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1 Introduction

Inflation is an attractive idea which explains the approximate homogeneity and isotropy

of our universe. It also leads to the generation of small perturbations required for the

observed anisotropy in the Cosmic Microwave Background and for the growth of structure.

Despite considerable attention having been devoted to this idea theoretically, relatively

little work has been done on understanding the nature of the perturbations which are

produced during inflation, in a model independent manner. More recently, such a model

independent analysis has been developed using symmetry considerations.

During inflation, spacetime is approximately described by de Sitter space. The essential

idea of some of the symmetry based analysis is to use the SO(4, 1) symmetry of de Sitter

space, which is also the symmetry group of three dimensional Euclidean Conformal Field

Theories, to constrain correlation functions of the perturbations. Of course, the universe

is not exactly described by de Sitter space during inflation, but the corrections which are

quantified in terms of the slow roll parameters are small, being of order 1% or so. The
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SO(4, 1) symmetry should therefore be useful in constraining the correlation functions. In

the discussion below, we shall refer to this symmetry group as the de Sitter group or the

conformal group interchangeably.

In this paper we carry out such a symmetry based analysis for the scalar three point

function, by including the first non-vanishing corrections in the slow roll approximation.

Among all the three point correlations, the three point scalar correlator is expected to

be of the biggest magnitude, and therefore of most significance for observational tests of

non-Gaussianity. It is therefore clearly important to understand what constraints can be

imposed on it from symmetry considerations alone. This is the motivation underlying

our work.

One of our main results is a set of Ward identities relating the three point function

to the scalar four point function in a particular limit. The coefficient of proportionality

between the two is the parameter
˙̄φ
H , defined in section 2.

It is well known that the three point function is suppressed in the canonical model of

slow roll inflation (for a definition of this model see eq. (2.20)) so that, in a sense which

we make precise below, it can be thought of as vanishing to leading order in the slow roll

approximation. We argue that this feature is more generally valid. In addition, the Ward

identities allow us to estimate the magnitude of the leading non-vanishing contribution to

the three point function, in the slow roll approximation. We find that generically it is of

the same order as the three point function in the canonical slow roll model. To get a rough

idea, this means that quite generally, as long as conformal symmetry is approximately

valid, fNL ∼ O

(( ˙̄φ
H

)2)
, although the detailed functional form is not the same as assumed

in the standard fNL parametrization, so this is only an estimate.

While the small magnitude for the three point function is disappointing from the point

of view of observations, this result can be turned around in an interesting way as follows.

If observationally a three point function of bigger magnitude is observed then it would rule

out not only the canonical model of slow roll inflation, but in fact all models where the

dynamics is approximately conformally invariant, and the slow roll approximation holds.1

We also show that the Ward identities determine the three point function, nearly

completely, upto one constant, in terms of the four point function. To leading order, the

latter can be computed in the de Sitter limit and is thus constrained by the full de Sitter

symmetry group. In this way, we can make precise the extent to which conformal symmetry

constrains the scalar three point correlator.

Unfortunately, as is well known, the four point function itself is not significantly con-

strained in a conformal field theory. In position space there are three invariant cross ratios

in three dimensions, and conformal symmetry allows the four point scalar correlator to be

a general function of these three variables. This is a rather weak constraint. It follows from

our analysis then that conformal invariance also constrains the three point scalar correlator

only weakly.

1Strictly speaking, in a non-generic case, approximate conformal invariance and the slow roll approxi-

mation do allow the magnitude to be bigger, as we discuss below. But in this case the functional form is

completely fixed, so one should be able to test for this possibility as well.
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Directly checking the Ward identities through observations seems very challenging,

although it cannot be ruled out, perhaps. A more interesting angle might be the following.

In the canonical slow roll model, the four point function in the de Sitter limit arises from

a tree diagram with single graviton exchange, see [1, 2]. If the three point function is

observed and found to depart from the functional form it has in the canonical slow roll

model, then it would follow from the Ward identities that the four point function must also

have a different form. This would suggest that perhaps higher spin fields must have been

involved during inflation. We leave a study along these lines for the future.

The approach we follow in this paper is based on the important work of [3] and [4]

and also the subsequent papers, [5] and [2]. As was emphasized in these works, symmetry

considerations are conveniently discussed in terms of the wave function of the universe

at late times. In the de Sitter limit, the Ward identities of conformal invariance can

be obtained from the constraints of spatial reparametrization and time reparametrization

invariance, which the wave function must satisfy. The time reparametrization constraint in

particular is the same as the Wheeler-DeWitt equation. These constraints must continue

to hold even when we go beyond the de Sitter limit. In this way, the spatial and time

reparametrization invariance can be used to obtain the corrected Ward identities which

now include the breaking of conformal invariance.

Some of the Ward identities we obtain have already been discussed in the literature,

see for example [6] for an early discussion. Part of our motivation in presenting them here

is to show that they follow from the more general approach mentioned in the previous

paragraph. In this paper we have only analyzed the three point scalar correlator, and that

too to leading non vanishing order for which the analysis is relatively straightforward. But

in principle this approach should be extendable for all correlators order by order in the

slow roll expansion. We leave a general analysis of this kind for the future.

It is worth explicitly mentioning that while the analysis we carry out draws on tech-

niques developed in the study of the AdS/CFT correspondence, we do not assume that

there is a hologram for de Sitter space or for inflation. We use the techniques drawn from

AdS/CFT only as a way of efficiently organizing the analysis of symmetry constraints for

perturbations which are generated during inflation in the gravitational system.

The analysis we carry out assumes, as was mentioned above, that the full inflationary

dynamics, including the scalar sector, preserves approximate conformal invariance. Our

conclusions therefore do not apply to models like DBI inflation [7, 8] or Ghost inflation [9], in

which the scalar sector breaks the full conformal symmetry badly. In addition, it assumes

that only one inflaton was present during inflation, and that the initial state was the

Bunch-Davies vacuum. We also assume that the slow-roll conditions hold; these are more

precisely discussed in section 2.1. Besides these assumptions, our conclusions are robust,

and as was emphasized above, model independent. For example, they should hold even if

higher derivative corrections to Einstein gravity become important.2

2More correctly, these results should apply also to models where quantum effects are small but classical

higher derivative corrections are important. As would happen, for example, if the Hubble scale is of order

the string scale, Mst, but much smaller than the Planck scale, MPl.
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This paper is organized as follows. In section 2 we discuss some of the introductory ma-

terial. The Ward identities are derived in section 3. In section 4 we analyze these identities

further and derive various consequences. Finally, we conclude in section 5. Appendices A, B

and C contain additional important details.

Before concluding we should discuss some of the related literature. Early work on

using conformal symmetry to constrain inflationary correlators includes [10–21]. More

recent work, where the conformal symmetries are often thought of as being non-linearly

realized, include [6, 22–39]. Many interesting Ward identities have already been derived

using this approach. Additional related work is in [40, 41], see also [42]. Our discussion

in section 4 is closely related to [43], see also [44]. The basic approach of using time and

spatial reparametrizations to derive Ward identities that we follow was first discussed in

the AdS context in [45]. More recently, there are related developments in the study of

Lifshitz and hyperscaling violating spacetimes, of interest for possible connections between

AdS gravity and condensed matter physics, see [46].

2 Basic set up and conventions

Here we give a few details about the basic approach we will use, for more details see [3],

and [2, 5].

We will consider the metric to be of the ADM form

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
, (2.1)

and work in the gauge

N = 1, N i = 0. (2.2)

The equations of motion obtained by varying N and N i in the action must still be imposed.

These equations will give rise to the constraints of spatial and time reparametrizations that

play an important role in the subsequent discussion.

The background inflationary solution is a Friedmann-Robertson-Walker (FRW) space-

time with scale factor a(t). Allowing for perturbations in the metric, we can write

hij ≡ a2(t) gij = a2(t) [δij + γij ], (2.3)

with

γij = 2ζδij + γ̂ij (2.4)

where γ̂ij is traceless.

A scalar field, the inflaton, φ, is also present in inflation (as mentioned in the intro-

duction, we will restrict ourselves to the case with a single inflaton). It can be written as

φ = φ̄(t) + δφ(t,x) (2.5)

where φ̄ and δφ are the background value and the perturbation of the inflaton, respectively.

We will consider the wave function of the universe at late times, when the perturba-

tions of interest have exited the horizon and stopped evolving in time. The wave function
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is actually a functional of the perturbations γij , δφ. Assuming the wave function is approx-

imately Gaussian and that corrections are small, we can expand it in a Taylor series in the

perturbations to get

Ψ[δφ, γij ] = exp

[
M2

Pl

H2

(
− 1

2

∫
d3x
√
g(x) d3y

√
g(y) δφ(x) δφ(y)〈O(x)O(y)〉

− 1

2

∫
d3x
√
g(x) d3y

√
g(y) γij(x)γkl(y)〈T ij(x)T kl(y)〉

+
1

3!

∫
d3x
√
g(x) d3y

√
g(y) d3z

√
g(z)

δφ(x) δφ(y) δφ(z)〈O(x)O(y)O(z)〉

+
1

4!

∫
d3x
√
g(x) d3y

√
g(y) d3z

√
g(z) d3w

√
g(w)

δφ(x) δφ(y) δφ(z) δφ(w)〈O(x)O(y)O(z)O(w)〉+ . . .

)]
.

(2.6)

The ellipses denote additional terms which will not play an important role in this paper.

The coefficient function for the quadratic term in δφ in eq. (2.6) is given by3

〈O(k)O(k′)〉 = (2π)3δ3(k + k′) k3. (2.7)

Let us also mention that in our conventions

〈O(k)O(k′)〉 =
∫
d3x d3y e−ik·x e−ik′·y〈O(x)O(y)〉. (2.8)

We also note that the coefficient function for the quadratic term in γij is given by4

〈T s(k1)T
s′(k2)〉 = (2π)3δ3(k1 + k2) δ

s,s′ k
3
1

2
, (2.9)

where T s(k) = Tij(k) ǫ
s,ij(−k), and the polarization tensor, ǫs,ij , satisfies the normalization

ǫs,ijǫs
′

ij = 2 δs,s
′
.

