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Abstract We show how quantified constraints expressed in a sub-language of first

order logic, against a shared data model that is free to evolve, provide 

an excellent way of transporting domain-specific semantics along with 
the data. In this form it can be processed automatically by various intel

ligent components, instead of requiring human intervention. It can also 

be combined with other constraints, by algebraic transformation against 
a common data model, and then passed to an appropriate solver. These 

techniques have been tested in a classic e-business application scenario: 

configuring a product from parts selected from e-vendors' catalogues, 

whilst conforming to requirements specific to the parts, expressed as 

mobile constraints. 

1. Introduction 

Providing technological support to the formation and operation of dynamic and 

open virtual organisations is a central concern in business-to-business e-commerce 

(Preece et aL, 1999aj Schein, 1994). In a virtual organisation, member companies 

integrate their resources to create a more competitive whole. To support these or

ganisations, the communication mechanisms must cope with both the cooperative 

and the competitive nature of the enterprise. Further, business processes in a vir

tual organisation interact like agents by exchanging information to achieve certain 

tasks. Thus the communication mechanism must be powerful enough to support the 

exchange of data, information and knowledge among members. 

Currently, the main technologies offered to support virtual organisations are Elec

tronic Data Interchange (EDI) and Extranets. Unfortunately, current EDI systems 

are largely proprietary and limited to the exchange of relatively simple relational 

data. The new XML standard is non-proprietary and it will be good for exchanging 

semantics according to an agreed document type definition (DTD), but it does not 
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rule out using natural language comments to convey semantics. Business data needs 

to be much more "self-describing" and to have attached meta-knowledge on how the 

information can be used and combined with other information (Jeffery, 1998). We 

present ideas on how this can be done using constraints, so that the semantics of the 
data are made explicit to remote programs. 

The KRAFT project l (Grayet al., 1997) has an architecture that is suitable to 
support virtual organisations in which members exchange information in the form 

of constraints expressed against an object data model (Preece et al., 1999a). The 
constraints allow member companies to design new products from components in 
their individual catalogues, and also to advertise the content of their catalogues in a 
way that is meaningful to remote programs and not just to humans. Constraints are 
exchanged via messages expressed in an agent communication language, supporting 
flexible transactions. 

1.1. Motivation 

Consider the problem of configuring a computer from the set of product catalogues 
provided by different vendors as databases. User requirements and design restrictions 
can be represented as constraints. Examples are: 

"The PC must use a Pentium II processor. " 

"The size of a hard disk must be big enough to accommodate the chosen 

operating system." ,( 

To arrive at a usable configuration, we may issue a distributed database query 

that performs a join across multiple database tables and then check the retrieved 

components for compatibility and requirement. However, as problem domains become 

more sophisticated, it is insufficient to store only data but also knowledge in order to 
capture the semantics of the application domain, describing how the data have to be 
used. For example, a particular operating system may have a requirement attached: 

"Windows NT requires a minimum memory of 64M bytes in your PC. " 

Therefore, it is usually inadequate to use a distributed database query for finding a 

list of compatible parts. We must also ensure that the hidden semantic knowledge 

is properly utilised. This problem originates from the fact that knowledge no longer 

statically resides in a resource but becomes mobile. 

1.2. A Distributed Configuration Design as a 
Constraint Satisfaction Problem 

A configuration problem is a design activity in which an artifact is assembled 

by connecting a set of components in certain ways. The configuration problem in 

KRAFT has some interesting characteristics which make it difficult to be handled by 

traditional rule-based configuration systems, like R1/XCON (McDermott, 1982). 

When a resource joins the network, both stored data and semantic knowledge 
must be incorporated automatically. This dynamic environment, together with mobile 
knowledge which can attach to data, make the problem specification dynamic, since 

1 URL: http://www .csd.abdn.a.c.uk/ ",apreece/Research/KRAFT .html/ 
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it may change as different data objects become involved. The problem is also data

intensive. Thus feeding all candidate data into a single problem solver may create the 

problem of memory overflow, and should be avoided. 

