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Constraint Wrench Formulation
for Closed-Loop Systems Using
Two-Level Recursions
In order to compute the constraint moments and forces, together referred here as
wrenches, in closed-loop mechanical systems, it is necessary to formulate a dynamics
problem in a suitable manner so that the wrenches can be computed efficiently. A new
constraint wrench formulation for closed-loop systems is presented in this paper using
two-level recursions, namely, subsystem level and body level. A subsystem is referred here
as the serial- or tree-type branches of a spanning tree obtained by cutting the appropriate
joints of the closed loops of the system at hand. For each subsystem, unconstrained
Newton–Euler equations of motion are systematically reduced to a minimal set in terms
of the Lagrange multipliers representing the constraint wrenches at the cut joints and the
driving torques/forces provided by the actuators. The set of unknown Lagrange multipli-
ers and the driving torques/forces associated to all subsystems are solved in a recursive
fashion using the concepts of a determinate subsystem. Next, the constraint forces and
moments at the uncut joints of each subsystem are calculated recursively from one body
to another. Effectiveness of the proposed algorithm is illustrated using a multiloop planar
carpet scraping machine and the spatial RSSR (where R and S stand for revolute and
spherical, respectively) mechanism. �DOI: 10.1115/1.2779890�

Keywords: constraint wrench, dynamics, multibody systems, carpet scraping machine,
RSSR mechanism
Introduction
There are two basic problems associated with the dynamic be-

avior of multibody systems. The first problem, called forward
ynamics, is to determine the motion of a system for a set of
pplied moments and forces. The second one is the problem of
etermining the forces required to produce a prescribed motion, as
ell as the constrained wrenches, i.e., the reaction moments and

orces at the joints. Such problem is referred to as inverse dynam-
cs. The forward dynamics is essential to predict the system’s
ehavior. On the other hand, the constraint wrench analysis is
aluable for many reasons. It has important applications in control
f multibody systems, where the driving torques/forces to follow
pecified trajectory are evaluated. It also finds applications in de-
igning the supports, joints, and machine components, where in-
ormation of the bearing reactions is needed to calculate the
tresses induced and fatigue characteristics in the machine com-
onents.

A great number and variety of formulations of the governing
quations of motion for constrained multibody systems have been
eveloped since the period of Lagrange �1–5�. The complexities in
ormulation of a dynamics problem lie with the proper selection of
he coordinates and basic principles of mechanics, i.e., Newton–
uler equations, D’Alembert principle, virtual work, Lagrange
quations, energy methods, and others. In the past four decades,
esearchers focused mainly on the automatic derivation of the
quations of motion and their solution strategies �6–20�. Broadly,
hese formalisms can be classified into three categories, namely,
he Newton–Euler �NE� approach �4–8�, the Euler–Lagrange �EL�
pproach �9�, and the Kane method �9,10�.

The governing equations of motion of a multibody system are
ifferential algebraic equations �DAEs� or ordinary differential
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equations �ODEs� depending on the coordinates chosen and the
basic principles of mechanics used. The DAE formulation is
straightforward, as it uses the absolute Cartesian coordinates to
define the system’s configuration with respect to an inertial refer-
ence frame. However, a large number of nonlinear algebraic kine-
matic constraint equations have to be handled with the differential
equations of motion. The solution of DAE provides direct infor-
mation of the reaction moments/forces at all the joints. However,
irrespective of the substantial progress in solving DAEs, they are
still regarded as computationally inefficient, inaccurate, and un-
stable �3,4�. This is due to the large dimension of the DAEs and
the associated constraint violation problem �11,12�. Another ap-
proach is to use the ODE formulations for dynamic analysis. The
ODE formulation relies on independent generalized coordinates,
which requires numerical methods to separate independent coor-
dinates from dependent ones.

Several semirecursive formulations for closed-loop systems
have been developed �6–8,13–17,21,22� along with the DAE and
ODE approaches. Such formulations are based on the velocity
transformation methods where the simplicity of the formulation in
Cartesian coordinates and the efficiency of the formulation in joint
coordinates are maintained. In velocity transformation methods,
the equations of motion are first derived in terms of the Cartesian
coordinates, which are then transformed into a set of equations of
motion in terms of the relative joint coordinates using a velocity
transformation matrix �8,13�, spatial operators �14,15�, or an or-
thogonal complement �7,20�. For open-loop systems, the relative
joint coordinates are independent. Consequently, the conversion
of large number of unconstrained equations of motion to a re-
duced form of constrained equations is straightforward. For the
closed-loop systems, however, the relative joint coordinates are
not independent because they have to satisfy the loop-closure con-
straints. Usually, the cut-joint methodology is used to open the
closed kinematic loops by incorporating the unknown Lagrange
multipliers at the cut joints. One such methodology is proposed in
this paper, for constraint wrench evaluation of closed-loop multi-

body systems.

2007 by ASME Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



c
o
u
f
l
a
c
�
d
t
d
p
t
L
c
d
d
T
F
u
n
T
l
p

t
c
s
u
t
l
t
R
t
s

2

c
c
t
i

i
p
s
c
i
w
s
p
g
o
c

F
l

J

Downloa
For the evaluation of constraint wrenches, one writes the un-
onstrained NE equations of motion for all the uncoupled bodies
f the system at hand, be it open or closed, and solve for the
nknown reaction moments and forces, and the driving torques/
orces simultaneously. For complex systems, this leads to a very
arge number of equations. Hence, efficient recursive algorithms
re proposed in Refs. �14,16,23� for the open-loop systems, which
annot be extended in a straight manner to a closed-loop systems
17,18�. As a result, a concept of subsystem recursion is intro-
uced in this paper, where a spanning tree, resulting from cut of
he appropriate joints in a closed-loop system, is decomposed into
eterminate and indeterminate open-loop subsystems, as ex-
lained in Sec. 2. Next, the constrained equations of motion for
he determinate subsystems are derived and solved for the
agrange multipliers representing the constraint wrenches at the
ut joints, and the driving torques/forces, if any. Interestingly, the
etermination of the Lagrange multipliers makes some of the in-
eterminate subsystems determinate, and the process is repeated.
he above two steps are referred here as the subsystem recursion.
inally, the constraint wrenches at the uncut joints are calculated
sing one of the recursion algorithms for open-loop systems,
amely, Ref. �23�, which is referred here as the body recursion.
he subsystem recursion and body recursion together are the two-

evel recursions mentioned in the title and other places of this
aper.

