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We study constraints to avoid deep unrealistic minima in the next-to-minimal supersym-
metric standard model. We analyze the scalar potential along directions where all of and
one of the three Higgs fields develop their vacuum expectation values, and find unrealistic
minima deeper than the electroweak symmetry breaking (EWSB) vacuum. These unrealistic
minima threaten the realization of successful EWSB and therefore should be avoided. Nec-
essary conditions for avoiding these minima result in constraints on parameters. We show
that a wide and significant region of the parameter space, especially a large λ, is ruled out
by our constraints.

Subject Index: 113

§1. Introduction

The origin of the electroweak (EW) scale and its stability against large radiative
corrections are unanswered questions in the standard model (SM) of elementary
particles. New physics beyond the SM should provide a solution for stabilizing its
scale. Supersymmetry (SUSY) is one of the promising frameworks in this regard.
The simplest supersymmetric extension of the SM is the minimal supersymmetric
standard model (MSSM).

The MSSM suffers from a naturalness problem, the so-called μ problem.1) The
MSSM has a supersymmetric Higgs/Higgsino mass term, the μ term, with a dimen-
sionful parameter μ. Although μ is usually assumed to be on the order of the EW
scale, there is no a priori reason for this. If μ was much larger than the EW scale, new
fine-tuning would be reintroduced to obtain the observed masses of gauge bosons.
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On the other hand, if μ was much smaller than the EW scale, it would conflict with
the nonobservation of a new charged fermion, namely, the charged Higgsino.

The next-to-minimal supersymmetric standard model (NMSSM)2)–10) (for a re-
view, see 11)) is the simplest extension of the MSSM by adding one gauge singlet
superfield Ŝ and the Z3 symmetry. The μ term is forbidden by the Z3 symmetry;
instead, it is generated effectively after the singlet scalar S develops its vacuum
expectation value (vev). The singlet scalar S develops a vev associated with the
standard radiative symmetry breaking at the EW scale. Hence, its vev automati-
cally takes a value on the order of the EW scale. Another advantage of the NMSSM
is related to the Higgs mass. From the nonobservation of the CP -even light Higgs
boson h at LEP II, the lower bound on its mass mh has been obtained as mh > 114
GeV in the SM like Higgs.12) Within the MSSM, the lightest CP -even Higgs mass
is bounded by the Z boson mass mZ at the tree level. Radiative corrections due to
stop (a superpartner of top quark) masses increase the Higgs mass,13)–15) but one
may need a large stop mass such as O(1) TeV to make the lightest Higgs sufficiently
heavier than the LEP bound. Such heavy stops would lead to a fine-tuning problem,
in other words the little hierarchy problem,16)–21),∗) which could be moderated in
the NMSSM. The Higgs potential of the NMSSM has a new quartic term, which
increases the lowest CP -even Higgs mass at the tree level.

Although the NMSSM has the appealing features mentioned above, the structure
of the scalar potential of the NMSSM is more complicated than that of the MSSM
owing to the presence of an additional singlet scalar S. As far as the NMSSM
scalar potential is concerned, the cosmological domain wall problem caused by the
symmetries of the NMSSM has been well studied.32),33) The domain wall problem
can be avoided by introducing suitable non-renormalizable operators that do not
generate a dangerously large tadpole.34)–36) However, this is not the end of the
story. Since the potential is complicated, phenomenologically unacceptable vacua
could exist. Hence, it is important to analyze the vacuum structure of the Higgs
scalar potential, and to derive conditions for avoiding unrealistic minima and realize
successful EW symmetry breaking (EWSB). Such studies would provide us with
significant constraints on the parameter space of couplings and soft SUSY breaking
terms in the NMSSM. In fact, several studies have been performed on the structure
of vacua, e.g., by numerical analysis with one-loop corrections.37)–39)

In addition to the Higgs scalar fields, there are other scalar fields, which are
superpartners of quarks and leptons, i.e., the so-called squarks and sleptons. They
might develop vevs and lead to unrealistic vacua. On such vacua, colour and/or
charge breaking (CCB) may occur if squarks and sleptons develop vevs.7),8),40)–46)

Moreover, the potential may include directions unbounded from below (UFB). Sys-
tematic studies of such unrealistic vacua and UFB directions have been carried out
in the MSSM.47) Recently, such analyses have also been extended including terms
generating nonvanishing neutrino masses and the corresponding soft SUSY break-
ing terms,48),49) and flavour physics, e.g. 50)–52). From these analyses, one can
derive necessary conditions in order to avoid unrealistic vacua and realize success-

∗) See also e.g. 22)–31).
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ful EWSB which result in theoretical constraints among couplings and soft SUSY
breaking terms. These constraints will be useful to eliminate the parameter space of
the models, and hence are important. Our purpose in this paper is to extend such
systematic analyses on unrealistic vacua to the NMSSM.

In this paper, we analyze the vacuum structure of the Higgs scalar potential in
the NMSSM at the tree-level. We study unrealistic vacua and derive conditions to
avoid them. We investigate the implications of these constraints by using examples
of numerical analyses and by simplifying the constraints in a certain limit. We also
study unrealistic vacua of scalar potential including squarks and sleptons.

This paper is organized as follows. In §2, we review the Higgs potential, EWSB
vacuum and Higgs masses of the NMSSM. In §3, we study unrealistic minima and
show necessary conditions to avoid them. In §4, we study our constraints numerically
for several examples. Section 5 is devoted to conclusion and discussion. We give our
notations and the scalar potential of the NMSSM in Appendix A. In Appendix B,
we give detailed studies on the unrealistic minima, where squarks and sleptons as
well as the singlet S develop their vevs in the NMSSM.

§2. Realistic vacuum of the NMSSM

The NMSSM is an extension of the MSSM, achieved by adding an extra gauge
singlet scalar, S, and its fermionic partner, S̃. This new scalar participates in EWSB
together with two doublet Higgs scalars by developing their vevs. In this section,
we briefly review a realistic vacuum of the NMSSM, in which EWSB successfully
occurs. Notations of particles are summarized in Appendix A.

The superpotential of the NMSSM is given by

WNMSSM = YdĤ1 · Q̂D̂c
R + YuĤ2 · Q̂Û c

R + YeĤ1 · L̂Êc
R − λŜĤ1 · Ĥ2 +

1
3
κŜ3, (1)

where Yu, Yd and Ye are the Yukawa couplings of up-type quarks, down-type quarks
and charged leptons, respectively, and λ and κ are Yukawa coupling constants of
the Higgs scalars. Here, we impose a global Z3 symmetry to forbid tadpole and
quadratic terms. The soft SUSY breaking terms are given by

Vsoft = m2
H1

H†
1H1 + m2

H2
H†

2H2 + m2
SS†S −

(
λAλSH1 · H2 − 1

3
κAκS3 + h.c.