Our approach is to represent the configuration problem as a constraint satisfac

tion problem (CSP) and to bring the constraints together into one place for solving. 
Constraint solving provides a domain-independent framework for the representation 

of configuration problems by declarative knowledge which is relatively cheaper to 

maintain (Sabin and Freuder, 1996; Mailharro, 1998). 

2. Modelling the Configuration Task in KRAFT 

KRAFT uses constraints as a uniform formalism to represent user specifications 

and domain knowledge on component compatibility. A declarative constraint is a 
self-contained mobile knowledge object, in which selection information can be moved 

within a computation (Gray et al., 1999a). These features allow different problem

solving strategies to be explored. 

Component instances, which define the domains of variables in the CSP, are stored 
in different vendor databases with attached constraints. Other constraints come from 
an otherwise empty solution database (section 2.1) and also the user. Constraints 
from different resources may be expressed in different vocabularies and against differ
ent schemas. The KRAFT architecture is flexible enough to cope with heterogeneous 
resources (section 3) but to simplify our problem, we assume the use of a single inte

gration schema within the KRAFT domain. Constraints and data expressed against 
local schemas will be transformed and mapped into this integration schema. 

Mittal and Frayman (Frayman and Mittal, 1987; Mittal and Frayman, 1989) pre
sented a generic domain-independent model of configuration based on constraint solv
ing. Sabin and Freuder (Sabin and Freuder, 1996) further proposed the framework 
of composite esp, in which instantiating variables may change a CSP dynamically. 
In KRAFT, we model a restricted configuration task where the set of variables and 
their domains are fixed at the time of problem composition. However, we still allow 

constraints to be dynamically added as the solving process proceeds. 

2.1. Database Integrity Constraints as CSP 
Specifications 

To specify a CSP by database integrity constraints, we visualise a solution database 

which is initially empty and yet to be populated by the solutions of a CSP, after it 

is solved. We restrict the combination of values which can be stored and qualified as 

solutions to the CSP by imposing integrity constraints against the solution database 

schema. Although initially empty of data, the solution database provides a framework 

for specifying and integrating the problem-solving knowledge, through its attached 

constraint metadata. Figure 1 shows an example solution database schema that stores 

all properly configured PCs. The requirement of having only 'pentium2" CPU is 

expressed as the following integrity constraint on the solution database: 

(Vp, c) pe(P) /I. cpu(P, c) --+ c = "pentium2" 

Compatibility between components can also be expressed as integrity constraints. 
The following constraint specifies that an operating system (OS) must be able to fit 
into one of the installed hard disks in a properly configured PC: 



330 

pc 
os hard disk ") 

!!!!l!!!!l!!&-> string Il name(9§) -> J I l cpu(pc) -> siring 
momory(pc) -> Integer 11Z8(08) -> Integer I iTze(hallC - -> Integer 

has .. (pc) -> os 
has_disk(pc) -» hard 

Figure 1. Our example solution database schema of configured PCs. 

( pc(P) 1\ ) ( has..disk(p, d) 1\ ) 
(Vp, 0, so) hasJJs(p, 0) 1\ size( 0, so) ---+ (3d, sd) size( d, sd) 1\ sd so 

Thus the solution database provides a framework for CSP specification. However, 

in most cases, only the schema of the solution database exists and no value is actually 

being stored. Instead, solution values are returned to the user through the user-agent. 

2.2. Database Integrity Constraints as Mobile 
Knowledge 

Database integrity constraints in P /FDM (Embury, 1995) are quantified con

straints that apply to a set of data objects. When expressed against a "KRAFT 

domain-wide" integration schema, these constraints are self-contained abstract ob

jects which can be used to represent domain-specific knowledge, partially solved so

lutions and intermediate results. Effectively, they carry otherwise hidden operational 

semantics along with the data. This is vital for its proper use in e-commerce. 

