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scattering off electrons using data from germanium and xenon detectors

Mukesh K. Pandey,1 Lakhwinder Singh,2,3 Chih-Pan Wu,1,4 Jiunn-Wei Chen,5,6,* Hsin-Chang Chi,7

Chung-Chun Hsieh,1 C.-P. Liu ,7,† and Henry T. Wong3
1Department of Physics, National Taiwan University, Taipei 10617, Taiwan

2Department of Physics, Central University of South Bihar, Gaya 824236, India
3Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
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5Department of Physics, Center for Theoretical Physics,

and Leung Center for Cosmology and Particle Astrophysics,
National Taiwan University, Taipei 10617, Taiwan

6Center for Theoretical Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

7Department of Physics, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan

(Received 2 January 2019; accepted 30 November 2020; published 28 December 2020)

Scattering of light dark matter (LDM) particles with atomic electrons is studied in the context of effective
field theory. Contact and long-range interactions between dark matter and an electron are both considered. A
state-of-the-art many-body method is used to evaluate the spin-independent atomic ionization cross sections
of LDM-electron scattering, with an estimated error about 20%. New upper limits are derived on parameter
space spanned by LDM mass and effective coupling strengths using data from the CDMSlite, XENON10,
XENON100, and XENON1T experiments. Comparison with existing calculations shows the importance of
atomic structure. Two aspects particularly important are relativistic effect for inner-shell ionization and final-
state free electron wave function which sensitively depends on the underlying atomic approaches.
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I. INTRODUCTION

Astronomical and cosmological observations not only
provide evidences of dark matter (DM) but also point out its
properties such as nonrelativistic (NR), nonbaryonic, stable
with respect to cosmological time scale, and interacting
weakly, if any, with the standard model (SM) particles. Its
nongravitational interactions with normal matter are still
unknown. A generic class of cold darkmatter candidates, the
so-called weakly interacting massive particles (WIMPs),
receive most attention, as they lead to predictions of DM’s
relic abundance comparable to the measured value and have
coupling strengths ofweak interaction scales to SMparticles,
which can be experimentally tested. Also, the existence
of such particles is predicted in many extensions of the SM

(see, e.g., Refs. [1] for review). Recently, there has been
remarkable progress made in direct WIMP searches, thanks
to novel innovations in detector technologies and increment
of detector size and exposure time. As a result, a substantial
portion of the favored WIMP parameter space has now been
ruled out. For example, the stringent bounds on the spin-
independent (SI) WIMP-nucleon cross section are currently
set by the XENON1T [2]: 4.1 × 10−47 cm2 at 30 GeV dark
mattermass,1 PandaX-II [3]: 8.6 × 10−47 cm2 at 40GeV, and
DarkSide-50 [4]: 1 × 10−41 cm2 at 1.8 GeV, respectively.
In spite of tremendous efforts in experiment, no concrete

evidence of WIMPs has been found to date, directly or
indirectly. This motivates searches of DM particles with
masses lighter than generic WIMPs, i.e., ≲10 GeV=c2.
Theoretically, such light dark matter (LDM) candidates
arise in many well-motivated models, and to account for the
relic DM abundance, there are mechanisms suggesting
LDM interacts with SM particles through light or heavy
mediators with coupling strengths smaller than the weak
scale (see Ref. [5] for review). Moreover, annihilations or
decays of LDM candidates are possible sources of the
anomalous 511 [6,7] and 3.5 keV [8,9] emission lines
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recently found in the sky. Consequently, new ideas to
search for LDM flourish and have good discovery potential
(see Ref. [10] for general survey).
The energy transfer of an incident DM particle to a target

particle depends on the reduced mass of the system. Current
low-threshold experiments sensitive to sub-keV nuclear
recoil, such as CoGENT [11–13] and CDEX [14–16], can
only search for DM particles with masses as low as a few
GeV throughDM-nucleus interactions. Various other experi-
ments, such as CRESST-II [17], DAMIC [18], NEWS-G
[19], PICO [20], SENSEI [21–23], and SuperCDMS
[24–26], are pursuing intensive research programs toward
lower detector threshold and therefore lower mass.
For energy deposition in the sub-keV region, electron