This paper is organized as follows: Sec. 2 explains the spanning
ree and its subsystems. Section 3 derives the unconstrained and
onstrained equations of motion for the subsystems and the whole
ystem. The decoupled natural orthogonal complement matrices
sed to obtain constrained equations from unconstrained equa-
ions are then derived in Sec. 3 for the tree-type subsystems fol-
owed by the constraint wrench algorithm in Sec. 5. Two illustra-
ions using the multiloop carpet scraping machine and the spatial
SSR �where R and S stand for revolute and spherical, respec-

ively� mechanism are given in Sec. 6, followed by the conclu-
ions in Sec. 7.

Subsystems and Their Classifications
Assume that there are one or more closed kinematic loops in a

losed-loop system under study, as shown in Fig. 1�a�. In order to
onvert such multiloop system into an equivalent open-loop sys-
em, the closed kinematic loops are cut at some joints, as indicated
n Fig. 1�a�. Its open loops are shown in Fig. 1�b�.

For a complex multiloop system, the joints to be cut can be
dentified using the graph theory approach �24,25�, whereas de-
endent cut-joint constraints can be eliminated using the screw
ystem of the kinematic loops �26�. The resulting cut system is
alled the spanning tree of the original closed-loop system, as
llustrated in Fig. 2. The distinct branches of the spanning tree,
hich originate from the base body, #0, are referred to as “sub-

ystems,” which could be either serial or tree type. For the pur-
ose of defining the architecture of the spanning tree, base body is
enerally chosen as the fixed body of the system under study. Any
ther body whose position, velocity, and acceleration are known

ig. 1 Closed loops of a multiloop system: „a… the closed
oops and „b… its open loops
an also be selected as the base body.
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Numbering of the bodies in the spanning tree is based on iden-
tifying the serial chain in the system. For serial subsystems, the
bodies are numbered from #1 that is connected to the base body,
as indicated in Fig. 2. For a tree-type subsystem, the longest chain
from the base body, #0, is called the main chain and has n0 bodies,
whereas all other serial branches are called subchains. The sub-
chains are assumed to be connected to the main chain, as shown in
Fig. 2 for subchains k and �.

Any subchain is identified by its base body, e.g., in Subsystem
I, the subchain k stems from the kth body of the main chain, i.e.,
#k0, and has nk bodies. If more than one subchains emerge from a
body of the main chain, each subchain can be identified by double
subscripts. For example, k1 and k2 can emerge from the kth body
of the main chain having nk1 and nk2 bodies. Similarly, the sub-
chain,�, is connected to the �th body of the main chain, #�0, and
has n� bodies, as shown in Fig. 2. In addition, the Roman numer-
als are prefixed before the number of a body to recognize a sub-
system to which the body belongs. For example, as indicated in
Fig. 2, #I−1k denotes the first body of the kth subchain in Sub-
system I, whereas I−1k denotes the first joint of the kth subchain
in Subsystem I. Note that the symbol, “#,” is used to distinguish
labeling of bodies from that of joints. The index of Subchain is
dropped in the serial Subsystems, as in Subsystems II and III,
because the main chain has no subchains. Assuming that all joints
are of one degree of freedom, and the total number of moving
bodies is n, then the degree of freedom �DOF� of the spanning tree
is given by

DOF = 6 + �
j=I

s

nj �1�

where nj is the number bodies in the jth subsystem with the base
body having 6DOF. Moreover, s denotes the number of sub-
systems. For the spanning tree shown in Fig. 2, nI=n0+nk+n�,
nII=r, nIII=2, and hence, n=nI+nII+nIII.

On a free body in the spanning tree of Fig. 2, there may be as
many as four categories of moments and forces or wrenches act-
ing on it, namely, �1� external wrench from the environment that
are external to the system, and those provided by the actuators to
the system; �2� inertia wrench due to the motion of the body; �3�
Lagrange multipliers representing the constraint or reaction
wrench at the cut joints; and �4� the constraint or reaction wrench
at the uncut joints. For a nonredundant spanning tree resulting
from the closed-loop system, the total number of unknowns,
namely, the Lagrange multipliers and the driving torques/forces, is

Fig. 2 A spanning tree
equal to the DOF of the spanning tree. Such a spanning tree is
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eferred here as a determinate system. For example, any spanning
ree of the four-bar mechanism, as shown in Fig. 3, is determinate,
s it has three unknowns, namely, �1, �2, and �D, and 3DOF.
ollowing the above definition, any subsystem originating from

he base body of the spanning tree can also be categorized as
eterminate. The determinate subsystem is the one in which the
umber of unknowns, i.e., the Lagrange multipliers and the driv-
ng torques/forces associated with the subsystem, is equal to its
OF. If the condition for the determinate is not satisfied, then the

ubsystem is called indeterminate. It can be shown that once the
nknowns for the determinate subsystems are solved, one or more
f the remaining indeterminate subsystem�s� converted into deter-
inate one. For example, there are two spanning trees shown in
ig. 3 for the four-bar mechanism depending on which joint cut.
n Fig. 3�a�, Subsystems I and II are determinate and indetermi-
ate, respectively. Subsystem I has two unknowns, �1 and �2, with
DOF whereas Subsystem II has three unknowns, �1, �2, and �D,
ith 1DOF. Alternatively, in Fig. 3�b�, both subsystems are inde-

erminate.

Equations of Motion
In this section, a methodology for the constraint wrench formu-

ation of a closed-loop system is presented. First, the closed-loop
ystem is converted into a spanning tree by cutting the appropriate
oints of the closed loops, presented in Sec. 2. The loop-closure
onstraints are then incorporated into the equations of motion as
agrange multipliers. The equations of motion for the subsystems
nd the spanning tree are then systematically derived, as explained
ext.