A manufacturer producing tailor-made OS for the "Pentium III" platform may 

put the following universally quantified constraint on all OS in his product database: 

(Vo,p,c) (os(o)l\pc(p)l\hasJJs(p,o)l\cpu(p,c») ---+c="pentium3" 

With an optional filter, we can selectively apply a constraint to a reduced set of 

data instances instead of all objects of a class. This allows constraint knowledge to 

be attached as if to an individual data object. The following is an example of a 

conditional constraint which only applies when the name of the OS is I winNT": 

(Vo,n,p,m) ( os(o) 1\ name(o, n) 1\ n = "winNT" 1\ ) ---+ m > 64 
pc(p) 1\ has.os(p, 0) 1\ memory(p, m) -

Database integrity constraints are traditionally used for validation checks on pop

ulated data. In using database integrity constraints as CSP specifications, we extend 

the use of integrity constraints to include unpopulated entity classes. Thus the manu

facturers and designers are putting constraints on objects which will form relationships 
with the components but are not yet connected! We call these unpopulated entity 

classes empty-slots, as they represent objects which will be plugged into the config

uration to form a workable design. These empty-slots cannot be filled by just any 

value. Instead, we restrict the allowed values by the attached constraints. 

2.3. Categorising Constraints 

Constraints can be categorised according to their origin. Small-print constraints 
(Gray et a!., 1999b), resemble small-prints and footnotes in a product catalogue. 
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Figure 2. This figure shows a conceptual view of the KRAFT architecture. The grey 

area represents the KRAFT domain where a uniform language and communication 

protocol is respected. 

They are stored in databases in association with class descriptors for data objects, 

and can be viewed as an attachment of instructions on how a data object should be 

used. Design constraints capture expert knowledge about feasible designs and are 

stored in the solution database. User requirement constraints come from the user and 

represent user specifications on the desired configurations. 

This categorisation, however, does not explain why some constraints behave dif

ferently from others. A closer examination reveals that the difference in behaviour 
comes from their different scopes of application, as they are attached to objects on 

different abstraction levels. 
A small-print constraint forms part of the data object to which it is attached. 

Therefore, it applies to all application problems and problem instances that utilise 

such data. Design constraints capture domain knowledge of an application problem. 

They can be viewed as attached to a particular problem, and thus apply to different 

instances of the same problem. User requirement constraints are attached to a problem 

instance. As a result, they are specific to a particular problem instance and may differ 
between different sessions. 

This alternative classification focuses on "where a constraint applies" instead of 

"where a constraint comes from", as knowing when to satisfy a constraint is more 

important than knowing its origin. As a result, a constraint from the user may be 

attached to a particular data object, thus behaving as a small-print constraint. 

3. The KRAFT Architecture 

Knowledge processing components in KRAFT are realised as software agents. The 

basic philosophy of the architecture design is to define a KRAFT domain where certain 

communication protocols and languages must be respected (figure 2). 

Three important KRAFT facilities of distinctive roles have been identified. Wrap

pers interface non-KRAFT components to the KRAFT network by providing transla

tion services and high-level communication mechanisms. FacilitatOr! maintain direc

tories of KRAFT facilities. Their principal function is to accept messages from other 

KRAFT facilities and route them appropriately. Mediators are KRAFT components 
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Figure 3. The KRAFT problem-solving process is divided into two phases: CSP 

composition and CSP solving. 

that can utilise domain knowledge to transform data in order to increase their infor

mation content. Non-KRAFT components which are linked to the KRAFT network 

via wrappers are user agents and resources. Users access the services of the KRAFT 

domain via user agents. Resources include information sources such as databases, 

knowledge bases and also processing engines like constraint solvers. 

The design of KRAFT is consistent with several emerging agent standards, notably 

KQML (Finin et al., 1993; Finin et al., 1994) and FIPA (Chiariglione, 1998). A 

detailed discussion of the KRAFT architecture can be found in (Gray et al., 1997; 

Preece et ai., 1999a; Preece et al., 1999b; Preece et al., 2001). 

4. CSP Composition 

Problem solving in KRAFT is divided into two stages (figure 3). In the first 

stage, distributed constraints are fused to compose a concrete description of the over

all CSP. In the second stage, the composed CSP is analysed and decomposed into 

sub-problems which are solved by multiple problem solving components. The CSP 

composition process can be further divided into three stages: constraint extraction 
and transformation, constraint fusion and asp formation from integrity constraints. 