The wave function eq. (2.6) is obtained by doing a path integral with Bunch-Davies

boundary conditions in the far past,

Ψ[δφ, γij ] =

∫
[Dδφ] [Dγij ] ei S[δφ,γij ] . (2.10)

Our choice, eq. (2.2), does not fix the gauge completely. There is still the freedom to

do spatial reparametrizations of the form

xi → xi + ǫi(x), (2.11)

and time reparametrization of the form

t→ t+ ǫ(x), xi → xi + vi(t,x), (2.12)

3We follow the convention where bold face symbols, e.g. k, stand for 3-vectors, and symbols without

bold faces denote the magnitudes, e.g. k ≡ |k|.
4The labels s, s′ denote the two polarizations of the graviton.
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where

vi = ∂iǫ

∫
1

a2(t)
dt. (2.13)

Note that in de Sitter space eq. (2.13) becomes,

vi = − 1

2H
(∂iǫ) e

−2Ht. (2.14)

The wave function must be invariant under these coordinate transformations. In the

classical limit, which we mainly consider here, the wave function is approximately

Ψ[δφ, γij ] ∼ ei S[δφ,γij ], (2.15)

and the invariance of the wave function arises from the invariance of the action with

respect to the spatial and time reparametrizations. It is easy to see in the Hamilton-Jacobi

formulation that for Einstein gravity, for example, the equation of motion obtained by

varying N,N i in the action, are exactly the equations which impose this invariance. More

generally, the equations of motion can be complicated, but the ones obtained by varying

N,N i should, on general grounds, still impose this invariance.

The invariance of the wave function under eq. (2.11) and eq. (2.12) leads to conditions

on the coefficient functions, introduced in eq. (2.6). In de Sitter space these constraints are

exactly the same as Ward identities for conformal invariance in a conformal field theory,

with the coefficient functions playing the role of correlation functions in the CFT. This

is the essential reason why the study of the constraints imposed by conformal invariance

on the wave function, and therefore expectation values, can be mapped to an analysis of

constraints imposed on correlation functions in a CFT.

In de Sitter space the scale factor, eq. (2.3) is given by

a2(t) = e2Ht (2.16)

where H, the Hubble parameter, is constant. More generally the Hubble parameter,

defined by
ȧ

a
≡ H (2.17)

will not be a constant.

Its variation gives two of the slow roll parameters which quantify the breaking of

conformal invariance,

ǫ = − Ḣ

H2
, δ =

Ḧ

2HḢ
. (2.18)

Another parameter is given by
˙̄φ

H
. (2.19)

We often refer in this paper to the “canonical model of slow roll inflation”. By this we

mean a theory with the action

S =

∫
d4x

√−gM2
Pl

[
1

2
R− 1

2
(∇φ)2 − V (φ)

]
, (2.20)
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where the potential is varying slowly enough to meet the conditions, eq. (2.22) and

eq. (2.23). Note that in our normalization the scalar field is dimensionless, and V has

dimensions of [M ]2. In this theory the Hubble parameter is given by

H2 =
1

3
V. (2.21)

In the slow roll approximation in this model, the conditions

ǫ, δ ≪ 1, (2.22)

and also
˙̄φ

H
≪ 1, (2.23)

are met.

The scalar field then approximately satisfies the equation

˙̄φ ≃ − 1

3H
V ′, (2.24)

where a prime denotes derivative with respect to the scalar field. The slow roll parameters,

ǫ and δ, defined in eq. (2.18), are given by

ǫ =
1

2

(
V ′

V

)2

and δ = ǫ− V ′′

V
, (2.25)

and meeting the slow roll conditions, eq. (2.22), eq. (2.23) leads to the requirements,

(
V ′

V

)2

≪ 1, (2.26)

and
V ′′

V
≪ 1. (2.27)

Also, in this model
˙̄φ

H
=

√
2ǫ. (2.28)

As a result, from eq. (2.22) we see that

˙̄φ

H
≫ ǫ, δ. (2.29)

2.1 More general action and slow roll conditions

More generally, our analysis will allow for additional terms so that the full action could

schematically take the form

S =

∫
d4x

√−gM2
Pl

[
1

2
R− 1

2
(∂φ)2 − V +

c1
Λ2
R2 +

c2
Λ4
R3 + · · ·

]
, (2.30)
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where the additional terms, like the last two, also have additional derivatives. The R2, R3

terms above actually denote various terms with four derivative and six derivatives respec-

tively. The coefficients c1, c2 are dimensionless, and in general could be functions of φ,

while Λ denotes a higher energy cut-off scale, which could in string theory be the string

scale, Mst, for example. The R2, R3 terms could be significant, for example, if the Hubble

scale is of order the string scale in string theory. The ellipses stand for additional terms

with higher derivatives on the metric, and also terms with additional derivatives on the

inflaton. These would be suppressed by appropriate powers of Λ.

As was mentioned above, we are interested here in theories where the additional terms

in eq. (2.30) give rise to an approximately conformally invariant dynamics for the pertur-

bations. This can be ensured by taking both the Hubble parameter and the scalar to vary

slowly, so that eq. (2.22) and eq. (2.23) are met. The background solution is then approxi-

mately de Sitter space with a constant scalar, which clearly preserves conformal invariance.

And the perturbations about this background will then inherit this conformal symmetry.

In the discussion which follows, it will be convenient for parameter counting to take

ǫ ∼ δ. (2.31)

Corrections about the conformally invariant limit will then be suppressed by ǫ and
˙̄φ
H . With

these features in mind we will take, in general, the conditions eq. (2.22) and eq. (2.23) to

hold for approximate conformal invariance to arise.5

Once these conditions are met, it also follows from the field equations in the general

case that eq. (2.29) is valid. As was mentioned above, we are assuming that there is an

approximate de Sitter solution when
˙̄φ
H is small. The corrections to de Sitter space in such a

solution arise because of extra contributions to the stress energy due to the non-vanishing

value of ˙̄φ. However, any such contribution must be of order
(
˙̄φ
)2

or higher, since the

scalar Lagrangian has at least two derivatives. Thus we learn that ǫ, δ can at most be of

order

ǫ, δ ∼
(

˙̄φ

H

)2
, (2.32)

and eq. (2.23) then leads to eq. (2.29). The equations, (2.22), (2.23) and (2.29) are what

we will use in our derivation of the Ward identities.

We end with a few comments which are of relevance for the discussion in section 4.3,

where we estimate the normalization of the homogeneous term Sh in the solution of the

Ward identities. We begin by noting that when the higher derivative terms are important

for the metric, H2 will not be given in terms of V by eq. (2.21). Instead, the relation will

be more complicated and have the form

H2 f

(
H

Λ

)
= V, (2.33)

5Strictly speaking, we have established that the conditions eq. (2.22), eq. (2.23) are sufficient, but perhaps

not necessary. However, if they are violated the emergence of approximate conformal invariance for the

dynamics of small perturbations would be something of an accident, which we view as being quite unlikely.
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where f is a function which depends on the higher derivative contributions. Now as long

as the function f ∼ O(1), we get

H2 ∼ V. (2.34)

Taking a time derivative then gives,

Ḣ

H2
∼ V ′

H2

˙̄φ

H
. (2.35)

Using eq. (2.32) then leads to

˙̄φ ∼ V ′

H
. (2.36)

It follows from eq. (2.34) and eq. (2.36) that the general slow roll case is in fact

quite analogous to the canonical slow roll model. In particular, it follows from eq. (2.34),

eq. (2.36) that
˙̄φ

H
∼ √

ǫ , (2.37)

and also that in the slow roll expansion in general, an extra time derivative leads to a

suppression by a factor of ǫ.

The function f in eq. (2.33) has the limiting behaviour f → 3 when H
Λ → 0. Eq. (2.34)

is therefore a reasonable assumption if f ∼ O(1) also for H
Λ ∼ O(1), but it could be a bad

approximation if f becomes big for H
Λ ∼ O(1).

3 The Ward identities

We now turn to a discussion of the Ward identities. It is convenient to first consider the case

of pure de Sitter space, with no corrections, and then consider the inflationary spacetime.

3.1 De Sitter space

In de Sitter space the metric perturbations γij and the scalar perturbation δφ both freeze

out and become time independent at sufficiently late time, when their physical spatial

momenta |k|
a

become much smaller than H.

The late time wave function is then a functional of these variables, as discussed in

eq. (2.6). As was mentioned above in the comments after eq. (2.10), our choice eq. (2.2)

does not fix the gauge completely. In the discussion below, it will be sometimes convenient

to fix the remaining time reparametrization freedom, eq. (2.12), by setting the late time

value of ζ to vanish,6

ζ = 0. (3.1)

It is possible to do this for a suitable choice of ǫ(x) because at late times, when vi in

eq. (2.13) vanishes, ζ transforms under

t→ t+ ǫ(x)

as

ζ → ζ −Hǫ(x).

6This choice will be referred to as gauge A in section 3.2.1.
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After this additional gauge fixing eq. (3.1), the Ward identities of special confor-

mal transformations are then derived in this gauge by considering a combined spatial

reparametrization and time reparametrization,

xi → xi − 2
(
bjx

j
)
xi + bi

(∑

j

(
xj
)2 − e−2Ht

H2

)
, (3.2)

t→ t+ 2
bjx

j

H
, (3.3)

which preserve the gauge condition eq. (3.1). Before proceeding, let us note that the special

conformal transformations are specified by three parameters, bi, i = 1, · · · 3. Also, note that
the last term in eq. (3.2), which goes like bi e

−2Ht

H2 , can be dropped at late time.

