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CONSTRAINTS FOR THE NORMALITY
OF MONOMIAL SUBRINGS AND BIRATIONALITY

ARON SIMIS AND RAFAEL H. VILLARREAL

(Communicated by Wolmer V. Vasconcelos)

Abstract. Let k be a field and let F ⊂ k[x1, . . . , xn] be a finite set of monomi-
als whose exponents lie on a positive hyperplane. We give necessary conditions
for the normality of both the Rees algebra R[Ft] and the subring k[F]. If the
monomials in F have the same degree, one of the consequences is a criterion
for the k-rational map F : Pn−1

k 99K Pm−1
k defined by F to be birational onto

its image.

1. A group theoretical constraint for normal Rees algebras

Let R = k[x] = k[x1, . . . , xn] be a polynomial ring over a field k. In the sequel
we consider a finite set of monomials F = {xα1 , . . . ,xαm} ⊂ R. Associating to a
monomial xα := xa1

1 · · ·xann its exponent vector α = (a1, . . . , an) ∈ Nn gives rise to
the integer matrices

A(F) = (α1, . . . , αm) and A′(F) =
(
α1 · · · αm
1 · · · 1

)
,

where the αi’s are regarded as column vectors; A(F) is sometimes called the log-
matrix of F. Note that, given a simple graph, the log-matrix of the squarefree
degree two monomials corresponding to its edges is precisely the incidence matrix
of the graph.

Assume that the exponents of the monomials belonging to F lie on a positive
hyperplane, that is to say, there exists a vector x0 ∈ Zn with positive entries such
that

〈x0, αi〉 = d (i = 1, . . . ,m),

for some d ≥ 2, where 〈x0, αi〉 is the standard inner product of x0 and αi.
As an extra bit of notation, if C is an r ×m integral matrix, we denote by ZC

the subgroup of Zr generated by the columns of C, while ∆s(C) will denote the
greatest common divisor of all the nonzero s× s minors of C.
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Closely associated to F is the Rees algebra R[Ft] ⊂ R[t], where t is a new variable
independent of the x. It is well-known that the domain R[Ft] is normal if and only
if the ideal (F) ⊂ R is normal.

The following result seems to have gone unnoticed. It provides an obstruction
for the normality of (F) ⊂ R.

Proposition 1.1. As above, let F stand for a finite set of monomials and let
x0 ∈ Zn be given with positive entries satisfying 〈x0, αi〉 = d, i = 1, . . . ,m, for
some d ≥ 2. Suppose that the ideal (F) ⊂ R is normal.

(a) Then the torsion subgroup of Zn/ZA(F) is a cyclic group of order dividing
d.

(b) If Zn/ZA(F) is a finite group and x0 = (1, . . . , 1) (i.e., the αi’s have total
degree d), then Zn/ZA(F) ' Zd.

Proof. For an abelian group (M,+) its torsion subgroup will be denoted by T (M).
It is not hard to see that there is an exact sequence of finite groups

(∗) 0 −→ T (Zn+1/ZA′(F)) ϕ−→ T (Zn/ZA(F)) ψ−→ Zd,
where the maps ϕ and ψ are given by

ϕ((α, b)) = α (α ∈ Zn, b ∈ Z),
ψ(α) = 〈α, x0〉.

Since R[Ft] is normal, one has ∆r(A′(F)) = 1 (cf. [2]), where r is the rank of
A′(F). Since ∆r(A′(F)) is the order of T (Zn+1/ZA′(F)), part (a) follows using the
exact sequence (∗). To prove (b), note that Zn/ZA(F) is a torsion group and the
ith unit vector ei maps into the element 1 under the map ψ. Hence ψ is onto, and
ψ is the required isomorphism. �

Recall that an extension A ⊂ B of integral domains is said to be birational if A
and B have the same field of fractions. Let

F = {xα1 , . . . , xαm} and G = {xβ1 , . . . , xβr}
be two sets of monomials of R such that F ⊂ G. Note that in this situation,
the ring extension is birational if and only every monomial of G can be written
as a fraction whose members are suitable power products of the monomials of F.
Taking log, it readily follows that k[F] ⊂ k[G] is a birational extension if and only
if ZA(F) = ZA(G).

In the sequel let xd denote the set of all monomials of degree d in R. Then k[xd]
is the dth Veronese subring R(d) of R.