)
+ m2

Q̃
Q̃†Q̃ + m2

ũR
ũ∗

RũR + m2
d̃R

d̃∗Rd̃R + m2
L̃
L̃†L̃ + m2

ẽR
ẽ∗RẽR

+
(
AdYdH1 · Q̃d̃∗R + AuYuH2 · Q̃ũ∗

R + AeYeH1 · L̃ẽ∗R + h.c.
)
, (2)

where we assume that all of the soft masses, trilinear couplings and Yukawa couplings
are real for simplicity. Indices for the generation of squarks and sleptons are omitted.
The scalar potential of the Higgs scalars can be obtained from the F - and D-terms
given in Appendix A and the soft SUSY breaking terms. For the EW symmetry
to be successfully broken, the neutral Higgs fields develop vevs while vevs of the
charged Higgs fields are vanishing. Using the gauge transformations, without loss
of generality, one can take 〈H+

2 〉 = 0 and 〈H0
2 〉 = v2 ∈ R

+. The condition for
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vanishing 〈H−
1 〉 is to require that the charged Higgs scalars have positive masses

squared. Then, the Higgs potential of the neutral components is given by

V =λ2|S|2 (|H0
1 |2 + |H0

2 |2
)

+ λ2|H0
1 |2|H0

2 |2 + κ2|S|4 − (λκH0
1H0

2 (S∗)2 + h.c.)

+
1
8
g2
(|H0

1 |2 − |H0
2 |2
)2 + m2

H1
|H0

1 |2 + m2
H2

|H0
2 |2 + m2

S |S|2

−
(

λAλH0
1H0

2S − 1
3
κAκS3 + h.c.

)
, (3)

where g2 = g2
1 + g2

2, and g1 and g2 denote the gauge coupling constants of U(1) and
SU(2), respectively. The Higgs sector is characterized by the following parameters:

λ, κ, m2
H1

, m2
H2

, m2
S , Aλ and Aκ. (4)

The remaining vevs of H0
1 and S in general can be complex. However, in Ref. 53), it

was shown that such CP violating extrema are maxima rather than minima. Thus,
it is reasonable to assume that neutral Higgs fields develop real and nonvanishing
vevs, whereas charged ones do not. Then, we denote vevs as

〈H0
1 〉 = v1, 〈H0

2 〉 = v2, 〈S〉 = s. (5)

Furthermore, as was discussed in Ref. 37), the Higgs potential given by Eq. (3) is
invariant under the replacements λ, κ, s → −λ, − κ, − s and λ, v1 → −λ, − v1;
therefore, we can take λ and v1 to be always positive, while κ, μ(≡ λs), Aλ and
Aκ can have both signs. These vevs are determined by minimizing the potential in
Eq. (3), with respect to the neutral Higgs scalars, that is, they satisfy the following
stationary conditions:

∂V

∂H0
1

= λ2v cos β(s2 + v2 sin2 β) − λκvs2 sinβ +
1
4
g2v3 cos β cos 2β

+ m2
H1

v cos β − λAλvs sinβ = 0, (6a)
∂V

∂H0
2

= λ2v sinβ(s2 + v2 cos2 β) − λκvs2 cos β − 1
4
g2v3 sinβ cos 2β

+ m2
H2

v sinβ − λAλvs cos β = 0, (6b)
∂V

∂S
= λ2sv2 + 2κ2s3 − λκv2s sin 2β + m2

Ss − 1
2
λAλv2 sin 2β + κAκs2 = 0, (6c)

where v =
√

v2
1 + v2

2 and tanβ = v2/v1.
Here, let us classify the solutions of the stationary conditions of Eq. (6). It is

important to emphasize here that, without very special relations among the para-
meters, when either two of v1, v2 and s are nonvanishing, the other must also be
non-vanishing. This fact originates from the trilinear terms λAλH0

1H0
2S in the soft

SUSY breaking terms and the quartic term λκH0
1H0

2 (S∗)2 in the F -term potential.
Suppose that v1 and v2 are non-vanishing. Then, Eq. (6c) cannot be satisfied for
a nonvanishing Aλ unless S �= 0. A similar discussion is applicable to other cases.
When we start with any combination of two non-vanishing vevs, we obtain the same
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result, that is, all three vevs should be non-vanishing. On the other hand, we find
another type of solution, in which only one of v1, v2 and s is non-vanishing, while the
others are vanishing. Therefore, a non-trivial solution of Eq. (6) is as follows: either
three Higgs fields are non-vanishing or one Higgs field is non-vanishing. This obser-
vation justifies our strategy of analyses for unrealistic minima of the Higgs potential
in the next section.

It is useful to express the soft SUSY breaking masses in terms of other parameters
by rewriting the stationary conditions in Eq. (6) as follows:

m2
H1

= −μ2 − 2λ2

g2
m2

Z sin2 β − 1
2
m2

Z cos 2β + μ
(κ

λ
μ + Aλ

)
tanβ, (7a)

m2
H2

= −μ2 − 2λ2

g2
m2

Z cos2 β +
1
2
m2

Z cos 2β + μ
(κ

λ
μ + Aλ

)
cot β, (7b)

m2
S = −2λ2

g2
m2

Z − 2κ2

λ2
μ2 +

2λκ

g2
m2

Z sin 2β +
λ2

g2

Aλm2
Z

μ
sin 2β − κ

λ
Aκμ, (7c)

where m2
Z = 1

2g2v2 and μ = λs. Thus, given mZ , we can use the parameters

λ, κ, Aλ, Aκ, tanβ and μ, (8)

instead of those in Eq. (4). Using these parameters, the realistic minimum of the
potential, which reproduces the observed Z boson mass, can be written as

Vmin = −λ2 m4
Z sin2 2β

g4
− m4

Z cos2 2β

2g2
+ V

S
min, (9)

where V
S
min is the potential involving only s or μ/λ,

V
S
min =

κ2

λ4
μ4 +

2
3

κ

λ3
Aκμ3 +

1
λ2

m2
Sμ2, (10)

with m2
S given by Eq. (7c). In the following sections, we study unrealistic and/or

CCB vacua and compare their depths with using Eq. (9).
If the vev of s (μ/λ) is sufficiently larger than the other vevs and the soft SUSY

breaking parameters and the potential V
S
min is dominant in the full potential, the

typical depth of the realistic minimum can be estimated as

Vmin � V
S
min � −κ2

λ4
μ4 − κ

3λ3
Aκμ3. (11)

Such an approximation is useful for estimating constraints, which will be shown in
the next section.

