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ABSTRACT. In a previous paper we developed a general theory of input/output logics. These are 
operations resembling inference, but where inputs need not be included among outputs, and 
outputs need not be reusable as inputs. In the present paper we study what happens when they are 
constrained to render output consistent with input. This is of interest for deontic logic, where it 
provides a manner of handling contrary-to-duty obligations. Our procedure is to constrain the set 
of generators of the input/output system, considering only the maximal subsets that do not yield 
output conflicting with a given input. When inputs are authorised to reappear as outputs, both 
maxichoice revision in the sense of Alchourrón/Makinson and the default logic of Poole emerge 
as special cases, and there is a close relation with Reiter default logic. However, our focus is on 
the general case where inputs need not be outputs. We show in what contexts the consistency of 
input with output may be reduced to its consistency with a truth-functional combination of 
components of generators, and under what conditions constrained output may be obtained by a 
derivation that is constrained at every step. 
 
KEY WORDS. input/output logic, contrary-to-duty obligations, deontic logic, consistency 
constraints, default logics, revision.  
 
 

1. BACKGROUND: INPUT/OUTPUT LOGICS 
 
1.1. Explicit definitions 
 
We assume familiarity with (Makinson and van der Torre, 2000), which studies unrestricted 
output operations. Nevertheless, for convenience, we briefly recall its central points.  
 
We consider a Boolean context, that is, a propositional language closed under the usual truth-
functional connectives. The central objects of attention are ordered pairs (a,x) of formulae, which 
we read forwards. Intuitively, we think of each pair (a,x) as a rule, with body a representing a 
possible input, and head x for a corresponding output. We call a set G of such pairs a generating 
set. The letter G also serves as a reminder of the interpretation (among others) of the pairs as 
conditional goals or obligations. When A is a set of formulae, we write G(A) for {x: (a,x) ∈ G for 
some a ∈ A}. 
 
The operation out(G,A) takes as argument a generating set G, and an input set A of formulae, 
delivering as value an output set of formulae. We focus on four operations, which we define 
explicitly by equations. In so far as the definitions make no appeal to derivations or inductive 
processes, they may be thought of as semantic in a broad sense of the term.   
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• Simple-minded output:  out1(G,A) = Cn(G(Cn(A))) 

• Basic output: out2(G,A) = ∩{Cn(G(V)): A ⊆ V, V complete}  

• Reusable simple-minded output: out3(G,A) = ∩{Cn(G(B)): A ⊆ B = Cn(B) ⊇ G(B)} 

• Reusable basic output: out4(G,A) = ∩{Cn(G(V)): A ⊆ V ⊇ G(V), V complete} 

Here, Cn (alias |−) is classical consequence, and whenever terms like ‘consequence’, 
‘equivalence’ and ‘independence’ are used in this paper, they are understood in their classical 
sense. A complete set is one that is either maxiconsistent or equal to the set Λ of all formulae of 
the language. When A is a singleton {a}, we write simply outi(G,a), and similarly for other 
operations defined in the paper. 

We have the inclusions out1(G,A) ⊆ {out2(G,A), out3(G,A)} ⊆ out4(G,A) ⊆ Cn(A∪m(G)), but not 
in general conversely. Here m(G) is the set of all materialisations of elements of G, i.e. the set of 
all formulae b→y with (b,y) ∈ G. In none of these four systems are inputs automatically outputs, 
that is, we do not in general have A ⊆ out(G,A). Nor do the systems validate contraposition: we 
may have x ∈ out(G,a) without  ¬a ∈ out(G,¬x).  
For each of these four principal operations, we may also consider a throughput version that also 
allows inputs to reappear as outputs. These are the operations outn

+(G,A) = outn(G+,A), where G+ 
= G∪I and I is the set of all pairs (a,a) for formulae a.  

It turns out that out4
+ = Cn(A∪m(G)), thus collapsing into classical logic. Out3

+(G,A) does not 
collapse in this way, but may be expressed more simply as ∩{B: A ⊆ B = Cn(B) ⊇ G(B)}.  

These operations are distinct, with the exception that out2
+ = out4

+. This identity, not mentioned 
in (Makinson and van der Torre, 2000), may be verified as follows. The left-in-right inclusion is 
immediate. To show the converse, suppose x ∉ out2

+(G,A). Then there is a complete set V with A 
⊆ V and x ∉ Cn(G+(V)). To prove that x ∉ out4

+(G,A) we need only show that G+(V) ⊆ V. But V 
⊆ G+(V) so if  the converse fails then Cn(G+(V)) = Λ contradicting x ∉ Cn(G+(V)).  
 
We write out without a subscript to cover indifferently all these seven distinct input/output 
operations. We move freely between the notations x ∈ out(G,A) and (A,x) ∈ out(G). The former 
is more useful when working directly with the above explicit definitions of the various kinds of 
output; the latter is more convenient when considering derivations.  

 
1.2. Characterizations in terms of derivability 
 
In derivations, we work with singleton inputs, defining derivability from an input set A as 
derivability from the conjunction of finitely many elements of A. For any set of derivation rules, 
we say that a pair (a,x) of formulae is derivable from G using those rules, and write (a,x) ∈ 
deriv(G), iff (a,x) is in the least set that includes G, is closed under the rules, and contains every 
pair (t,t) where t is a tautology. The specific rules considered are: 
 

SI (strengthening input):   From (a,x) to (b,x) whenever b |− a 
AND (conjunction of output):  From (a,x), (a,y) to (a,x∧y)  
WO (weakening output):   From (a,x) to (a,y) whenever x |− y 
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OR (disjunction of input):  From (a,x), (b,x) to (a∨b,x)  
CT (cumulative transitivity):  From (a,x), (a∧x,y) to (a,y) 

 
The reason why (t,t) is mentioned separately above is to ensure full correspondence with the 
explicit definition, even in limiting cases. When t is a tautology, we have t ∈ out(G,a) even when 
G is empty. To derive (a,t) from G it suffices to have (t,t) and apply SI. Evidently, given SI and 
WO, in the above definition of deriv(G) it would suffice to require (t,t) ∈ deriv(G) for some 
tautology t.  
 
As shown in the cited paper, simple-minded output coincides with derivability using SI, AND, 
WO; basic output to those plus OR; simple-minded reusable output to the first three plus CT; and 
reusable basic output to all five. In other words, x ∈ out(G,a) iff (a,x) ∈ deriv(G), where the rules 
defining deriv are those mentioned as corresponding to out. For the augmented throughput 
versions, authorising inputs to reappear as outputs, add the zero-premise rule: 
 

ID: From no premises to (a,a) 
 
All of our systems of derivation admit the rules SI and WO, and so satisfy replacement of input, 
and of output, by classically equivalent propositions. That is, if (a,x) ∈ deriv(G) then (a′,x′) ∈ 
deriv(G) whenever Cn(a) = Cn(a′) and Cn(x) = Cn(x′). In derivations, it is convenient to treat 
replacement of logically equivalent propositions as a ‘silent rule’ that may be applied at any step 
without explicit justification. 
 
1.3. Out+/out reductions 
 
In two cases, the operations with throughput may be reduced to their counterparts without it. In 
one case a reverse reduction is possible. These facts are not mentioned in (Makinson and van der 
Torre, 2000), so we outline the proofs.  
 
Immediately from its definition, out1

+ may be reduced to out1 by the equation out1
+(G,A) = 

Cn(A∪out1(G,A)).  
 
The same identity holds for out3, as can be shown by the following argument. The inclusion 
Cn(A∪out3(G,A)) ⊆ out3

+(G,A) is immediate, so we need only prove the converse. Given the 
compactness of out3 and out3

+ as established in (Makinson and van der Torre, 2000), it suffices to 
do this for singleton values of A. Thus we need only show that whenever x ∈ out3

+(G,a) then 
a→x ∈ out3(G,a), i.e. whenever (a,x) ∈ deriv3

+(G) then (a,a→x) ∈ deriv3(G). But this is easily 
verified by an induction on the derivation, recalling for the basis that (t,t) ∈ deriv(G) in all our 
systems. 
 
These reductions do not hold for out2 or out4. In the following counterexample, and all others in 
the paper, a,b,x,y… are understood to be distinct elementary letters of classical propositional 
logic, and thus logically independent of each other, while t is any tautology. Put G = {(a,x)} and  
A = {¬x}. Then ¬a ∈ out2

+(G,A)  = out4
+(G,A) = Cn(A∪m(G)) = Cn({¬x}∪{a→x}). But ¬a ∉ 

Cn(A∪out4(G,A)) ⊇ Cn(A∪out2(G,A)). To see this, consider any complete set V that contains 
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neither a nor x, so that G(V) = ∅ ⊆ V ⊇ {¬x} = A and Cn(G(V)) = Cn(∅), so out4(G,A) = Cn(∅) 
and clearly ¬a ∉ Cn({¬x}∪ Cn(∅)).  
 
In the special case of out3 we also have a converse reduction: out3(G,A) = Cn(G(out3

+(G,A)). The 
left in right inclusion is immediate from the definition of out3, since out3

+(G,A) satisfies the three 
conditions imposed on B in that definition. For the right-in-left inclusion, it suffices to show that 
G(out3

+(G,A)) is included in out3(G,A), and by compactness it suffices to do this for singletons. 
Suppose x ∈ G(out3

+(G,a)). Then there is a b with (b,x) ∈ G and b ∈ out3
+(G,a), i.e. (a,b) ∈ 

deriv3
+(G). Hence as shown above, (a,a→b) ∈ deriv3(G). Since (b,x) ∈ G ⊆  deriv3(G) we have 

by SI (a∧b,x) ∈ deriv3(G), so by CT (a,x) ∈ deriv3(G), i.e. x ∈ out3(G,a) as desired. 
 