recoil becomes an important subject, no matter being taken
as a signal or background, because LDM particles transfer
their kinetic energy more efficiently to target electrons than
nuclei. Furthermore, electron recoil signals can be used to
directly constrain LDM-electron interactions; this comple-
ments the study of LDM-nucleon interactions through
nuclear recoil and extends a direct detector’s scientific reach.
Constraints of LDM-electron scattering by direct detection
experiments emerged recently, e.g., DAMA/LIBRA [27,28],
DarkSide-50 [29], SuperCDMS [25], XENON10 [30,31],
XENON100 [31,32], and XENON1T [33]; and much
improvement will certainly be expected in next-generation
sub-keV detectors.
While electron recoil at sub-keV energies opens a new,

exciting window for LDM searches, the scattering processes
of LDM particles in detectors pose a fundamental theoretical
challenge: The typical energy and momentum of a bound
electron is on the order of Zeffmeα and Z2

effmeα
2=2, respec-

tively, where Zeff is the effective nuclear charge felt by an
electron of mass me in a certain shell and α is the fine
structure constantwithmeα ≈ 3.7 keV.Consequently, a sub-
keV scattering event strongly overlaps with the atomic
scales. This implies a reliable calculation of LDM-electron
scattering cross section, which is needed for data analysis,
should properly take into account not only the bound nature
of atomic electrons but also the electron-electron correlation.
In this work, we applied a state-of-the-art many-body

method to evaluate the atomic ionization cross sections of
germanium (Ge) and xenon (Xe) by spin-independent
LDM-electron scattering. New upper limits on parameter
space spanned by the effective coupling strengths and mass
of LDM are derived with data from CDMSlite [25],
XENON10 [34], XENON100 [35], and XENON1T [33].
The results are also compared with existing calculations.

II. FORMALISM

A general framework for dark matter interaction with
normal matter has recently been developed using effective
field theory. This framework accommodates scalar, fer-
mionic, and vector NR DM particles interacting with
NR nucleons via scalar and vector mediators [36]. All

leading-order (LO) and next-to-leading-order operators in
the effective DM-nucleon interaction are identified [37].
The DM-electron interaction can be formulated similarly
with the electron being treated relativistically, as it is
essential for atomic structure of Ge and Xe [38]. At leading
order, the SI part is parametrized by two terms,

LðLOÞ
SI ¼ c1ðχ†χÞðe†eÞ þ d1

1

q2
ðχ†χÞðe†eÞ; ð1Þ

where χ and e denote DM and electron fields, respectively,
and q ¼ jq⃗j is the magnitude of 3-momentum transfer,
which can be determined by the NR DM particle’s energy
transfer T and scattering angle θ. The low-energy constants
c1 and d1 characterize the strengths of the short-range (for
heavy mediators) and long-range (for light mediators)
interactions, respectively. While the masses of the medi-
ators can vary in broad ranges, it is customary to consider
the two extremes: the extremely massive and the massless,
which give rise to the contact (or zero-range) and the
(infinitely) long-range interactions, respectively.
The main scattering process that yields electron recoil is

atomic ionization,

χ þ A → χ þ Aþ þ e−; ð2Þ

and the energy deposition by DM is reconstructed by
subsequent secondary particles, such as photons and more
ionized electrons, recorded in a detector. The differential
DM-atom ionization cross section in the laboratory frame
through the LO, SI DM-electron interaction is derived in
Ref. [38],

dσ
dT

¼ 1

2πv2χ

Z
dqq

�����c1 þ d1
q2

����2
�
RðT; qÞ; ð3Þ

where mχ and vχ are the mass and velocity of the DM
particle, respectively.
The full information of how the detector atom responds

to the incident DM particle is encoded in the response
function

RðT; θÞ ¼
XZ
i¼1

Z
d3pijhAþ; e−jjei μ

me
q⃗:r⃗i jjAij2

× δ

�
T − EBi

−
q⃗2

2M
−
p⃗i

2

2μ

�
; ð4Þ

where jAi and jAþ; e−i denote the many-body initial
(bound) and final (ionized) states; M and μ the total and
reduced mass of the ion plus free electron system, respec-
tively, with μ ≈me. The summation is over all electrons,
and the ith electron has its binding energy EBi