4.1. Constraint Extraction and Transformation 

From the viewpoint of constraint extraction, there are two main categories of 
constraint knowledge in KRAFT. The first type of constraints, like user specification 

constraints, are actively fed into the system and do not require any extraction. The 

second type of constraints are stored in resources and have to be extracted before 

they become mobile and move into the network. Examples are designer constraints 
stored in the solution database2 and small-print constraints in vendor databases. 

To extract constraints, it is necessary for resources to support meta-level queries 
that retrieve stored constraint information instead of data. A resource which does 

2As we saw in section 2.1, the solution database may not physically exist. In this case, 
designer constraints may be readily stored as application-specific knowledge in the user-agent. 
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vith common p in pc 
rewrite 
into memory(p)j 

vith common p in pc 
rewrite os_name(p) into name(has_os(p»j 

Figure 4. Example rewrite rules. 

constrain each p in pc such that os_name(p) = I vinNT" 
to have simm(has_mother_board(p» + 

sdram(has_mother_board(p»>=32; 

constrain each p in pc such that name(has_os(p»=lvinNT" 
to have memory(p) >= 32; 
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Figure 5. Example constraints. The first constraint is expressed against a local 

schema. The second constraint shows the result of transforming the first one to refer 

to the integration schema. 

not support constraint extraction forces a localised constraint utilisation, thus re

straining the system from composing a global execution plan. Our prototype uses the 

P /FDM database system (Embury, 1995) which provides a uniform access to meta 
data through queries on the meta-schema by the Daplex language (Embury, 1991). 

Before fusion can take place it is also necessary to ensure that the constraints to 

be combined all have the same terms of reference. This is achieved by rewriting each 
constraint to refer to an integration schema. Each local resource in KRAFT has a 

wrapper which can apply declarative rewrite rules to constraints expressed against 

the local schema to give a transformed constraint expressed against the integration 

schema. Figure 4 shows two examples of rewrite rules. The effect of applying these 

rewrite rules to a constraint is shown in figure 5. 

The rewrite rule is a powerful mechanism that maps constraints from one schema 

into another. However, moving a constraint from the local schema into the integration 

schema may not be just a simple operation ofreplacing sub-expressions in a constraint. 
A constraint which is true in a local resource may not remain true when it migrates 

out of that resource. In general, when a universally quantified constraint is moved 
from a local resource into the unified space, we must add an extra condition to restrict 
the domain of the quantified variable so that its set of values remains the same as 
it was in the local resource. In the current implementation, wrappers provide the 

required knowledge and mechanism to automate this tagging process. This is not 

easily scalable and will be the subject of future work. 

4.2. Constraint Fusion 

Declarative constraints stored as self-contained knowledge objects in a distributed 
system form a shared library of building blocks which can be retrieved, transformed 
and combined. The key to reusing and sharing this knowledge is the process of 
constraint fusion, which dynamically combines their semantic content to compose 
problem specification instances. This is also a crucial process which provides the 
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required scalability and flexibility where new resources can join a distributed system 

by bringing in new knowledge dynamically. 
Semantically, constraint fusion is the logical conjunction of constraints. When con

straints are conjoined together, they exchange information and enhance the semantics 

of each other. The result of conjoining two quantified constraints depends on their 

quantifiers. The consequence of constraint conjunction originates from the universal 

quantifier which has the tendency of imposing constraints to all potential variables, 

when the condition allows. The existential quantifier, however, does not have this 
tendency. Thus the presence of a universally quantifier is a necessary condition for 

constraint fusion to take place. 
Operationally, constraint fusion is the identification of correspondences between 

variables in different constraint fragments, which allow potential constraint informa

tion flow between them. These correspondences, called variable-links, are identified 

by examining how variables are 'generated'. Consider the following example: 