3.1 Subsystem. The NE equations of motion for the ith rigid
ody, Fig. 4, of jth subsystem are given with respect to its origin,
i, in the fixed inertial frame, as �27�

Miṫi + WiMiEiti = wi �2�
here the 6�6 matrices of the mass, Mi, the angular velocity,
i, and the coupling term, Ei, are as follows:

Fig. 3 Open systems for four-bar mechanism
Fig. 4 Coupled bodies
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Mi �� Ii mid̃i

− mid̃i mi1
� Wi � ��̃i O

O �̃i
� and Ei � � 1 O

O O
�

�3�

in which the 3�3 skew-symmetric matrix, d̃i and �̃i, are associ-
ated with the three vectors, di and �i, respectively, i.e., d̃ix=di
�x, and �̃ix=�i�x for the 3-vector,1 x. Moreover, Ii is the 3
�3 inertia tensor with respect to the origin, Oi, and 1 and O are
the 3�3 identity and zero matrices, respectively. Note that Oi and
Oi+1 are the points where the ith body is coupled with its previous,
�i−1�st, and succeeding, �i+1�st, bodies. Furthermore, the
6-vector of twist, ti, and wrench, wi, are defined as

ti � ��i

vi
� wi � �ni

fi
� �4�

in which �i, vi, ni, and fi are the angular velocity, linear velocity,
resultant of external moments, and the resultant of external forces,
respectively, at Oi of the ith body. For the subsystem j having nj
moving bodies, the 6nj scalar unconstrained equations of motion
are now expressed as

M jṫ j + W jM jE jt j = w j �5�

where the 6nj-vectors t j, ṫ j, and w j, respectively, are the general-
ized twist, twist rate, and wrench, whereas the 6nj �6nj matrices,
M j, W j, and E j, are the generalized mass, angular velocity, and
coupling matrices, respectively. For a serial subsystem, the bodies
are numbered from 1 to nj, hence, the 6nj vectors, t j, ṫ j, and w j,
and the 6nj �6nj matrices, M j, W j, and E j, are defined as

t j � 	 t1

]

tnj


 t j � 	 ṫ1

]

ṫnj


 w j � 	w1

]

wnj



and

M j � diag�M1 ¯ Mnj
� W j � diag�W1 ¯ Wnj

�

and E j � diag�E1 ¯ Enj
� �6�

For the tree-type subsystem, i.e., Subsystem I of Fig. 2, bodies are
numbered from 1 to nj, as explained in Sec. 2. The 6nj-vectors, t j,
ṫ j, and w j, and the 6nj �6nj matrices, M j, W j, and E j, are defined
as

t � 	t0

tk

t� 
 ṫ � 	ṫ0

ṫk

ṫ�

 w � 	w0

wk

w� 

and

M j � diag�M0 Mk M�� W j � diag�W0 Wk W��

and E j � diag�E0 Ek E�� �7�

where the components of vectors and matrices are of sizes accord-
ing to the serial subchains in the tree-type subsystem. For ex-
ample, t0 and M0 are 6n0-vector and 6n0�6n0 matrix, respec-
tively. Note that in Eq. �2� or �5� the wrench, wi, for the ith body
is composed of the wrenches, wi

e, due to externally applied mo-
ments and forces on it including those provided by the driving
actuators, wi

c, due to the nonworking constraint moments and
forces at the uncut joints, and wi

�, representing the constraint mo-
ments and forces at the cut joints, i.e., wi�wi

e+wi
c+wi

�. Equation
�5� is now rewritten as

1
Note that n-vector represents n dimensional vector.
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M jṫ j + M jW jt j = w j
e + w j

c + w j
� �8�

here w j
e, w j

c, and w j
� denote the 6nj-vectors of corresponding

renches associated with the jth subsystem. It can be shown that
he premultiplication of the transpose of the natural orthogonal
omplement �NOC� matrix, N j, associated with velocity constraint
f the subsystem �28,29�, with the unconstrained NE equations of
otion, Eq. �8�, leads to a set of nj constrained equations of mo-

ion free from the constraint wrenches at the uncut joints, i.e.,

N j
T�M jṫ j + W jM jE jt j� = N j

T�w j
e + w j

�� �9�

here the term, N j
Tw j

c, vanishes. Note that the size of the NOC
atrix, N j, as derived in Sec. 4, is 6nj �nj if all nj moving bodies

f the jth subsystem are coupled with 1DOF joints. Now, intro-
ucing the notation for the inertia wrench of the jth subsystem as

j
*, i.e., M jṫ j +W jM jE jt j �w j

*, Eq. �9� is rewritten as

N j
Tw j

* = � j
e + � j

� �10�

here � j
e�N j

Tw j
e is the nj-vector of generalized forces due to the

xternal moments and forces, and those resulting from the actua-
ors, gravity, and dissipation, and � j

��N j
Tw j

� is the nj-vector of
eneralized forces due to the constraint moments and forces at the
ut joints, i.e., the Lagrange multipliers.

Equation �10� is what many authors obtained using Euler–
agrange’s equations of motion �28�. The nj scalar equations, Eq.

10�, are the linear algebraic equations in Lagrange multipliers
nd the driving torques/forces associated with the jth subsystem.
he number of constrained dynamic equations of motion, nj, is
ertainly smaller than the 6nj unconstrained NE equations of mo-
ion, Eq. �5�. For determinate subsystem, nj is equal to the number
f unknown Lagrange multipliers and the driving torques/forces,
f any, that are associated with it and can be solved uniquely. With
he unknowns solved for the determinate subsystems, some or all
he indeterminate subsystems become determinate, and the pro-
ess can be repeated. This is referred in this paper as subsystem
evel recursion. Next, to also obtain the constraint wrenches at the
ncut joints, the recursive algorithm for the open-loop system, as
roposed in Ref. �23�, can be used, i.e.,

wi−1,i = Ai,i+1� wi,i+1 + wi
* − wi

e �11�

here

wi−1,i � �ni−1,i

fi−1,i
� wi

* � �ni
*

fi
* �

he moment, ni−1,i, and the force, fi−1,i, are those applied by the
i−1�st body to the ith one at the ith joint and so on. In Eq. �11�,
he 6�6 matrix, Ai,i+1� , is the wrench propagation matrix, which
ransforms the wrench acting at point Oi+1 to Oi of the ith body,
.e.,

Ai,i+1� � � 1 ãi,i+1

O 1
� �12�

here ãi,i+1 is the 3�3 skew-symmetric matrix associated with
he 3-vector, ai,i+1, as shown in Fig. 4. Equation �11� is referred
ere as the body-level recursion. The above two recursions to-
ether are called the two-level recursions. This approach is, how-
ver, termed as the subsystem approach, where Eqs. �10� and �11�
re used.