The following simple criterion for a monomial ring extension to be birational
will be used in Section 2. It seems to be floating around, but we could not find an
explicit reference for it in the present formulation.

Lemma 1.2. If F ⊂ xd, then k[F] ⊂ k[xd] is a birational extension if and only if
n = rank(A(F)) and ∆n(A(F)) = d.

Proof. Assume the given extension is birational. Then ZA(xd) = ZA(F) by the
above remark. By Proposition 1.1 (b), or by direct observation, Zn/ZA(xd) ' Zd.
Therefore ∆n(A(F)) = d.

Conversely, if ∆n(A(F)) = d, the surjection

Zn/ZA(F) −→ Zd, a 7−→|a|
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is an isomorphism. Since log(xd) maps to zero under this map, one obtains ZA(F) =
ZA(xd), as required. �

2. Birationality criterion for monomial rational maps

Quite generally, any set F of m forms of the same degree in k[x] defines a k-
rational map F : Pn−1

k 99K Pm−1
k . Let W ⊂ Pm−1

k be its image—a unirational
variety whose homogeneous coordinate ring is k[F] ⊂ k[x] after regrading k[F] so
that its generators have degree one. Naturally enough, one says that F is birational
onto its image if there exists a k-rational map G : W 99K Pn−1

k which is an inverse
of F . Classical literature would refer to this situation by saying that F is a rational
representation of the projective space Pn−1

k . The case where F is a set of monomials
of the same degree defining a birational map onto the image would then be called
a monomial rational representation (of the projective space Pn−1

k ).

Proposition 2.1. Let F be a set of monomials of the same degree d ≥ 1 in k[x] and
let A(F) denote the corresponding log-matrix. Then F defines a monomial rational
representation if and only if ∆n(A(F)) = d.

Proof. The proof is based on the following observation of general nature: let A and
B be standard graded domains over a field k, with respective fraction fields k(A)
and k(B), and let A ⊂ B be a homogeneous (i.e., a degree zero) inclusion. Then the
corresponding dominant rational map X = Proj(B) 99K Y = Proj(A) is birational
(if and) only if k(A) = k(B) (cf. [6], where this is used over and again). To see why
this is true, notice the well-known fact that if z ∈ A is any nonzero homogeneous
element of degree one, then k(A) = k(Y )(z) and k(B) = k(Y )(z), where k(X) and
k(Y ) are the respective function fields of X and Y .

We now apply this result to our situation with A = k[F] and B = k[xd]. This
is a homogeneous inclusion of graded rings and we only need to regrade both so as
to have them generated in degree one. The result is then that the corresponding
rational map between the projective varieties is birational if and only if the inclu-
sion k[F] ⊂ k[xd] has the same field of fractions. Since Proj(k[xd]) coincides (after
the above regrading) with the dth Veronesean embedding of Pn−1

k = Proj(k[x]), it
follows that the k-rational map F : Pn−1

k 99K Im(F ) ⊂ Pm−1
k is a rational represen-

tation if and only if the inclusion k[F] ⊂ k[xd] has the same field of fractions. Now
apply Lemma 1.2. �
Remark. The above criterion is known in the affine situation and when m = n.
Namely, a set of n monomials in k[x1, . . . , xn], possibly with negative exponents,
defines a birational map of Ank to itself if and only if the corresponding log-matrix
belongs to SL(n, k), in which case the inverse rational map has as log-matrix the
inverse matrix (cf. [4, p. 114, No. 5]).

3. Normality of the Rees algebra versus birationality

Here we present some applications. We keep the notation introduced in the
previous sections.

Corollary 3.1. Let F be a set of monomials of degree d ≥ 1 in k[x1, . . . , xn] and
let I = (F) be the ideal generated by F. If rank(A(F)) = n and I is a normal ideal,
then F defines a monomial rational representation.

Proof. It follows from Propositions 1.1 and 2.1. �
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Let G be a simple connected graph and let FG ⊂ k[x1, . . . , xn] be the set of
squarefree monomials of degree 2 corresponding to the edges of G.

Corollary 3.2. If G is not bipartite and contains no H-configurations, then FG

defines a monomial rational representation of Pn−1
k .