, relative
coordinate r⃗i, and relative momentum p⃗i. The Dirac delta
function imposes energy conservation and constrains the
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kinematics of the ejected electron, whose energy is NR in
the kinematic range of our study but wave function still in
the fully relativistic form.
Evaluation of RðT; qÞ is nontrivial. In this work, we use a

procedure benchmarked by photoabsorption to a few
percent accuracy based on an ab inito method, the (multi-
configuration) relativistic random phase approximation,
(MC)RRPA [39–43]. Details of how the theory was applied
to the responses of Ge and Xe detectors in cases of neutrino
scattering are documented in Refs. [44–47]; here we only
give a brief outline and focus on the points that are new in
the case of LDM scattering.
First, the ground-state atomic wave functions are calcu-

lated by (MC) Dirac-Fock (DF) theory. The multiconfigu-
ration feature is needed for open-shell atoms like Ge,
but not for noble gas atoms like Xe. Quality of the initial
wave function is benchmarked by the ionization energies
of all atomic shells, which can be determined by edges in
photoabsorption data.
Second, (MC)RRPA is applied to calculate the transition

matrix elements of photoionization. Quality of the final-
state wave function is benchmarked by how good the
calculated photoionization cross section is compared with
experiment data. For Ge and Xe, the atomic numbers
Z ¼ 32 and 54 are not small, so relativistic corrections to
inner-shell electrons or at large 3-momentum transfer are not
negligible (a detailed study can be found in Refs. [27,28]).
Furthermore, the residual electron correlation is important
for excited states; as a result, its (partial) inclusion by RPA
makes our calculated photoionization cross sections of Ge
and Xe in excellent agreement with experiments. The only
exception isT < 80 eV forGe,where the crystal structure of
outer-shell electrons in Ge semiconductor cannot be
described by our pure atomic calculations [44,46].
Taking the well-benchmarked initial- and final-state

wave functions, response functions for DM-atom scatter-
ing, Eq. (4), can in principle be computed in a similar pro-
cedure as we previously did for neutrino-atom scattering.

However, the high 3-momentum transfer associated with
the DM-atom scattering, q≳meα, dramatically slows
down the (MC)RRPA computation. Therefore, we resorted
to a conventional frozen-core approximation (FCA) (see,
e.g., Refs. [48,49]), so that the final-state continuum wave
function of the ionized electron can be efficiently computed
with an electrostatic mean field determined from the ionic
state prescribed by (MC)DF. The details of our FCA
scheme and its benchmark against (MC)RRPA are given
in Appendix A. Except when energy transfer is close to
ionization edges, the FCA results generally agree with
(MC)RRPA within 20%.
At a direct detector, the measured event rate is

dR
dT

¼ ρχNT

mχ

dhσvχi
dT

; ð5Þ

where ρχ ¼ 0.4 GeV=cm3 is the local DM density [50],
and NT is the number of target atoms. The averaged
velocity-weighted differential cross section

dhσvχi
dT

¼
Z

vmax

vmin

d3vχfðv⃗χÞvχ
dσ
dT

ð6Þ

is folded to the conventional Maxwell-Boltzmann velo-
city distribution fðv⃗χÞ [51], with escape velocity vesc ¼
544 km=s [52], circular velocity v0 ¼ 220 km=s,
and averaged Earth relative velocity vE ¼ 232 km=s.
The maximum DM velocity seen from the Earth
is vmax ¼ vesc þ vE, and the minimum vmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=mχ

p
is

to guarantee enough kinetic energy. This velocity average is
time consuming because dσ=dT needs to be computed on
every grid point of vχ . As commonly seen in literature, e.g.,
Refs. [53,54], the procedure is simplified by an interchange
of integration order: first on vχ of Eq. (6) with 1

v2χ
of Eq. (3)

[51,55], then the remaining q integration. The details are
given in Appendix B, and we numerically checked that the
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FIG. 1. Averaged velocity-weighted differential cross sections for ionization of Ge and Xe atoms by LDM of various masses with the
effective spin-independent short-range (left) and long-range (right) interactions where c1 ¼ 1=GeV−2 and d1 ¼ 10−9.
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two average schemes agree very well for all kinematics
considered in this work.
In Fig. 1, we show some results of dhσvχi=dT for Ge and

