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Abstract We show how quantified constraints expressed in a sub-language of first-
order logic, against a shared data model that is free to evolve, provide
an excellent way of transporting domain-specific semantics along with
the data. In this form it can be processed automatically by various intel-
ligent components, instead of requiring human intervention. It can also
be combined with other constraints, by algebraic transformation against
a common data model, and then passed to an appropriate solver. These
techniques have been tested in a classic e-business application scenario:
configuring a product from parts selected from e-vendors’ catalogues,
whilst conforming to requirements specific to the parts, expressed as
mobile constraints.

1. Introduction

Providing technological support to the formation and operation of dynamic and
open virtual organisations is a central concern in business-to-business e-commerce
(Preece et al.,, 1999a; Schein, 1994). In a virtual organisation, member companies
integrate their resources to create a more competitive whole. To support these or-
ganisations, the communication mechanisms must cope with both the cooperative
and the competitive nature of the enterprise. Further, business processes in a vir-
tual organisation interact like agents by exchanging information to achieve certain
tasks. Thus the communication mechanism must be powerful enough to support the
exchange of data, information and knowledge among members.

Currently, the main technologies offered to support virtual organisations are Elec-
tronic Data Interchange (EDI) and Extranets. Unfortunately, current EDI systems
are largely proprietary and limited to the exchange of relatively simple relational
data. The new XML standard is non-proprietary and it will be good for exchanging
semantics according to an agreed document type definition (DTD), but it does not
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rule out using natural language comments to convey semantics. Business data needs
to be much more “self-describing” and to have attached meta-knowledge on how the
information can be used and combined with other information (Jeffery, 1998). We
present ideas on how this can be done using constraints, so that the semantics of the
data are made explicit to remote programs.

The KRAFT project! (Gray et al., 1997) has an architecture that is suitable to
support virtual organisations in which members exchange information in the form
of constraints expressed against an object data model (Preece et al., 1999a). The
constraints allow member companies to design new products from components in
their individual catalogues, and also to advertise the content of their catalogues in a
way that is meaningful to remote programs and not just to humans. Constraints are
exchanged via messages expressed in an agent communication language, supporting
flexible transactions.

1.1. Motivation

Consider the problem of configuring a computer from the set of product catalogues
provided by different vendors as databases. User requirements and design restrictions
can be represented as constraints. Examples are:

“The PC must use a Pentium II processor.”

“The size of a hard disk must be big enough to accommodate the chosen
operating system.” i¢

To arrive at a usable configuration, we may issue a distributed database query
that performs a join across multiple database tables and then check the retrieved
components for compatibility and requirement. However, as problem domains become
more sophisticated, it is insufficient to store only data but also knowledge in order to
capture the semantics of the application domain, describing how the data have to be
used. For example, a particular operating system may have a requirement attached:

“Windows NT requires a minimum memory of 64M bytes in your PC.”

Therefore, it is usually inadequate to use a distributed database query for finding a
list of compatible parts. We must also ensure that the hidden semantic knowledge
is properly utilised. This problem originates from the fact that knowledge no longer
statically resides in a resource but becomes mobile.

1.2. A Distributed Configuration Design as a
Constraint Satisfaction Problem

A configuration problem is a design activity in which an artifact is assembled
by connecting a set of components in certain ways. The configuration problem in
KRAF'T has some interesting characteristics which make it difficult to be handled by
traditional rule-based configuration systems, like R1/XCON (McDermott, 1982).

When a resource joins the network, both stored data and semantic knowledge
must be incorporated automatically. This dynamic environment, together with mobile
knowledge which can attach to data, make the problem specification dynamic, since

1URL: http://www.csd.abdn.ac.uk/~apreece/Research/ KRAFT.html/
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it may change as different data objects become involved. The problem is also data-
intensive. Thus feeding all candidate data into a single problem solver may create the
problem of memory overflow, and should be avoided.