The reduction outi(G,A) = Cn(G(outi

+(G,A)) does not hold for any of the other output operations 
outi , i = 1,2,4, as can be shown by simple examples. For out1, out2, put G = {(a,x),(x,y)} and A = 
{a}; then the left side is Cn(x) while the right side is Cn({x,y}). For out4, put G = {(a,x),(¬a,x)} 
and A = {t}; then the left side is Cn(x) while the right side is Cn(∅).    
 
 

2. EXCESS OUTPUT AND ITS ELIMINATION 
 
2.1. Two kinds of excess output  
 
Two kinds of excess are of particular interest for output: inconsistency of output per se, and its 
inconsistency with input. Since inputs are not in general authorised to reappear as outputs, these 
are not the same.  
 

• Given a generating set G and input A, the output out(G,A) is inconsistent iff ⊥ ∈ 
Cn(out(G,A)). Equivalently, since out(G,A) = Cn(out(G,A)) for all of our input/output 
operations, iff ⊥ ∈ out(G,A).  

 
• On the other hand, output out(G,A) is inconsistent with input A iff ⊥ ∈ Cn(out(G,A)∪A). 

Equivalently, iff ¬∧A0 ∈ out(G,A) for some finite A0 ⊆ A. When A is a singleton {a}, this 
comes to ¬a ∈ out(G,a). 

 
Here ⊥ is the falsum (negation of a tautology). Clearly, inconsistency of output implies its 
inconsistency with input, but not conversely, as illustrated by the following simple example, well 
known from discussions of conditional norms in deontic logic.  
 
EXAMPLE 1 (broken promise). Let G = {(t,¬a), (a,x)} where t is a tautology. To give it flesh, 
read a as ‘you break your promise’ and x as ‘you apologize’.  Then out(G,a) = Cn({¬a,x}) for 
each of the four principal input/output operations outn (n = 1,2,3,4). Thus ⊥ ∉ out(G,a), i.e. 
output is consistent. However ¬a ∈ out(G,a), i.e. output is inconsistent with input.  � 
 
It is clear why we may wish to ensure consistency of output. But why might we also want to 
guarantee its consistency with input? The motivation comes from deontic logic. Suppose we are 
given a code G of conditional norms. Imagine that we are presented with a condition (input) that 
is unalterably true, and ask what obligations (output) it gives rise to. It may happen that the 
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condition is something that should not have been true in the first place. But that is now water 
under the bridge; we have to “make the best out of the sad circumstances” as (Hansson 1969) put 
it. We therefore abstract from the deontic status of the condition, and focus on the obligations that 
are consistent with its presence. In the above example, if the person has not kept a promise, then 
we want to know what should be done consistent with that situation. How to determine this in 
general terms, and if possible in formal ones, is the well-known problem of contrary-to-duty 
conditions.  
 
2.2. Avoiding excess output: maxfamilies and outfamilies 
 
Our strategy for eliminating excess output is to cut back the set of generators to just below the 
threshold of yielding excess. To do that, we adapt a technique that is well known in the more 
specific areas of belief change and nonmonotonic inference – look at the maximal non-excessive 
subsets.  
 
The formal definition is general, covering as special cases both inconsistency of output and its 
inconsistency with input.  Let G be a generating set, and let C be an arbitrary set of formulae, 
which we will call the ‘constraint set’. For any input set A, we define maxfamily(G,A,C) to be the 
family of all maximal H ⊆ G such that out(H,A) is consistent with C.  
 
The cases C = ∅ and C = A express consistency of output, and its consistency with input. In other 
words with C = ∅ (respectively C = A), maxfamily(G,A,C) gathers the maximal H ⊆ G such that 
out(H,A) is consistent (respectively consistent with input A). For throughput operations out = 
outn

+ we have A ⊆ out(G,A), so that maxfamily(G,A,∅) = maxfamily(G,A,A). But for the 
operations out = outn without throughput, they are quite different. 
 
Care should be taken when applying the definition to the throughput operations.  
Maxfamily(G,A,C) is understood to be the family of all maximal H ⊆ G such that outn

+(H,A) = 
outn(H∪I,A) is consistent with C. It is not the family of all maximal H ⊆ G∪I such that outn(H,A) 
is consistent with C. In other words, the set I is protected from attrition.  
 
We define outfamily(G,A,C) to be the family of outputs under input A, generated by elements of 
maxfamily(G,A,C). In other words, outfamily(G,A,C) is the family of all sets out(H,A) such that H 
is maximal among the subsets H′ ⊆ G with out(H′,A) consistent with C.  
 
2.3. Meets and joins of outfamilies 
 
As one would expect from the analogous constructions in the logics of belief change and 
nonmonotonic inference, the definition of an outfamily gives rise to notions of full meet and full 
join constrained output, i.e. ∩(outfamily(G,A,C)) and ∪(outfamily(G,A,C)). Some special cases of 
these operations have been studied in work on conditional norms in deontic logic. For example, 
(Hansson and Makinson 1997) in effect give a way of constructing ∩(outfamily(G,a,∅)) for out = 
out2. As we shall see in Sections 5 and 6, certain truth-functional approximations to 
∪(outfamily(G,A,A)) have also been studied in connection with contrary-to-duty conditional 
norms. 
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As in the logics of belief change and nonmonotonic reasoning, in addition to the full meet and 
join operations, there are partial ones, ∩(γ(outfamily(G,A,C))) and ∪(γ(outfamily(G,A,C))). Here 
γ is any selection function, with γ(Y) being a subset of Y, non-empty if Y is. Thus the full meet 
and full join operations are uniquely defined, while partial meet and join are schemas whose 
value depends on γ. The meet operations are closed under classical consequence since the 
intersected sets out(H,A) are all closed, but in general the join operations are not closed under 
classical consequence.  
 
In this paper we focus on the outfamilies themselves, without investigating systematically their 
meets and joins. Nevertheless, it will be useful when we consider constrained derivations in 
Sections 6 and 7, to note that full join constrained output may be characterized more directly, 
without mention of maximality.  
 
OBSERVATION 1. x ∈ ∪(outfamily(G,A,C)) iff there is a H ⊆ G such that x ∈ out(H,A) and 
out(H,A) is consistent with C.  
 
Proof. Left to right is immediate from the definition of ∪(outfamily(G,A,C)). For the converse, 
suppose there is a H ⊆ G such that out(H,A) contains x and is also consistent with C. Now each of 
our seven input/output operations is compact in its left argument G; this is immediate from their 
characterizations by derivation rules in Section 1.2. Hence by Zorn’s Lemma, there is a maximal 
H′ with H ⊆ H′ ⊆ G such that out(H′,A) is consistent with C. Thus H′ ∈ maxfamily(G,A,C). By 
the monotony of the unrestricted output operation out(G,A) in its left argument, since x ∈ 
out(H,A) we have x ∈ out(H′,A). Thus x ∈ ∪(outfamily(G,A,C)). � 
 
In Appendix #1 we note the monotony/antitony properties of the full join and meet operations, 
with respect to arguments G,A,C. 
 
 

3. SOME EXAMPLES FROM DEONTIC LOGIC 
 
We give some examples that are familiar from discussions of contrary-to-duty norms in deontic 
logic. We calculate separately for C = ∅ and C = A. In Examples 3.1 and 3.2 the calculation 
holds indifferently for the four principal input/output operations not authorising throughput. In 
Example 3.3 we calculate for out3 and out4. 
 
EXAMPLE 3.1. We return to the broken promise (Example 1) and reconsider it in the light of our 
formal definitions. Recall that G = {(t,¬a), (a,x)} where t is a tautology, a is ‘you break your 
promise’ and x is ‘you apologize’. Then as already noted, out(G,a) = Cn(¬a,x) which is 
consistent. Thus on the one hand, for C = ∅: 
 

maxfamily(G,a,∅) = {G}     
outfamily(G,a,∅) = {Cn(¬a,x)}    
∩(outfamily(G,a,∅)) = ∪(outfamily(G,a,∅)) = Cn(¬a,x)  

 



 

 7

On the other hand, out(G,a) is not consistent with the input a. There is a just one maximal subset 
of G whose output is consistent with input a, namely the singleton {(a,x)}. Thus for C = {a} we 
have:  

maxfamily(G,a,a) = {{(a,x)}} 
outfamily(G,a,a)   = {Cn(x)} 
∩(outfamily(G,a,a)) = ∪(outfamily(G,a,a)) = Cn(x) 

 
This agrees with the intuitive assessment of the example, where the elements of G are understood 
as conditional obligations. Given that one has broken the promise, the obligation to apologize 
becomes operative, while the obligation not to violate the promise is no longer in play.  � 
 
EXAMPLE 3.2. (broken promise without apology). Multiple levels of violation may be analysed 
in the same way. For example, put G = {(t,¬a), (a,x), (a∧¬x,y)} where t,a,x are as in Example 
3.1 and y is ‘you are ashamed’. Consider the input a∧¬x.  
 
Then out(G,a∧¬x) = Cn(¬a,x,y), which is consistent, so that maxfamily(G, a∧¬x, ∅) = {G} and 
outfamily(G, a∧¬x, ∅) = {Cn(¬a,x,y)}. On the other hand, out(G,a∧¬x) is inconsistent with 
input a∧¬x, so that maxfamily(G, a∧¬x, a∧¬x) = {(a∧¬x, y)} and outfamily(G, a∧¬x, a∧¬x)   = 
{Cn(y)}.  � 
 
EXAMPLE 3.3. (Möbius strip, Makinson 1994, 1999). Put G = {(a,b), (b,c), (c,¬a)}. For 
instance, a,b,c could represent ‘Alice (resp. Bob,Carol) is invited to dinner’. The pair (a,b) then 
tells us that if Alice is invited then Bob should be, and so on. Consider a as input. Calculating for 
out ∈ {out3, out4}, we have out(G,a) = Cn(b,c,¬a) which is consistent. Hence:   
 

maxfamily(G,a,∅) = {G}     
outfamily(G,a,∅)   = {Cn(b,c,¬a)}   
∩(outfamily(G,a,∅)) = ∪(outfamily(G,a,∅)) = Cn(b,c,¬a). 
   