Xe targets with selected LDM masses. There are several
noticeable features. First, the sharp edges correspond to
ionization thresholds of specific atomic shells. They clearly
indicate the effect of atomic structure, and the peak values
sensitively depend on atomic calculations. If direct DM
detectors have good enough energy resolution, these peaks
can serve as powerful statistical hot spots. Second, away
from these edges, the comparison between Ge and Xe cases
points out that the latter has a larger cross section, but the
enhancement is not as strong as Z2 for coherent scattering
nor Z for incoherent sum of free electrons. In other words, a
heavier target atom does not enjoy much advantage in
constraining the SI DM-electron interaction, in opposition
to the SI DM-nucleon case. Third, the long-range inter-
action has a larger inverse energy dependence than the
short-range one. As a result, lowering threshold can
effectively boost a detector’s sensitivity to the long-range
DM-electron interaction.

III. RESULTS AND DISCUSSIONS

The CDMSlite experiment with Ge crystals as target has
recently demonstrated the novel mechanism of bolometric
amplification [56] and achieved low ionization threshold
making it sensitive to LDM searches. A data set of 70.1 kg-
day exposure [25] and threshold of 80 eV is adopted for this
analysis. The combined trigger and pulse-shape analysis
efficiency is more than 80%. The fiducial-volume cut
significantly reduced the background and the total com-
bined efficiency including fiducial volume is adopted from
Fig. 4. of Ref. [25]. Limits on LDM-electron scattering are

derived without background subtraction with optimum
interval method [57]. The derived 90% C.L. limits for
both short- and long-range coupling are depicted in Fig. 2.
Dual-phase liquid Xe detectors have demonstrated

the sensitivity to ionization of a single electron with their
“S2-only” signals [58]. Constraints have been placed in
Refs. [30,31] with XENON10 [34], XENON100 [35], and
XENON1T [33] data on LDM-electron scattering using an
alternative theoretical framework with different treatment
to the atomic physics from this work.
Efficiency-corrected data of XENON10 [30,34] with

15 kg-day exposure, XENON100 [35] with 30 kg-year
exposure, and XENON1T [33] with 1 ton-year exposure
are extracted from the literature. We follow the same
procedure of Refs. [30,31] to convert energy transfer T
first to the number of secondary electrons, ne, and then to
the photoelectron (PE) yield. Under a conservative
assumption that all observed events are from potential
LDM-electron scattering, upper limits at 90% C.L. on both
short- and long-range interactions are derived and dis-
played in Fig. 2. The electron recoil charge yield (Qy)
cutoff can change the exclusion region. For the analysis of
XENON1T data [33], we present both results with and
without a cutoff at 12 produced electrons. For the latter,
events of smaller ionized electrons enter through Gaussian
smearing of PEs.
Comparing the various exclusion curves in Fig. 2, there

are several important observations to note. First, the lowest
reach of a direct search experiment in LDM mass is
determined by its energy threshold. According to what
we set for CDMSlite, XENON10, XENON100, and
XENON1T: 80, 13.8, 56, and 186 eV, the lightest DM
masses can be probed are ∼30, 10, 20, and 50 (25 without
Qy cutoff) MeV, respectively.
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FIG. 2. Exclusion limits at 90% C.L. on the spin-independent short-(left) and long-(right) range LDM-electron interactions as
functions of mχ derived from CDMSlite (blue) [25], XENON10 (black) [34], XENON100 (red) [35], and XENON1T (magenta and
green) [33] data. Superimposed are constraints from Ref. [31] with XENON10 (black dotted) and XENON100 (red- otted), and from
Ref. [33] with XENON1T (magenta dotted and green dotted, short range only), in which the choices of FDM ¼ 1 (left) and FDM ¼ 1=q2