The invariance of the wave function under the combined transformation, eq. (3.2),

eq. (3.3), gives rise to constraints on the coefficient functions in eq. (2.6). In particular, for

the coefficient function 〈OOO〉 in eq. (2.6), which is the coefficient of the term cubic in δφ

in the wave function, this leads to the condition,

Lb
k1
〈O(k1)O(k2)O(k3)〉′+Lb

k2
〈O(k1)O(k2)O(k3)〉′+Lb

k3
〈O(k1)O(k2)O(k3)〉′ = 0, (3.4)

where Lb
k is the differential operator

Lb
k = 2

(
k · ∂

∂k

)(
b · ∂

∂k

)
− (b · k)

(
∂

∂k
· ∂
∂k

)
. (3.5)

The prime symbols on the correlation functions in eq. (3.4) denote the correlation functions

with the momentum conserving delta function stripped off:

〈O(k1)O(k2)O(k3)〉 = (2π)3 δ3(k1 + k2 + k3) 〈O(k1)O(k2)O(k3)〉′. (3.6)

We will follow a similar convention in this paper for other correlation functions as well.

It is worth giving some more details leading to eq. (3.4). Since the asymptotic value of

δφ is time independent, it only transforms under the spatial reparametrization, eq. (3.2),

δφ→ δφ+ δ(δφ(x)),

δ(δφ(x)) =
(
2(b · x)xi − x2bi

)
∂i(δφ(x)).

(3.7)

Requiring that the wave function is invariant gives rise to the condition

Ψ[δφ] = Ψ[δφ+ δ(δφ)]. (3.8)

For the coefficient 〈OOO〉 in position space this leads to the relation,

〈(δO(x))O(y)O(z)〉+ 〈O(x)(δO(y))O(z)〉+ 〈O(x)O(y)(δO(z))〉 = 0, (3.9)

where,

δO(x) =
(
x2bi − 2(b · x)xi

)
∂iO(x)− 6(b · x)O(x). (3.10)
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Eq. (3.10) becomes eq. (3.4) in momentum space. The wave function also depends on γij ,

which transforms under eq. (3.2), eq. (3.3), but the resulting terms are not relevant for

obtaining the identity eq. (3.9) and we omit them here.

TheWard identity for scale transformations can be derived in a similar way by requiring

the invariance of the wave function under the coordinate transformation

t→ t+ λ, xi → e−Hλ xi ≈ (1−Hλ)xi. (3.11)

The scalar perturbation δφ transforms under this as

δφ→ δφ+ δ(δφ),

δ(δφ) = Hλxi∂iδφ.
(3.12)

For the coefficient function 〈OOO〉 this gives the relation

〈(δO(x))O(y)O(z)〉+ 〈O(x)(δO(y))O(z)〉+ 〈O(x)O(y)(δO(z))〉 = 0 , (3.13)

where δO(x) is now given by

δO(x) = Hλ
(
3 + xi∂i

)
O(x). (3.14)

The first term on the r.h.s. of eq. (3.14) arises as follows. Each factor of δφ(x) in the

cubic term in the wave function, eq. (2.6), is accompanied by an integration measure,∫
d3x
√
g(x). Since we are in the gauge ζ = 0,

√
g = 1 and does not change under the

transformation eq. (3.11). The change in the measure d3x under eq. (3.11) then gives rise

to this first term. We note that eq. (3.13) is what we would expect for an operator of

dimension 3 in a CFT. In momentum space eq. (3.13) becomes

(
3∑

a=1

ka · ∂

∂ka

)
〈O(k1)O(k2)O(k3)〉 = 0. (3.15)

3.2 Inflationary spacetime

Now let us consider departures from the conformally invariant case which arise during

inflation. In general, the metric begins to differ from the de Sitter case and this in turn

affects the asymptotic behavior of the various perturbations. It turns out that for the

limited purpose of deriving the Ward identities of interest, the departures of the metric

from de Sitter space can be neglected. This is because these departures, which arise because

H is no longer a constant, are proportional to ǫ, δ, eq. (2.18), whereas the Ward identity

we seek arises at order
˙̄φ
H . Since we have argued that the condition eq. (2.29), which is

true in the canonical slow roll theory is also true more generally, it is consistent to take

the background metric to be de Sitter space while keeping corrections of order
˙̄φ
H .

This approximation leads to considerable simplification. The asymptotic behavior of

perturbations continues to be that of de Sitter space. As a result, it is quite straightforward

to connect with the analysis above in de Sitter space.
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3.2.1 Choice of gauge

There is one subtlety in the inflationary case which needs to be kept in mind though. A

variable which is often used to describe scalar perturbations in inflation is the variable R,

given by

R = ζ − H
˙̄φ
δφ . (3.16)

The variable R has the advantage that it is invariant under linearized coordinate trans-

formations, and is also constant outside the horizon. However, since ˙̄φ appears in the

denominator on the r.h.s. , taking the ˙̄φ → 0 limit, when the de Sitter description should

become a good one, can sometimes be confusing when working directly in terms of R.

The simplest way to deal with this complication is to use two different gauges. While

the perturbations are inside the horizon and evolving, one can work in the gauge where

eq. (3.1) is true. We refer to this as gauge A below. In this gauge the scalar perturbation

is given by δφ which behaves in a smooth way, with a well defined Lagrangian for example,

in the de Sitter limit. Once the perturbations leave the horizon, one can then go over to

the gauge where

δφ = 0 (3.17)

is true. In this gauge the scalar perturbation is given by ζ and is a constant outside the

horizon, so that the correlation functions in terms of ζ are time independent. We call

this gauge B below. The required coordinate transformation is a time reparametrization

eq. (2.12), with a suitably chosen time independent parameter ǫ(x). At the linearized level

the variable ζ in gauge B is related to the variable δφ in gauge A by

ζ = − H
˙̄φ
δφ . (3.18)

Having calculated the correlation functions in gauge A it is a straightforward exercise, only

involving a change of variables, to go over to gauge B.

This is in fact the procedure we will follow below. To begin, we will work in gauge A

and construct the wave function in terms of δφ and the remaining degrees of freedom in the

metric γij . We can think of this wave function as being constructed in the epoch when the

perturbations of interest are exiting the horizon. It will take the form given in eq. (2.6).

We will then obtain relations between various coefficient functions of this wave function by

demanding that it is invariant under suitable time and spatial reparametrizations. Then we

will change the gauge and go to gauge B, and recast these relations now between correlation

functions of ζ, which are conserved outside the horizon.

One more comment is in order before we proceed. Although the traceless component

of the metric perturbation, γ̂ij , eq. (2.4), will not play much of a role in the following

discussion, we have in mind carrying out a spatial reparametrization eq. (2.11) so that at

late time γ̂ij satisfies the condition,

∂iγ̂
ij = 0. (3.19)

Indeed, only after this gauge fixing is R given by eq. (3.16).
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3.2.2 The Ward identities

Setting ζ = 0, eq. (3.1), to derive the Ward identity of special conformal transformations,

we again choose the spatial and time reparametrizations, eq. (3.2), eq. (3.3), and demand

that the wave function is invariant under them. The only new change is that since we are

also keeping effects of order
˙̄φ
H now, the change in the scalar perturbation δφ has an extra

term compared to eq. (3.7).

This extra term arises as follows. One wants the full inflaton field, eq. (2.5), to trans-

form like a scalar under the coordinate transformation eq. (3.2), (3.3). That is, denoting a

generic coordinate transformation as

xµ → xµ + ǫµ(x), (3.20)

(where µ = 0, 1, 2, 3), φ should transform as

φ→ φ− ǫµ∂µφ. (3.21)

It is easy to see that this gives rise to an extra term in the transformation for δφ, so that,

to this order

δφ→ δφ+ δ(δφ) + δ̃(δφ), (3.22)

where δ(δφ) is the same as in eq. (3.7) and δ̃(δφ), the extra contribution, is given by

δ̃(δφ(x)) = − 2(b · x)
˙̄φ

H
. (3.23)

Now demanding that the wave function is invariant under the full change of δφ gives

rise to a modified Ward identity, which takes the form

Lb
k1
〈O(k1)O(k2)O(k3)〉′ + Lb

k2
〈O(k1)O(k2)O(k3)〉′ + Lb

k3
〈O(k1)O(k2)O(k3)〉′

= 2
˙̄φ

H

[
b · ∂

∂k4

]{
〈O(k1)O(k2)O(k3)O(k4)〉′

∣∣∣∣
k4→0

}
,

(3.24)

where Lb
k is the same as defined in eq. (3.5).

Similarly, for the scaling transformation, eq. (3.11), we get the Ward identity

(
3∑

a=1

ka · ∂

∂ka

)
〈O(k1)O(k2)O(k3)〉 =

˙̄φ

H
〈O(k1)O(k2)O(k3)O(k4)〉

∣∣∣∣
k4→0

. (3.25)

Eq. (3.25) and especially eq. (3.24) are some of the main results of this paper.

So far our discussion was in terms of the coefficient functions which appear in the wave

function. It is useful to express the results in terms of correlation functions of perturbations.

The expectation values of correlators involving δφ can be obtained from the wave function

in the standard fashion. For example, the two point function is

〈δφ(x)δφ(y)〉 =
∫
[Dδφ][Dγij ] |Ψ|2 δφ(x) δφ(y)∫

[Dδφ][Dγij ] |Ψ|2 . (3.26)
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From eq. (2.6) we see that in momentum space this gives,

〈δφ(k)δφ(k′)〉 = (2π)3δ3(k + k′)
1

2

H2

M2
Pl

1

〈O(k)O(k′)〉′ (3.27)

= (2π)3δ3(k + k′)
H2

M2
Pl

1

2k3
, (3.28)

where we have used eq. (2.7).