3.2 Spanning Tree. For the spanning tree, the constrained
quations are obtained using Eq. �10� as

N j
Tw j

* = � j
e + � j

� for j = I, . . . ,s �13�

here s is the number of subsystems, which can be either serial or
ree type originating from the base body of the spanning tree.

quation �13� is written in a compact form as

ournal of Mechanical Design
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NTw* = �e + �� �14�
where

w* � 	wI
*

]

ws
* 
 �e � 	�I

e

]

�s
e 
 and �� � 	�I

�

]

�s
� 
 �15�

and N is the 6n�n NOC matrix for the spanning tree, which is

N = diag�NI ¯ Ns� �16�
in which N j is the NOC matrix for the jth subsystem be it a serial
or tree type, derived next in Sec. 4. Moreover, w* is the 6n-vector,
and �e and �� are the n-vectors—n�nI+ ¯ +nS being the total
number bodies in the spanning tree. For a nonredundant spanning
tree resulting from the closed-loop system, the total number of
unknowns, the driving torques/forces, and the Lagrange multipli-
ers is equal to the total number of bodies, n, and the DOF of the
system. Hence, the scalar equations of Eq. �14� can be solved
using any standard method such as lower/upper triangular �LU�
decomposition �30�, whereas the constraint wrenches at the uncut
joints are solved using the body-level recursions, namely, Eq.
�11�. This approach is termed here as the system approach, where
Eqs. �10� and �14� are used. Similar methodology is also reported
in Refs. �7,15,17,31�.

4 Natural Orthogonal Complement Matrix
The NOC matrix �28� is used to derive the constrained equa-

tions of motion, Eqs. �10� and �14�, for a subsystem and the span-
ning tree, respectively. For the serial-type subsystem, the NOC
matrix can be obtained as the multiplication of two block matri-
ces, called the decoupled natural orthogonal complement �De-
NOC� matrices �20�, whereas for tree-type subsystem, it is derived
in this paper. Note here that the DeNOC matrices for closed-loop
parallel-type system in Refs. �27,32� cannot be used here, as they
were derived considering the special architecture without cutting
them.

Referring to Fig. 4, the twist, ti, as defined in Eq. �4�, is ex-
pressed in terms of the twist of its previous body, i.e., the �i
−1�st one, ti−1, as �19�

ti = Ai,i−1ti−1 + pi�̇i �17�
where the 6�6 matrix, Ai,i−1, is called the twist propagation ma-
trix, which transforms the twist of the �i−1�st body to the ith one
as if they are rigidly connected. The matrix, Ai,i−1, is given by

Ai,i−1 � � 1 O

ãi,i−1 1
� �18�

in which the 3�3 skew-symmetric matrix, ãi,i−1, is associated
with the 3-vector ai,i−1. For serially connected three bodies,
namely, i, j, and k, the twist propagation matrices satisfy the fol-
lowing properties:

AijA jk = Aik Aii = 1 Aij
−1 = A ji and det�Aij� = 1 �19�

The scalar, �̇i of Eq. �17�, is the joint rate. For a revolute joint, �i
is the variable parameter and the angle of the ith body moved with
respect to the �i−1�st one. For a prismatic joint, �̇i is the linear
speed of the point Oi with respect to Oi−1. In Eq. �17�, the six
vectors, pi, take into account the motion of the ith body relative to
the �i−1�st one, which is dependent on the DOF of the ith joint,
and is called the joint-rate propagation vector. For 1DOF joints,
e.g., a revolute or a prismatic,

pi � �ei

0
� revolute joint and pi � �0

ei
� prismatic joint

�20�
Other joints, e.g., spherical, screw, etc., can be treated as the com-

bination of revolute and prismatic joints �27�. In Eq. �20�, the
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-vector, ei, represent the unit vector along the axis of the rotation
f the revolute joint or along the direction of the linear motion of
he prismatic joint, respectively. Also, the matrix O and the vector

in Eqs. �18� and �20�, respectively, are the 3�3 matrix and
-vector of zeros, and the matrix 1 is the 3�3 identity matrix.
enceforth, they will be understood to be compatible sizes based
n where they appear.

For the serial system having n moving bodies, writing Eq. �17�,
or i=1, . . . ,n, and expressing them in a compact form yield

A0t0 + At = Nd�̇ �21�

here the 6n�6, 6n�6n, and 6n�n matrices, A0, A, and Nd,
re defined as

A0 �	
− A10

O

]

O

 A �	

1 O ¯ O O

− A21 1 ¯ O O

] ] � ] ]

O O ¯ − An,n−1 1



and Nd � diag�p1 ¯ pn � �22�

lso, the 6n-vector of generalized twist, t, and the n-vector of
eneralized joint rate, �̇, are defined as

t � �t1
T
¯ tn

T�T and �̇ � ��̇1 ¯ �̇n�T �23�

he generalized twist, t, is then obtained from Eq. �21� by invert-
ng the matrix, A, as

t = − NlA0t0 + NlNd�̇ �24�

here

Nl � A−1 = 	
1 O ¯ O

A21 1 ] O

] ] � ]

An1 An2 ¯ 1

 �25�

here Ai,j =Ai,i−1¯A j+1,j for i� j. For the serial-type system, if
he base body is fixed, i.e., t0=0, Eq. �24� takes the following
imple form:

t = N�̇ where N � NlNd �26�

n which the 6n�6n lower block triangular matrix, Nl, and the
n�n block diagonal matrix, Nd, are called the DeNOC matrices
19�, whereas N is the NOC matrix �28�. The DeNOC matrices, Nl
nd Nd, are nothing but the spatial operators of Rodriguez et al.
15�. They separate the architecture information of the bodies
rom that of the joints. For example, if the ith joint is locked, �̇i is
ero, and the matrix, Ai,i−1, transfers the twist of #�i−1� to #i, as
f they have formed a rigid composite body.