But out(G,a) is not consistent with the input a. This time there are three maximal subsets of G 
whose output (under input a) is consistent with a, namely the three two-element subsets. Thus:  
 

maxfamily(G,a,a) = {{(a,b),(b,c)}, {(a,b),(c,¬a)}, {(b,c),(c,¬a)} 
outfamily(G,a,a)   = {Cn(b,c), Cn(b), Cn(∅)} 
∩(outfamily(G,a,a)) = Cn(∅) 
∪(outfamily(G,a,a)) = Cn(b,c).  � 

 
The Möbius strip is a fascinating example. Since Cn(∅) ⊂ Cn(b) ⊂ Cn(b,c), it shows that for out3 
elements of the outfamily are not always maximal. In Appendix #2 we investigate this matter 
further.   
 
 

4. SPECIAL CASES FOR DEFAULT LOGIC AND REVISION 
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We show how Poole systems and maxichoice revision may both be seen as a special case of 
constrained input/output logic, and that normal Reiter default systems are closely related to 
another one. Specifically, Poole systems and maxichoice revision correspond to constrained 
reusable basic throughput out4

+, while normal Reiter defaults are closely related to constrained 
out3

+. This section may be omitted without loss of continuity for the general theory, but those 
readers already familiar with the above systems may find the connections revealing. 
 
OBSERVATION 4. Let (D,A,C) be a Poole default system, where D is the set of its default 
formulae, A its set of premises, and C its set of constraining formulae. Let extfamily(D,A,C) be 
the family of its extensions in the sense of Poole. Then extfamily(D,A,C) = outfamily(G,A,C), 
where G = {(t,x): x ∈ D} and outfamily is defined using reusable basic throughput out4

+.  
 
Proof. Recall again from Section 1.1 that out4

+(G,A) = Cn(A∪m(G)). Note also that since t→x is 
classically equivalent to x, m(G) is equivalent to D. 
 
By the definition of a Poole default system – see (Poole 1988) or the exposition in (Makinson 
1994, Section 3.3) – extfamily(D,A,C) is the family of all sets Cn(A∪D′) with D′ a maximal 
subset of D such that Cn(A∪D′) is consistent with C. By the construction of G, this is identical to 
the family of all sets Cn(A∪m(H)) such that H is a maximal subset of G with Cn(A∪m(H)) 
consistent with C. Since out4

+(H,A) = Cn(A∪m(H)), we conclude that extfamily(D,A,C) is the 
family of all sets out4

+(H,A) such that H is a maximal subset of G with out4
+(H,A) consistent with 

C, i.e. it is outfamily(G,A,C).  � 
 
In the logic of belief change, the well-known partial meet revisions of (Alchourrón, Gärdenfors 
and Makinson 1985) have maxichoice revisions as a special case, already studied by (Alchourrón 
and Makinson 1982). It is well-known that maxichoice revisions may also be regarded as Poole 
default extensions: the maxichoice revisions K∗a are precisely the extensions of the Poole default 
system (K,{a},∅). Thus from Observation 4 (or by direct verification) we also have: 
 
COROLLARY TO OBSERVATION 4. Let K be a belief set and a any formula. Let 
revfamily(K,a) be the set of all maxichoice revisions of K by a. Then revfamily(K,a) = 
outfamily(G,a,∅) = outfamily(G,a,a), where G = {(t,x): x ∈ K} and outfamily is defined using 
out4

+.  
 
Normal default systems in the sense of (Reiter 1980) are closely related to input/output logics 
with out3

+ (reusable simple-minded throughput) as the underlying unconstrained operation. 
However, the correspondence is less complete than for Poole systems. The family of Reiter 
extensions forms a distinguished subset of the corresponding outfamily. Roughly speaking, Reiter 
extensions maximize output, while constrained outputs maximize subsets of G, whose outputs 
need not be maximal (cf. Appendix #2).  
 
This may be illustrated by looking again at Example 3.3, the Möbius strip, where G = {(a,b), 
(b,c), (c,¬a)}, and which we have already calculated for out ∈ {out3, out4}. Recalculating for out 
= out3

+, we get a very similar pattern. On the one hand, there are three elements in the outfamily, 
forming a chain, as follows: 
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out(G,a) = Cn(a,b,c,¬a) 
maxfamily(G,a,∅) = maxfamily (G,a,a) = {{(a,b),(b,c)}, {(a,b),(c,¬a)}, {(b,c),(c,¬a)} 
outfamily(G,a,∅)   = outfamily(G,a,a)   = {Cn(a,b,c), Cn(a,b), Cn(a)} 

 
On the other hand, if we read the elements of G as normal Reiter default rules a;b/b etc., then 
(G,a) has a unique Reiter extension Cn(a,b,c), which is the largest element of the outfamily. 
 
The general relationship between outfamily and extfamily is given by the following observation. 
To simplify notation, we write outfamily(G,A) indifferently for outfamily(G,A,A) and 
outfamily(G,A,∅), knowing that these are identical for input/output operations outn

+ admitting 
throughput. For simplicity of notation we identify a normal rule a;x/x with the corresponding pair 
(a,x). 
 
OBSERVATION 5. Let (G,A) be any normal Reiter default system, with G the set of its default 
rules and A the set of its premises. Suppose that A is consistent. Write extfamily(G,A) for the 
family of all its extensions in the sense of Reiter. Let outfamily be defined using reusable simple-
minded throughput out3

+. Then: 

(a) extfamily(G,A) ⊆ outfamily(G,A) 
(b) for every X ∈ outfamily(G,A), there is an E ∈ extfamily(G,A) with X ⊆ E. 

 
Proof. See Appendix #3.  � 
 
COROLLARY TO OBSERVATION 5. Under the same conditions as Observation 5, 
extfamily(G,A) consists of exactly the maximal elements of outfamily(G,A). In brief: 
extfamily(G,A) = max(outfamily(G,A)).  
 
Proof. Immediate from Observation 5, using the fact that no extension is properly included in any 
other (Reiter 1980, Theorem 2.4).  � 
 
SECOND COROLLARY TO OBSERVATION 5. Under the same conditions as Observation 5, 
∪(extfamily(G,A)) = ∪(outfamily(G,A)).  
 
Proof. Immediate from Observation 5.  � 
 
Observation 5 also implies that for out = out3

+ and consistent A, we have the following 
‘embedding property’: every element of outfamily(G,A) is included in a maximal such element. 
However, this is a rather roundabout way to prove the property, via Reiter default systems. It also 
leaves several questions open. Can we drop the hypothesis of the consistency of A? Can we prove 
the property more generally for an arbitrary constraint set C? Can we prove it for other values of 
outi?  
 
We can prove it for out1, out1

+, and out4
+ (alias out2

+). Indeed for those operations we have a 
much stronger property: no element of outfamily(G,A,C) is properly included in any other 
(Observation 3 in Appendix #2). But for the remaining operations out2, out3, out4, this stronger 
property fails and the status of the embedding  property remains open. 
 



 

 10

We end this section with a terminological warning. The term ‘generating set’ is used in this paper 
in a sense quite different from that of (Reiter 1980, Definition 2). For us, a generating set is any 
set of pairs (a,x) of formulae. Reiter uses the term in a quite different sense. Given a default 
system (G,A) and a set X of formulae, the generating set for X, in Reiter’s sense, is the set of all 
default rules in G whose prerequisites are in X and whose justifications are consistent with X. 
 
 

5. TRUTH-FUNCTIONAL REDUCTIONS OF THE INPUT/OUTPUT CONSTRAINT  
 
5.1. Materialisations, heads, and fulfilments 
 
We recall from Section 2.1 that a principal motivation for studying constrained input/output 
logics is their application to deontic contexts, and in particular to contrary-to-duty conditional 
norms. For this reason, from this point on we restrict attention to the requirement that output 
out(G,A) is consistent with input A, i.e. the case that C = A. We call this the input/output 
constraint. It gives the sets maxfamily(G,A,A) and outfamily(G,A,A). 
 
One may imagine truth-functional counterparts to this constraint. For example, one could require 
that input A is consistent with the set m(G) of materialisations of elements of G, i.e. the set of all 
formulae a→x with (a,x) ∈ G. Again, we could require A to be consistent with the set h(G) of 
heads x of elements (a,x) of G, or with the set f(G) of its fulfilments a∧x. The authors have 
studied some of these truth-functional approximations in earlier work on conditional norms. (Van 
der Torre 1997, 1998) examined the fulfilment constraint as applied to derivations, first for out3 
and then for out4. (Makinson 1999) investigated the head constraint for out4 in the same context.  
 
What is the relationship between the input/output constraint and its truth-functional counterparts? 
In one direction, we have the following simple fact.  
 
OBSERVATION 6. Let out be any of our seven unrestricted input/output operations. For all C ⊇ 
A, if C is consistent with a set in the list out(G,A), m(G), h(G), f(G) then it is consistent with any 
set earlier in the list. 
 
Proof. Recall from Section 1.1 that out(G,A) ⊆ Cn(A∪m(G)). It follows that for all C ⊇ A, if C is 
consistent with m(G) and thus also with Cn(A∪m(G)), then it is consistent with out(G,A). For the 
remainder, simply note that by classical logic f(G) |−  h(G) |− m(G).  �  
 
In the converse direction, the situation depends on the choice of the background input/output 
operation, as we now show. 
 