Although it will not be very relevant for the present discussion, let us note that the

r.h.s. of eq. (3.26) is slightly imprecise. To make the sum over metrics well defined, the

remaining gauge redundancy must also be removed. This is a general feature when calcu-

lating expectation values, [2]. While we are not being very explicit about this, we always

have in mind fixing this redundancy by also taking γ̂ij to be transverse, eq. (3.19). Note

that ζ is already set to vanish in the gauge we are working with so far, eq. (3.1).

Once the correlation functions for δφ have been obtained, we can change gauge and

go over to gauge B, eq. (3.17), as was discussed in subsection 3.2.1 above.

For the two point function, we see from eq. (3.28), eq. (3.1) and eq. (3.16) that the

variable R has the two point function,

〈R(k)R(k′)〉 = (2π)3δ3(k + k′)
H2

M2
Pl

H2

˙̄φ
2

1

2k3
, (3.29)

which is the standard result. In gauge B where eq. (3.17) is met,

R = ζ . (3.30)

Thus, eq. (3.29) leads to,

〈ζ(k)ζ(k′)〉 = (2π)3δ3(k + k′)
H2

M2
Pl

H2

˙̄φ
2

1

2k3
. (3.31)

For completeness, we also note that the graviton two-point function is given by

〈γs(k1)γs′(k2)〉 = (2π)3δ3(k1 + k2) δs,s′
H2

M2
Pl

1

k 3
1

, (3.32)

where γs =
1
2 γij ǫ

ij
s .

At linear order the variable ζ in gauge B is related to δφ in gauge A by eq. (3.18).

When we consider the three point function things get a little more complicated in going

over to gauge B. Since the three point function is suppressed (due to the factor of ˙̄φ on the

r.h.s. of eq. (3.24)) the relation, eq. (3.18), is needed to second order. It turns out to be7

ζ = − H
˙̄φ
δφ+

1

2

H
˙̄φ

(
Ḣ

H ˙̄φ
−

¨̄φ

˙̄φ
2

)
δφ 2. (3.33)

7It follows from inverting eq. (D.8) in [2] to obtain ζ in terms of δφ.
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It was shown in [3] that ζ in gauge B is in fact constant outside the horizon, and since we

have gauge fixed completely, it is also a physical observable. This makes it a convenient

variable to use. From eq. (3.33) and eq. (A.8) we get that8

〈ζ(k1)ζ(k2)ζ(k3)〉 =
1

4

H4

M4
pl

H3

˙̄φ3
(2π)3δ3(k1 + k2 + k3)

1∏3
a=1 k

3
a[

−〈O(k1)O(k2)O(k3)〉′ +
(
Ḣ

H ˙̄φ
−

¨̄φ

˙̄φ
2

)(
3∑

a=1

k 3
a

)]
.

(3.34)

Similarly, the four point function to leading order is given by

〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 = 〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉CF

+ 〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉ET .
(3.35)

The two terms on the r.h.s. of eq. (3.35) were calculated in [1] and [2], and are also given in

eq. (A.19) and eq. (A.23) of appendix A.2. In particular, 〈ζζζζ〉ET is determined in terms

of the 〈OOTij〉 correlator, and therefore completely fixed by conformal invariance, see [5].

By inverting eq. (3.34) and eq. (3.35), one can express 〈OOO〉 and 〈OOOO〉 in terms

of the three point ζ correlator 〈ζζζ〉, and 〈ζζζζ〉CF respectively, eq. (A.19). It turns out

that the contribution of 〈ζζζζ〉ET to the r.h.s. of the Ward identities vanishes. As a result,

eq. (3.24) and (3.25) then become

L̂b
k1
〈ζ(k1)ζ(k2)ζ(k3)〉′ + L̂b

k2
〈ζ(k1)ζ(k2)ζ(k3)〉′ + L̂b

k3
〈ζ(k1)ζ(k2)ζ(k3)〉′

= − 4
M2

Pl

H2

˙̄φ 2

H2

[
b · ∂

∂k4

]{
k 3
4 〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉′

∣∣∣∣
k4→0

}
,

(3.36)

and

[
6 +

3∑

a=1

ka · ∂

∂ka

]
〈ζ(k1)ζ(k2)ζ(k3)〉′ = − 2

M2
Pl

H2

˙̄φ2

H2
k 3
4 〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉′

∣∣∣∣
k4→0

,

(3.37)

with9

L̂b
k = Lb

k + 6

[
b · ∂

∂k

]
, (3.38)

and Lb
k as given in eq. (3.5).

In this way, we see that the Ward identities eq. (3.24) and eq. (3.25) derived above

impose conditions on the physically observable three and four point correlators. Some of

these Ward identities have been discussed in the literature before, e.g., setting b ∝ k4 in

eq. (3.36) gives eq. (37) in [6].

8Note that the second term on the r.h.s. of eq. (3.34) is of the same order as the first term, 〈OOO〉′.
For instance,

¨̄φ

˙̄φ
2 =

(

¨̄φ

H ˙̄φ

)(

H
˙̄φ

)

= δ√
2ǫ

≈ √
ǫ.

9We remind the reader that a prime symbol on a correlator denotes that the momentum conserving

delta function has been removed, see eq. (3.6).
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4 Comments on the Ward identities

Here we comment on the Ward identities obtained above in more detail.

4.1 The canonical slow roll model as a check

The Ward identities obtained above can be checked in the canonical slow roll model,

eq. (2.20), and shown to hold. For the slow roll model eq. (2.20), the three point function

was obtained in [3]. The corresponding cubic coefficient function can be easily calculated,

as discussed in appendix A.1, and is given by

〈O(k1)O(k2)O(k3)〉′ = − 3ǫ+ 4δ

2
√
2ǫ

∑

a

k 3
a − 1

2

√
2ǫ


1

2

∑

a 6=b

kak
2
b +

4

kt

∑

a>b

k2ak
2
b


 , (4.1)

where ka ≡ |ka|, and kt = k1 + k2 + k3.

The four point function in this model was discussed in [1] and also in [2]. The corre-

sponding coefficient function is given in eq. (4.33) of [2] (see appendix A.2 of this paper).

To check the Ward identity for scale invariance eq. (3.25), we note that since 〈OOO〉′
in eq. (4.1) is cubic in momenta, the l.h.s. of eq. (3.25) vanishes. From eq. (6.21) and (6.22)

of [2], it is easy to check that the r.h.s. of eq. (3.25) also vanishes when k4 → 0. Thus the

Ward identity eq. (3.25) holds.

The check for the Ward identity of special conformal transformations, eq. (3.24), is

more complicated because the four point coefficient function 〈OOOO〉 is an unwieldy large

expression. Nevertheless, using Mathematica one can check that it is indeed valid. It is

easy to see that the function k 3 satisfies the condition,

Lb
k (k

3) = 0, (4.2)

where the operator Lb
k is defined in eq. (3.5). The non-trivial contribution for the l.h.s.

of the Ward identity eq. (3.24) comes therefore from the second term in eq. (4.1). The

〈OOOO〉 coefficient function has two kinds of contributions, denoted by ŴS and R̂S (see

eq. (A.11)). Of these, only the R̂S term contributes.

4.2 Constraint on the magnitude of the three point function

We see from eq. (4.1) that the cubic coefficient function 〈OOO〉 vanishes in the canonical

slow roll model in the limit when the slow roll parameters vanish. This is well known and

is responsible for the small magnitude of the non-Gaussianity in this model. One can argue

more generally that the cubic coefficient 〈OOO〉 must vanish in the limit when all the slow

roll parameters vanish. In the gravity calculation, this happens because in this limit δφ

becomes a massless scalar field in de Sitter space with no potential, and therefore does

not have a three point function. From the point of view of conformal invariance and the

related CFT, in this limit the corresponding operator O is exactly marginal, and in a CFT

it is well known that the three point function of an exactly marginal operator vanishes.

This is analogous to what happens in 2 dimensional CFT, see for example section (15.8)

of [47]. If this three point function would not vanish then 〈O〉 for example would have a
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log divergence at second order in perturbation theory, leading to a non-zero beta function

for O. Thus, on general grounds, we know that the expectation value for the scalar three

point function should be suppressed.

The Ward identity, eq. (3.24), allows us to estimate the magnitude of the three point

function once non-vanishing values for the slow roll parameters are taken into account.

Since the quartic coefficient function 〈OOOO〉 is not expected to vanish in the de Sitter

limit, we see from eq. (3.24) that the r.h.s. is of order
˙̄φ
H . From this, it follows quite

naturally that the 〈OOO〉 coefficient function will be of order
˙̄φ
H . So we see that as long

as conformal invariance is an approximate symmetry, the three point scalar correlator will

be of order its value in the canonical slow roll model, eq. (3.34), and therefore be small.

Although the functional form is not the same as in the standard fNL parametrization, to

get a rough idea, this magnitude corresponds to an fNL ∼ O
(
(

˙̄φ
H )2

)
. If observationally

a scalar non-Gaussianity is observed in the near future, its magnitude would most likely

be much bigger. Thus the considerations of this paper show that such an observation

would not only rule out the canonical slow roll model, but more generally any model which

preserves approximate conformal invariance during inflation. Note that in our conventions,

the scalar and tensor two point correlators are given in eq. (3.29) and eq. (3.32).

There is one important caveat to the above statement. As will be discussed in the

next subsection, the Ward identity eq. (3.24) does not uniquely determine the coefficient

function 〈OOO〉 and thus the scalar three point function 〈ζζζ〉, in terms of 〈OOOO〉. The
remaining freedom corresponds to the three point function of a dimension 3 primary scalar

operator in a CFT, Sh, with an arbitrary overall normalization. However, as we argue there,

with generic assumptions, in the slow roll approximation this normalization is expected to

be small, making any such contribution to 〈OOO〉 even more suppressed than that which

originates from the 〈OOOO〉 source term. In case these generic assumptions are somehow

not met, and the normalization is bigger making Sh dominate, the functional form of the

three point function will be fixed (upto a contact term) and this possibility can therefore

also be checked observationally.

