains of the variables are all D =

{0,1,2} and the relations are given by,

(1) Rj^y, = {0000,1000,0100,0010,0001},

(2) = {011,122,021}.

The constraints are not relational path-consistent. For
example, the instantiation / = 0,x = l,j/ = 0 satis
fies all the constraints, (namely all the projections of



As with variable-based local-consistency, we can im
prove the efficiency of enforcing relational consistency
by enforcing it only along a certain direction. Be
low we present algorithm Directional Relational m-
Consistency (DRCm) that enforces strong relational
m-consistency on a network R. relative to a given or
dering, d, of the variables ri, xt, • • •.-Cn- We denote
as DRCm{R,d), a network that is strongly relational
m-consistent relative to an ordering d.

DRCm(R, d)

1. Initialize: generate an ordered partition of the con
straints, bucketi, ...,bucket„, where bucketi contains
all the constraints whose highest variable is Xj.

2. for j <— n downto 1

3. do for every set of m — 1 relations iZs,, •

Rs„-i in bucketi (if bucketi contains fewer
than m —1 relations, then take all the rela
tions in the bucket).

4. do A 5i - {xi}

5. Ra ^ RaC nA{K=i^ Rs.)
6. Add Ra to its appropriate bucket.

While the algorithm is incomplete for deciding consis
tency in general, it is complete for (m —2)-tight rela
tions that are closed under extended m-composition.
In fact, it is sufficient to require directional (m - 2)-
tightness relative to the ordering used. Namely, requir
ing that if X,- appears before Xj in the ordering then
any value of x,- will be (m —2)-tight relative to Xj but
not vice-versa. For example, functional relations are
always 1-tight from input to outputs but not for any
ordering.

Deiinition 9 (directionally m-tight)
A binary constraint, Rij, is directionally m-tight
with respect to an ordering of the variables, d =
(xi,...,x„), if Xi appears before Xj in the ordering
and every row of the (0,l)-matrix that defines the con
straint has at most m ones. An r-ary relation is di
rectionally m-tight with respect to an ordering of the
variables if and only if all of its binary projections are
directionally m-tight with respect to the ordering.

The following theorems will be stated without proofs.
Their correctness can be verified using similar theo
rems on directional consistency algorithms reported
earlier [Dechter and Pearl, 1989].

Theorem 6 (Completeness)
If a networkDRCm{R,d.) «« directionally {m—2)-tight
relative to d, then DRCm{R,d) is backtrack-free along
d.

Like similar algorithms for imposing directional consis
tency, DRCm's worst-case complexity can be bounded
as a function of the topological structure of the prob

lem via parameters like the induced width of the graph
[Dechter and Pearl, 1988].

A network of constraints R can be associated with a

constraint graph, where each node is a variable and
two variables that appear in one constraint are con
nected. A general graph can be embedded in a clique-
tree namely, in a graph whose cliques form a tree-
structure. The induced width, W*, of such an em
bedding is its maximal clique size and the induced
width W* of an arbitrary graph is the minimum in
duced width over all its tree-embeddings. For more
details see [Dechter and Pearl, 1989]. The complexity
of DRCm can be bounded as a function of the W* of
its constraint graph.

Theorem 7 (Complexity) Given a network of re
lations R, the complexity of algorithm DRCm along
ordering d is 0{exp{mW'(d))) where W(d) is the in
duced width of the constraint graph of R along d.

Example 9. Crossword puzzles have been used in
experimentally evaluating backtracking algorithms for
solving constraint networks [Ginsberg et al., 1990]. We
use an example puzzle (taken from [Dechter, 1992a])
to illustrate algorithm DRCm (see Figure 4).

Figure 4: A crossword puzzle

We can formulate this problem as a constraint problem
as follows, each possible slot holding a character will be
a variable, and the possible words are relations over the
variables. Therefore, we have xi,.. .,xi3 variables as
marked in the figure. Their domains are the alphabet
letters and the constraints are the following relations:

f2i,2,3,4,5 = {(H,0,S,E,S), (L,A,S,E,R), (S,H,E,E,T).
(S,N,A,1,L), (S,T,E,E,R)}

ii3,6,9,i2 = {(H,1,K,E), (A,R,0,N), (K,E,E,T),
(E,A,R,N), (S,A,M,E)}

•^8,9,10,11 = 6,9,12

R5,7,n = {(R,U,N), (S,U,N), (L,E,T), (Y,E,S),
(E,A,T), (T,E,N)}

Rio,13 = {(N,0). (B,E), (U,S), (1,T)}

Ri2,13 = Ri0,13
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