Before we move on to the analysis of the scalar potential, we show the mass-
squared matrices of the Higgs bosons in order to examine tachyonic masses in the
next section. The number of degrees of freedom of the Higgs bosons is ten, three
of which are absorbed by gauge bosons via the Higgs mechanism. The remaining
seven physical degrees of freedom correspond to three CP -even Higgs bosons, two
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CP -odd Higgs bosons and one charged Higgs boson. The mass-squared matrix of
the CP -even Higgs bosons is real-symmetric and given by

M2
h,11 = m2

Z cos2 β + μ
(κ

λ
μ + Aλ

)
tanβ, (12a)

M2
h,22 = m2

Z sin2 β + μ
(κ

λ
μ + Aλ

)
cot β, (12b)

M2
h,33 =

4κ2

λ2
μ2 +

κ

λ
Aκμ +

λ2

g2

Aλm2
Z

μ
sin 2β, (12c)

M2
h,12 = 2

(
λ2

g2
− 1

4

)
m2

Z sin 2β − μ
(κ

λ
μ + Aλ

)
, (12d)

M2
h,13 =

2
√

2λ

g
μmZ cos β −

√
2λ

g
mZ

(
Aλ +

2κ

λ
μ

)
sinβ, (12e)

M2
h,23 =

2
√

2λ

g
μmZ sinβ −

√
2λ

g
mZ

(
Aλ +

2κ

λ
μ

)
cos β. (12f)

The mass-squared matrix of the CP -odd Higgs bosons is also real-symmetric and
given by

M2
A,11 =

2μ

sin 2β

(
Aλ +

κ

λ
μ
)

, (13a)

M2
A,22 =

λ2

g2
m2

Z

(
Aλ

μ
+

4κ

λ

)
sin 2β − 3κ

λ
Aκμ, (13b)

M2
A,12 =

√
2λ

g
mZ

(
Aλ − 2κ

λ
μ

)
. (13c)

It can be understood from Eqs. (12) and (13) that physical masses become tachyonic
if λ is large, and hence the off-diagonal elements become comparable to or larger
than the diagonal ones. The mass squared of the charged Higgs boson is

m2
H± = m2

W − 2λ2

g2
m2

Z +
2μ

sin 2β

(
Aλ +

κ

λ
μ
)

, (14)

where m2
W = 1

2g2
2v

2 is the mass squared of the W boson. The charged Higgs boson
mass squared can also be tachyonic when λ is sufficiently large. These mass-squared
matrices are used in numerical calculations to find tachyonic mass regions.

§3. Constraints from unrealistic and Colour and/or
Charge Breaking minima

In this section, we show that unrealistic minima and/or CCB minima appear in
the scalar potential and derive necessary conditions to avoid these minima. First, we
consider directions in which the neutral Higgs fields are non-vanishing while all other
scalar fields are vanishing. Next, we consider directions in which squarks and/or slep-
tons as well as Higgs fields are non-vanishing. In the following, we discuss directions
involving only the neutral Higgs fields and denote H0

1,2 as H1,2 for simplicity. As
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discussed in the previous section, when two of the Higgs fields develop their vevs,
the other must develop its vev to satisfy the stationary conditions. Thus, analyses
of the scalar potential are constrained to cases of either one or three non-vanishing
Higgs fields. The realistic minimum given in the previous section is included along
the direction, in which all three Higgs fields develop their vevs. Such a direction
with all three non-vanishing Higgs vevs may include other unrealistic minima. In-
deed, one unrealistic minimum with |H1| = |H2| �= 0 and S �= 0 will be studied
below. However, analyses with three non-vanishing Higgs fields are so complicated
in general that the potential minimum cannot be solved analytically. Hence, we re-
strict our discussions to four possible cases in which three Higgs fields are aligned as
|H1| = |H2| �= 0 and S �= 0 so that the D-term and FS-term are vanishing, and one
of the three Higgs fields is non-vanishing. In fact, minima deeper than the realistic
minimum are easily found along these directions. Such directions should be avoided
to stabilize the realistic minimum. One of the main purposes of this paper is to show
that these directions can be dangerous for the realization of a realistic minimum.
Furthermore, along the directions with non-vanishing vevs of squarks and/or slep-
tons, we study CCB directions and derive necessary conditions to avoid these CCB
minima according to general properties for CCB directions discussed in Ref. 47).

3.1. Unrealistic minimum along |H1| = |H2| �= 0 and S �= 0 direction

We consider the direction in which

|H1| = |H2| �= 0, S �= 0, (15)

where the up-type Higgs and down-type Higgs fields have the same vev. This di-
rection corresponds to the so-called MSSM UFB-1 direction with a non-vanishing
gauge singlet S. Along this direction, the D-term vanishes. Then, this would lead
to a UFB direction in the MSSM without S. However, in the present case with
S �= 0, the potential is lifted up at a large value of the gauge singlet scalar; thus, an
unrealistic minimum appears. The scalar potential along this direction is given by

V H1H2S = 2λ2|S|2|H2|2 + |FS |2 −
(

λAλSH1H2 − 1
3
κAκS3 + h.c.

)

+ (m2
H1

+ m2
H2

)|H2|2 + m2
S |S|2, (16)

where

FS = −λH1H2 + κS2. (17)

The deepest minimum can be found along the direction in which trilinear couplings
are negative and the FS-term is vanishing, that is

S2 =
λ

κ
H1H2. (18)

Note that the parameter κ must be positive to satisfy this relation. Then, the
potential is written as

V H1H2S = F̂ |H2|4 − 2Â|H2|3 + m̂2|H2|2, (19)
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where

F̂ =
2λ3

κ
, (20a)

Â = λ

√
λ

κ

∣∣∣∣Aλ − 1
3
Aκ

∣∣∣∣ , (20b)

m̂2 = m2
H1

+ m2
H2

+
λ

κ
m2

S . (20c)

The trilinear term Â can always be taken to be positive using the sign of S. By
minimizing the potential of Eq. (19) with respect to |H2|, we obtain |H2| at an
extremal as

|H2|ext =
3Â

4F̂

⎛
⎝1 +

√
1 − 8m̂2F̂

9Â2

⎞
⎠ , (21)

where m̂2 ≤ 9Â2

8F̂
is required for |H2|ext to be real. Note that the solution with a

negative sign in front of the square root corresponds to the maximum potential;
hence, we do not consider it here. Then, the minimum potential is obtained by
inserting Eq. (21) as

V H1H2S
min = −1

2
|H2|2ext(Â|H2|ext − m̂2). (22)

To realize the realistic minimum, the following condition is required,

V H1H2S
min ≥ Vmin. (23)

In the next section, we numerically examine this condition. Let us intuitively
consider the implications of this condition by using some approximation. The ex-
tremal value is roughly estimated as

|H2|ext � |Aκ − 3Aλ|
8

√
κ

λ3
, (24)

and the depth of the minimum is

V H1H2S
min � − 27

1024
κ

λ3
A4

λ, (25)

for Aλ � Aκ. The typical magnitude of the minimum is determined by A4
λ, and the

minimum becomes deeper as κ becomes larger and λ becomes smaller.