5.2. Truth-functional reductions 
 
We begin by noting that the converse of Observation 6 fails for outi when i ∈ {1,1+,2,3,3+}, even 
in the case that C = A and even for the ‘nearest’ truth-functional counterpart m(G). We give two 
examples that together cover the operations.  
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EXAMPLE 4.1. For i ∈ {1,1+,2}, put G = {(t,x), (x,y)} and A = {¬y}. Then A is inconsistent with 
m(G) and so with h(G) and f(G). On the other hand, A is consistent with outi(G,A), since 
out1(G,A) ⊆ out1

+(G,A) = Cn(G+(Cn(A))) = Cn({x,¬y}) while out2(G,A) = Cn({x}), both of which 
are consistent with ¬y.  � 
 
EXAMPLE 4.2. For i ∈ {1,1+,3,3+}, Put G = {(a,x), (¬a,x)} and A = {¬x}. Then A is inconsistent 
with m(G) and so with h(G) and f(G). On the other hand, A is consistent with out3

+(G,A) ⊇ 
outi(G,A). To see this, put B = Cn(¬x). Then A ⊆ B = Cn(B) = G+(B) = Cn(¬x) so out3

+(G,A) ⊆ 
Cn(¬x) which is consistent with ¬x.  � 
 
On the other hand, we have a converse for out4

+ (which, we recall, coincides with out2
+), and 

another one for out4 in the case C = A.      
 
OBSERVATION 7. For all C ⊇ A, C is consistent with out4

+(G,A) iff it is consistent with m(G). 
 
Proof. Right to left is already given by Observation 6. For left to right, recall from Section 1.1 
that out4

+ = Cn(A∪m(G)) and conclude.  � 
 
OBSERVATION 8. A is consistent with out4(G,A) iff it is consistent with m(G). 
 
Proof. Right to left is already given by Observation 6. For left to right, suppose A is inconsistent 
with m(G); we need to show that it is inconsistent with out4(G,A). Let V be any complete set with 
A ⊆ V ⊇ G(V). Then m(G) ⊆ V, for otherwise there is a pair (a,x) ∈ G with a→x ∉ V so a ∈ V 
and ¬x ∈ V contradicting G(V) ⊆ V. Since both A and m(G) are included in V, V = Λ.  It follows 
that out4(G,A) = Cn(G(Λ)) = Cn(h(G)) ⊇ Cn(m(G)) ⊇ m(G). Since A is inconsistent with the last, 
it is inconsistent with the first, and we are done. � 
 
COROLLARY TO OBSERVATIONS 7,8. For out ∈ {out4, out4

+}, maxfamily(G,A,A) is the 
family of all maximal H ⊆ G such that A is consistent with m(H); thus also outfamily(G,A,A) is 
the family of sets out(H,A) for maximal H ⊆ G such that A is consistent with m(H). 
 
5.3. The effect of throughput on maxfamilies 
 
From Observations 7 and 8, together with results in Section 1.3, we obtain a further corollary, on 
the effect of throughput on consistency of output with input, and thus in turn on the identity of 
maxfamilies.  
 
SECOND COROLLARY TO OBSERVATIONS 7,8. For out ∈ {out1, out3, out4}, the following 
three conditions are equivalent: A is consistent with out(G,A), A is consistent with out+(G,A), 
out+(G,A) is consistent. 
 
Proof. For out1 and out3 this immediate from the reduction out+(G,A) = Cn(A∪out(G,A)) 
established for those operations in Section 1.3, recalling that A ⊆ out+(G,A). For out4, apply 
Observations 7 and 8. � 
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THIRD COROLLARY TO OBSERVATIONS 7,8. For out ∈ {out1, out3, out4}, 
maxfamily(G,A,A) = maxfamily+(G,A,A). 
 
Proof. Immediate from the Second Corollary. Notation: when maxfamily is determined by out, 
then maxfamily+ is understood to be determined by out+. � 
 
Note however that for the same operations out1, out3, out4, we may have outfamily(G,A,A) ≠ 
outfamily+(G,A,A) since in general out(H,A) ≠ out+(H,A).  
 
Moreover, for out2 the identity maxfamily(G,A,A) = maxfamily+(G,A,A) fails. For a 
counterexample, put G = {(a,x), (x,¬a)}. Then using characterizations in Section 1.1, ¬a ∈ 
out2

+(G,a) = out4
+(G,a) = Cn({a}∪m(G)). But ¬a ∉ out2(G,a), as witnessed by any complete set 

containing a but not x, for then G(V) = {x} and ¬a ∉ Cn(x).  
   
 

6. CONSTRAINED DERIVATIONS 
 
6.1. Definitions 
 
Up to this point, we have considered constrained output in terms of its explicit definition, i.e. 
from a perspective that may be called, in a broad sense of the word, semantic. We now examine it 
in terms of derivations, where a number of new questions arise. 
 
We know (Section 1.2) that each of our unconstrained input/output operations may be given a 
characterization in terms of derivations: x ∈ out(G,a) iff (a,x) is derivable from G using 
appropriate rules. In this section we consider constraint as a requirement on the root of a 
derivation, relative to its leaves. In Section 7, we examine a more demanding way of applying it, 
as a requirement on every step of a derivation.    
 
In Section 1.2 we sketched the notion of derivability, but leaving implicit the definitions of a rule 
and of a derivation. We now need to be more explicit. A rule r (of arity n ≥ 0) is a subset of Pn+1 
where P is the set of all ordered pairs of formulae. When ((a1,x1),…, (an,xn), (an+1,xn+1)) ∈ r, then 
(a1,x1),…, (an,xn) are called its premises and (an+1,xn+1) its conclusion.  
 
A derivation of a pair (a,x) from a set G of pairs of formulae, given a set R of rules, is understood 
to be a tree with (a,x) at the root, each non-leaf node related to its immediate parents by the 
inverse of a rule in R, and each leaf node either the conclusion of a zero-premise rule in R, or an 
element of G, or of the form (t,t). It is understood that not all elements of G need to appear as 
leaves. Nor do all rules in R need to be applied in the derivation, but no others may be employed.  
 
A pair (a,x) of formulae is said to be derivable from G given rule-set R, and we write (a,x) ∈ 
deriv(G) or x ∈ deriv(G,a), iff there is some derivation of (a,x) from G given R. Equivalently, 
recalling the formulation in Section 1.2, deriv(G) is the least set that includes G, contains the pair 
(t,t) where t is any tautology, and is closed under the rules.  
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We say that a derivation ∆ is constrained iff the body of the root is consistent with its own 
derivability set. To be precise, let ∆ be a derivation of (a,x) from G, given a rule-set R. Let L ⊆ G 
be the set of the leaves of ∆. We say that ∆ is constrained with respect to rule-set R iff (a,¬a) ∉ 
deriv(L) where deriv is derivability using only rules in R. Equivalently, when R contains the rules 
AND, WO, iff deriv(L,a) is consistent with a. 
 
EXAMPLE 5. Put G = {(a,x), (a∧x,y)} and let R = R3 = {SI, AND, WO, CT}. Consider the 
following derivation ∆ of (a∧¬x,y) from G.  
 

 (a,x)  (a∧x,y) 
 ------------------------   CT 
  (a,y) 
       SI 
        *(a∧¬x,y) 

 
∆ is not constrained with respect to R because (a∧¬x,¬(a∧¬x)) ∈ deriv(L) where L is the set of 
leaves of ∆, as witnessed by the derivation: 
 

      (a,x)    
           SI    
   (a∧¬x,x)    
            WO   
(a∧¬x,¬(a∧¬x))    � 

 
It is immediate from the definition that no derivation with root of the form (a,¬a) is constrained 
(with respect to the set of rules used in the derivation). If R also contains WO, then no derivation 
whose root (a,x) has an inconsistent fulfillment, is constrained. For if a is inconsistent with x then 
x |− ¬a so that by an application of WO we have (a,¬a) ∈ deriv(L). 
  
In the definition of a constrained derivation ∆ of (a,x) from G given a rule-set R, we have 
considered only the set L ⊆ G of leaves of ∆, but the whole set R of rules rather than those 
actually employed in ∆. It may be asked why we proceed in this asymmetric manner. We 
envisage the agent as working with a fixed stock R of derivation rules that it regards as 
acceptable. In general, a derivation will appeal to only some of the allowed stock of rules, but we 
regard the agent as remaining committed to all of them. On the other hand, the set G of pairs that 
the agent assumes as premises is regarded as variable. In general, a derivation will use only some 
of them as leaves, and they are the only ones to which the agent is committed. So when we test to 
see whether the body of the root is consistent with its own output under the rules, we do so with 
respect to the entire set R, but only the set L ⊆ G of leaves of the derivation. 
 
Evidently, this is a delicate point on which other perspectives are possible, with different 
consequences, for as L and R grow so does deriv(L). We compare them in Appendix #4.  
 
We say that (a,x) is derivable with constraint from G given rule-set R iff there is some derivation 
of (a,x) from G given R that is constrained with respect to R. As one would expect, for each of 
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our input/output operations, this is equivalent to full join constrained output, where the constraint 
is the same as the input.  
 
OBSERVATION 9. Let out be any one of the operations outi or outi

+ (i = 1,..,4), and let R be the 
corresponding set of derivation rules. Then x ∈ ∪(outfamily(G,a,a)) iff there is a derivation of 
(a,x) from G (given rules from R) that is constrained (with respect to R).    
 