(V'Pl,mI) pe(Pl) 1\ memorY(Pl,ml) -+ ml 32 

(V'P2, m2) pC(P2) 1\ memory(p2, m2) -+ m2 1024 

By comparing the predicates on the left-hand-side of the implication, we can identify 

the correspondences between variables Pl&p2 and ml&m2. The two constraints can 
then be combined into one: 

(V'p, m) (pe(p) 1\ memory(p, m) ) -+ ( m 32 1\ m 1024 ) 

More complicated situations may arise when constraints are fused. A possible re
sult is a conditional constraint that applies only when a guarding condition is satisfied, 

as illustrated by the following example: 

(V'Pl, mt) (pc(Pl) " memorY(Pl, mt} ) -+ ml 32 

(Vp2, m2, c) (pC(P2) "memory(p2, m2) "CPU(P2. c) " c = "pentium2" ) -+ m2 64 

FUsing them results in a conditional constraint where an extra restriction is imposed 
when the cpu of a PC is a "pentium2": 

(Vp,m,,) -+ ( ( ( -+m,,64 ) ) 

Once all variable-links are identified between two constraints, there are two ap
proaches to fuse them: implicit and explicit. These two approaches of constraint 
fusion are not mutually exclusive. Instead, a hybrid approach is a more appealing so
lution for fusing constraints. A more detailed discussion of constraint fusion is given 

in (Hui, 2000). Figure 6 and 7 shows an example of fusing three constraints. 

4.3. CSP Formation from Database Integrity 
Constraints 

The fused constraints precisely describe the desired states of the solution database 

but they cannot be directly compiled into an executable program to find the solution 

values. In particular, they contain references to unpopulated values and relationships, 

called empty-slots (section 2.2). The empty-slot problem arises because we are moving 
a constraint expressed like an integrity constraint from a database where some slots 
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constrain each p in pc 
to have cpu(p)="pentium2" and name(has_os(p» <> "win95" 

constrain each p in pc 
to have size(has_os(p» =< size(has_disk(p» 

constrain each p in pc such that name(has_os(p»="winNT" 
to have memory(p) >= 32 
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Figure 6. Three example constraints representing a user requirement, a designer 

constraint and a small-print constraint. 

constrain each p in pc 
to have cpu(p)="pentium2" and name (has_os (p» <>"win95" 

and size(has_os(p» =< size(has_disk(p» 
and if name (has_os (p» = "winNT " then memory (p) >=32 

else true 

Figure 7. The result of fusing the three constraints in figure 6. 

are unpopulated, into the context of the solution database, where the slots are assumed 

to be populated. A database integrity constraint that references an empty-slot always 
trivially succeeds or fails3 because there are no stored instances that can satisfy the 

slot predicate. Similarly, a query that tries to retrieve from an empty-slot always gets 

nothing. The transformation from an integrity constraint into a CSP, however, is 

surprisingly simple. Consider the following integrity constraint: 

(Vp, 0, n) (pc(p) 1\ os(o) 1\ has-Ds(p, 0) 1\ name(o, n) ) --+ n # "win95" 

In a populated solution database, the stored instances of has_os (p,o) in the database 

define and restrict the valid combination of p and 0. 

Now if we go back to the problem of constructing a CSP to find the valid com

bination of p and 0, has_os(p,o) puts no restriction as there is no stored value. 

Instead, restrictions on the pc-os combination come from constraints on other at

tributes. Thus has_os (p,o) is redundant in the context of the solution database as 

it is subsumed by the other selection conditions. An easy way of transforming a set 

of database integrity constraints into a CSP, therefore, is to take out all the refer

ences to empty-slots, meaning that the empty-slots put no restriction on any variable. 

In this way, we are effectively representing the value domain of has_os(p,o) by the 

Cartesian product of the domains of p and ° which provides the initial finite domains 

for the variables in the constraint solver. Any value combination that satisfies these 

constraints with empty-slot references removed is a solution. In our example, we get 
the following CSP by taking out the reference to has_os(p,o): 

(Vp,o,n) (pc(p)l\os(o)l\name(o,n») --+n#"win95" 

3 A weak translation of the implication in a universally quantified constraint makes it trivially 
succeed or fail, depending on whether the reference to an empty-slot is on the 'left-hand-side' 
or 'right-hand-side' of the implication. An existentially quantified constraint referencing an 
empty-slot always fails. 
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Any p, 0 and n in the solution database will have to satisfy this constraint. From a 

constraint-solving point of view, it means: "any PC and OS combination is valid if the 

name of the OS is not "vin9S"". 