3.2. Unrealistic minimum along H2 �= 0 direction

We consider the direction in which only the up-type Higgs field is non-vanishing.
In most cases, the up-type Higgs scalar has a tachyonic mass to achieve EWSB in
the NMSSM. Therefore, there exists a minimum along which the up-type Higgs field
develops a vev, while other Higgs fields do not. At this minimum, EWSB does not
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occur successfully because down-type fermions cannot have masses. The existence
of this minimum was first studied in Ref. 54). Although this condition is quite
important, as we will show in the next section, it has not always been taken into
account in the literature. Therefore, we reanalyze the unrealistic minimum along
this direction and derive a necessary condition for the exclusion of parameters.

The scalar potential involving only the up-type Higgs field is given by

V H2 = m2
H2

|H2|2 +
1
8
g2|H2|4, (26)

where m2
H2

is given by Eq. (7b). The extremal value of |H2| is obtained as

|H2|2ext = −4m2
H2

g2
, (27)

and the minimum potential is given by

V H2
min = −2(m2

H2
)2

g2
. (28)

If the minimum potential in Eq. (28) is deeper than the realistic minimum, the
realistic minimum will not be realized. Even if the realistic minimum is realized
once, it is unstable and may decay into this unrealistic minimum. Such a situation
must be avoided by requiring

V H2
min ≥ Vmin. (29)

In the next section, we numerically examine the condition Eq. (29). Here, let
us take a certain limit to reduce the number of free parameters appearing under
the condition and to intuitively consider the implications of this condition. We may
expect that |m2

H2
| ∼ μ2 � m2

Z in a typical parameter space. The condition for
parameters not satisfying the inequality, i.e., Eq. (29), can be expressed in a simple
form when μ = λs � mZ . The region excluded by the inequality Eq. (29) is given
by

κ− < κ < κ+, (30)

where

κ± =
λ

(g2 − 2λ2 cot2 β)μ
×
[
− 1

6
g2Aκ − 2λ2μ′ cotβ

± g

√
2λ2μ′

(
μ′ +

1
3
Aκ cotβ

)
+

1
36

g2A2
κ

]
, (31)

with μ′ = μ − Aλ cot β. Furthermore, when μ � Aλ, Aκ and g � λ, κ+ reduces to√
2λ2/g. That is, the excluded region is approximately written as

|κ| <

√
2

g
λ2, (32)
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which implies that a region with a small κ and a large λ is not allowed. Alternatively,
in the above limit, the depth of this minimum given by Eq. (28), can be roughly
estimated as

V H2
min � − 2

g2
μ4. (33)

Then, comparing this with the realistic minimum given by Eq. (11), the region
excluded by Eq. (29) can be written as Eq. (32).

We have studied the unrealistic vacuum, where only H2 develops its vev. Simi-
larly, we can study the unrealistic vacuum, where only the down-type Higgs field H1

develops its vev, but the others, H2 and S, have vanishing vevs. The same results
are applicable to Eqs. (26) – (28) with the replacement of H2 and m2

H2
by H1 and

m2
H1

, respectively. That is, along this direction, the potential is written as

V H1 = m2
H1

|H1|2 +
1
8
g2|H1|4, (34)

and the extremal value of H1 and the corresponding potential minimum are obtained
as

|H1|2ext = −4m2
H1

g2
, V H1

min = −2(m2
H1

)2

g2
, (35)

as in Eqs. (27) and (28). The condition for avoiding this minimum is

V H1
min > Vmin. (36)

When m2
H1

is positive at the EWSB scale, such a minimum cannot be realized. Even
if m2

H1
is negative but m2

H1
> m2

H2
, this implies that V H1

min > V H2
min. In this case,

the unrealistic minimum with H2 �= 0 is deeper and more important than that with
H1 �= 0.

3.3. Unrealistic minimum along S �= 0 direction

We consider the direction along which only S develops its vev. Along this
direction, the sign of the trilinear term of S can be taken as negative and therefore
a minimum always exists. This minimum can be deeper than that of the realistic
minimum.

The scalar potential along this direction is given by

V S(S) = κ2|S|4 − 2
3
|κ||Aκ||S|3 + m2

S |S|2, (37)

where m2
S is given by Eq. (7c). Minimizing the potential, we obtain the extremal

value of S as

|S|ext =
|Aκ|
4|κ|

⎛
⎝1 +

√
1 − 8

m2
S

A2
κ

⎞
⎠ , (38)
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where m2
S ≤ 1

8A2
κ should be satisfied. Inserting Eq. (38) into Eq. (37), the minimum

is given by

V S
min = −1

6
|S|2ext

(|κ||Aκ||S|ext − 3m2
S

)
. (39)

A necessary condition to avoid this minimum is

V S
min ≥ Vmin. (40)

In the next section, we numerically examine the condition Eq. (40). Here, let us
intuitively consider the implications of this condition by performing some approxi-
mation. The depth of the minimum is roughly estimated as

V S
min � − A4

κ

384κ2
. (41)

Comparing this minimum with Eq. (11), one can see that Eq. (41) can be deeper
than the realistic minimum if

|κ| ≤ 2
5
|Aκ|
|μ| λ. (42)

In the next section, we show that the conditions Eqs. (29) and (40), as well as
the requirement for no tachyonic masses, exclude a large region of the parameter
space.

3.4. Other unrealistic and charge and/or colour breaking minima

Finally, we present constraints from other unrealistic and CCB directions in
which not only squarks and/or sleptons but also the singlet scalar S are non-
vanishing. The directions we consider here are the same directions studied in the
MSSM but are different by a non-vanishing singlet scalar. In the MSSM, the CCB
directions as well as UFB directions have been systematically studied in Refs. 7),8),
40)–46) and the general properties of these directions are summarized in Ref. 47).
One of the general properties of the CCB and UFB directions is that the D-terms,
which are positive quartic terms, must be vanishing or kept under control. This
property is particularly important when the Yukawa couplings under consideration
are smaller than the gauge coupling constants. In fact, the deepest CCB minima
are found along vanishing D-term directions in the MSSM. Since the difference in
the particle content of the NMSSM from that of the MSSM is the gauge singlet, the
vanishing D-term directions are the same as those in the MSSM. Furthermore, when
we consider the CCB and UFB directions of the MSSM with a vanishing singlet,
S = 0, most of the constraints to avoid such directions are obtained from those in
the MSSM by setting μ = 0. Hence, nontrivial constraints are obtained along the
direction in which the singlet scalar is non-vanishing, S �= 0. For this purpose, it
is sufficient to consider the CCB and UFB directions of the MSSM with the singlet
scalar. Indeed, the MSSM scalar potential has three UFB directions:47)

UFB − 1 : |H1| = |H2| �= 0, (43a)
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UFB − 2 : H1, H2, L̃ �= 0, (43b)

UFB − 3 : H2, L̃, Q̃, d̃R �= 0, d̃L = d̃R ≡ d̃, (43c)

where Q̃ and L̃ are chosen along d̃L and ν̃L, respectively. Thus, we study each
direction while adding a non-vanishing gauge singlet S, except for the UFB-1 direc-
tion, which has already been studied in §3.1. Similar to 3.1, the potential is lifted
up along these directions owing to the presence of S and an realistic minimum ap-
pears. In addition, we study a typical CCB direction of the MSSM while adding a
non-vanishing gauge singlet. In the following, we only present results along these
directions. Details of the calculations are found in Appendix B.