Proof. Recall from Observation 1 that x ∈ ∪(outfamily(G,a,a)) iff x ∈ out(H,a) for some H ⊆ G 
such that a is consistent with out(H,a). Since out = deriv and the rules AND, WO are available, 
we need only show that the following are equivalent, where L∆ is the set of all leaves of ∆. 

(1) ∆ is a derivation of (a,x) from some H with  H ⊆ G, such that ¬a ∉ deriv(H,a), 
(2) ∆ is a derivation of (a,x) from G such that ¬a ∉ deriv(L∆,a). 

 
But (1) immediately implies L∆ ⊆ H ⊆ G and so implies (2). Also (2) implies (1) taking H to be 
the set of all leaves of ∆ other than those of the form (t,t) and, for outi

+, of the form (a,a). � 
 
6.2. Truth-functional reductions of the constraint on derivations 
 
We return to the question of truth-functional reductions of the input/output constraint, but now in 
terms of derivations and their leaves. Observation 8 gave a positive result for out4 on the semantic 
level, which we can translate to the language of derivations.  
 
OBSERVATION 10. Let ∆ be any derivation of (a,x) from G, with leaves L. Then ∆ is 
constrained with respect to R4 iff a is consistent with m(L). 
 
Proof. By definition, ∆ is constrained with respect to R4 iff ¬a ∉ deriv4(L,a) = out4(L,a) = 
Cn(out4(L,a)), i.e. iff a is consistent with out4(L,a), i.e. (using Observation 8) iff a is consistent 
with m(L). � 
 
Evidently, since out2

+(L,a) = out4
+(L,a) = Cn(a∪m(L)) (section 1.1), Observation 10 also holds 

for R2
+ and R4

+.  
 
For out1 and out3, the truth-functional reduction fails on the semantic level, as we saw in 
Examples 4.1 and 4.2. Nevertheless, on the level of derivations we have a positive result.  
 
OBSERVATION 11. Let R ∈ {R1,R3}. Let ∆ be any derivation of (a,x) from G with leaves L, 
given rules R. Then ∆ is constrained with respect to R iff a is consistent (indifferently) with m(L), 
h(L), f(L).  
 
Proof. Given Observation 6, we need only show that if a is inconsistent with f(L) then a is 
inconsistent with deriv(L,a). For this, it suffices to show that {a} ∪ deriv(L,a) |− f(L).  
 
For each node n:(b,y) in the derivation, write Ln for the set of all leaves in the subtree determined 
by n. We show by induction that {b} ∪ deriv(L,b) |− f(Ln).  
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Basis: Suppose n:(b,y) is a leaf of the tree. Then y ∈ deriv(L,b), f(Ln) = {b∧y}, so clearly {b}∪ 
deriv(L,b) |− f(Ln).   
 
SI: Suppose n:(b,y) is derived by SI from p:(c,z). Then b |− c. By the induction hypothesis, {c}∪ 
deriv(L,c) |− f(Lp), so {b}∪ deriv(L,b) |− f(Lp) = f(Ln)  since Ln = Lp. 
 
AND: Suppose n:(b,y) is derived by AND from p:(b,z) and q:(b,w). By the induction hypothesis, 
{b}∪ deriv(L,b) |− f(Lp), f(Lq) so {b}∪ deriv(L,b) |− f(Lp) ∪ f(Lq) = f(Ln) since Ln = Lp∪Lq.   
 
WO: Suppose n:(b,y) is derived by WO from p:(b,z). By the induction hypothesis, {b}∪ 
deriv(L,b) |− f(Lp) = f(Ln) since Ln = Lp. 
 
CT: Suppose n:(b,y) is derived by CT from p:(b,z) and q:(b∧z,y). By the former, z ∈ deriv(L,b) 
and, using CT, deriv(L,b∧z) ⊆ deriv(L,b). By the induction hypothesis, {b}∪ deriv(L,b) |− f(Lp) 
and {b∧z}∪ deriv(L,b∧z) |− f(Lq). Putting these together we have {b}∪ deriv(L,b) |− f(Lp) ∪ f(Lq) 
= f(Ln) since Ln = Lp∪Lq. �    
 
How does this Observation resist Examples 4.1 and 4.2? When considering constraints on a 
derivation, we look only at the set L of its leaves, and when L ⊂ G then m(L) may be weaker than 
m(G). In the case of Example 4.1, where G = {(t,x), (x,y)} and A = {¬y}, we can construct a 
derivation of (¬y,x) with leaf-set L = {(t,x)} ⊂ G, as follows: 
 
     (t,x) 
          SI 
        (¬y,x)  
 
As noted in the presentation of Example 4.1, ¬y is consistent with out1(G,¬y) = deriv1(G,¬y) ⊇ 
deriv1(L, ¬y). But while ¬y is inconsistent with m(G) = {t→x,  x→y}, it is consistent with m(L) = 
{t→x}. In fact, there is no derivation of (¬y,x), using only rules from R1, whose leaves cover all 
elements of G. Similar considerations apply to Example 4.2. 
 
Observation 11 fails for R2. Put G = {(a,¬a),(b,¬b)} and consider the derivation: 
 

(a,¬a)  (b,¬b) 
       WO        WO 
(a,¬a∨¬b) (b,¬a∨¬b) 
----------------------------    OR 
 (a∨b,¬a∨¬b)    

 
Then a∨b is inconsistent with m(G). On the other hand, a∨b is consistent with out2(G,a∨b), as 
witnessed by any complete set V containing a but not b. For then a∨b ∈ V, and G(V) = {¬a} so 
Cn(G(V)) = Cn(¬a) which is consistent with a∨b.   
 
We end this section by noting that from Observation 11 we can get its counterpart for R1

+ and 
R3

+.  



 

 16

 
COROLLARY TO OBSERVATION 11. Let R+ ∈ {R1

+,R3
+}. Let ∆ be any derivation of (a,x) 

from G with leaves L, given rules R+. Then ∆ is constrained with respect to R+ iff a is consistent 
(indifferently) with m(L), h(L), f(L).  
 
Proof. Let ∆ be any derivation of (a,x) from G given rules R+. Let L be the set of leaves of ∆. On 
the one hand, by Observation 6, if a is consistent with any one of m(L), h(L), f(L) then it is 
consistent with outi

+(L,a), i.e. ∆ is constrained wrt R+. For the converse, note that since identity is 
a zero-premise rule, ∆ is also a derivation, using only rules in R, from G∪J where J ⊆ I. If ∆ is 
constrained wrt R+ then it is constrained wrt to R and we may apply Observation 11 to conclude 
that a is consistent with each of m(L), h(L), f(L). � 
 
 

7. APPLYING CONSTRAINTS MORE SEVERELY 
 
7.1. General picture 
 
If we are interested in derivations beyond their role as syntactic counterparts of explicitly defined 
operations, then further questions are suggested by the concepts introduced in Section 6. The 
definition of a constrained derivation (Section 6.1) requires that (a,¬a) ∉ deriv(L), where a is the 
body of the root and L is the set of leaves of the derivation. But the root and the leaves are not the 
only nodes of a derivation. What happens if we apply the concept more severely? In particular: 
 

• What if, instead of checking the body of the root node with respect to leaves, we check it 
with respect to all nodes in the derivation? 

 
• What if, instead of checking the body of the root node only, we check the body of every 

node in the derivation?  
 
The first question has an easy answer. It makes no difference whether we check the root with 
respect to leaves only, or all nodes in the derivation. This is irrespective of the subset of rules 
considered to be available.  
 
OBSERVATION 12. Consider any set R of rules from SI, AND, WO, OR, CT. A derivation ∆ 
with root (a,x) is constrained (with respect to R) iff (a,¬a) ∉ deriv(H), where H is the set of all 
nodes of ∆ (and derivability is defined in terms of R).   
 
Proof. Since H is the set of all nodes of ∆, we have L ⊆ H ⊆ deriv(L) where L is the set of leaves 
of ∆. Hence, since deriv (understood as taking sets of pairs of propositions to sets of pairs) is 
clearly a closure operation, we have deriv(H) = deriv(L). In particular, (a,¬a) ∉ deriv(H) iff 
(a,¬a) ∉ deriv(L), i.e. iff ∆ is constrained. � 
 
The second question is much more complex. The formulation above is rather loose. Let us say 
that a derivation ∆ is constrained at node n:(b,y) iff ¬b ∉ deriv(L,b), where L is the set of leaves 
of the entire derivation ∆ and deriv is defined by the same set of rules as used when checking the 
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root node. Our question is: given a derivation of (a,x) from G that is constrained at the root, is 
there always some derivation of (a,x) from G that is constrained at every node?  
 
In general, the answer depends on the rules allowed, for one rule may allow us to bypass steps 
that fall foul of a constraint which another rule cannot avoid. Specifically, for the rule sets R2 and 
R4, it can make a difference to derivations whether we check the root only, or all nodes in the 
derivation. But for the rule sets R1 and R3 (which lack OR), it makes no difference. Moreover, for 
the rule set R2 (which lacks CT), if the given derivation satisfies the constraint at both the root 
and all leaves, then some derivation of the same root from the same leaves satisfies the constraint 
at every step. We now prove these results.  
 
7.2. Results on severe application of the constraint on derivations 
 
We begin with the negative result, which reveals the limits of the positive ones that follow.     
 
OBSERVATION 13. For rule set R ∈ {R2, R4}, there is a derivation that is constrained with 
respect to R, but such that no derivation given R of the same root from the same generators is 
constrained at every node with respect to R.  
 
Proof. We re-use Example 2.1 of Appendix #1. Put G = {(a,⊥), (¬a,x)} and consider the 
following derivation. 
 