The identification of empty-slots is a important piece of meta-knowledge which is 

best supplied by the KRAFT programmer who also provides the application specific 

design constraints. It is also important to emphasize that the empty-slots meta-data 

is not discarded after the CSP is composed but saved for later use, as we have to keep 

the association between variables in an empty-slot. 

5. CSP Solving 

Once a CSP is composed, it is analysed and decomposed into sub-problems. The 
decomposition step is not a simple reverse process of constraint fusion. Depending 
on the current status of the system and availability of different resources, different 

execution plans are derived. Constraints are fused in the first place because we want 

to find the best way to split the problem and divide labour. 
In our prototype system, we chose to decompose a CSP into distributed database 

queries and a reduced sub-CSP. Database queries are sent to databases to retrieve 
data values for the formation of variable domains in the CSP, while the reduced sub
CSP is compiled into constraint logic programming (CLP) code. We use the ECLiPSe 

CLP system (Aggoun et al., 1999; Brisset et al., 1999) as it supports flexible code 
generation as in logic programming (LP) systems but being more efficient in execution. 
The generated CLP code and variable domain information are sent together to the 
constraint solver for execution, which either finds the solution(s) to the CSP or detects 
a conflict. 

CSP solving in KRAFT involves four stages: database query formation, variable 

domain formation, constraint posting and variable labelling. 

5.1. Database Query Formation from the CSP 

By extracting constraint information from a cSP to compose database queries, we 

delegate part of the CSP solving process to the involved databases. This promotes 

early data filtering, thus reducing the amount of candidate data transported from 

databases into the constraint solving components. 

Most databases support the use of a uniform data filter, for example, by generating 

a WHERE clause in SQL. In the case of a conditional constraint (figure 7), we can use a 

technique that transforms it into several separate database queries with their own data 

filters. However, transforming a constraint with a complex guarding condition into 

multiple queries will be complicated and difficult, especially when the condition may 

involve nested quantifications. As a result, we compose database queries by extracting 
constraint information from universally quantified constraints that always apply to the 

solutions. Conditional constraints in the CSP will be compiled into CLP program code 

and handled by the constraint solver. Existentially quantified constraints are usually 

ignored in database query formation as the constraint information they contain are 
not strong enough. More detailed discussions can be found in (Hui, 2000). 

5.2. Variable Domain Population 

Database queries composed from the CSP are used to retrieve candidate data and 

form the initial solution space. As a CLP program reasons over CLP data structures, 
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we have to compile the retrieved data into CLP data structures before they can be 

used to populate the domains of variables in the CSP. A detailed discussion on variable 

domain population can be found in (Hui and Gray, 2000). 

5.3. Constraint Posting and Variable Labelling 

Our CLP code generator systematically compiles CIF constraints into ECLiPSe 

code (Hui and Gray, 2000). The generated program has a top level predicate calling 

three subgoals, resembling the three stages of variable declaration, constraint posting 

and variable labelling in CLP (Friihwirth et al., 1993; Wallace, 1998). Information is 

communicated through a shared variable: 

solve (Shared) :- declare_vars(Shared). 

post_constraints(Shared). 

label_vars(Shared). 

Variable labelling is the final stage of CSP solving where variables are instantiated 

to values in their respective domains. When variables are gradually instantiated, 

delayed· constraints are awakened and backtracking may occur, until a consistent 

constraint network is reached or a conflict is detected. 