Our approach is to represent the configuration problem as a constraint satisfac-
tion problem (CSP) and to bring the constraints together into one place for solving.
Constraint solving provides a domain-independent framework for the representation
of configuration problems by declarative knowledge which is relatively cheaper to
maintain (Sabin and Freuder, 1996; Mailharro, 1998).

2. Modelling the Configuration Task in KRAFT

KRAFT uses constraints as a uniform formalism to represent user specifications
and domain knowledge on component compatibility. A declarative constraint is a
self-contained mobile knowledge object, in which selection information can be moved
within a computation (Gray et al., 1999a). These features allow different problem-
solving strategies to be explored.

Component instances, which define the domains of variables in the CSP, are stored
in different vendor databases with attached constraints. Other constraints come from
an otherwise empty solution database (section 2.1) and also the user. Constraints
from different resources may be expressed in different vocabularies and against differ-
ent schemas. The KRAFT architecture is flexible enough to cope with heterogeneous
resources (section 3) but to simplify our problem, we assume the use of a single inte-
gration schema within the KRAFT domain. Constraints and data expressed against
local schemas will be transformed and mapped into this integration schema.

Mittal and Frayman (Frayman and Mittal, 1987; Mittal and Frayman, 1989) pre-
sented a generic domain-independent model of configuration based on constraint solv-
ing. Sabin and Freuder (Sabin and Freuder, 1996) further proposed the framework
of composite CSP, in which instantiating variables may change a CSP dynamically.
In KRAFT, we model a restricted configuration task where the set of variables and
their domains are fixed at the time of problem composition. However, we still allow
constraints to be dynamically added as the solving process proceeds.

2.1. Database Integrity Constraints as CSP
Specifications

To specify a CSP by database integrity constraints, we visualise a solution database
which is initially empty and yet to be populated by the solutions of a CSP, after it
is solved. We restrict the combination of values which can be stored and qualified as
solutions to the CSP by imposing integrity constraints against the solution database
schema. Although initially empty of data, the solution database provides a framework
for specifying and integrating the problem-solving knowledge, through its attached
constraint metadata. Figure 1 shows an example solution database schema that stores
all properly configured PCs. The requirement of having only “pentium2” CPU is
expressed as the following integrity constraint on the solution database:

(Yp,¢) pe(p) A cpu(p, ¢) — ¢ = ” pentium?2”
Compatibility between components can also be expressed as integrity constraints.

The following constraint specifies that an operating system (OS) must be able to fit
into one of the installed hard disks in a properly configured PC:
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) pc‘ os hard_disk
3)0:(:::) -c> :.?.i;‘"" name(os) -> string model{hard_disk) -> string
memory(pc) -> integer size(os) -> integer size(hard_disk) -> integer,
has_os(pc) > 08 ————

has_disk(pc) ->> hard_disk

Figure 1.  Our example solution database schema of configured PCs.

pe(pIA has_disk(p,d)A
(vp ’°’s°)< has_os(p, o) A size(o, 50) ) — (34, “’d)( size(d, sd) A sd > so

Thus the solution database provides a framework for CSP specification. However,
in most cases, only the schema of the solution database exists and no value is actually
being stored. Instead, solution values are returned to the user through the user-agent.

2.2. Database Integrity Constraints as Mobile
Knowledge

Database integrity constraints in P/FDM (Embury, 1995) are quantified con-
straints that apply to a set of data objects. When expressed against a “KRAFT
domain-wide” integration schema, these constraints are self-contained abstract ob-
jects which can be used to represent domain-specific knowledge, partially solved so-
lutions and intermediate results. Effectively, they carry otherwise hidden operational
semantics along with the data. This is vital for its proper use in e-commerce.