    *(a,⊥)   (¬a,x) 
             WO      
     *(a,x)       
       --------------------------      OR   
       (a∨¬a,x)  
 
This derivation is constrained with respect to R2, since ¬(a∨b) ∉ deriv2(G,a∨¬a) = 
deriv4(G,a∨¬a) = Cn(x). But it fails the constraint at the starred nodes. Moreover, there is no 
other derivation of the same root from the same (or fewer) leaves that satisfies the constraint at all 
nodes. For if the constraint is to be satisfied at all nodes, the leaf (a,⊥) cannot be used; but the 
root is not in even the unrestricted output of the other leaf (¬a,x) taken alone, as is easily checked 
from its definition (Section 1.1).  � 
 
We now pass to the positive results. We begin by noting some preservation properties for the 
various rules.  
 
LEMMA 14. Let {SI, AND, WO} ⊆ R ⊆ {SI, AND, WO, OR, CT}, i.e. let R be one of Ri (i = 
1,2,3,4). Then: 
 

(a) Satisfaction of the constraint is preserved backwards by each of the rules SI, AND, WO, 
CT. That is, in any derivation, if the conclusion of the rule satisfies the constraint (with 
respect to R), then so do its premises.  
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(b) Satisfaction of the constraint is preserved forwards by each of the rules AND, WO, CT, 
OR. That is, in any derivation, if the premises of the rule satisfy the constraint (with 
respect to R), then so does its conclusion.  

 
Proof.  
SI: Suppose (b,x) is obtained from (a,x) where b |− a. Suppose the premise fails the constraint. 
Then ¬a ∈ deriv(L,a) ⊆ deriv(L,b). But since b |− a we have ¬a |− ¬b so since WO is in R, ¬b ∈ 
out(L,b) and the conclusion fails the check. 
 
AND: Suppose (a,x∧y) is obtained from (a,x) and (a,y). The conclusion has the same body as 
each of the two premises, and so we have preservation in both directions. 
 
WO: Suppose (a,y) is obtained from (a,x) where x |− y. Again, the conclusion has the same body 
as the premise, and so we have preservation in both directions. 
 
CT: Suppose (a,y) is obtained from (a,x) and (a∧x,y). Preservation forwards is immediate, since 
the conclusion has the same body as one of the two premises. For preservation backwards, we 
have two cases to consider. Suppose first that (a,x) fails the constraint. Then ¬a ∈ deriv(L,a) and 
the conclusion fails the constraint. Suppose next that (a∧x,y) fails the constraint. Then ¬(a∧x) ∈ 
deriv(L,a∧x). But also x ∈ deriv(L,a), so by CT, ¬(a∧x) ∈ deriv(L,a). So by AND, WO which 
are in R, ¬a ∈ deriv(L,a) and the conclusion fails the constraint.  
 
OR: Suppose (a∨b,x) is obtained from (a,x) and (b,x). Suppose that the conclusion fails the 
constraint, i.e. ¬(a∨b) ∈ deriv(L,a∨b). Then since SI is in R, ¬(a∨b) ∈ deriv(L,a) say, so since 
WO is in R, ¬a ∈ deriv(L,a) and the premise fails the constraint. � 
 
We note in passing that that Lemma 14(a) continues to apply if the value of L is not fixed, but is 
taken to be the set of leaves in the derivation up to the node being considered. However, parts of 
Lemma 14(b) would then fail. As shown by Examples 7.1-7.3 in Appendix #5, satisfaction would 
no longer be preserved forwards for AND, CT, OR.  
 
From Lemma 14 we have immediately the following for derivations without OR: 
 
OBSERVATION 15. For R ∈ {R1,R3}, if the constraint is satisfied at the root then it is satisfied 
at every node. More explicitly: let R ∈ {R1,R3}, and let ∆ be any derivation using only rules from 
R that satisfies the constraint (with respect to R) applied to the root. Then ∆ satisfies the same 
constraint (with respect to R) at every step.  
 
The example used in the proof of Observation 13 already shows that Observation 15 can fail 
when OR is present. But we can also obtain a weaker result for derivations with OR, so long as 
they do not contain CT. 
 
OBSERVATION 16. For derivations without CT, satisfaction of the constraint at both root and 
leaves suffices to ensure its satisfaction everywhere in some derivation of the same root from the 
same leaves. More explicitly: let R ∈ {R1,R2}, and let ∆ be any derivation given R, that satisfies 
the constraint (with respect to R) applied to the root and also applied to each leaf. Then there is a 



 

 19

derivation ∆′ given R with the same root and leaves that satisfies the constraint at every node. 
 
Proof. By Observation 19(b) of (Makinson and van der Torre, 2000) any unrestricted derivation 
using only the given rules may be rewritten as one in which they are applied in the order WO, 
OR, SI, AND. Here it is understood that some of the rules may be skipped, and some may be 
applied several times, but never applied contrary to the indicated order. Put ∆′ to be a derivation 
ordered in this way. As the leaves and the root have not changed, the constraint continues to be 
satisfied for ∆′. It remains to show that the constraint is satisfied at every node of ∆′. For this we 
need only apply Lemma 14(b) forwards from the leaves through WO, OR, and Lemma 14(a) 
backwards from the root through AND, SI, thus covering all nodes in ∆′.  � 
 
Observation 16 cannot be extended to derivations admitting both OR and CT. More explicitly: 
 
OBSERVATION 17. For the rule-set R4: there is a derivation that satisfies the constraint applied 
to the root and also applied to each leaf, but such that neither it nor any other derivation given R4 
of the same root from the same generators (or a subset of them) satisfies the constraint at every 
node.  
 
Proof. See Appendix #6.  � 
 

 
8. SUMMARY AND PROSPECTS 

 
8.1. Summary 
 
In this paper, we have studied what happens when input/output operations are constrained to 
avoid excess output. Our strategy for eliminating excess output is to cut back the set of generators 
to just below the threshold of yielding excess. To do that, we adapt a technique that is well 
known in the more specific areas of belief change and nonmonotonic inference – look at the 
maximal subsets of the generator set whose output is not excessive.  
 
Outfamily(G,A,C) is defined as the family of all sets out(H,A) where H is a maximal subset of G 
such that out(H,A) is consistent with C. The case C = ∅ corresponds to the requirement that 
output is consistent; the case C = A to consistency of output with input. When the underlying 
unrestricted input/output operation is reusable basic throughput (out4

+), this gives exactly the 
default extensions of Poole and the maxichoice revisions of Alchourrón and Makinson 
(Observation 4). When it is reusable simple-minded throughput (out3

+), the result is very closely 
related to the normal default extensions of Reiter (Observation 5).  
 
Our main focus in the paper is on the case where output is required to be consistent with input. 
We call this the input/output constraint. In the context of reusable basic output out4, the definition 
of maxfamily(G,A,A) can be given a ‘truth-functional reduction’ in terms of the materialisation of 
the generating set (Observation 8).  
 
Constraints may also be approached in terms of derivations. Here, the natural constraint is to 
require the body a of the root (a,x) of the derivation to be consistent with its own unrestricted 
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output under the leaves of the derivation. This amounts to requiring that x ∈ ∪(outfamily(L,a,a)) 
(Observation 9). In the context of derivations, we can give more truth-functional reductions of the 
constraint than we could on the semantic level (Observations 10 and 11). 
 
Finally, we investigated the consequences of applying the consistency constraint more severely 
than at the root only and with respect to the leaves only. On the one hand, if the constraint is 
applied at the root only, but with respect to all nodes, this makes no difference (Observation 12). 
On the other hand, if we apply the constraint at all nodes with respect to the leaves, it can make a 
difference (Observation 13).  
 
Nevertheless, when the choice of derivation rules is limited in certain ways, application of the 
constraint at all nodes of a derivation no longer increases its severity. This is so for derivations 
without OR (Observation 15), because all rules from our palette other than OR preserve 
backwards satisfaction of the constraint (Lemma 14a). For derivations without CT, the situation 
is subtler. The rules other than CT may be partitioned into those that preserve forward 
satisfaction of the constraint and those that preserve backward satisfaction (Lemma 14), and 
derivations without CT can always be rewritten with the former rules applied first. Thus checking 
the constraint at both root and leaves suffices to guarantee its satisfaction at every step of the 
rewritten derivation (Observation 16).  
 
8.2. Prospects  
 
A technical problem that has been left open is the order structure of outfamilies for outi where i = 
2,3,4, and to a lesser extent for out3

+, specifically the role of their maximal elements (see end of 
Section 4 and Appendix #2).  
 
Some general lines of investigation deserve further exploration. These include the properties of 
full and partial meets and unions of outsets (cf. the observations on monotony and antitony in 
Appendix #1), and constraints with respect to values of C other than A and ∅. One might also 
consider possible refinements in the definition of an outfamily. For example, adapting an idea 
already studied in the logic of belief revision (Makinson 1997), one could designate a certain part 
of the unrestricted output as protected from attrition in the construction of outfamilies.  
 
On the level of derivations, it could be of interest to investigate ways of applying the constraint at 
every step, but with respect to a variable set L of leaves (cf. the remarks after Lemma 14, and the 
examples in Appendix #5). One might also try to ascertain whether our choice of rules SI, WO, 
AND, OR, CT provides the best possible palette for the analysis of derivations, or whether there 
are other sets of rules, collectively equivalent but separately not so, that give more insight into the 
powers of consistency constraints.  
 
One could also go back to unconstrained systems, and ask whether there are others, different 
from those studied here, that merit examination. For application to defeasible obligations, it may 
be of interest to study systems that do not validate SI. For application to permissive norms (even 
on the indefeasible level) one could consider systems failing both SI and AND. 
 