4.3 Solving the Ward identities to determine the three point function

In this subsection, we investigate the question of uniqueness: given a four point coefficient

function 〈OOOO〉, to what extent do the Ward identities, eq. (3.24) and eq. (3.25), fix the

three point coefficient function, 〈OOO〉. We find, not surprisingly, that there is very little

freedom that remains. It corresponds to adding to the three point coefficient function a

term whose form is the same as the three point function of a dimension 3 operator in a

CFT, Sh. The momentum dependence of this additional function is completely fixed, and

all that is left undetermined is its overall normalization.10 Besides this normalization our

conclusion is therefore that the three point function is completely fixed in terms of the four

point function. This is an interesting result because unlike the three point function, the four

point function, 〈OOOO〉, does not vanish in the conformally invariant case. By relating

the two, we learn that the freedom allowed by the approximate conformal symmetry for

10There is also an additional constant associated with a contact term, see below.
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the three point function is about the same as that in the four point function. Towards the

end of this section we argue that the normalization constant for the additional term Sh
should be suppressed generically in the slow roll approximation, so that even this remaining

ambiguity is not important.

The Ward identities are in the form of linear differential equations for 〈OOO〉′, with
〈OOOO〉′ appearing on the r.h.s. as a source or inhomogeneous term. Suppose there are

two solutions for 〈OOO〉′ allowed by eq. (3.24), eq. (3.25). Let us denote their difference as

〈OOO〉′1 − 〈OOO〉′2 = Sh(k1,k2,k3). (4.3)

It is clear that Sh solves the homogeneous equations,

(
3∑

a=1

ka · ∂

∂ka

)
Sh(k1,k2,k3) = 3Sh(k1,k2,k3) (4.4)

and (
3∑

a=1

Lb
ka

)
Sh(k1,k2,k3) = 0. (4.5)

The r.h.s. in eq. (4.4) arises because the delta function has been removed in defining

〈OOO〉′. By comparing with eq. (3.4) and eq. (3.15), we see that these are exactly the

equations satisfied by the three point function of a dimension 3 operator in the CFT.

It is well known that the three point function of a dimension 3 primary in a CFT is

fixed in position space upto overall normalization. We find a similar result on analyzing

the two equations eq. (4.4) and eq. (4.5) in momentum space. Upto an additional constant,

which affects only contact terms in position space, the only freedom in Sh allowed is the

overall normalization. Details of this analysis are given in the appendix B.

Since 〈OOO〉 conserves overall momentum, it is easy to see that Sh can be taken to be

a function of only the three scalars, ka, a = 1, · · · 3. Our analysis in appendix B then gives,

Sh(k1, k2, k3) = N
1

3


ln(λ)

(
3∑

a=1

k 3
a

)
+ln

(
3∑

a=1

ka

)(
3∑

b=1

k 3
b

)
−
∑

a 6=b

kak
2
b + k1k2k3


 , (4.6)

where λ is a short distance cut-off which is introduced in obtaining the solution. As

discussed in appendix B, in obtaining this final form for the solution we have also imposed

conditions which arise from the operator product expansion. N is the overall undetermined

normalization, and ln(λ) is the extra coefficient which multiplies the contact term (
∑

a k
3
a).

It is easy to see that (
∑

a k
3
a) is a contact term because each component of (

∑
a k

3
a) is

independent and therefore analytic in at least one of the momenta.

We now give an argument for why N is likely to be suppressed in the slow roll limit,

so that the contribution to 〈OOO〉′ which arises from Sh is sub-dominant compared to a

solution of Ward identities with the 〈OOOO〉 source turned on, eq. (3.24), eq. (3.25).

To understand this point let us return to the canonical slow roll model. In this model,

to leading order, no term of the form eq. (4.6) is present. One quick way to see this is to

notice that in eq. (4.1) there is no term of the form (
∑

a k
3
a) ln(

∑
b kb). At subleading order
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such a term does arise in this model, but it is suppressed with a coefficient of order ǫ3/2, as

opposed to the leading terms in eq. (4.1), which are O(
√
ǫ). Having understood this better

in the canonical model below, we will then argue that it should be true more generally as

well, leading to the suppression of the Sh contribution mentioned above.

In the canonical model, a term giving rise to a contribution of the form eq. (4.6) would

arise from a contribution to the Lagrangian of the form

∫
d3x a3

(
V ′′′δφ 3

)
. (4.7)

Comparing with eq. (3.8) in [3], we see that such a contribution is in fact present (in the

second line). However, it is not included in the final result for the three point function

because it is suppressed. To keep the discussion simple we assume that eq. (2.31) is

valid, and therefore that in the slow roll approximation every additional time derivative is

suppressed with one factor of ǫ, as was discussed in section 2. It is then straightforward to

see that, barring accidental cancellations, this requires every additional derivative of the

potential to be suppressed by a factor of
√
ǫ.

For example, from eq. (2.25) we see that

V ′

V
∼ √

ǫ,
V ′′

V
∼ ǫ, (4.8)

so that
V ′′

V ′
∼ √

ǫ. (4.9)

Similarly, since eq. (2.24) is valid, we have on taking two time derivatives

∂3t φ̄ ∼ V ′′′

H
˙̄φ 2. (4.10)

Now

∂3t φ̄ ∼ ǫ2H2 ˙̄φ, (4.11)

since the l.h.s. has two additional time derivatives. This gives, on using eq. (2.28),

V ′′′

H2
∼ ǫ3/2. (4.12)

So we see that V ′′′ (in units of H2) is smaller than the terms of order
˙̄φ
H ∼ √

ǫ, retained in

eq. (4.1).

In section 2.1 towards the end, we argued that quite generically eq. (2.34) and eq. (2.24)

are expected to be valid for a general action of the form eq. (2.30) in the slow roll approxi-

mation. It then follows, as was mentioned there, that every additional time derivative will

be suppressed by one additional power of ǫ, so that the argument above will go through,

leading to eq. (4.12).

Let us end with some comments. First, if somehow due to say accidental cancellations,

the normalization constant N is bigger than O
( ˙̄φ
H

)
, the three point function would be

bigger in magnitude, making it more experimentally accessible. However, in this case if
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approximate conformal invariance is preserved, the functional form for 〈OOO〉′ must be as

given by Sh, eq. (4.6), and is completely fixed, so this possibility can also be tested obser-

vationally. Second, by using the generalized Fourier transform discussed in appendix B,

we can write down a formal solution for the three point function in terms of the four point

function. For completeness, we present this result in appendix C. Finally, conformal per-

turbation theory is a standard way to study the consequences of small departures from

conformal invariance. In this, one perturbs a conformally invariant theory by turning on

a coupling constant that breaks conformal invariance, and then calculates correlators per-

turbatively in this coupling constant. Our approach above is different, and attempts to

solve the Ward identities of scale and special conformal invariance after incorporating the

effects of the breaking of these symmetries. This approach, which is akin to trying to solve

the Callan-Symanzik equation for a small value of the beta function, can be more powerful

in principle, although an explicit solution of the resulting Ward identities has not proved

so easy in practice, as we see from appendix C.

5 Conclusions

In this paper we have studied the constraints imposed by approximate conformal invari-

ance on the scalar three point function. This correlation function is of the greatest interest

experimentally, as a test of non-Gaussianity, and it is therefore important to understand

how well it can be constrained in a model independent manner from symmetry consider-

ations alone. In particular, we derived the Ward identities of scale and special conformal

invariance and showed that these relate the three point function to the four point function

in a particular limit, once the breaking of conformal invariance due to the non-zero values

of slow roll parameters is taken into account.

We then investigated these Ward identities and found that they considerably constrain

the three point function. We argued that as long as the dynamics is approximately confor-

mally invariant, and the slow roll approximation is valid, the magnitude of the three point

function should be suppressed, being of the same order as that found in the canonical slow

roll model of inflation, eq. (2.20). Roughly, although the detailed functional form is differ-

ent, this corresponds to fNL ∼ O

(( ˙̄φ
H

)2)
. If an experimental discovery of non-Gaussianity

is made in the near future it would almost certainly require a much bigger value for the

three point correlator. Our analysis therefore says that such a discovery would not only

rule out the canonical slow roll model of inflation, but in fact any model where conformal

invariance is approximately valid, and the slow roll approximation is valid.

We also found that the Ward identities determine the three point function in terms

of the four point function nearly completely. An additional function, Sh, is allowed, but

its functional form is completely fixed, and corresponds to the three point function of

a dimension 3 scalar primary operator in a CFT, only leaving the overall normalization

and a coefficient of a contact term undetermined. We argued that generically the overall

normalization should be suppressed in the slow roll approximation. If somehow this generic

argument fails and the normalization is bigger leading to Sh dominating the three point
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function, the functional form of the three point function would be completely fixed, allowing

for an experimental test of this possibility as well.

Unlike the three point function, the four point function does not vanish in the leading

slow roll approximation, and is conformally invariant. By relating the three point function

to the four point function we therefore relate the three point function also to a conformally

invariant correlator. Unfortunately, as is well known, the functional form of the four point

function is not constrained very significantly by conformal invariance alone; as a result of

the Ward identities this is also then true for the three point function. In the canonical slow

roll model the four point function arises due to single graviton exchange. If the three point

function is observed and found to deviate from its functional form in the canonical slow roll

model, the four point function must also be different, suggesting perhaps that higher spin

fields are involved during inflation. This line of thought is well worth exploring further.