Referring to the tree-type system of Fig. 2, i.e., Subsystem I,
he generalized twist, for the main chain, denoted as t0, is obtained
rom Eq. �26� as

t0 = Nl
0Nd

0�̇0 �27�

here superscript “0” indicates the main chain mentioned in Sec.
. Using Eq. �24�, the 6nk vector of the generalized twist for the
th subchain of Subsystem I, tk, is given by

tk = − Nl
kA0

kt0
k + Nl

kNd
k�̇k �28�

here the 6nk�6nk matrix, Nl
k, and the 6nk�nk matrix Nd

k are the
eNOC matrices of the kth subchain, and t0

k � tk
0 is nothing but the

wist of the kth body in the main chain, 0. The twist, tk
0, can be

btained from Eq. �27� as

tk
0 = Nlk

0 Nd
0�̇0 �29�

0 0
here the 6�6n matrix, Nlk, is given by
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Nlk
0 � �Ak,1

0
¯ Ak,k−1

0 1 O ¯ O� �30�
Substituting Eq. �29� into Eq. �28� yields

tk = Nl
k0Nd

0�̇0 + Nl
kNd

k�̇k where Nl
k0 � − Nl

kA0
kNlk

0 �31�
For other subchains, one can similarly obtain Eq. �31�. Now, gen-
eralized twist for the tree-type Subsystem I, Fig. 2, i.e., the 6n
vector, t, can be expressed as

t = N�̇ where N � NlNd �32�

where n�n0+nk+n� being the total number of moving bodies in
the tree-type system and the 6n-vector, t, n-vector, �̇, the 6n
�6n matrix, Nl, and the 6n�n matrix, Nd, are defined by

t � 	t0

tk

t� 
 �̇ � 	�̇0

�̇k

�̇�

 Nl � 	 Nl

0 O O

Nl
k0 Nl

k O

Nl
�0 O Nl

� 

and Nd � diag�Nd

0 Nd
k Nd

�� �33�

For additional subchains, one can modify the expressions of t, �̇,
Nl, and Nd, as given in Eq. �33�. Equations �32� and �33� together
provide the DeNOC matrices for the tree-type system at hand,
which are used to reduce the dimension of the system’s NE equa-
tions of motion, as mentioned in Sec. 3.1.

5 Algorithm for Constraint Wrenches
Based on the dynamic analyses presented in Secs. 3 and 4, the

methods to compute the constraint wrenches are categorized into
the following three categories.

�1� Traditional method. In this method, the constraint wrenches
and the driving torques/forces at all the joints are solved
simultaneously using the 6n unconstrained NE equations of
motion, Eq. �8�. For example, nine equations for the planar
four-bar mechanism shown in Fig. 3 are solved using this
method.

�2� System approach. In this method, all the Lagrange multipli-
ers and the driving torques/forces of a spanning tree of the
closed-loop system are solved simultaneously, followed by
the body-level recursive calculation of the constraint
wrench at the uncut joints. One can find similar approach in
Nikravesh and Gim �7�, Kim and Vanderploeg �8�, Rod-
riguez et al. �15�, Anderson and Critchley �17�, Shabana
�31�, and others. For a four-bar mechanism of Fig. 3�a� or
3�b�, the three constrained equations for each spanning tree
are solved simultaneously, followed by recursive calcula-
tion of the constraint wrenches at the three uncut joints.

�3� Subsystem approach. This method is proposed in this paper.
It is a two-level recursive method to compute all the
Lagrange multipliers, driving torques/forces, and the con-
straints wrenches at the uncut joints, as shown in Fig. 5. In
the first or subsystem level recursion, the determinate sub-
systems, as defined in Sec. 2, are identified. The sets of the
Lagrange multipliers, and the driving torques/forces, if any,
of the determinate systems are solved independently. With
the known Lagrange multipliers of the determinate sub-
systems, some or all of the remaining indeterminate sub-
systems become determinate for which the above step is
repeated. With all the Lagrange multipliers, and the driving
torques/forces of the spanning tree known, the constraint
wrenches at the uncut joints of the subsystems are deter-
mined using body-level recursion. For the four-bar mecha-
nism, Fig. 3�a�, two constrained equations for Subsystem I
are first solved simultaneously, followed by one constrained
equation for Subsystem II. Finally, the constraint wrenches
at the uncut joints are solved using body-level recursion.
The method will not succeed if all the subsystems are in-

determinate. Under such circumstances, the system ap-
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proach is used to produce solution. For the four-bar mecha-
nism, Fig. 3�b�, three constrained equations are solved
simultaneously, as explained in the system approach above.

Advantages of the proposed subsystem approach are high-
ighted as follows.

�1� For a large number of bodies with many kinematic loops,
and repeated calculations, the algorithm has proven to be
efficient for the computation of constraint wrenches at all
joints. For repetitive calculations, the authors used the pro-
posed subsystem approach in the balancing of shaking
force and shaking moment where the dynamic algorithm is
repeated several times in an optimization code �33�. The
computational aspects are reported in Tables 2 and 3.

�2� It can be used without any modification for the determina-
tion of the driving torques/forces only of a closed-loop sys-
tem necessary for control purposes. Here, the last step of
finding the constraint wrenches at the uncut joints need not
be carried out.

�3� Since the constraint forces and moments information is
available at the subsystem level, it may prove useful to
analyze them from mechanical design point of view, as the
subsystem level results could provide the clue on how it
affects the overall system.

Illustrations
In this section, two examples are analyzed to show the effec-

iveness of the proposed wrench formulation.