Finally, we recall that the paper focuses on the creation and study of an abstract structure. It 
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remains to consider its application in practical contexts. Some well-known examples of contrary-
to-duty conditional norms are analysed in Section 3 (Examples 3.1-3.3), but there are many more 
– see for instance the tables in (Makinson 1999) and (van der Torre and Tan 1999). Application 
elsewhere, such as the logics of action and belief, remains open. 
 

 
APPENDICES  

 
 #1. Monotony/antitony Properties for the Full Join and Meet Operations 
 
It is immediate from Observation 1 that the full join operation is monotonic in argument G and 
antitonic in C. For argument A, the situation is less stable, depending on the choice of the 
underlying unrestricted input/output operation.  
 
On the one hand, the full join operation based on out1 is monotonic in A. For suppose x ∈ 
∪(outfamily(G,A,C)). By Observation 1, there is a H ⊆ G such that out1(H,A) = Cn(H(Cn(A))) 
contains x and is consistent with C. We may assume without loss of generality that all bodies of 
elements of H are in Cn(A), since cutting them out makes no difference to the value of H(Cn(A)). 
Thus when A ⊆ B we have H(Cn(A)) = H(Cn(B)), so that out1(H,B) = Cn(H(Cn(B))) = 
Cn(H(Cn(A))) is consistent with C and contains x, so we may apply Observation 1 again and 
conclude. A more complex version of this argument shows the same for underlying out3. 
 
On the other hand, when the underlying unconstrained operation is out2 or out4, then the full join 
operation fails monotony in A, as shown in the following example.  
 
EXAMPLE 2.1. Put G = {(a,⊥), (¬a,x)} and let out ∈ {out2, out4}. We show x ∈ 
∪(outfamily(G,Cn(t),∅))  while x ∉ ∪(outfamily(G,Cn(a),∅)) although Cn(t) ⊆ Cn(a). On the 
one hand, out(G,t) = Cn(x) which is consistent, so maxfamily(G,t,∅) = {G} and outfamily(G,t,∅) 
= {Cn(x)} and thus ∪(outfamily(G,t,∅)) = Cn(x). On the other hand out(G,a) = Cn(⊥), which is 
inconsistent so maxfamily(G,a,∅) = {(¬a,x)}, so outfamily(G,a,∅) = {Cn(∅)} and thus x ∉ 
∪(outfamily(G,a,∅)) = Cn(∅). � 
 
Again, monotony in A fails when the underlying unconstrained operation is any of outn

+ 
authorising input to reappear as output.  
 
EXAMPLE 2.2. Put G = {(t,x)}. For out = outn

+ we have out(G,t) = Cn(x) which is consistent so 
∪(outfamily(G,a,∅)) =  Cn(x), while out(G,¬x) = Cn(⊥), so maxfamily(G,¬x,∅) = {∅} and 
outfamily(G,¬x,∅)) = {Cn(∅)} and thus ∪(outfamily(G,¬x,∅)) =  Cn(∅). � 
 
The full meet operation is even less well behaved. It fails all three properties: monotony in G, 
antitony in C, and monotony in A. The following examples are calculated indifferently for our 
four input/output operations without throughput. 
 
EXAMPLE 2.3. To illustrate non-monotony in argument G for the full meet operation, put G = 
{(a,x)}. Then x ∈ Cn(x) = ∩(outfamily(G,a,∅)).  But for H = G∪{(a,¬x)}, the set out(H,a) is 
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inconsistent and maxfamily(H,a,∅) = {{(a,x)},{(a,¬x)}}, so that ∩(outfamily(H,a,∅)) = 
Cn(x)∩Cn(¬x) = Cn(∅), which does not contain x.  � 
 
EXAMPLE 2.4. To illustrate non-monotony in argument A, put G = {(a,x), (b,¬x)}. Then x ∈ 
Cn(x) = ∩(outfamily(G,a,∅)). But ∩(outfamily(G,{a,b},∅)) = Cn(x)∩Cn(¬x) = Cn(∅), which 
does not contain x.  � 
 
EXAMPLE 2.5. To illustrate failure of antitony in argument C, put G = {(a,x), (a,y)}, C = 
{¬x∨¬y }, D = C∪{¬x}. Then C ⊆ D, and y ∈ Cn(y) = ∩(outfamily(G,a,D)), but y ∉ 
Cn(x)∩Cn(y) = ∩(outfamily(G,a,C)).  � 
 
#2. Elements of outfamily versus maximal outputs 
 
It is important to distinguish between an outfamily, i.e. the set of outputs determined by maximal 
subsets of the generators, and the set of maximal outputs.  The latter is a subset of the former, but 
for certain of the input/output operations, the two sets are not identical. 
 
OBSERVATION 2. Let X be a maximal value of out(H,A), for H ranging over subsets of G such 
that out(H,A) is consistent with C. Then X ∈ outfamily(G,A).  
 
Sketch of Proof. Straightforward, using the compactness of each of our input/output operations, 
established in (Makinson and van der Torre, 2000).  � 
 
On the other hand, the converse fails for certain of the input/output operations. For out ∈ {out3, 
out3

+, out4} the Möbius strip provides a counterexample, as shown in Example 3.3 and in the 
discussion of normal Reiter default systems (Section 4).  
 
For out2, the same phenomenon can be illustrated by a different example. Put G = {(a,⊥), (¬a,⊥), 
(¬a,x)}. Then, calculating for out = out2 with t as input and ∅ as constraint, out(G,t) = Cn(⊥), 
which is inconsistent, and maxfamily(G,t,∅) = {{(a,⊥),(¬a,x)}, {(¬a,⊥),(¬a,x)}} so that 
outfamily(G,t,∅) = {Cn(x), Cn(∅)}, and evidently Cn(x) ⊃ Cn(∅).  
 
But for out1, out1

+, and out4
+ (alias out2

+) we get the opposite. In those cases, every element of 
outfamily is maximal, as we now show.  
 
OBSERVATION 3. Let out = outi for i ∈ {1,1+,2+,4+}. Then no element of outfamily(G,A,C) 
properly includes any other. 
 
Proof. Let X, Y be elements of outfamily(G,A,C) and suppose X ⊂ Y; we derive a contradiction. 
Since X, Y ∈ outfamily(G,A,C) we have: 
 

X = out(G1,A), where G1 ⊆ G, X is consistent with C; and for all G1′ with G1 ⊂ G1′ ⊆ G, 
out(G1′,A) is inconsistent with C 
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Y = out(G2,A), where G2 ⊆ G, Y is consistent with C; and for all G2′ with G2 ⊂ G2′ ⊆ G, 
out(G2′,A) is inconsistent with C. 

 
Since X ⊂ Y, we have X ⊆ Y, i.e. out(G1,A) ⊆ out(G2,A). Also since X ⊂ Y, we have not: Y ⊆ X, so 
not: G2 ⊆ G1, so G1 ⊂ G1∪G2. Hence by maximality of G1, out(G1∪G2,A) is inconsistent with C. 
Thus to obtain a contradiction, it suffices to show that out(G1∪G2,A) ⊆ out(G2,A) which by 
hypothesis is consistent with C.  
 
For out1, we branch the argument as follows. Since out(G1,A) ⊆ out(G2,A) we have by the 
definition of out1 in Section 1.1 that Cn(G1(Cn(A))) ⊆ Cn(G2(Cn(A))) so G1(Cn(A)) ⊆ 
Cn(G2(Cn(A))). Clearly also G2(Cn(A)) ⊆ Cn(G2(Cn(A))). Thus G1∪G2(Cn(A)) ⊆ Cn(G2(Cn(A))) 
and so finally Cn(G1∪G2(Cn(A))) ⊆ Cn(G2(Cn(A))) i.e. out(G1∪G2,A) ⊆  out(G2,A) as desired. 
For out1

+, simply replace G1,G2 by G1∪I,G2∪I in this argument.  
 
For out4

+ alias out2
+, we branch as follows. Since out(G1,A) ⊆ out(G2,A) we have by the 

characterization in Section 1.1 of out4
+(G,A) as Cn(A∪m(G)), that Cn(A∪m(G1)) ⊆ Cn(A∪m(G2)) 

so out(G1∪G2,A) = Cn(A∪m(G1)∪m(G2)) ⊆ Cn(A∪m(G2)) = out(G2,A) as desired.  � 
 
#3. Normal Reiter Default Systems: Proof of Observation 5.  
 
We prove Observation 5 from first principles, not having seen any result in the literature from 
which it would follow directly. The argument is not difficult, but rather complex when set out 
rigorously. 
 
Proof. We need to prove assertions (a) and (b) of the Observation. For (a), let E be any extension 
of the normal Reiter default system (G,A). To show that E ∈ outfamily(G,A) it suffices to show 
that E = out3

+(H,A) for some maximal H ⊆ G such that out3
+(H,A) is consistent.   

 
Put H = {(a,x) ∈ G: either a ∉ E or x is consistent with E}. Then H ⊆ G, and it is easy to show 
using the quasi-inductive characterization of extensions in Theorem 2.1 of (Reiter 1980) that E is 
also an extension of the normal Reiter default system (H,A). Since A is consistent, we know from 
Corollary 2.2 of (Reiter 1980) that E is consistent. It remains to show that (1) E = out3

+(H,A), (2) 
out3

+(H′,A) is inconsistent for all H′ with H ⊂ H′ ⊆ G. 
 
For (1), by Reiter’s fixed-point definition of an extension, E = ∩{B: A ⊆ B = Cn(B), such that x ∈ 
B whenever (a,x) ∈ H and a ∈ B and x is consistent with E}. On the one hand, since out3

+ is 
reusable throughput, out3

+(H,A) is such a B (without even appealing to the consistency 
condition), so E ⊆ out3

+(H,A). On the other hand, E is also such a B, i.e. A ⊆ E = Cn(E), and  x ∈ 
E whenever  (a,x) ∈ H and a ∈ E and x is consistent with E. But by the definition of H, (a,x) ∈ H 
and a ∈ E together imply that x is consistent with E. Thus A ⊆ E = Cn(E), and  x ∈ E whenever  
(a,x) ∈ H and a ∈ E, i.e. A ⊆ E = Cn(E) ⊇ H(E), so E ⊇ ∩{B: A ⊆ B = Cn(B) ⊇ H(B)} = 
out3

+(H,A) by a characterization of the latter (Section 1.1). 
 