Proof. For the notion of an H-configuration, and the related notion of a bow tie
configuration, we refer to [9, Chapter 8, p. 314] and [7]. Since rank(A(FG)) = n for
a non-bipartite graph, the result follows immediately from Corollary 3.1 by using
[7, Theorem 1.1 and Corollary 2.8] which together assert that the edge ideal (FG)
is normal if and only if the graph G admits no H-configurations. �

The present method gives a fresh view of a conjecture of [5, Conjecture 2.8],
which we now prove to be true.

Corollary 3.3. If G is not a tree, then the following conditions are equivalent:
(i) The ideal (FG) is of linear type.
(ii) G has exactly one cycle and this cycle is odd.
(iii) FG defines a Cremona transformation of Pn−1

k .

Proof. As observed in [5], only implication (ii) ⇒ (iii) was still unproved. But now
Corollary 3.2 implies that FG defines a monomial rational representation of Pn−1

k

which, for m = n, means that the rational map is a Cremona transformation. �

4. A necessary condition for normality

In this section the vector x0 that makes k[F] a homogeneous subring is not
required to have positive entries.

Let us denote by P the toric ideal of k[F] which is the kernel of the epimorphism

ϕ : S = k[t1, . . . , tm] −→ k[F] (ti
ϕ7−→ xαi)

of k algebras, where S is a polynomial ring in the ti variables.
A binomial tα − tβ in S is said to have a square-free term if at least one of its

two terms tα, tβ is square-free.
The following is a necessary condition for the normality of a homogeneous subring

k[F] in terms of its toric ideal.

Proposition 4.1. Let k[F] be a homogeneous monomial subring and let B be a
finite set of binomials in the toric ideal P of k[F]. If k[F] is normal and P is
minimally generated by B, then every element of B has a square-free term.

Proof. Since k[F] is homogeneous, P is a graded ideal with respect to the standard
grading of S induced by deg(ti) = 1. Set F = {f1, . . . , fm} and B = {g1, . . . , g`},
where fi = xαi . Let g be a binomial in B. We proceed by contradiction assuming
g has no square free-term. After permuting the ti variables one can write

g = ta1
1 · · · tarr − t

ar+1
r+1 · · · tass ,

with ai ≥ 1 for all i and

2 ≤ a1 = max{a1, . . . , ar} ≤ as = max{ar+1, . . . , as}.
From the equality

fa1
1 · · · farr = f

ar+1
r+1 · · · fass
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we obtain f1 · · · fr/fs ∈ k[F] because k[F] is normal. Hence there exists a binomial
h1 in P of the form

h1 = t1 · · · tr − tstα

with r = deg(h1) = deg(tα) + 1 < deg(g). Note the equality

(4.1) g − ta1−1
1 · · · tar−1

r h1 = tsh2,

where h2 is a binomial in P with deg(h2) < deg(g) or h2 = 0. Writing

hj =
∑
gi 6=g

cijgi (j = 1, 2)

and using (4.1) we conclude

g =
∑
gi 6=g

cigi (ci ∈ S),

a contradiction because P is minimally generated by g1, . . . , g`. �

A full converse to Proposition 4.1 is not true even if the monomials have the
same positive total degree, as the following simple example shows. Incidentally,
the example gives a monomial rational representation of P3 thus showing that the
converse to Corollary 3.1 does not hold either.

Example 4.2. Let F = {x1x2, x2x3, x3x4, x1x4, x
2
1, x

2
2, x

2
3, x

2
4} ⊂ k[x1, x2, x3, x4].

Using a procedure in Macaulay2 [3], one obtains that P is minimally generated by

B = {t24 − t5t8, t23 − t7t8, t1t3 − t2t4, t22 − t6t7,
t21 − t5t6, t3t4t6 − t1t2t8, t2t3t5 − t1t4t7}.

On the other hand using Normaliz [1] we obtain k[F] = k[F][x1x3, x2x4].

Notice however the following surprising partial converse due to Bernd Sturmfels.

Theorem 4.3 ([8]). Let < be a monomial order of S. If k[F] is homogeneous and
the initial ideal of P is square-free, then k[F] is normal.
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E-mail address: vila@esfm.ipn.mx

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=97b:13034
http://www.ams.org/mathscinet-getitem?mr=2002c:13001

	1. A group theoretical constraint for normal Rees algebras
	2. Birationality criterion for monomial rational maps
	3. Normality of the Rees algebra versus birationality
	4. A necessary condition for normality
	Acknowledgment
	References