More generally, it would be worth extending the analysis in this paper to include the

breaking of conformal invariance to higher order in the slow roll expansion. The three

point function, to leading non-vanishing order, only requires corrections of order
˙̄φ
H to be

included, and these can be obtained without changing the background geometry, since

corrections to the metric are of order the slow roll parameters, ǫ and δ, eq. (2.18), and we

have argued that these should be much smaller. But going beyond this order would require

corrections in the de Sitter geometry also to be incorporated. This is an interesting question

to pursue, both from the point of view of cosmology and also holography in approximately

AdS spaces. Once the asymptotic behavior of the fields has been determined, the Ward

identities should follow from the invariance of the wave function under time and spatial

reparametrizations.
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A More on 〈OOO〉 and 〈OOOO〉 in the canonical model of slow roll

inflation

In this appendix, we discuss in some more detail the coefficient functions 〈OOO〉 and

〈OOOO〉 in the canonical model of slow roll inflation. We divide this appendix into two

subsections, one for each of them.
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A.1 The three point coefficient function 〈OOO〉

The three point scalar correlator 〈ζ(k1)ζ(k2)ζ(k3)〉 in the canonical slow roll model,

eq. (2.20), was computed in [3],

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ3
(
k1 + k2 + k3

) H4

˙̄φ4

H4

M4
Pl

1∏
a(2k

3
a )
A, (A.1)

with

A =

(
2 ¨̄φ

H ˙̄φ
+

˙̄φ 2

2H2

)(∑

a

k 3
a

)
+

˙̄φ 2

H2


1
2

∑

a 6=b

kak
2
b +

4

kt

∑

a>b

k2ak
2
b


 . (A.2)

Here, ka = |ka| and kt = k1 + k2 + k3. Using the definitions of the slow-roll parameters, ǫ

and δ, eq. (2.18), and the eq. (2.28), in eq. (A.1) and eq. (A.2) above, we can obtain the

expression for 〈ζ(k1)ζ(k2)ζ(k3)〉 in terms of ǫ, δ as

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ3
(
k1 + k2 + k3

) 1

4ǫ2
H4

M4
Pl

1∏
a(2k

3
a )
A, (A.3)

with

A = (ǫ+ 2δ)

(∑

a

k 3
a

)
+ 2 ǫ


1
2

∑

a 6=b

kak
2
b +

4

kt

∑

a>b

k2ak
2
b


 . (A.4)

We can also express the relation between ζ and δφ, as given in eq. (3.33), in terms of

the parameters ǫ and δ as

ζ = − 1√
2ǫ
δφ−

(
ǫ+ δ

4ǫ

)
δφ2. (A.5)

Then from eq. (A.3) and eq. (A.4), we get

〈δφ(k1)δφ(k2)δφ(k3)〉 = −(2π)3δ3
(
k1 + k2 + k3

) H4

M4
Pl

1∏
a(2k

3
a )

×


(
3ǫ+ 4δ√

2ǫ

)∑

a

k 3
a +

√
2ǫ


1

2

∑

a 6=b

kak
2
b +

4

kt

∑

a>b

k2ak
2
b




 .

(A.6)

Now, to obtain a relationship between 〈δφ(k1)δφ(k2)δφ(k3)〉 and 〈O(k1)O(k2)O(k3)〉,
we use the momentum space expression for the wave function eq. (2.6), given by

ψ[δφ] = exp

[
M2

Pl

H2

(
− 1

2!

∫
d3k1

(2π)3
d3k2

(2π)3
δφ(k1)δφ(k2) 〈O(−k1)O(−k2)〉

+
1

3!

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
δφ(k1)δφ(k2)δφ(k3)×

〈O(−k1)O(−k2)O(−k3)〉
)]

,

(A.7)
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where we have kept only the relevant terms. This gives

〈δφ(k1)δφ(k2)δφ(k3)〉 =
1

4

H4

M4
Pl

〈O(k1)O(k2)O(k3)〉∏3
a=1〈O(ka)O(−ka)〉′

. (A.8)

Using the expression for 〈O(ka)O(−ka)〉′, eq. (2.7), in eq. (A.8), and using eq. (A.6) we

obtain the relation

〈O(k1)O(k2)O(k3)〉′ = − 3ǫ+ 4δ

2
√
2ǫ

∑

a

k 3
a − 1

2

√
2ǫ


1

2

∑

a 6=b

kak
2
b +

4

kt

∑

a>b

k2ak
2
b


 , (A.9)

which is same as the expression in eq. (4.1).

A.2 The four point coefficient function 〈OOOO〉

The scalar four point coefficient function 〈OOOO〉 in the canonical slow roll model was

calculated in [1] and [2]. It is given, see eq. (4.32) of [2], as

〈O(x1)O(x2)O(x3)O(x4)〉 =
∫ 4∏

a=1

d3ka
(2π)3

eika·xa 〈O(k1)O(k2)O(k3)O(k4)〉 , (A.10)

where

〈O(k1)O(k2)O(k3)O(k4)〉 = −4 (2π)3δ3

(
4∑

a=1

ka

)[
1

2

{
ŴS(k1,k2,k3,k4)

+ŴS(k1,k3,k2,k4) + ŴS(k1,k4,k3,k2)

}
(A.11)

+R̂S(k1,k2,k3,k4)+R̂
S(k1,k3,k2,k4)+R̂

S(k1,k4,k3,k2)

]
,

with ŴS being the contribution from the transverse component of the graviton exchanged,

given by

ŴS(k1,k2,k3,k4) = −2

[{
k1.k3 +

{(k2 + k1).k1}{(k4 + k3).k3}
|k1 + k2|2

}

{
k2.k4 +

{(k1 + k2).k2}{(k3 + k4).k4}
|k1 + k2|2

}
+

{
k1.k4 +

{(k2 + k1).k1}{(k4 + k3).k4}
|k1 + k2|2

}

{
k2.k3 +

{(k2 + k1).k2}{(k4 + k3).k3}
|k1 + k2|2

}
−
{
k1.k2 − {(k2 + k1).k1}{(k1 + k2).k2}

|k1 + k2|2
}

{
k3.k4 − {(k3 + k4).k4}{(k4 + k3).k3}

|k1 + k2|2
}]

×
[{

k1k2(k1 + k2)
2
(
(k1 + k2)

2 − k2
3
− k2

4
− 4k3k4

)

(k1 + k2 − k3 − k4)2(k1 + k2 + k3 + k4)2(k1 + k2 − |k1 + k2|)(k1 + k2 + |k1 + k2|)
(
− k1 + k2

2k1k2
− k1 + k2

−(k1 + k2)2 + k2
3
+ k2

4
+ 4k3k4

+
k1 + k2

|k1 + k2|2 − (k1 + k2)2

+
1

−k1 − k2 + k3 + k4
− 1

k1 + k2 + k3 + k4
+

3

2(k1 + k2)

)
+ (1, 2 ↔ 3, 4)

}

− |k1 + k2|3
(
−k2

1
− 4k2k1 − k2

2
+ |k1 + k2|2

) (
−k2

3
− 4k4k3 − k2

4
+ |k1 + k2|2

)

2 (−k2
1
− 2k2k1 − k2

2
+ |k1 + k2|2)2 (−k23 − 2k4k3 − k2

4
+ |k1 + k2|2)2

]
.

(A.12)
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The longitudinal contribution from the graviton is denoted by R̂S , and is given by

R̂S(k1,k2,k3,k4) =
A1(k1,k2,k3,k4)

(k1 + k2 + k3 + k4)
+

A2(k1,k2,k3,k4)

(k1 + k2 + k3 + k4)2
+

A3(k1,k2,k3,k4)

(k1 + k2 + k3 + k4)3
(A.13)

with

A1(k1,k2,k3,k4) =

[
k3 · k4

(
k1 · k2

(
k2
1
+ k2

2

)
+ 2k2

1
k2
2

)

8|k1 + k2|2
+ {1, 2 ⇔ 3, 4}

]

− k2
1
k2 · k3k

2

4
+ k2

1
k2 · k4k

2

3
+ k1 · k3k

2

2
k2
4
+ k1 · k4k

2

2
k2
3

2|k1 + k2|2

−
(
k1 · k2

(
k2
1
+ k2

2

)
+ 2k2

1
k2
2

) (
k3 · k4

(
k2
3
+ k2

4

)
+ 2k2

3
k2
4

)

8|k1 + k2|4
, (A.14)

A2(k1,k2,k3,k4) = − 1

8|k1 + k2|4
[
k3k4(k3 + k4)

(
k1 · k2

(
k2
1
+ k2

2

)
+ 2k2

1
k2
2

)

(k3k4 + k3 · k4) + k1k2(k1 + k2)(k1k2 + k1 · k2)
(
k3 · k4

(
k2
3
+ k2

4

)
+ 2k2

3
k2
4

) ]

− 1

2|k1 + k2|2
[
k2
1
k2 · k3k

2

4
(k2 + k3) + k2

1
k2 · k4k

2

3
(k2 + k4)

+ k1 · k3k
2

2
k2
4
(k1 + k3) + k1 · k4k

2

2
k2
3
(k1 + k4)

]

+

[
k1 · k2

8|k1 + k2|2
(
(k1 + k2)

(
k3 · k4

(
k2
3
+ k2

4

)
+ 2k2

3
k2
4

)

+ k3k4(k3 + k4)(k3k4 + k3 · k4)
)
+ {1, 2 ⇔ 3, 4}

]
, (A.15)

A3(k1,k2,k3,k4) = −k1k2k3k4(k1 + k2)(k3 + k4)(k1k2 + k1 · k2)(k3k4 + k3 · k4)

4|k1 + k2|4

− k1k2k3k4(k1k2 · k3k4 + k1k2 · k4k3 + k1 · k3k2k4 + k1 · k4k2k3)

|k1 + k2|2

+
1

4|k1 + k2|2
[
k1k2(k1k2 + k1 · k2)