The first direction is that with the gauge singlet and the so-called MSSM UFB-2;

S, H1, H2, L̃ �= 0, (44)

where L̃ is taken such that a sneutrino is non-vanishing. A necessary condition is
obtained by requiring that the minimum is positive, i.e.,(

Aλ − 1
3
Aκ

)2

≤ (1 + γ2) ×
[
m2

H1
− m2

L̃
+ m2

S

λ

κ

1
γ

+ (m2
H2

+ m2
L̃
)

1
γ2

]
, (45)

where γ is a real-positive parameter and smaller than 1. The most stringent con-
straint is obtained by minimizing the right-hand side. Then, the equation for the
extremal value of γ is given as

2(m2
H1

− m2
L̃
)γ4

ext + m2
S

λ

κ
γext(γ2

ext − 1) − 2(m2
H2

+ m2
L̃
) = 0. (46)

The second direction corresponds to the so-called MSSM UFB-3 direction with
a non-vanishing gauge singlet, i.e.,

S, H2, L̃, Q̃, d̃R �= 0, d̃L = d̃R ≡ d̃, (47)

where Q̃ and L̃ are chosen along d̃L and ν̃L, respectively. The vevs of d̃L and d̃R are
chosen so that the F -term of H1 vanishes. Then, following the calculations in (B·2),
we find the constraint

|Aκ|2 ≤ 9

[
(m2

Q̃
+ m2

d̃R
+ m2

L̃
)2

4(m2
H2

+ m2
L̃
)

|λ|2
|Yd|2 − 2(m2

H2
+ m2

L̃
) + m2

S

]
. (48)

The last direction we present is the so-called CCB-1 direction with the gauge
singlet

S, H2, Q̃, ũR, L̃ �= 0, (49)

and a necessary condition obtained from this direction is(
α2|Au||Yu| + 1

3
σ3|κ||Aκ|

)2

≤ [σ2(|λ|2 + σ2|κ|2) + |Yu|2α2(α2 + 2)
]

×
[
m2

H2
+ α2(m2

Q̃
+ m2

ũR
) + σ2m2

S + (1 − α2)m̂2
L̃

]
,

(50)
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Fig. 1. (color online) Region excluded by the occurrence of a Landau pole on the λ-κ plane. Solid

(gray), dashed (green), dotted (blue), dashed-dotted (violet) and dashed-dotted-dotted (red)

curves correspond to tan β = 5, 3, 2, 1.7 and 1.6, respectively. The region outside each curve

is excluded.

where α and σ are real positive numbers and 0 ≤ α ≤ 1. The most stringent
constraint is obtained by minimizing Eq. (50) with respect to α and σ, which can be
performed numerically. Similarly, we can analyze other MSSM CCB directions while
taking S �= 0. At any rate, the constraints Eqs. (45), (48) and (50) include more
parameters such as m2

L̃
and m2

Q̃
. Thus, we focus on analyzing numerically analyzing

the constraints of §§3.1 – 3.3 in the next section.

§4. Numerical analysis

We present numerical results of the constraints obtained from the unrealistic
minima V H1H2S

min ≥ Vmin Eq. (23), V H2
min ≥ Vmin Eq. (29) and V S

min ≥ Vmin Eq. (40)
discussed in the previous section. In addition to these constraints, we also take into
account the conditions that (i) the physical masses of the neutral and charged Higgs
scalars are nontachyonic, and (ii) the parameter, λ and κ, have no Landau poles up
to the GUT scale (1.6 × 1016 GeV). For condition (ii), we solve the renormalization
group (RG) equations at one loop8),55) from the EWSB scale to the GUT scale and
require that λ and |κ| are smaller than 2π at the GUT scale.11),56) Note that in the
table and figures shown in this section, the values of parameters are given at the
EWSB scale.

Figure 1 shows the region excluded by the occurrence of a Landau pole on the λ-κ
plane. Here, we used the running top quark mass, mt = 165 GeV as the input. Solid
(gray), dashed (green), dotted (blue), dashed-dotted (violet) and dashed-dotted-
dotted (red) curves correspond to tanβ = 5, 3, 2, 1.7 and 1.6, respectively. The
region outside each curve is excluded. One can see that λ is more constrained
when tanβ is small, on the other hand, the upper bound on κ remains constant at
approximately 0.63. This is because the RG evolution of λ is directly related to the
top Yukawa coupling. When tanβ is small, the top Yukawa coupling at a low energy
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Table I. Reference points for numerical analysis taken from Refs. 37) and 39).

point tan β Aλ (GeV) Aκ (GeV) μ = λs (GeV)

1 3 −200 −50 110

2 3 200 −200 110

3 3 50 −50 110

4 5 450 50 200

is large and it grows quickly as the energy scale increases. Then, λ is driven to a
large value as the top Yukawa coupling grows. On the other hand, the RG evolution
of κ is proportional to κ2 and depends on the top Yukawa coupling only through λ.
Therefore, κ starts to grow after the top Yukawa coupling and λ become sufficiently
larger than 2π. As we can see in Fig. 1, the maximum λ becomes much smaller for
tanβ < 2 and it disappears when tanβ ≤ 1.5. In the following, we choose moderate
values of tan β to analyze the constraints obtained from the unrealistic minima.

We use the parameter sets discussed in Refs. 37) and 39) as illustrated exam-
ples. In Table I, we list four reference points taken from 37) and 39) which lead
to light spectra of Higgs scalars. Such a light Higgs scalar is characteristic of the
NMSSM, which is utilized for sneutrino dark matter.57),58) In fact, as we will see,
the conditions Eqs. (23), (29) and (40) exclude larger regions on the λ-κ plane.