A manufacturer producing tailor-made OS for the “Pentium III” platform may
put the following universally quantified constraint on all OS in his product database:

(Vo,p, ¢) ( 05(0) A pe(p) A has_os(p, 0) A cpu{p, ¢) ) — ¢ ="pentium3”

With an optional filter, we can selectively apply a constraint to a reduced set of
data instances instead of all objects of a class. This allows constraint knowledge to
be attached as if to an individual data object. The following is an example of a
conditional constraint which only applies when the name of the OS is "winNT":

08(0) A name(o,n) An ="winNT” A

pc(p) A has_os(p, 0) A memory(p, m) ) —m > 64

(vo’ n’ p) m) (

Database integrity constraints are traditionally used for validation checks on pop-
ulated data. In using database integrity constraints as CSP specifications, we extend
the use of integrity constraints to include unpopulated entity classes. Thus the manu-
facturers and designers are putting constraints on objects which will form relationships
with the components but are not yet connected! We call these unpopulated entity
classes empty-slots, as they represent objects which will be plugged into the config-
uration to form a workable design. These empty-slots cannot be filled by just any
value. Instead, we restrict the allowed values by the attached constraints.

2.3. Categorising Constraints

Constraints can be categorised according to their origin. Small-print constraints
(Gray et al., 1999b), resemble small-prints and footnotes in a product catalogue.
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Figure 2.  This figure shows a conceptual view of the KRAFT architecture. The grey
area represents the KRAFT domain where a uniform language and communication
protocol is respected.

They are stored in databases in association with class descriptors for data objects,
and can be viewed as an attachment of instructions on how a data object should be
used. Design constraints capture expert knowledge about feasible designs and are
stored in the solution database. User requirement constraints come from the user and
represent user specifications on the desired configurations.

This categorisation, however, does not explain why some constraints behave dif-
ferently from others. A closer examination reveals that the difference in behaviour
comes from their different scopes of application, as they are attached to objects on
different abstraction levels.

A small-print constraint forms part of the data object to which it is attached.
Therefore, it applies to all application problems and problem instances that utilise
such data. Design constraints capture domain knowledge of an application problem.
They can be viewed as attached to a particular problem, and thus apply to different
instances of the same problem. User requirement constraints are attached to a problem
instance. As a result, they are specific to a particular problem instance and may differ
between different sessions.

This alternative classification focuses on “where a constraint applies” instead of
“where a constraint comes from”, as knowing when to satisfy a constraint is more
important than knowing its origin. As a result, a constraint from the user may be
attached to a particular data object, thus behaving as a small-print constraint.

3. The KRAFT Architecture

Knowledge processing components in KRAFT are realised as software agents. The
basic philosophy of the architecture design is to define a KRAFT domain where certain
communication protocols and languages must be respected (figure 2).

Three important KRAFT facilities of distinctive roles have been identified. Wrap-
pers interface non-KRAFT components to the KRAFT network by providing transla-
tion services and high-level communication mechanisms. Facilitators maintain direc-
tories of KRAFT facilities. Their principal function is to accept messages from other
KRAFT facilities and route them appropriately. Mediators are KRAFT components
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Figure 3. The KRAFT problem-solving process is divided into two phases: CSP
composition and CSP solving.

that can utilise domain knowledge to transform data in order to increase their infor-
mation content. Non-KRAFT components which are linked to the KRAFT network
via wrappers are user agents and resources. Users access the services of the KRAFT
domain via user agents. Resources include information sources such as databases,
knowledge bases and also processing engines like constraint solvers.

The design of KRAFT is consistent with several emerging agent standards, notably
KQML (Finin et al., 1993; Finin et al.,, 1994) and FIPA (Chiariglione, 1998). A
detailed discussion of the KRAFT architecture can be found in (Gray et al., 1997,
Preece et al., 1999a; Preece et al., 1999b; Preece et al., 2001).

4. CSP Composition

Problem solving in KRAFT is divided into two stages (figure 3). In the first
stage, distributed constraints are fused to compose a concrete description of the over-
all CSP. In the second stage, the composed CSP is analysed and decomposed into
sub-problems which are solved by multiple problem solving components. The CSP
composition process can be further divided into three stages: constraint eztraction
and transformation, constraint fusion and CSP formation from integrity constraints.