(right) correspond to c1- and d1-type interactions, respectively, in this work.
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The exclusion limits on DM-electron interaction
strengths depend on several factors: experimentally, detec-
tor species, energy resolution, background, and exposure
mass time [59], and theoretically, the DM-electron inter-
action type and the atomic structure. For the contact
interaction, XENON1T yields the best limit when mχ ≳
50 ð25withoutQy cutoffÞ MeV for its overwhelmingly
large exposure mass time. However, in the lower-mass
region, it is the extremely low threshold of XENON10 that
makes it more competitive, despite a much smaller expo-
sure mass time. The exclusion limit on the long-range
interaction is more subtle, because the differential cross
section has a sharper energy dependence and tends to
weight more at low T. This explains why XENON10’s
constraint is better than others (less so when XENON1T
has no Qy cutoff) in the plot. Among other three experi-
ments, the dominance of XENON1T is shrinking for the
same reason. More surprisingly, the finer energy resolution
and lower background of CDMSlite achieve a better
constraint than XENON100 when mχ ≳ 80 MeV, despite
the latter has a big exposure advantage.
In Fig. 2, the exclusion limits derived in Refs. [31,33],

using the same xenon data sets, are compared.2 The
differences in the overall exclusion curves are obvious
and most likely of theoretical origins. In Fig. 3, we use a
sample case to illustrate the difference in predicted event
numbers as a function of ne. For both types of interactions,
our results are comparatively smaller at small ne but bigger
at large ne. This provides a qualitative explanation for the
overall differences observed in the exclusion curves: the
larger the DM mass mχ , the larger its kinetic energy and
hence the increasing chance of higher energy scattering that

produces more ne. Therefore, our calculations yield tighter
constraints on c1 for heavier DM particles, but looser for
lighter DM particles. As for the long-range interaction, the
low-energy cross section is so dominant that the derivation
of exclusion limit with the XENON10 data is dictated by
the one-electron event, i.e., the first bin. Consequently, the
larger event number predicted in Ref. [31] leads to a better
constraint on d1 by a similar size. As for XENON100, its
higher energy threshold cut out most sensitivity to low ne
events, so both exclusion curves become similar. While
there is no exclusion from Ref. [33] to compare, we note
that the analysis without Qy cutoff does improve the
constraint substantially.
To further trace the main origin of this discrepancy,

we performed two additional sets of calculations: (i) the
nonrelativistic frozen-core approximation (NRFCA):
in this approach, the electrostatic mean field used to
calculate the continuum final states is based on the same
Roothaan-Hartree-Fock orbital wave functions [60,61] as
Refs. [30,31]; and (ii) the hydrogenlike approximation
(HLA) as in Refs. [4,54,62]: in this approach, a continuum
final state is simply the Coulomb wave function with an
effective nuclear charge determined from the binding
energy of the atomic shell from which the electron is
ionized. In Appendix C, we discuss and compare these
atomic approaches in more detail.
As the comparison of FCA versus NRFCA shows in

Fig. 3, for ne ≥ 6, the relativistic effect becomes increas-
ingly important, because the inner-shell (in this case, 4d)
ionization dominates the cross section. This is consistent
with what has been reported in Refs. [27,28]. However,
this effect is not enough to explain the discrepancy with
Ref. [31]. The difference between the NRFCA and
Ref. [31] is most likely due to different formulations of
the effective Coulomb potential felt by an ionized electron.
However, no further comment can be made as the detail is
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with μχe ¼ mχme=ðmχ þmeÞ is used.
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not explicitly given in Refs. [30,31]. On the other hand,
we did find the results of Ref. [31] fall in between NRFCA
and HLA, so perhaps is the reconstructed Coulomb
potentials.
We note that a later relativistic calculation by Roberts

and Flambaun [63] is similar to our framework, but differs
in the formulation of the frozen-core potential. As a result,
even though the agreement of both calculations is generally
good, there is still difference due to atomic treatments.