6.1 Carpet Scraping Machine. In the first illustration, the
arpet scraping machine �34�, developed to clean a carpet after it
s woven, is taken up. Two mechanisms, namely, the Hoekens
our-bar and the Pantograph, are used in the machine, as shown in
ig. 6. The Hoekens mechanism is a crank-rocker mechanism
hose coupler generates a partially straight path. The straight line

ig. 5 Constraint wrenches calculation using two-level recur-
ive subsystem approach
troke generated by the Hoekens mechanism is magnified by the
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Pantograph mechanism.
The spanning tree of the mechanism is obtained by cutting the

joints between Links #1-#2, #2-#5, and #2-#7, of the closed loops,
#0-#1-#2-#3, #0-#1-#2-#5-#4, and #0-#1-#2-#7-#6-#4, respec-
tively. The resulting spanning tree, Fig. 7, has three subsystems, I,
II, and III. The links and joints of the subsystems are now num-
bered as per the scheme described in Sec. 2. For example, Link #3
in Fig. 6 is indicated in Fig. 8 as #1 of Subsystem I, i.e., Link #I-1.
Subsystem I has two moving links, #I-1 and #I-2, with 2DOF.
Subsystem II has only one moving link, #II-1, which is connected
to its previous body, i.e., #0, at joint, II-1. Both the subsystems, I
and II, are serial types, whereas Subsystem III is tree type with
four moving links numbered as #III-10, #III-20, #III-30, and
#III-11, which are coupled by four revolute joints denoted as
III-10, III-20, III-30, and III-11. Note that each subsystem origi-
nates from the base body, #0, which is fixed. Moreover, to avoid
clumsiness in Fig. 7, the subsystem notations, I, II, and III, are not
used in the link and joint numbers. Furthermore, the joint angles
�1 and �2 of Subsystem II, �1 of Subsystem I, and �1

0 ,�2
1 ,�3

0 ,�1
1 of

Fig. 7 Subsystems of spanning tree for the carpet scraping
mechanism

Fig. 6 Carpet scraping mechanism
Fig. 8 Comparison of driving torque
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ubsystem III are treated as generalized coordinates.
The input motion is provided to Joint 1 of Subsystem II by

pplying torque �D, which needs to be calculated for the known
otion of the mechanism. Additionally, three unknown vectors of
agrange multipliers, �i for i=1,2 ,3, as indicated in Fig. 7, are

�1 = ��1x �1y�T �2 = ��2x �2y�T and �3 = ��3x �3y�T

eing the motion of the mechanism planar, the two components
or each Lagrange multiplier represent the reaction forces at the
ut revolute joints. Hence, the total number of scalar unknowns is
, namely, �1x, �1y, �2x, �2y, �3x, �3y, and �D. Note that the DOF
f the spanning tree �Subsystems I, II, and III, plus the base body�
s also 7. It implies that one can obtain seven constrained equa-
ions of motion, Eq. �14�, which can be simultaneously solved for
even unknowns, as in the system approach of Sec. 5. The dimen-
ion of the associated matrix is 7�7. Alternatively, Subsystem III
as four unknowns, �2x ,�2y ,�3x ,�3y, and 4DOF, which allows
ne to solve for the four unknowns using the four constrained
quations of motion for Subsystem III. The associated matrix size
s 4�4. In the next step, evaluated �2x ,�2y ,�3x ,�3y are taken as
nown external forces to Subsystem I that make it determinate,
here �1x ,�1y are the unknowns and the DOF is 2. Hence, the two
nknowns can be solved using the constrained equations of mo-
ion for Subsystem I. Now, only �D remains as the unknown in
ubsystem II, which can be solved by one constrained equation of
otion of the subsystem. The above three steps correspond to the

ubsystem approach of Sec. 5. In the final step, the constraint
renches in the uncut joints are computed recursively.

6.1.1 Numerical Example. The multiloop scraping mechanism
hown in Fig. 6 has the parameters shown in Table 1. They are
sed here to find the constraint forces at the joints of the mecha-
ism. The input motion provided to Link #II-1 is a constant speed
f 45 rpm �4.712 rad /s�. The fixed frame, XYZ, is located at Joint
I-1, Fig. 7, where axis Z is perpendicular to the page. Joints I-1
nd III-10 are located at �−0.089 m,0� and �0.038 m,0.410 m�
espectively. Joint between #I-1 and #I-2 is located at the middle
f Link #I-2. Joint III-11 is at 0.096 m on Link #III-10 from Joint
II-10.

The constraint forces are now obtained as follows:

�a� The Lagrange multipliers of Subsystem III, namely, �2x,
�2y, �3x, and �3y, are evaluated first.

�b� Taking �2x, �2y, �3x, and �3y as external forces, the
Lagrange multipliers in Subsystem I, namely, �1x and
�1y, are evaluated next.

�c� Finally, �D is evaluated for Subsystem II, shown in
Fig. 8. The results are compared with those obtained from
the model developed using the commercial software,
MSC.ADAMS 2005 �automated dynamic analysis of me-
chanical systems� �35�. Only the comparison of the driv-

Table 1 Link parameters of the scraping machine

ubsystem Link
Length

�m�
Mass
�kg�

Moment of
inertia

at link origin
�kg m2� �10−3

1 a1,2=0.115 3.0 13.30
2 a2,B=0.115 5.0 22.12

I 1 a1,B=0.038 1.5 0.73

II 10 a12
0 =0.335 4.2 157.00

20a a23
0 =0.239 10.5 2449.00

30 a3,c
0 =0.239 3.0 57.00

11 a1,B
1 =0.239 3.0 57.00

Extension of link #III-20 beyond joint III-20 is 0.597 m.
ing torque is shown in Fig. 8. However, all other forces
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were also compared, which showed exact match but not
reported here due to limited space.

6.1.2 Computation Efficiency. In this subsection, a look into
the computational efficiency of the proposed two-level recursive
subsystem approach is given. Table 2 shows the comparison of the
theoretical order of computations and the time taken by the CPU
of a Pentium IV computer for the numerical example taken in Sec.
6.1.1. Three methods are considered, namely, the traditional
method using the 21�21 matrix, the system approach using the
7�7 matrix and the body-level recursions, and the two-level re-
cursive subsystem approach using the 4�4, 2�2, and 1�1 ma-
trices and the body-level recursions. The CPU time is estimated
for 134 positions of the mechanism during one complete rotation
of the link, #II-1. The algorithm is also used for the optimization
of the shaking force and shaking moment �33�. For the same it-
erations, the CPU time taken by the optimization process is shown
in the last column of Table 2.

A significant reduction in CPU time is observed in both the
system and subsystem approaches over the traditional method.
This amounts to almost 30% and 52% savings during the con-
straint force calculations only, and the optimization process, re-
spectively. Note, however, that there is almost no CPU time dif-
ference between the system and subsystem approaches. This is
mainly due to the planar nature of the system at hand.