4.1. Constraint Extraction and Transformation

From the viewpoint of constraint extraction, there are two main categories of
constraint knowledge in KRAFT. The first type of constraints, like user specification
constraints, are actively fed into the system and do not require any extraction. The
second type of constraints are stored in resources and have to be extracted before
they become mobile and move into the network. Examples are designer constraints
stored in the solution database® and small-print constraints in vendor databases.

To extract constraints, it is necessary for resources to support meta-level queries
that retrieve stored constraint information instead of data. A resource which does

2As we saw in section 2.1, the solution database may not physically exist. In this case,
designer constraints may be readily stored as application-specific knowledge in the user-agent.
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with common p in pc
rewrite simm(has_motherboard(p))+sdram(has_motherboard(p))
into memory(p);

with common p in pc
rewrite os_name(p) into name(has_os(p));

Figure 4. Example rewrite rules.

constrain each p in pc such that os_name(p) = "winNT"
to have simm(has_mother_board(p)) +
sdram(has_mother_board(p))>=32;
constrain each p in pc such that name(has_os(p))="winNT"
to have memory(p) >= 32;

Figure 5. Example constraints. The first constraint is expressed against a local
schema. The second constraint shows the result of transforming the first one to refer
to the integration schema.

not support constraint extraction forces a localised constraint utilisation, thus re-
straining the system from composing a global execution plan. Our prototype uses the
P/FDM database system (Embury, 1995) which provides a uniform access to meta
data through queries on the meta-schema by the Daplex language (Embury, 1991).

Before fusion can take place it is also necessary to ensure that the constraints to
be combined all have the same terms of reference. This is achieved by rewriting each
constraint to refer to an integration schema. Each local resource in KRAFT has a
wrapper which can apply declarative rewrite rules to constraints expressed against
the local schema to give a transformed constraint expressed against the integration
schema. Figure 4 shows two examples of rewrite rules. The effect of applying these
rewrite rules to a constraint is shown in figure 5.

The rewrite rule is a powerful mechanism that maps constraints from one schema
into another. However, moving a constraint from the local schema into the integration
schema may not be just a simple operation of replacing sub-expressions in a constraint.
A constraint which is true in a local resource may not remain true when it migrates
out of that resource. In general, when a universally quantified constraint is moved
from a local resource into the unified space, we must add an extra condition to restrict
the domain of the quantified variable so that its set of values remains the same as
it was in the local resource. In the current implementation, wrappers provide the
required knowledge and mechanism to automate this tagging process. This is not
easily scalable and will be the subject of future work.

4.2, Constraint Fusion

Declarative constraints stored as self-contained knowledge objects in a distributed
system form a shared library of building blocks which can be retrieved, transformed
and combined. The key to reusing and sharing this knowledge is the process of
constraint fusion, which dynamically combines their semantic content to compose
problem specification instances. This is also a crucial process which provides the
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required scalability and flexibility where new resources can join a distributed system
by bringing in new knowledge dynamically.

Semantically, constraint fusion is the logical conjunction of constraints. When con-
straints are conjoined together, they exchange information and enhance the semantics
of each other. The result of conjoining two quantified constraints depends on their
quantifiers. The consequence of constraint conjunction originates from the universal
quantifier which has the tendency of imposing constraints to all potential variables,
when the condition allows. The ezistential gquantifier, however, does not have this
tendency. Thus the presence of a universally quantifier is a necessary condition for
constraint fusion to take place.