Figure 2 shows regions excluded by V H1H2S
min > Vmin (a), Vmin > V H2

min (b) and
Vmin > V S

min (c) as well as the tachyonic Higgs masses (d) on the λ-κ plane. In
panel (e), all conditions in addition to the Landau pole condition are superposed. In
panel (a), we can see that the condition V H1H2S

min > Vmin excludes a wider region for
a large λ. One may consider that this minimum can be a realistic minimum because
three Higgs fields develop vevs. However, as indicated in Fig. 1, no region is allowed
for tanβ = 1 with the occurrence of a Landau pole. The reason why a region of
large λ is excluded is as follows. From Eq. (25), V H1H2S

min becomes shallower as λ
becomes larger and its depth is typically determined by A4

λ. However, the realistic
minimum has a similar dependence, and its depth is determined by Aκμ3, as shown
in Eq. (11). Therefore, V H1H2S

min becomes deeper than the realistic minimum for
|Aλ| > Aκ, μ. Furthermore, (20c) is negative in a wide region of parameter space
when Aλ is negative, and the minimum, V H1H2S

min (22), appears in this region. Thus,
this condition can exclude a large region of the parameter space when Aλ is large
and negative.

Panel (b) shows that the condition V H2
min > Vmin also excludes a wider region

for a large λ. This can be understood as follows: Recall from (28) and (7b) that
V H2

min ∝ −(m2
H2

)2 and |m2
H2

| ∼ λ2m2
Z . Therefore V H2

min becomes deeper as λ increases.

On the other hand, from (11), Vmin � V
S
min is a polynomial of μ/λ. For a fixed

μ, |V S
min| decreases as λ increases. Hence, the minimum V

S
min, as well as Vmin,

becomes shallower as λ increases. In addition, the λ-independent term of V H2
min is

−μ4/(g2
1 + g2

2), while that of V
S
min appears in m2

Ss2, i.e. , Aλμm2
Z/(g2

1 + g2
2) sin 2β.

It is expected that −μ4/(g2
1 + g2

2) < Aλμm2
Z/(g2

1 + g2
2) sin 2β. Thus, V H2

min is deeper
than Vmin for a large λ. This result can be seen more easily in (31). When λ is large,
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Fig. 2. (color online) Excluded region for point 1. Regions (coloured regions) with V H1H2S
min > Vmin,

V H2
min > Vmin and V S

min > Vmin are shown in (a), (b) and (c), respectively, and that with tachyonic

Higgs masses is shown in (d). All conditions with the Landau pole condition (black curve) are

superposed in panel (e). The region excluded by the Landau pole is outside of the curve.

the approximate condition κ+ becomes

κ+ � λ2

g2μ
(
√

2g|μ′| − 2λμ′ cot β), (51)

where we used μ′ � g2Aκ.
In panel (c), the region excluded by V S

min > Vmin is shown. It is seen that this
condition also excludes a larger region for a large λ. The reason for this is almost
the same as that for panel (b). |V S

min| in Vmin decreases as λ increases. On the
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other hand, the λ dependence of V S
min appears through m2

S , which also decreases as
λ increases. A smaller m2

S leads to a higher |V S
min|. Thus, the region with a large λ

is excluded by the constraint V S
min > Vmin.

The region excluded by tachyonic Higgs masses is shown in panel (d). In this
region, minima deeper than the realistic one exist and hence the EWSB vacuum
is unstable. Such minima can be V H1H2S

min , V H2
min and V S

min. The tachyonic masses
are simply due to large off-diagonal elements in the mass matrices. From the mass
matrices given by Eqs. (12) and (13), one can understand that the off-diagonal
elements become larger than or comparable to the diagonal elements when λ is
large. A large λ leads to tachyonic masses after the diagonalization of the mass
matrices. Thus, again, a large λ is excluded.

In the end, in panel (e), we superpose all constraints with that for avoiding
the occurrence of Landau poles. The region excluded by Landau poles of λ, κ and
the top Yukawa coupling is indicated outside the solid (black) curve. One can see
that a large λ is excluded by unphysical minima and tachyonic masses, while a large
κ is excluded by the Landau pole condition. One can also see that the condition
V H1H2S

min > Vmin is a tighter constraint than that from the tachyonic condition. This
means that even if the EWSB vacuum has no tachyonic directions, a deeper minimum
along the H1 = H2 �= 0 and FS = 0 direction exists and makes the EWSB vacuum
unstable. Therefore, it is important to take this constraint into account for the
analysis. Finally, it is worthwhile mentioning that the region allowed for this point
is located within λ ≤ 0.15 and κ ≤ 0.62.

Figure 3 shows the excluded region for point 2. Each panel corresponds to the
same constraints of the unrealistic minima as in Fig. 2. In panel (a), we see that the
condition V H1H2S

min > Vmin is not as tight as that for point 1. As explained for Fig. 2,
m̂2 in (20c) is positive in a large region of the parameter space for a positive Aλ, and
hence V H1H2S

min does not appear. In panel (c), we also see that the region excluded
by V S

min > Vmin is weaker than that for point 1. This is because m2
S is positive and

larger than 1
8A2

κ in a wide region of the parameter space, and hence V S
min does not

appear. Panel (d) shows all constraints with those for avoiding the occurrence of
Landau poles. In addition, the blue region corresponds to the region where Vmin is
positive. We can see that the condition V H2

min > Vmin is a tighter constraint than that
from the tachyonic condition. This means that a deeper minimum appears along
the H2 �= 0 direction and that EWSB vacuum is unstable. Therefore, the constraint
Eq. (29) is also important for the analysis. Again, the region allowed for this point
is located within λ ≤ 0.5 and κ ≤ 0.62.

In Fig. 4, the same insets in Fig. 2(e) are shown for points 3 and 4. In panel
(a), it is seen that the difference from point 2 is that a wider region for a large λ is
excluded by the conditions of the unrealistic minima and the tachyonic masses. This
result is non-trivial and is due to the complicated dependences on the parameters.
The trilinear couplings Aλ and Aκ for point 3 are smaller than those for point 2.
The smaller couplings result in shallow depths of not only the unrealistic minima
but also the realistic minimum. The realistic minimum tends to be shallower than
the unrealistic ones for smaller trilinear couplings. In panel (b), a region of negative
κ values is largely excluded because Aκ is negative. It is seen that a wide region of
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Fig. 3. (color online) Excluded region for point 2. Each panel is the same as for point 1. In panel

(e), the blue region indicates the excluded region where Vmin is positive.

large λ is excluded by the condition V S
min > Vmin, and that for small λ values it is

excluded by the condition from tachyonic masses. Thus, the condition V S
min > Vmin

is also important.

§5. Conclusion and discussion

In this paper, we have analyzed the scalar potential of the NMSSM at the tree
level and studied constraints from unphysical minima on which the EWSB does not
occur successfully and CCB minima on which colour and/or electric charge symmetry
is broken.
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Fig. 4. (color online) Excluded regions for points 3 and 4. Panel (a) is for point 3 and panel (b) is

for point 4. The colour indicates the same condition as that for the panels in Fig. 3.