(
k3 · k4

(
k2
3
+ k2

4

)
+ 2k2

3
k2
4

)

+ k1 · k2k3k4(k1 + k2)(k3 + k4)(k3k4 + k3 · k4) + {1, 2 ⇔ 3, 4}
]

+
3k1k2k3k4(k1k2 + k1 · k2)(k3k4 + k3 · k4)

4|k1 + k2|2
. (A.16)

From eq. (3.35), we can see that 〈ζζζζ〉 is made up of two parts. Among them, 〈ζζζζ〉CF

gets contribution from the four point coefficient function 〈OOOO〉. Similar to eq. (A.8),

one can derive a relation between 〈OOOO〉 and 〈δφ δφ δφ δφ〉CF using the momentum space

wave function. The relation is given by

〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉CF =
1

8

H6

M6
Pl

〈O(k1)O(k2)O(k3)O(k4)〉∏4
a=1〈O(ka)O(−ka)〉′

. (A.17)

Inverting eq. (3.33), we obtain δφ in terms of ζ. Working upto linear order in δφ, we get

δφ = −
˙̄φ

H
ζ . (A.18)
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Using eq. (A.18) in eq. (A.17), we obtain

〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉CF =
1

8

H6

M6
Pl

H4

˙̄φ
4

〈O(k1)O(k2)O(k3)O(k4)〉∏4
a=1〈O(ka)O(−ka)〉′

. (A.19)

Similarly, the other contribution in 〈ζζζζ〉, i.e. 〈ζζζζ〉ET, comes from integrating out

a boundary graviton. The corresponding 〈δφ δφ δφ δφ〉ET was computed in eq. (5.6) of [2],

〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉ET = 4(2π)3δ3

(
4∑

a=1

ka

)
H6

M6
Pl

1∏4
a=1(2k

3
a )[

ĜS(k1,k2,k3,k4) + ĜS(k1,k3,k2,k4) + ĜS(k1,k4,k3,k2)

]
,

(A.20)

with ĜS being given by (eq. (5.7) of [2])

ĜS(k1,k2,k3,k4) =
S
(
k̃,k1,k2

)
S
(
k̃,k3,k4

)

|k1 + k2|3
[{

k1.k3 +
{(k2 + k1).k1}{(k4 + k3).k3}

|k1 + k2|2
}

{
k2.k4 +

{(k1 + k2).k2}{(k3 + k4).k4}
|k1 + k2|2

}
+

{
k1.k4 +

{(k2 + k1).k1}{(k4 + k3).k4}
|k1 + k2|2

}

{
k2.k3 +

{(k2 + k1).k2}{(k4 + k3).k3}
|k1 + k2|2

}
−
{
k1.k2 −

{(k2 + k1).k1}{(k1 + k2).k2}
|k1 + k2|2

}

{
k3.k4 −

{(k3 + k4).k4}{(k4 + k3).k3}
|k1 + k2|2

}]
,

(A.21)

with

S
(
k̃,k1,k2

)
= (k1 + k2 + k3)−

∑
i>j kikj

(k1 + k2 + k3)
− k1k2k3

(k1 + k2 + k3)2

∣∣∣∣∣
k3 = k̃=− (k1+k2)

. (A.22)

In eq. (A.20), one can use eq. (A.18) to obtain

〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉ET = 4 (2π)3δ3

(
4∑

a=1

ka

)
H4

˙̄φ
4

H6

M6
Pl

1∏4
a=1(2k

3
a )

×
[
ĜS(k1,k2,k3,k4) + ĜS(k1,k3,k2,k4) + ĜS(k1,k4,k3,k2)

]
.

(A.23)

Thus, 〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉CF, in eq. (A.19), and 〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉ET, in

eq. (A.23), give the two contributions mentioned on the r.h.s. of eq. (3.35).

B Solving the homogeneous equation for 〈OOO〉

In this appendix, we calculate the homogeneous contribution to the three point function

〈OOO〉′, denoted by Sh(k1,k2,k3), eq. (4.3). For this, we need to solve the equations

eq. (4.4) and eq. (4.5). We start by rewriting eq. (4.5) in a slightly different manner which

is more suited for the purpose of our calculation. Note that the function Sh(k1,k2,k3) is a

function only of the magnitudes k1, k2 and k3. Thus it will be beneficial for us if we express
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the derivative operators in eq. (3.5) in terms of the magnitudes k1, k2 and k3, rather then

in terms of the components of k1,k2 and k3. Using

∂

∂ki
=
ki
k

∂

∂k
, (B.1)

where k is the magnitude and ki is the i
th component of a generic vector k, we can re-express

the derivative operator Lb
k as

Lb
k = (b · k)Θ(k) (B.2)

with

Θ(k) = − 2

k

∂

∂k
+

∂ 2

∂k2
. (B.3)

Eq. (4.5) can then be written as

[
(b · k1)Θ(k1) + (b · k2)Θ(k2) + (b · k3)Θ(k3)

]
Sh(k1, k2, k3) = 0. (B.4)

With the choice for the parameter of the special conformal transformation, b, to be per-

pendicular to k3, i.e. b ⊥ k3, eq. (B.4) becomes

(Θ(k1)−Θ(k2))Sh(k1, k2, k3) = 0. (B.5)

Similarly, we can make another independent choice for the parameter b, b ⊥ k2, and obtain

(Θ(k1)−Θ(k3))Sh(k1, k2, k3) = 0. (B.6)

The other possible independent choice, b ⊥ k1, gives an equation that is a linear combina-

tion of eq. (B.5) and eq. (B.6).

We will now analyze solutions to these equations. Our analysis is related to that

carried out in [5]. Let us consider a complete set of functions fz(k) defined in the range

z ∈ (−∞,∞), given by

fz(k) = (1 + ikz) e−ikz. (B.7)

Any general function, say H(k), can be expanded in terms of fz(k) in a souped-up Fourier

transform as

H(k) =

∫ ∞

−∞
dz fz(k) H̃(z). (B.8)

The functions fz(k) are actually eigenfunctions of the operators Θ(k), satisfying

Θ(k)fz(k) = −z2fz(k). (B.9)

It is also important to note that the inverse of the transformation in eq. (B.8) is given by,

H̃(z) = −
∫ ∞

−∞

dk

2π

(
k eikz

∫ k H(q)

q2
dq

)
. (B.10)
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Using eq. (B.8), we can expand the function Sh(k1, k2, k3) as

Sh(k1, k2, k3) =

∫ ∞

−∞
dz1 dz2 dz3 fz1(k1)fz2(k2)fz3(k3)M(z1, z2, z3). (B.11)

Substituting Sh(k1, k2, k3) from eq. (B.11) into eq. (B.5) and eq. (B.6), we obtain

z 2
1 = z 2

2 = z 2
3 , (B.12)

which in turn allows us to write Sh(k1, k2, k3) as

Sh(k1, k2, k3) =
∑

n1,n2,n3=±1

∫ ∞

0
dzFn1n2n3

(k1, k2, k3, z)Mn1n2n3
(z), (B.13)

where Mn1n2n3
(z) are a set of 8 functions corresponding to the 8 possible choices of the

set {n1, n2, n3}, and Fn1n2n3
(k1, k2, k3, z) is given by

Fn1n2n3
(k1, k2, k3, z) = (1 + in1k1z) (1 + in2k2z) (1 + in3k3z) e

−i(n1k1+n2k2+n3k3)z. (B.14)

Using eq. (B.1), we can also rewrite eq. (4.4) as

(
k1

∂

∂k1
+ k2

∂

∂k2
+ k3

∂

∂k3

)
Sh(k1, k2, k3) = 3Sh(k1, k2, k3). (B.15)

Using eq. (B.13) and eq. (B.14) in eq. (B.15) we get

[
3∑

a=1

ka
∂

∂ka

]
Sh(k1, k2, k3) = −

∑

n1,n2,n3=±1

∫ ∞

0
dzFn1n2n3

(k1, k2, k3, z) ×

∂

∂z

[
zMn1n2n3

(z)

]
.

(B.16)

Combining eq. (B.15) and eq. (B.16) we obtain

∂

∂z

[
zMn1n2n3

(z)

]
+ 3Mn1n2n3

(z) = 0. (B.17)

This has the general solution

Mn1n2n3
(z) =

mn1n2n3

z4
, (B.18)

where mn1n2n3
is a z independent constant. Thus, eq. (B.18) fixes the functional depen-

dence of M on z. Using eq. (B.18) in eq. (B.13) we see that

Sh(k1, k2, k3) =
∑

n1,n2,n3=±1

mn1n2n3

∫ ∞

0

dz

z4
Fn1n2n3

(k1, k2, k3, z). (B.19)

To make the integration in eq. (B.19) well defined as z → ∞, we add a small imaginary

component to ka. The integral is also divergent as z → 0. We regularize it by putting a
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small cut-off at z = λ. On carrying out the integral we get

Sh(k1, k2, k3) =
∑

n1,n2,n3=±1

mn1n2n3

{
1

3λ3
+

1

2λ

3∑

a=1

(naka)
2+

+ i


−4

9

3∑

a=1

(naka)
3 − 1

3

∑

a 6=b

naka(nbkb)
2 +

1

3

3∏

a=1

(naka)




− i

3

(
3∑

a=1

(naka)
3

)(∫ ∞

λ

dz

z
e−i(n1k1+n2k2+n3k3)z

)}
.

(B.20)

This gives us the solution to the homogeneous equations eq. (4.4) and eq. (4.5). At this

stage, it consists of a sum of eight distinct functions, corresponding to the eight distinct

choices for the set (n1, n2, n3). We will now take various limits of the answer in eq. (B.20)

and find a unique solution.