Operationally, constraint fusion is the identification of correspondences between
variables in different constraint fragments, which allow potential constraint informa-
tion flow between them. These correspondences, called variable-links, are identified
by examining how variables are ‘generated’. Consider the following example:

(Vp1,m1) pc(p1) A memory(p1, m1) — my > 32
(Vp2,m2) pc(p2) A memory(ps2, m2) — ma < 1024

By comparing the predicates on the left-hand-side of the implication, we can identify
the correspondences between variables p1&p2 and mi&m2. The two constraints can
then be combined into one:

(Vp, m) ( pe(p) A memory(p, m) ) — ( m > 32 Am <1024 )

More complicated situations may arise when constraints are fused. A possible re-
sult is a conditional constraint that applies only when a guarding condition is satisfied,
as illustrated by the following example:

(Vp1,m1) ( pe(p1) A memory(pr, mi1) ) —my > 32
(Vp2, ma,c¢) ( pe(p2) A memory(pz, mz2) A cpu(ps, ¢) A ¢ = " pentium?2” ) — ma > 64

Fusing them results in a conditional constraint where an extra restriction is imposed
when the cpu of a PC is a "pentium2”:

memory(p, m)

m 2 32A
) pupAIN Y s 64
= "pentium?2

Once all variable-links are identified between two constraints, there are two ap-
proaches to fuse them: implicit and ezplicit. These two approaches of constraint
fusion are not mutually exclusive. Instead, a hybrid approach is a more appealing so-
lution for fusing constraints. A more detailed discussion of constraint fusion is given
in (Hui, 2000). Figure 6 and 7 shows an example of fusing three constraints.

4.3. CSP Formation from Database Integrity
Constraints

The fused constraints precisely describe the desired states of the solution database
but they cannot be directly compiled into an executable program to find the solution
values. In particular, they contain references to unpopulated values and relationships,
called empty-slots (section 2.2). The empty-slot problem arises because we are moving
a constraint expressed like an integrity constraint from a database where some slots
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constrain each p in pc

to have cpu(p)="pentium2" and name(has_os(p)) <> "win95"
constrain each p in pc

to have size(has_os(p)) =< size(has_disk(p))
constrain each p in pc such that name(has_os(p))="winNT"

to have memory(p) >= 32

Figure 6. Three example constraints representing a user requirement, a designer
constraint and a small-print constraint.

constrain each p in pc
to have cpu(p)="pentium2" and name(has_os(p))<>"win95"
and size(has_os(p)) =< size(has_disk(p))
and if name(has_os{(p))="winNT" then memory(p)>=32
else true

Figure 7. The result of fusing the three constraints in figure 6.

are unpopulated, into the context of the solution database, where the slots are assumed
to be populated. A database integrity constraint that references an empty-slot always
trivially succeeds or fails® because there are no stored instances that can satisfy the
slot predicate. Similarly, a query that tries to retrieve from an empty-slot always gets
nothing. The transformation from an integrity constraint into a CSP, however, is
surprisingly simple. Consider the following integrity constraint:

(Vp,0,n) ( pc(p) A 0s(0) A has_os(p, 0) A name(o,n) ) — n # "win9h”

In a populated solution database, the stored instances of has_os (p,0) in the database
define and restrict the valid combination of p and o.

Now if we go back to the problem of constructing a CSP to find the valid com-
bination of p and o, has_os(p,0) puts no restriction as there is no stored value.
Instead, restrictions on the PC-0S combination come from constraints on other at-
tributes. Thus has_os{(p,o0) is redundant in the context of the solution database as
it is subsumed by the other selection conditions. An easy way of transforming a set
of database integrity constraints into a CSP, therefore, is to take out all the refer-
ences to empty-slots, meaning that the empty-slots put no restriction on any variable.
In this way, we are effectively representing the value domain of has_os(p,0) by the
Cartesian product of the domains of p and o which provides the initial finite domains
for the variables in the constraint solver. Any value combination that satisfies these
constraints with empty-slot references removed is a solution. In our example, we get
the following CSP by taking out the reference to has_os(p,0):

(Vp,0,m) ( pe(p) A 0s(0) A name(o,n) ) — n # "win95”