6. Related Work 

KRAFT employs an agent-based architecture which is proving to be an effec

tive approach to developing distributed information systems. Early projects like 

PACT (Cutkosky et al., 1993) and SHADE (Kuokka et al., 1994) have already shown 

that agent technology can support the exchange of rich business information using the 
Knowledge Interchange Format (KIF) (Genesereth and Fikes, 1992). The ADEPT 

project further shows the flexibility of an agent-based system in supporting agile 

organisations, with an emphasis on the dynamic management of workflow between 

partner organisations (Jennings et al., 1996). 

The KRAFT architecture shares similarities with other agent-based distributed 

information systems, in particular, the InfoSleuth project (Bayardo et al., 1997; No

dine et aI., 1998). Architecturally, both systems comprise a network of cooperating 

agents. Scalability is provided by match-making agents, like broker-agents or facil

itator, which associates agents with resources at runtime. The roles identified for 

KRAFT agents are also similar to those in InfoSleuth. However, the major difference 

lies in KRAFT's emphasis on the use of both constraints and data, while InfoSleuth 

is primarily concerned with data retrieval. In its emphasis on constraints, KRAFT is 
similar to the Xerox Constraint Based Brokers project (Andreoli et al., 1995). How

ever, KRAFT recognises the need to transform constraints when they are extracted 

from local resources. 

KRAFT also builds upon the work of the Knowledge Sharing Effort (KSE) (Fikes 

et aI., 1991; Neches et al., 1991; Patil et al., 1992), in that some of the facilitation 

and brokerage methods are employed, along with a subset of the 1997 KQML speci

fication (Labrou, 1996). However, unlike the KSE work which attempted to support 

agents communicating many diverse forms of knowledge, KRAFT takes the view that 

constraints are a good compromise between expressivity and tractability. 

The Smart Clients project (Arnal and Faltings, 1999) is related to KRAFT in the 

way they conduct problem-solving on a CSP dynamically specified by the customer, 

using data extracted from remote databases. Their approach differs from KRAFT 
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in that only data is extracted from the remote databases, no small-print constraints 
come attached to the data; also, all the problem-solving is done on the client, rather 

than by mediator agents. No constraints are therefore transmitted across the network; 
conversely, it is the constraint solver that is transmitted to the client's computer, to 

work with the constraints specified locally by the customer. 
Finally, ongoing work at IBM (Reeves et al., 1999) is similar in concept to KRAFT's 

use of small-print constraints. The difference is that this work uses a rule-based for
malism to specify contractual fine print in the form of business rules. Logic program 

techniques are then used to reason with the rules. 

7. Conclusions 

A crucial insight in KRAFT is that quantified constraints, expressed in a sub

language of first-order logic against a shared data model that is free to evolve, provide 

an excellent way of transporting semantics along with data. We recognise the fact 
that constraints have evolved from database states restrictors to a kind of portable 

knowledge that can be exported and processed (Gray et al., 1999a). We use con

straints to capture domain knowledge, which is distributed among different resources. 
These distributed knowledge fragments are combined to give added value by a process 

called knowledge fusion. 

Once we have the semantic knowledge in this form, remote programs can reuse 
it very flexibly. We have developed an extensible problem solving approach that 

dynamically composes a problem specification by fusing reusable blocks of constraint 

knowledge. Our constraint fusion algorithm puts no restriction on the constraints, 

except that they must be expressible in the elF language. 

We fuse constraints in order to determine a better way to solve them by combining 

different problem solving paradigms. The decomposition process is based on a simple 

heuristic of minimising retrieved data sets and it adapts to problem instances by 

analysing the CSP at runtime. The current database query formation algorithm is a 

simple one but more sophisticated strategies can be used. Similarly, database queries 

and CLP code are generated at runtime for greater flexibility. 

KRAFT employs an agent architecture which makes it very suitable to support 

virtual organisations. The use of this open architecture is an important feature that 
allows problem solving knowledge, strategies, heuristics, partial results and problem 
solutions to be communicated within the KRAFT domain for the purpose of dis
tributed problem solving. 

The KRAFT architecture has been applied to the design of data service networks 
for telecommunication (Fiddian et al., 1999). Future work will focus upon testing 
and evaluating the KRAFT architecture in a broader range of business-to-business 
e-commerce scenarios. 
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