To show (2), suppose H ⊂ H′ ⊆ G with (a,x) ∈ H′−H, so that by the definition of H, a ∈ E and x 
is inconsistent with E. By (1), E = out3

+(H,A) ⊆ out3
+(H′,A), so x is inconsistent with out3

+(H′,A). 



 

 24

But since (a,x) ∈ H′ and a ∈ E ⊆ out3
+(H′,A) we have x ∈ out3

+(H′,A), since out3
+ satisfies 

reusability. Putting these together, out3
+(H′,A) is itself inconsistent as desired.  

 
To show assertion (b), let X ∈ outfamily(G,A). Then X = out3

+(H,A) for some maximal H ⊆ G 
such that out3

+(H,A) is consistent. It will suffice to show that X is an extension of the normal 
Reiter default system (H,A), for as shown in the ‘semi-monotonicity’ Theorem 3.2 of (Reiter 
1980), when H,G are sets of normal default rules with H ⊆ G, then every extension of system 
(H,A) is included in some extension of (G,A). 
 
By the hypothesis, X is consistent. Consider the sequence E0, E1, … where E0 = A and Ei+1 = 
Cn(Ei) ∪ {x: (a,x) ∈ H and a ∈ Ei and x is consistent with X}. By Theorem 2.1 of (Reiter 1980), 
to show that X is an extension of (H,A), it suffices to show that ∪{Ei : 0 ≤ i < ω}, written briefly 
∪Ei , equals X. 
 
By induction, we have each Ei ⊆ out3

+(H,A) = X so that ∪Ei ⊆ X. For the converse, we have by a 
characterization of out3

+ (Section 1.1) that out3
+(H,A) = ∩{B: A ⊆ B = Cn(B) ⊇ H(B)} so it 

suffices to show that ∪Ei is such a B, i.e. that A ⊆ ∪Ei = Cn(∪Ei) ⊇ H(∪Ei). The first inclusion 
and the equality are trivial. To show the second inclusion, suppose x ∈ H(∪Ei) so that (a,x) ∈ H 
for some a ∈ ∪Ei, so a ∈ Ei for some i. It will suffice to show x ∈ Ei+1. By the definition of Ei+1 it 
suffices to show that x is consistent with X. But since a ∈ Ei ⊆ out3

+(H,A) = X and (a,x) ∈ H we 
have x ∈ X by reusability, so since X is consistent, x is consistent with X as desired and we are 
done.  � 
 
#4. Remarks on the definition of a constrained derivation  
 
Let ∆ be a derivation of (a,x) from G given a rule-set R, and let L ⊆ G be the set of leaves of ∆. In 
Section 6.1 we defined ∆ to be constrained with respect to rule-set R iff (a,¬a) ∉ deriv(L) where 
deriv is derivability using only rules in R.  
 
To illustrate the effect of using deriv(L) rather than deriv(G) in this definition, put G = {(a,x), 
(a,y)} and consider the one-step derivation: 
 

  (a,x)  
        SI   
(a∧¬y,x). 

 
This derivation is constrained under our definition, since (a∧¬y, ¬(a∧¬y) ∉ deriv(L). But (a∧¬y, 
¬(a∧¬y) ∈ deriv(G), by applying SI and WO to the other element of G.  
 
To illustrate the effect of using the whole of R rather than the subset of its rules actually applied 
in ∆, consider again Example 5 in Section 6.1. On the one hand, it is not difficult to show that 
(a∧¬x,¬(a∧¬x)) ∉ deriv(L) when deriv is determined by the set {SI, CT} of rules actually 
applied in ∆. On the other hand, as noted in Example 5, ∆ is not constrained with respect R3 = 
{SI, AND, WO, CT}, since (a∧¬x,¬(a∧¬x)) ∈ deriv(L) where deriv is determined by that rule-
set. A more interesting illustration of the same point is the following. 
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EXAMPLE 6. Put G = {(a, x∧(a→y)), (¬a, x∧(¬a→y))} and consider the derivation: 
  

(a, x∧(a→y))   (¬a, x∧(¬a→y)) 
                  WO                         WO 
   (a,x)                             (¬a,x)   
    --------------------------------------    OR 
                (t,x)  
                              SI  

                                (¬y,x) 
 

This derivation is constrained with respect to the set {SI, WO, OR} of rules applied within it. On 
the other hand, it is not constrained with respect to the larger set R4 = {SI, WO, AND, OR, CT}. 
Indeed, it is not difficult to show that there is no derivation, given R4, of the same root from the 
same leaves (or a subset of them), that is constrained with respect to R4. We omit the 
verifications.  � 
 
#5. Varying the set L and its effect on Lemma 14 
 
Suppose that when constraining a node n:(a,x) of a derivation we do so with respect to the set Ln 
of leaves in its subtree, rather than the set L of all leaves of the tree (see remark after Lemma 14). 
Then parts of Lemma 14(b) fail: satisfaction of the constraint is no longer preserved forwards by 
the rules AND, CT, OR. We give an example for each.  In each example, the derivation fails the 
constraint at the conclusion of the rule in question, marked by an asterisk. It also fails the 
constraint at the premises of that rule, if L is held constant. But it would satisfy the constraint at 
each premise of the rule if L were allowed to diminish. For instance in Example 7.1, node n:(a,x), 
a premise of the AND rule, is a leaf and so Ln = {(a,x)}, and (a,¬a) ∉ deriv(Ln).  
 
EXAMPLE 7.1 (for AND). Let R  ∈ {R1,..,R4} and consider the following derivation. 
 

(a, x)      (a, ¬x) 
                                
    ---------------------------           AND 
         *(a,⊥)   

 
 
EXAMPLE 7.2 (for CT). Let R  ∈ {R3,R4} and consider the following derivation. 
 

(a, x∧¬y)   
                 WO  
    (a,x)   (a∧x,y) 
   ----------------------------      CT 
     *(a,y)   

 
EXAMPLE 7.3 (for OR).  Let R  ∈ {R2,R4} and consider the following derivation. 
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    (a, x)       (a,¬x) 
             WO           WO 
   (a, t)         (a, t)  
   -----------------------------            OR 
          *(a, t)        

 
 
#6. Derivations using both OR and CT: proof of Observation 17 
 
Proof. Consider the following derivation of ((a∧¬x)∨b, x→¬(a∧b)) from the generator set G = 
{(a,x), (b, x→¬(a∧b))}.  
 

 (a,x)   (b, x→¬(a∧b))  (b, x→¬(a∧b)) 
     SI            SI           
   * (a∧(x→b)), x)           *(a∧b∧x), x→¬(a∧b))              
    -----------------------------------------------------------  CT               
  *( a∧(x→b)), x→¬(a∧b))             
  -----------------------------------------------------------    OR  
      ((a∧¬x)∨b, x→¬(a∧b)) 

               
On the one hand, the derivation satisfies the constraint at the root and at the leaves. By 
Observation 10, to show this it suffices to check that the body of the root, and the body of each 
leaf, is consistent with m(L) = m(G). On the other hand, the derivation fails the constraint at each 
of the starred nodes. By Observation 10 again, it suffices to check that the body of each starred 
node is inconsistent with m(L). We now show that there is no derivation with the same root and 
the same (or fewer) leaves that satisfies the constraint at all nodes. This is the challenging part of 
the proof.  
 
Call a node of a derivation small if it is in the unrestricted output of a single leaf; otherwise big. 
Quite generally, if a node is small, then it is of the form (c+,z−) for some leaf (c,z) where c+ |− c 
and z |− z−, as can be checked by simple induction on the derivation.  
 
Consider any derivation, given rule-set R4, of the root node from G. Its leaves will all be from G, 
or else of the form (t,t) where t is a tautology. The root node is big, since it is not of the above 
form. Hence there is a first big node in the derivation. This need not be unique, but we choose 
one and call it m. By construction, m is not one of the leaves, so it must be obtained using one of 
the rules SI, WO, AND, CT, OR. Since m is a first big node, it is not obtained by the single-
premise rules SI or WO, so it must be obtained by one of AND, CT, OR from two small 
premises. If either of these two premises is of the form (d,t) then m will be equivalent to the other 
premise, or else itself of the form (e,t) as is easily checked by cases; and so will itself be small, 
contrary to supposition. So m is obtained by one of AND, CT, OR from two small premises, one 
of which is of the form (a+,x−) and the other of the form (b+, (x→¬(a∧b))−).  
 
Application of OR to two such premises gives a conclusion of the form (d,t) which is small, 
leaving only the rules AND, CT to consider.  
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Application of AND to two such premises is possible only if a+ is equivalent to b+, in which case 
a+ |− a∧b. But it is easily checked that ¬(a∧b) ∈ out4(G, a∧b), so by SI and WO, ¬ a+ ∈ out4(G, 
a+), so node m fails the constraint (as also its two premises). 
 
For CT there are two cases to consider, as it is an asymmetric rule. In the first case, b+ is 
equivalent to a+∧x−, so that b+ |− a∧b so by the same argument as for AND, the premise with 
body b+ fails the constraint. In the second case, a+ is equivalent to b+∧(x→¬(a∧b))− so a+ |− a∧b 
and by the same argument the premise with body a+ fails the constraint.  � 
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