3A weak translation of the implication in a universally quantified constraint makes it trivially
succeed or fail, depending on whether the reference to an empty-slot is on the ‘left-hand-side’
or ‘right-hand-side’ of the implication. An existentially quantified constraint referencing an
empty-slot always fails.
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Any p, o and n in the solution database will have to satisfy this constraint. From a
constraint-solving point of view, it means: “any PC and 0S combination is valid if the
name of the 0S is not "win95"”,

The identification of empty-slots is a important piece of meta-knowledge which is
best supplied by the KRAFT programmer who also provides the application specific
design constraints. It is also important to emphasize that the empty-slots meta-data
is not discarded after the CSP is composed but saved for later use, as we have to keep
the association between variables in an empty-slot.

5. CSP Solving

Once a CSP is composed, it is analysed and decomposed into sub-problems. The
decomposition step is not a simple reverse process of constraint fusion. Depending
on the current status of the system and availability of different resources, different
execution plans are derived. Constraints are fused in the first place because we want
to find the best way to split the problem and divide labour.

In our prototype system, we chose to decompose a CSP into distributed database
queries and a reduced sub-CSP. Database queries are sent to databases to retrieve
data values for the formation of variable domains in the CSP, while the reduced sub-
CSP is compiled into constraint logic programming (CLP) code. We use the ECLiPSe
CLP system (Aggoun et al., 1999; Brisset et al.,, 1999) as it supports flexible code
generation as in logic programming (LP) systems but being more efficient in execution.
The generated CLP code and variable domain information are sent together to the
constraint solver for execution, which either finds the solution(s) to the CSP or detects
a conflict.

CSP solving in KRAFT involves four stages: database query formation, variable
domain formation, constraint posting and variable labelling.

5.1. Database Query Formation from the CSP

By extracting constraint information from a CSP to compose database queries, we
delegate part of the CSP solving process to the involved databases. This promotes
early data filtering, thus reducing the amount of candidate data transported from
databases into the constraint solving components.

Most databases support the use of a uniform data filter, for example, by generating
a WHERE clause in SQL. In the case of a conditional constraint (figure 7), we can use a
technique that transforms it into several separate database queries with their own data
filters. However, transforming a constraint with a complex guarding condition into
multiple queries will be complicated and difficult, especially when the condition may
involve nested quantifications. As a result, we compose database queries by extracting
constraint information from universally quantified constraints that always apply to the
solutions. Conditional constraints in the CSP will be compiled into CLP program code
and handled by the constraint solver. Ezistentially quantified constraints are usually
ignored in database query formation as the constraint information they contain are
not strong enough. More detailed discussions can be found in (Hui, 2000).

5.2. Variable Domain Population

Database queries composed from the CSP are used to retrieve candidate data and
form the initial solution space. As a CLP program reasons over CLP data structures,
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we have to compile the retrieved data into CLP data structures before they can be
used to populate the domains of variables in the CSP. A detailed discussion on variable
domain population can be found in (Hui and Gray, 2000).

5.3. Constraint Posting and Variable Labelling

Our CLP code generator systematically compiles CIF constraints into ECLiPSe
code (Hui and Gray, 2000). The generated program has a top level predicate calling
three subgoals, resembling the three stages of variable declaration, constraint posting
and variable labelling in CLP (Frithwirth et al., 1993; Wallace, 1998). Information is
communicated through a shared variable:

solve(Shared) :- declare_vars(Shared),
post_constraints(Shared),
label_vars(Shared).

Variable labelling is the final stage of CSP solving where variables are instantiated
to values in their respective domains. When variables are gradually instantiated,
delayed constraints are awakened and backtracking may occur, until a consistent
constraint network is reached or a conflict is detected.

6. Related Work

KRAFT employs an agent-based architecture which is proving to be an effec-
tive approach to developing distributed information systems. Early projects like
PACT (Cutkosky et al., 1993) and SHADE (Kuokka et al., 1994) have already shown
that agent technology can support the exchange of rich business information using the
Knowledge Interchange Format (KIF) (Genesereth and Fikes, 1992). The ADEPT
project further shows the flexibility of an agent-based system in supporting agile
organisations, with an emphasis on the dynamic management of workflow between
partner organisations (Jennings et al., 1996).