IV. SUMMARY

In summary, we conclude the scattering cross section of
sub-GeV dark matter off atoms depends sensitively on
atomic structure. Two aspects particularly important are the
relativistic effect, which is sizable when inner-shell elec-
trons are ionized, and the final-state wave functions on
which electron correlation plays an important role. Our
atomic approach is fully relativistic, and the frozen-core
approximation is well benchmarked by (MC)RRPA (a truly
many-body approach). The theoretical uncertainty of our
results is estimated to be about 20%.
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APPENDIX A: FROZEN-CORE APPROXIMATION

In this appendix, we give an outline of our formulation of
the frozen-core potential, by which the final ionized
electron wave function is computed.
Starting from the self-consistent, relativistic mean field

theory, the (MC)DF routine yields a set of single particle
orbitals which take a 2-spinor form

ϕa;ma
ðr⃗Þ ¼ 1

r

�
gaðrÞΩκa;ma

ðr̂Þ
ifaðrÞΩ−κa;ma

ðr̂Þ
�
; ðA1Þ

where a ¼ ðna; κaÞ is a collective label for the principle
(na) and relativistic orbital (κa) quantum numbers of the ath
atomic shell; ga and fa the reduced radial wave functions of
the large and small components, respectively; andΩκa;ma

ðr̂Þ
the spin-angular function that depends on κa, the solid
angle r̂, and the total magnetic quantum number ma.
In an ionization process where the initial state is

unpolarized and the final angular distribution of the free
electron is summed, it is more convenient to consider the
process isotropic so the frozen-core potential

VðaÞ
FCAðrÞ ¼

ZðaÞ
eff ðrÞ
r

¼ 1

r

�
Z −

X
b

ð2jb þ 1ÞvbðrÞ þ vaðrÞ
�

ðA2Þ

has only the radial dependence, and the quantum label a
denotes the ionized shell, and the summation over b is
performed to all occupied shells. The single-electron
potential

vaðrÞ ¼
Z

∞

0

dr0
1

r>
ðgaðr0Þ2 þ faðr0Þ2Þ; ðA3Þ
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FIG. 4. FCA benchmarked by (MC)RRPA. The ratio is for (MC)RRPA/FCA. The agreement is within 20% except in the small energy
range near the ionization edges.
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where r> is the larger one of r and r0. The physical meaning

of VðaÞ
FCAðrÞ is clear: in a mean field approach, where all

electrons are treated as independent particles, the Coulomb
potential felt by an ionized a-shell electron is the sum of
contributions from the nucleus (of charge Z) and all
electrons (the summation

P
b with a degeneracy factor

2jb þ 1) except for itself (va). As Eq. (A2) looks very
similar to the direct term in a typical Dirac-Hatree-Fock
approximation, the potential is also called the relativistic
Hartree potential (see, e.g., Refs. [48,49]).
We remark that there are other ways of implementing the

frozen-core approximation. In some approaches, it is even
used to replace the two-body Coulomb potential, so the
self-consistent mean field equation can be solved more
efficiently. When it comes to comparisons of difference
atomic approaches, these details can be important.
The procedure we just introduce can be easily imple-

mented in typical nonrelativistic Hartree-Fock schemes,
which solve the Schrödinger equation instead. The only
change in formulas above is the wave function now takes a
1-spinor form, so there is no small component fa, and the
quantum label a ¼ ðna; laÞ, where la is the familiar orbital
quantum number.
In Fig. 4, the FCA results (in lines) are compared with

the (MC)RRPA (in dots). The agreement is generally good
at the level of 20%, except for regions close to the
ionization edges.

APPENDIX B: FOLDING WITH DARK MATTER
VELOCITY SPECTRUM

Combining Eqs. (3) and (6), the computation of averaged
velocity-weighted differential cross section involves a
double integration

dhσvχi
dT

¼
Z

vmax

vmin

d3vχfðv⃗χÞvχ

×
1

2πv2χ

Z
qþ

q−

dqq

�����c1 þ d1
q2

����2
�
RðT; qÞÞ: ðB1Þ

The integrand has an apparent vχ dependence which is
vχ × v−2χ ¼ 1

vχ
, and an implicit one in q�, which determines

the allowed range of 3-momentum transfer under the given
kinematics. Therefore, an interchange of integration order
needs to preserve the phase space for it to be exact, or at
least the part where most strength lies so it is a good
approximation.
A standard procedure of interchanging integration order