In §3, we derived explicit expressions for unrealistic minima along which H1 =
H2 �= 0 with FS = 0 and only one of the three Higgs fields develop its vevs. These
unrealistic minima threaten the realization of EWSB if they are deeper than the
EWSB vacuum. Indeed, using some approximations, we showed that such minima
can be deeper than realistic minima for a large λ. Constraints from other directions
involving squarks and sleptons were also derived.

In §4, we numerically studied the constraints to avoid unrealistic minima as well
as the occurrence of Landau poles and tachyonic masses. Regarding the conditions
for avoiding Landau poles, it was found in Fig. 1 that the parameter λ is significantly
excluded for tanβ < 2 and that the allowed region disappears for tanβ < 1.5. Thus,
the direction with H1 = H2 �= 0 can never be a realistic minimum under the Landau
pole condition. Then, we chose four points of the parameters with a moderate tanβ
as illustrated examples, which correspond to the light spectra of Higgs scalars. In
Fig. 2, we showed that most of the region on the λ-κ plane is ruled out for point
1. The most stringent constraints for this point come from H1 = H2 �= 0 with the
FS = 0 direction and the absence of Landau poles. This result is rather general
for points with large negative Aλ because this unrealistic minimum widely appears
for a negative Aλ and its depth is determined by A4

λ. In Fig. 3, it was shown that
the constraints from the H2 direction and Landau poles exclude a wider region of
large λ and κ in point 2. This is because V H2

min becomes deeper while Vmin becomes
shallower as λ increases. A similar result is shown in Fig. 4(a) for point 3. In Fig.
4(b), we also found that a large region of the parameter space is ruled out for a
negative κ. Importantly, a large λ is generally excluded by the constraints. The
stringent constraints are those from the S direction and the tachyonic masses. Our
results imply that each of the constraints is significant. Since the constraints are
independent of each other, it is important to apply all constraints considered here
in the analyses of the NMSSM.

Finally, we discuss the implications of our results. The coupling constant λ
is important for increasing the Higgs mass at the tree level. However, from our
numerical analysis, we saw that a large λ is not allowed from the constraints. This
implies that the SM-like Higgs mass should be similar to that of the MSSM at the tree
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level. Thus, our constraints should be important for the spectrum of the Higgs sector
as well as in dark matter physics. One-loop corrections can give sizable contributions
to the Higgs masses but may not change the structure of vacua drastically in the
SUSY model. If the lifetime of vacua is longer than the age of the universe, a
realistic vacuum becomes metastable and the parameter space is not constrained.
The lifetime of vacua is proportional to exp(−B), where B is a Euclidean action for
bounce solutions.59)–61) For the lifetime to be longer than the age of the universe, B
is required to be larger than 400. We estimated the exponent B for the false vacuum
shown in §3.1 using the methods in 62) and 63) and found that B is roughly on the
order of 10 − 100. Thus, our results should be still valid if the lifetime is taken into
consideration. However, detailed studies of the lifetime and radiative corrections are
important to exclude parameter regions. We will study these aspects in our future
works.
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Appendix A
Scalar Potential

In this appendix, we give notations of the scalars and the scalar potential of the
NMSSM. Throughout this article, flavour indices are suppressed for simplicity.

The down-type and up-type Higgs scalars are respectively denoted as

H1 =
(

H1
1

H2
1

)
, H2 =

(
H1

2

H2
2

)
, (A.1)

where H1
1 and H2

2 are electrically neutral components and H2
1 (H1

2 ) are negatively
(positively) charged components. The gauge singlet scalar is denoted by S. The
left-handed and right-handed squarks are denoted as

Q̃ =
(

ũL

d̃L

)
, ũR, d̃R, (A.2)
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and those of sleptons are denoted as

L̃ =
(

ν̃L

ẽL

)
, ẽR. (A.3)

The superpotential of the NMSSM is given by

WNMSSM = YdĤ1 · Q̂D̂c
R + YuĤ2 · Q̂Û c

R + YeĤ1 · L̂Êc
R − λŜĤ1 · Ĥ2 +

1
3
κŜ3, (A.4)

where a “hat” symbol denotes a superfield of each chiral multiplet and a “dot”
symbol represents an inner product for SU(2) doublets, A ·B ≡ A1B2 −A2B1. The
Yukawa coupling constants for up-type quarks, down-type quarks and leptons are
denoted by Yu, Yd and Ye, respectively, and that for the singlet fermion is denoted
by λ. The self-coupling constant of the singlet is κ. The scalar potential V is divided
into three parts, which consist of F , D and the soft SUSY breaking terms:

V = VF + VD + Vsoft. (A.5)

The F term potential VF is given by the sum of the absolute squares of all the matter
auxiliary fields;

VF =
∑

i=matter

|Fi|2, (A.6)

where

F ∗
H1

1
= −λsH2

2 + Ydd̃Ld̃∗R + YeẽLẽ∗R, (A.7a)

F ∗
H2

1
= λsH1

2 − YdũLd̃∗R − Yeν̃Lẽ∗R, (A.7b)

F ∗
H1

2
= λsH2

1 + Yud̃Lũ∗
R, (A.7c)

F ∗
H2

2
= −λsH1

1 − YuũLũ∗
R, (A.7d)

F ∗
S = λ

(
H1

1H2
2 − H2

1H1
2

)− κs2, (A.7e)

F ∗
d̃L

= YdH
1
1 d̃∗R + YuH1

2 ũ∗
R, (A.7f)

F ∗
ũL

= −YdH
2
1 d̃∗R − YuH2

2 ũ∗
R, (A.7g)

F ∗
ẽL

= YeH
1
1 ẽ∗R, (A.7h)

F ∗
ν̃L

= −YeH
2
1 ẽ∗R, (A.7i)

Fd̃R
= Yd

(
H1

1 d̃L − H2
1 ũL

)
, (A.7j)

FũR = Yu

(
H1

2 d̃L − H2
2 ũL

)
, (A.7k)

FẽR = Ye

(
H1

1 ẽL − H2
1 ν̃L

)
. (A.7l)

The D term potential VD is given by the sum of squares of all the gauge auxiliary
fields;

VD =
1
2

(
(Da

SU(3))
2 + (Da

SU(2))
2 + (DU(1))

2

)
, (A.8)
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where the subscripts represent gauge groups and a runs from 1 to 8 (3) for SU(3)
(SU(2)). Summation over a should be understood. The auxiliary fields are given by

Da
SU(3) = g3

(
Q̃†λa

2
Q̃ − ũ∗

R

λa

2
ũR − d̃∗R

λa

2
d̃R

)
, (A.9a)

Da
SU(2) = g2

(
Q̃†T aQ̃ + L̃†T aL̃ + H†

1T
aH1 + H†

2T
aH2

)
, (A.9b)

DU(1) = g1

(
1
6
Q̃†Q̃ − 2

3
ũ∗

RũR +
1
3
d̃∗Rd̃R − 1

2
L̃†L̃ + ẽ∗RẽR − 1

2
H†

1H1 +
1
2
H†

2H2

)
,

(A.9c)

where gi (i = 1, 2, 3) are gauge coupling constants, and λa and T a are the Gell-Mann
and Pauli matrices, respectively. The scalar potential Vsoft with soft SUSY breaking
terms is given as

Vsoft = m2
H1

H†
1H1 + m2

H2
H†

2H2 + m2
SS†S +

(
1
3
κAκS3 − λAλSH1 · H2 + h.c.