First of all, we remove the first two terms in the solution eq. (B.20) which go like

powers of 1/λ, since their presence would violate conformal invariance. We next consider

the last term involving the integral. We can explicitly evaluate this integral to get

∫ ∞

λ

dz

z
e− i (

∑
a naka) z = Γ

[
0, i

(∑

a

naka

)
λ

]
= −γ − iπ

2
− ln

[
λ

(∑

a

naka

)]
+O(λ).

(B.21)

Here, γ is the Euler-Mascheroni constant and ln denotes the natural logarithm. The O(λ)

terms appearing in eq. (B.21) vanish in the limit λ→ 0. Thus, our answer becomes

Sh(k1, k2, k3) =
∑

n1,n2,n3=±1

mn1n2n3




i

3

(
3∑

a=1

(naka)
3

)(
γ +

iπ

2
+ ln

[
λ

(∑

a

naka

)])

+i


−4

9

3∑

a=1

(naka)
3 − 1

3

∑

a 6=b

naka(nbkb)
2 +

1

3

3∏

a=1

(naka)





 . (B.22)

We will now consider the behavior of eq. (B.22) in the limit k1 ≈ k2 ≫ k3. We know that

the momentum space three point function is related to the position space expression by

the standard Fourier transform. Thus

〈O(k1)O(k2)O(k3)〉 =
∫
d3x1 d

3x2 d
3x3 e

− i(
∑

a ka·xa)〈O(x1)O(x2)O(x3)〉 (B.23)

=

∫
d3x1 d

3x2 d
3x3 e

− i{(k1+k2+k3)·x1+k2·(x2−x1)+k3·(x3−x1)}

〈O(0)O(x2 − x1)O(x3 − x1)〉

=

∫
d3x1 d

3x d3y e− i{(k1+k2+k3)·x1+k2·x+k3·y}〈O(0)O(x)O(y)〉

= (2π)3 δ3

(
3∑

a=1

ka

)∫
d3x d3y e− i(k2·x+k3·y)〈O(0)O(x)O(y)〉,
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where we have used the notation x2−x1 = x and x3−x1 = y. Now, as we are interested

in the limit k2 → ∞ ⇒ x→ 0 (where x ≡ |x|), we can use the Operator Product Expansion

(OPE)

O(0)O(x) =
A

x3
O(x) + . . . (B.24)

where A is a constant. Substituting eq. (B.24) into eq. (B.23) then gives us

〈O(k1)O(k2)O(k3)〉 ≈ (2π)3 δ3

(
3∑

a=1

ka

)∫
d3x d3y e− i(k2·x+k3·y) 1

x3
〈O(x)O(y)〉

= (2π)3 δ3

(
3∑

a=1

ka

)∫
d3x d3y e− i(k2·x+k3·y) 1

x3
1

|x− y|6

≈ (2π)3 δ3

(
3∑

a=1

ka

)∫
d3x d3y e− i(k2·x+k3·y) 1

x3
1

y6
,

(B.25)

where we have used the fact that k2 ≫ k3 ⇒ x ≪ y. The leading k2 dependence in this

limit is thus given by the integral

∫
d3x

e−ik2·x

x3
∼ ln(λk2), λ→ 0. (B.26)

Using dimensional analysis to fix the k3 dependence in eq. (B.25), we find that the three

point function in this limit is of the form

〈O(k1)O(k2)O(k3)〉 ∼ (2π)3 δ3

(
3∑

a=1

ka

)
k 3
3 ln(λk2). (B.27)

From eq. (4.3), eq. (B.22) and eq. (B.27), we see that only two terms, (n1, n2) = (1, 1) or

(−1,−1) are consistent with this behaviour. Now, by taking the similar limit k1 ≪ k2 ≈ k3
and following the steps outlined above, we can see that the signs of k2 and k3 should also

be identical: (n2, n3) = (1, 1) or (−1,−1). Combining these two results, we see that out of

the eight possibilities in eq. (B.22) for (n1, n2, n3), only two survive: (n1, n2, n3) = (1, 1, 1)

and (n1, n2, n3) = (−1,−1,−1).

Note that the choice (n1, n2, n3) = (−1,−1,−1) differs from (n1, n2, n3) = (1, 1, 1) only

by an overall sign, which can be absorbed into the coefficient. By suitably redefining λ and

the normalization N to absorb some constants, we then get Sh to be given by eq. (4.6).

C A prescription to calculate 〈OOO〉 from 〈OOOO〉

In this appendix, we will argue that for a given scalar four point coefficient function

〈OOOO〉 in general, not necessarily for the canonical slow roll model, the Ward iden-

tity in eq. (3.24) can be solved, in principle, to get the three point coefficient function

〈OOO〉. We start by decomposing 〈OOO〉′ into two parts

〈O(k1)O(k2)O(k3)〉′ = Sh(k1, k2, k3) + Si(k1, k2, k3) , (C.1)
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where Sh(k1, k2, k3) is the homogeneous piece eq. (4.6), and Si(k1, k2, k3) is a particular

solution to the inhomogeneous Ward identity eq. (3.24). To calculate the particular solution

Si(k1, k2, k3), we rewrite the eq. (3.24) as,

Lb

k1
〈O(k1)O(k2)O(k3)〉′ + Lb

k2
〈O(k1)O(k2)O(k3)〉′ + Lb

k3
〈O(k1)O(k2)O(k3)〉′

= bj fj(k1,k2,k3).
(C.2)

Here, fj(k1,k2,k3) is assumed to be an arbitrary vector function of the three momenta ka.

Comparing with eq. (3.24), we can see that

fj(k1,k2,k3) = 2
˙̄φ

H

∂

∂kj4
〈O(k1)O(k2)O(k3)O(k4)〉′

∣∣∣∣
k4→0

. (C.3)

Note that from eq. (C.2), fj(k1,k2,k3) is symmetric under the permutations of its ar-

guments. We can write the most general vector function fj(k1,k2,k3) with the above

property as

fj(k1,k2,k3) = k1j F (k1, k2, k3) + k2j F (k2, k3, k1) + k3j F (k3, k1, k2) , (C.4)

such that F (k1, k2, k3) is an arbitrary function and is symmetric under the exchange of its

last two arguments.

Next, we make a choice for b, the parameter of special conformal transformation, to

be perpendicular to k3,

b = k2 −
k2 · k3

k23
k3. (C.5)

Using eq. (C.4) and eq. (C.5), the r.h.s. of eq. (C.2) becomes

bj fj(k1,k2,k3) =

(
k22 −

(k2 · k3)
2

k23

)
g(k1, k2, k3), (C.6)

with the definition,

g(k1, k2, k3) = F (k2, k1, k3)− F (k1, k2, k3). (C.7)

It is obvious from the definition that g(k1, k2, k3) is antisymmetric under the exchange of

its first two arguments. Also, using eq. (B.2), eq. (B.3) and eq. (C.5), we can write the

l.h.s. of eq. (C.2) as,

Lb

k1
〈O(k1)O(k2)O(k3)〉′ + Lb

k2
〈O(k1)O(k2)O(k3)〉′ + Lb

k3
〈O(k1)O(k2)O(k3)〉′

=

(
k22 −

(k2 · k3)
2

k23

)
(Θ(k2)−Θ(k1))Si(k1, k2, k3).

(C.8)

From eq. (C.6) and eq. (C.8), we see that the Ward identity eq. (C.2) becomes,

(Θ(k2)−Θ(k1))Si(k1, k2, k3) = g(k1, k2, k3). (C.9)

Next we expand both Si(k1, k2, k3) and g(k1, k2, k3) in terms of the functions fz(k),

eq. (B.7),

Si(k1, k2, k3) =

∫ ∞

−∞
dz1 dz2 dz3F(k1, k2, k3, z1, z2, z3)M(z1, z2, z3), (C.10)

g(k1, k2, k3) =

∫ ∞

−∞
dz1 dz2 dz3F(k1, k2, k3, z1, z2, z3)N (z1, z2, z3), (C.11)
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with

F(k1, k2, k3, z1, z2, z3) = (1 + ik1z1) (1 + ik2z2) (1 + ik3z3) e
−i(k1z1+k2z2+k3z3). (C.12)

Substituting eq. (C.10) and eq. (C.11) into eq. (C.9) gives us,

M(z1, z2, z3) =
N (z1, z2, z3)

z21 − z22
. (C.13)

Using the definition of the inverse transformation in eq. (B.10), we can invert eq. (C.11)

to obtain N (z1, z2, z3) in terms of g(k1, k2, k3) as

N (z1, z2, z3) = −
∫ ∞

−∞

dk1
2π

dk2
2π

dk3
2π

k1 k2 k3 e
i(k1z1+k2z2+k3z3)

(∫ k1
∫ k2

∫ k3 g(q1, q2, q3)

q21q
2
2q

2
3

dq1dq2dq3

)
.

(C.14)

Using eq. (C.14) and eq. (C.13) in eq. (C.10), we finally obtain

Si(k1, k2, k3) = −
∫ ∞

−∞
dz1dz2dz3

F(k1, k2, k3, z1, z2, z3)

(z21 − z22)

[ ∫ ∞

−∞

dp1
2π

dp2
2π

dp3
2π

p1p2p3

ei(p1z1+p2z2+p3z3)

(∫ p1
∫ p2

∫ p3 g(q1, q2, q3)

q21q
2
2q

2
3

dq1dq2dq3

)]
.

(C.15)

Thus, given a four point coefficient function 〈OOOO〉, we should first calculate the

function g(q1, q2, q3), eq. (C.7). Knowing g, we can evaluate the integral in eq. (C.15) to

obtain the function Si. Eq. (C.1) then gives us the three point coefficient function 〈OOO〉,
as desired. Note that the expression above is a formal one. In particular, we know that

the solution to the Ward identities is not unique, with an ambiguity of the form given by

Sh, eq. (4.6). This ambiguity should be related to an ambiguity in how to carry out the

integrals in eq. (C.15).
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