6.2 Spatial RSSR Mechanism. In this section, a spatial
RSSR mechanism, where R and S stand for revolute and spheri-
cal, respectively, is considered, as shown in Fig. 9. The kinematic
equivalent of the RSSR mechanism is a 7R mechanism �36�,
where a spherical joint is considered equivalent to three revolute
joints intersecting at a point. In Fig. 9, however, the second
spherical joint between Links #1 and #3 is substituted with Hook’s
joint, which is equivalent to two revolute joints intersecting at a
point. This is due to the removal of the redundant rotation of Link
#3 about it own axis. The closed-loop mechanism is now made
open by cutting the joint between Links #5 and #6 of the 7R
mechanism, as shown in Fig. 10. The resulting two open serial-

Table 2 Comparison of CPU time in Pentium IV „2.60 GHz….
Matrix sizes: traditional, 21Ã21; system approach, 7Ã7; sub-
system approach, 4Ã4, 3Ã3, 1Ã1.

Methods
Theoretical order of

computations

CPU time �s�

Dynamic
algorithma

Optimization
algorithmb

Traditional O�213 /3�=O�3087� 0.219 118.610

System
approach

O�73 /3�+O�7�2�
=O�128.3�

0.156
�30.59�c

56.703
�52.19�

Subsystem
approach

O�43 /3+33 /3+1�+O�7�2�
=O�45.3�

0.156
�30.59�

56.703
�52.19�

aFor simulation time of 1.34 s �i.e., time period of the crank� with a step size of
0.01 s.
bFor 33 iterations and 1000 function evaluations.
cPercentage savings over the traditional method.
Fig. 9 The RSSR mechanism
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ype subsystems are Subsystem I with one moving Link #6 and
ubsystem II with five serially connected moving links, #1,…,#5,
s shown in Fig. 10. Both the subsystems are connected to the
xed link, #0. The four unknowns in the spanning tree of the 7R
echanism are f56���x �y �z�T and the driving torque �D. Note

hat n56=0, as the combination of joints 4, 5, and 6 cannot resist
ny moment. Also, Links #4 and #5 have zero mass and dimen-
ions. Hence, Subsystem II has effectively three unknowns, �x, �y,
z, and three links, #1, #2, #3, with 3DOF. As a result, three
imultaneous constrained equations of motion have to be solved
or the unknown Lagrange multipliers. The rest of the analysis is
he same as illustrated for the carpet scraping machine, as in Sec.
.1. The results, i.e., �x, �y, �z, and �D, are compared with those
vailable in literature, namely, in Ref. �37�, and not reported here
ue to page restriction.

However, the comparison of the theoretical order of computa-
ions and the CPU time taken by a Pentium IV computer is given
n Table 3. The proposed two-level recursive subsystem approach
erforms much better than the other two approaches. The reason is
hat the time taken for transforming the vectors and matrices for
he spatial problem is more for the many bodies, where the recur-
ive methods are known to perform better �38�

Conclusions
This paper contributes a new two-level recursive method to find

he constraint wrenches, i.e., moments and forces at the joints, of
losed-loop systems. In the first level, the subsystems of the span-
ing tree are considered to solve for their Lagrange multipliers at
he cut joints and the driving torques/forces, if any. In the second
evel, the constraint forces and moments of the bodies in the sub-
ystems are obtained recursively from one body to the next. While
he former recursion is referred here as the subsystem recursion,
he latter is termed as the body recursion. The complete two-level
ecursions are called subsystem approach. For the dynamic formu-
ation, the concept of the decoupled orthogonal complement ma-
rices is used here to reduce the dimensions of the unconstrained

Fig. 10 Spanning tree of the 7R mechanism

able 3 Comparison of the CPU times in Pentium IV
2.60 GHz…. Matrix sizes: traditional, 18Ã18; system approach,
Ã4; subsystem approach, 3Ã3.

ethods
Theoretical order
of computations

CPU time �s�

Dynamic
algorithma

Optimization
algorithmb

raditional O�183 /3�=O�1994� 0.6560 176.672

ystem
pproach

O�43� /3+O�4�6�
=O�45.33�

0.609
�7.16�c

170.125
�3.70�

ubsystem
pproach

O�33 /3�+O�4�6�
=O�33�

0.5960
�9.15�

157.156
�11.04�

For simulation time of 0.6 s �i.e., the time period of the crank� with step size of
.001 s.
For 21 iterations and 500 function evaluations for each method.

Percentage savings in CPU time.

ournal of Mechanical Design

ded 30 Nov 2007 to 203.199.213.67. Redistribution subject to ASM
NE equations of motion. For this purpose, the DeNOC matrices
for the tree-type system are derived in this paper for the first time
based on the method proposed earlier for the serial- and parallel-
type systems. The proposed algorithm is illustrated using two sys-
tems, namely, the planar multiloop carpet scraping machine and
the spatial RSSR mechanism. The aspect of efficiency is also in-
vestigated, which showed that the two-level recursion performs
better, particularly, when the closed-loop system is spatial and has
many bodies connected through loops, and the computations have
to be repeated several times, e.g., in the optimization process.

References
�1� Eberhard, P., and Schiehlen, W., 2006, “Computational Dynamics of Multi-

body Systems: History, Formalisms, and Applications,” ASME J. Comput.
Nonlinear Dyn., 1�1�, pp. 3–12.

�2� Roberson, R. E., and Schwertassek, R., 1988, Dynamics of Multibody Systems,
Springer-Verlag, Berlin.

�3� Schiehlen, W., 1990, Multibody Systems Handbook, Springer-Verlag, Berlin.
�4� Shabana, A. A., 2005, Dynamics of Multibody Systems, Cambridge University

Press, New York.
�5� Paul, B., 1975, “Analytical Dynamics of Mechanisms: A Computer Oriented

Overview,” Mech. Mach. Theory, 10, pp. 481–507.
�6� Nikravesh, P. E., 1988, Computer-Aided Analysis of Mechanical Systems,

Prentice-Hall, Englewood Cliffs, NJ.
�7� Nikravesh, P. E., and Gim, G., 1993, “Systematic Construction of the Equa-

tions of Motion for Multibody Systems Containing Closed Kinematic Loops,”
ASME J. Mech. Des., 115, pp. 143–149.

�8� Kim, S. S., and Vanderploeg, M. J., 1986, “A General and Efficient Method for
Dynamic Analysis of Mechanical Systems Using Velocity Transformation,”
ASME J. Mech., Transm., Autom. Des., 108�2�, pp. 176–182.