The KRAFT architecture shares similarities with other agent-based distributed
information systems, in particular, the InfoSleuth project (Bayardo et al., 1997; No-
dine et al., 1998). Architecturally, both systems comprise a network of cooperating
agents. Scalability is provided by match-making agents, like broker-agents or facil-
itator, which associates agents with resources at runtime. The roles identified for
KRAFT agents are also similar to those in InfoSleuth. However, the major difference
lies in KRAFT’s emphasis on the use of both constraints and data, while InfoSleuth
is primarily concerned with data retrieval. In its emphasis on constraints, KRAFT is
similar to the Xerox Constraint Based Brokers project (Andreoli et al., 1995). How-
ever, KRAFT recognises the need to transform constraints when they are extracted
from local resources.

KRAFT also builds upon the work of the Knowledge Sharing Effort (KSE) (Fikes
et al.,, 1991; Neches et al., 1991; Patil et al., 1992), in that some of the facilitation
and brokerage methods are employed, along with a subset of the 1997 KQML speci-
fication (Labrou, 1996). However, unlike the KSE work which attempted to support
agents communicating many diverse forms of knowledge, KRAFT takes the view that
constraints are a good compromise between expressivity and tractability.

The Smart Clients project (Arnal and Faltings, 1999) is related to KRAFT in the
way they conduct problem-solving on a CSP dynamically specified by the customer,
using data extracted from remote databases. Their approach differs from KRAFT
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in that only data is extracted from the remote databases, no small-print constraints
come attached to the data; also, all the problem-solving is done on the client, rather
than by mediator agents. No constraints are therefore transmitted across the network;
conversely, it is the constraint solver that is transmitted to the client’s computer, to
work with the constraints specified locally by the customer.

Finally, ongoing work at IBM (Reeves et al., 1999) is similar in concept to KRAFT’s
use of small-print constraints. The difference is that this work uses a rule-based for-
malism to specify contractual fine print in the form of business rules. Logic program
techniques are then used to reason with the rules.

7. Conclusions

A crucial insight in KRAFT is that quantified constraints, expressed in a sub-
language of first-order logic against a shared data model that is free to evolve, provide
an excellent way of transporting semantics along with data. We recognise the fact
that constraints have evolved from database states restrictors to a kind of portable
knowledge that can be exported and processed (Gray et al., 1999a). We use con-
straints to capture domain knowledge, which is distributed among different resources.
These distributed knowledge fragments are combined to give added value by a process
called knowledge fusion.

Once we have the semantic knowledge in this form, remote programs can reuse
it very flexibly. We have developed an extensible problem solving approach that
dynamically composes a problem specification by fusing reusable blocks of constraint
knowledge. Our constraint fusion algorithm puts no restriction on the constraints,
except that they must be expressible in the CIF language.

We fuse constraints in order to determine a better way to solve them by combining
different problem solving paradigms. The decomposition process is based on a simple
heuristic of minimising retrieved data sets and it adapts to problem instances by
analysing the CSP at runtime. The current database query formation algorithm is a
simple one but more sophisticated strategies can be used. Similarly, database queries
and CLP code are generated at runtime for greater flexibility.

KRAFT employs an agent architecture which makes it very suitable to support
virtual organisations. The use of this open architecture is an important feature that
allows problem solving knowledge, strategies, heuristics, partial results and problem
solutions to be communicated within the KRAFT domain for the purpose of dis-
tributed problem solving.

The KRAFT architecture has been applied to the design of data service networks
for telecommunication (Fiddian et al., 1999). Future work will focus upon testing
and evaluating the KRAFT architecture in a broader range of business-to-business
e-commerce scenarios.
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