(see, e.g., Refs. [53,54]) is the following. From energy and
momentum conservation, the threshold velocity that a
LDM can instigate an energy transfer T and 3-momentum
transfer q is

vχ ≳ ṽmin ¼
T
q
þ q
2mχ

: ðB2Þ

Fixing the q integration range by equating vmin ¼ T=q− þ
q−=2mχ and qþ ¼ 2mχvmax so that q� no longer has vχ
dependence, then the integration of vχ can simply be
reduced to a function

ηðṽminÞ ¼
Z

vmax

vmin

d3vχfðv⃗χÞ
1

vχ
Θðvχ − ṽminÞ; ðB3Þ

where the step function Θðvχ − ṽminÞ imposes the velocity
requirement. The analytic functional form of ηðṽminÞ can be
found, e.g., in Refs. [51,55]. We have verified within the
FCA that the η function approach yields the same result as
the more cumbersome double integration of Eq. (B1) for
kinematics relevant in this work. This is contrary to the
assertion of Ref. [63].

APPENDIX C: COMPARISON OF ATOMIC
APPROACHES TO CONTINUUM STATES

The existing works, including our FCA approach, on DM
scattering off atomic electrons are all based on mean field
approaches, either nonrelativistic [4,30,31,53,54,62] or rela-
tivistic [27,28,63]. The first common feature of all is solving
the single-electron orbital functions self-consistently from the
Hartree-Fock or Dirac-Fock equation. With these orbitals, a
good description of the atomic ground state is constructed
from one or a linear combination of Slater determinants by
filling Z electrons. While relativity does introduce slight
changes of the eigenenergies and eigenfunctions of occupied
orbitals, it is fair to say that all approaches have very similar
atomic initial states to startwith, and it is the atomic final states
that different approaches diverge.
So far, except for the limited data we carried out with

(MC)RRPA, the second common feature of all is the
ionized electron state is obtained by solving some mean
field equation. Except Refs. [28,63], it simply takes a
Schrödinger or Dirac form with an effective, isotropic,
electrostatic potential

VðaÞðrÞ ¼ ZðaÞðrÞ
r

; ðC1Þ

where a is the quantum label of the ionized atomic shell. A
few prescriptions of the effective charge ZðaÞðrÞ are listed as
follows:

(i) Plane wave approximation (PWA) [53,54]: This is
done by simply taking ZðaÞ ¼ 0, i.e., the ionized
electron is completely free. In this case, the tran-
sition matrix element is simplified to the Fourier
transform of the bound state wave function. How-
ever, unless the scattering energy is much higher
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than the atomic scale, this assumption can hardly be
justified.

(ii) HLA [4,54,62]: This approximation assumes the
ionized electron behaves like a hydrogenlike elec-
tron. The effective charge is simply a point source at
the atomic center with its magnitude fixed by the
orbital binding energy EB,

ZðaÞ
HLAðrÞ ¼ na

ffiffiffiffiffiffiffiffiffiffiffiffi
−EðaÞ

B

Ry

s
; ðC2Þ

where na is the principle quantum number (in the
NR case, na is an integer; in the relativistic case,
there is some correction) and Ry ¼ 13.6 eV. While
this approximation is tuned to reproduce the correct
binding energy, this point charge picture is not
realistic, either.

(iii) FCA: This approximation has been explained in
Appendix A. We additionally comment here that the
resulting effective charge has the correct asymptotic

behaviors, i.e., ZðaÞ
FCAðr → rNÞ → Z where rN is the

nuclear surface and ZðaÞ
FCAðr → ∞Þ → 1. Therefore,

it is more realistic than PWA and HLA.
In Fig. 5, we use the xenon 5p shell(s) as an example to

illustrate the differences in Zð5pÞ
eff . Obviously, when the

3-momentum transfer q associated in DM-atom scattering
is ≳keV, i.e., the inverse of atomic size, the scattering

amplitude depends sensitively on the effective charge
distribution. On the other hand, for much smaller or larger
q, atomic physics still plays an important role in getting
reliable results. For the former, the correct asymptotic

requirement ZðaÞ
FCAðr → ∞Þ → 1 is crucial in getting the

correct phase shifts. For the latter, the relativistic and
nuclear finite-size effect are both significant, as already
pointed out in Refs. [27,28].
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