�9� Kane, T. R., and Levinson, D. A., 1983, “Multibody Dynamics,” ASME J.
Appl. Mech., 50, pp. 1071–1078.

�10� Huston, R. L., 2005, “Advances in Computational Methods for Multibody
System Dynamics,” Comput. Model. Eng. Sci., 10�2�, pp. 143–152.

�11� Yen, J., and Petzold, L. R., 1998, “An Efficient Newton-Type Iteration for the
Numerical Solution of Highly Oscillatory Constrained Multibody Dynamic
Systems,” SIAM J. Sci. Comput. �USA�, 19�5�, pp. 1513–1534.

�12� Baumgarte, J., 1972, “Stabilization of Constraints and Integrals of Motion,”
Comput. Methods Appl. Mech. Eng., 1, pp. 1–16.

�13� Jerkovskey, W., 1978, “The Structure of Multibody Dynamics Equations,” J.
Guid. Control, 1�3�, pp. 173–182.

�14� Rodriguez, G., Jain, A., and Kreutz-Delgado, K., 1991, “A Spatial Operator
Algebra for Manipulator Modeling and Control,” Int. J. Robot. Res., 10�4�,
pp. 371–381.

�15� Rodriguez, G., Jain, A., and Kreutz-Delgado, K., 1992, “Spatial Operator Al-
gebra for Multibody System Dynamics,” J. Astronaut. Sci., 40�1�, pp. 27–50.

�16� Featherstone, R., 1987, Robot Dynamics Algorithms, Kluwer Academic, New
York.

�17� Anderson, K. S., and Critchley, J. H., 2003, “A Generalized Recursive Coor-
dinate Reduction Method for Multibody System Dynamics,” Int. J. Multiscale
Comp. Eng., 1�2&3�, pp. 181–199.

�18� Blajer, W., 2004, “On the Determination of Joint Reactions in Multibody
Mechanisms,” ASME J. Mech. Des., 126�2�, pp. 341–350.

�19� Saha, S. K., 1997, “A Decomposition of the Manipulator Inertia Matrix,” IEEE
Trans. Rob. Autom., 13�2�, pp. 301–304.

�20� Saha, S. K., 1999, “Dynamics of Serial Multibody Systems Using the Decou-
pled Natural Orthogonal Complement Matrices,” ASME J. Appl. Mech., 66,
pp. 986–996.

�21� Serban, R., and Haug, E. J., 2000, “Globally Independent Coordinates for
Real-Time Vehicle Simulation,” ASME J. Mech. Des., 122, pp. 575–582.

�22� Cuadrado, J., Dopico, D., Gonzalez, M., and Naya, M. A., 2004, “A Combined
Penalty and Recursive Real-Time Formulation for Multibody Dynamics,”
ASME J. Mech. Des., 126�4�, pp. 602–608.

�23� Chaudhary, H., and Saha, S. K., 2005, “Matrix Formulation of Constraint
Wrenches for Serial Manipulators,” International Conference on Robotics and
Automation (ICRA 2005), Barcelona, Spain, Apr. 18–22, pp. 4647–4652.

�24� McPhee, J. J., 1996, “On the Use of Linear Graph Theory in Multibody Sys-
tem Dynamics,” Nonlinear Dyn., 9, pp. 73–90.

�25� Shai, O., and Penneck, G. R., 2006, “Extension of Graph Theory to the Duality
Between Static Systems and Mechanisms,” ASME J. Mech. Des., 128�1�, pp.
179–191.

�26� Muller A., 2004, “Elimination of Redundant Cut Joint Constraints for Multi-
body System Models,” ASME J. Mech. Des., 126�3�, pp. 488–494.

�27� Saha, S. K., and Schiehlen, W. O., 2001, “Recursive Kinematics and Dynamics
for Closed Loop Multibody Systems,” Mech. Struct. Mach., 29�2�, pp. 143–
175.

�28� Angeles, J., and Lee, S., 1988, “The Formulation of Dynamical Equations of
Holonomic Mechanical Systems Using a Natural Orthogonal Complement,”
ASME J. Appl. Mech., 55�1�, pp. 243–244.

�29� Xi, F., 2005, “Tripod Dynamics and Its Inertia Effect,” ASME J. Mech. Des.,
127�1�, pp. 144–149.

�30� Strang, G., 1998, Linear Algebra and Its Applications, Harcourt, Brace, Jo-

vanovich, Orlando.

DECEMBER 2007, Vol. 129 / 1241

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1

Downloa
�31� Shabana, A. A., 1994, Computational Dynamics, Wiley, New York.
�32� Khan, W. A., Krovi, V. N., Saha, S. K., and Angeles, J., 2005, “Recursive

Kinematics and Inverse Dynamics for a Planar 3R Parallel Manipulator,”
ASME J. Dyn. Syst., Meas., Control, 127�4�, pp. 529–536.

�33� Chuadhary, H., and Saha, S. K., 2007, “Balancing of Four-Bar Linkages Using
Maximum Recursive Dynamic Algorithm,” Mech. Mach. Theory, 42�2�, pp.
216–232.

�34� Saha, S. K., Prasad, R., and Mandal, A. K., 2003, “Use of Hoeken’s and
Pantograph Mechanisms for Carpet Scraping Operations,” Proceedings of the
11th National Conference on Machines and Mechanisms, IIT, Delhi, Dec. 18–
242 / Vol. 129, DECEMBER 2007

ded 30 Nov 2007 to 203.199.213.67. Redistribution subject to ASM
19, pp. 732–738.
�35� MSC.ADAMS �Automated Dynamic Analysis of Mechanical System�, Version

2005.0.0, July 22, 2004.
�36� Duffy, J., 1978, “Displacement Analysis of the Generalized RSSR Mecha-

nism,” Mech. Mach. Theory, 13, pp. 533–541.
�37� Bagci, C., 1983, “Complete Balancing of Space Mechanisms-Shaking Force

Balancing, ASME Journal of Mechanisms, Transmissions,” ASME J. Mech.,
Transm., Autom. Des., 105, pp. 609–616.

�38� Angeles, J., 1997, Fundamental of Robotic Mechanical Systems: Theory,
Methods, and Algorithms, Springer-Verlag, New York.
Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