)
+ m2

Q̃
Q̃†Q̃ + m2

ũR
ũ∗

RũR + m2
d̃R

d̃∗Rd̃R + m2
L̃
L̃†L̃ + m2

ẽR
ẽ∗RẽR

+
(
AdYdH1 · Q̃d̃∗R + AuYuH2 · Q̃ũ∗

R + AeYeH1 · L̃ẽ∗R + h.c.
)
, (A.10)

where Aλ and Aκ are trilinear couplings for Higgs fields and Ai (i = u, d, e) are those
for squarks and sleptons. The soft SUSY breaking masses squared are denoted by
m2

i (i = H1, H2, Q̃, ũR, d̃R, L̃, ẽR).

Appendix B
Unrealistic Minima Involving Squarks and Sleptons

In this appendix, we derive constraints to avoid the unrealistic minima discussed
in §3.4. In the following, we respectively denote H1

1 and H2
2 as H1 and H2 for

simplicity.

B.1. MSSM UFB-2 direction with gauge singlet

We analyze the so-called MSSM UFB-2 direction with the gauge singlet:

S, H1, H2, L̃ �= 0, (B.1)

where L̃ is chosen along ν̃L. The scalar potential along this direction is

VUFB−2 = λ2|S|2(|H1|2 + |H2|2) + |FS |2 + m2
H1

|H1|2 + m2
H2

|H2|2 + m2
L̃
|ν̃L|2 + m2

S |S|2

− 2λAλH1H2S − 2
3
κAκS3 +

1
8
g2(|H2|2 − |H1|2 − |ν̃L|2)2, (B.2)

where FS is given by (17). By minimizing |ν̃L|, we have

|ν̃L|2 = −
(

4
m2

L̃

g2
− |H2|2 + |H1|2

)
, (B.3)
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where 4m2
L̃
/g2−|H2|2+ |H1|2 < 0 must be satisfied. Inserting this into the potential,

the potential is given by

VUFB−2 = −2
m4

L̃

g2
+ λ2|S|2(|H1|2 + |H2|2) + |FS |2

+ (m2
H1

− m2
L̃
)|H1|2 + (m2

H2
+ m2

L̃
)|H2|2 + m2

S |S|2

− 2λAλSH1H2 +
2
3
κAκS3. (B.4)

By choosing S so that FS is vanishing as (18) and by parameterizing the vev as
|H1| = γ|H2|, then the potential can be written in a form similar to (23),

VUFB−2 = F̂ |H2|4 − 2Â|H2|3 + m̂2|H2|2 − 2
m4

L̃

g2
, (B.5)

where

F̂ =
λ3

κ
γ(1 + γ2), (B.6a)

Â =
(∣∣∣∣Aλ − 1

3
Aκ

∣∣∣∣
)√

λ3

κ
γ3, (B.6b)

m̂2 = (m2
H1

− m2
L̃
)γ2 + (m2

H2
+ m2

L̃
) + m2

S

λ

κ
γ. (B.6c)

When the constant term in the potential is negligible, the extremal value of |H2| and
the depth of the minimum are obtained by simply replacing F̂ , Â and m̂2 in (21)
and (22) with (B.6). The typical magnitudes of the extremal value and the depth
of the minimum are similar to those in 3.1. To avoid the minimum, we obtain the
constraint(

Aλ − 1
3
Aκ

)2

≤ (1 + γ2) ×
[
m2

H1
− m2

L̃
+ m2

S

λ

κ

1
γ

+ (m2
H2

+ m2
L̃
)

1
γ2

]
. (B.7)

Minimizing the right-hand side with respect to γ, we find that the extremal value
of γ has to satisfy the relation

2(m2
H1

− m2
L̃
)γ4

ext + m2
S

λ

κ
γext(γ2

ext − 1) − 2(m2
H2

+ m2
L̃
) = 0. (B.8)

B.2. MSSM UFB-3 direction with gauge singlet

Here, we study the so-called MSSM UFB-3 direction with the gauge singlet S.
That is, the direction we analyze is

S, H2, L̃, Q̃, d̃R �= 0, d̃L = d̃R ≡ d̃, (B.9)

where Q̃ and L̃ are chosen along d̃L and ν̃L, respectively. The vevs of d̃L and d̃R are
chosen so that the F term of H1 vanishes. Using the parametrization,

|L̃| = γL|H2|, |S| = σ|H2|, (B.10)
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the condition for FH1 = 0 is expressed as

γ2
L = 1 +

λ

|Yd|σ. (B.11)

The scalar potential can be written in the same form as (23) with

F̂ (σ) = |κ|2σ4, (B.12a)

Â(σ) =
1
3
|Aκ||κ|σ3, (B.12b)

m̂2(σ) = m2
H2

+ m2
Sσ2 + m2

L̃
+ (m2

Q̃
+ m2

d̃R
+ m2

L̃
)

λ

|Yd|σ. (B.12c)

By repeating the same procedure, the extremal value is obtained as

|H2|ext =
|Aκ|
4σ|κ| ×

⎡
⎢⎣1+

√√√√
1−

8
{

m2
H2

+m2
L̃
+m2

Sσ2 + λσ
|Yd|(m

2
Q̃

+m2
d̃R

+m2
L̃
)
}

|Aκ|2σ2

⎤
⎥⎦ ,

(B.13)

and the minimum of the potential is estimated roughly as

Vmin ∼ − 1
384

|Aκ|4
|κ|2 . (B.14)

Thus, this minimum can be deeper than the realistic minimum if |κ| � 1. A neces-
sary condition for avoiding this minimum is given by

|Aκ|2 ≤ 9
[
(m2

Q̃
+ m2

d̃R
+ m2

L̃
)

λ

|Yd|
1
σ

+ (m2
H2

+ m2
L̃
)

1
σ2

+ m2
S

]
. (B.15)

The stringent constraint is obtained by minimizing the right-hand side of (B.15).
The extremal value of σ is

σext = −|Yd|
λ

2(m2
H2

+ m2
L̃
)

m2
Q̃

+ m2
d̃R

+ m2
L̃

, (B.16)

and it leads to the stringent constraint as

|Aκ|2 ≤ 9

[
(m2

Q̃
+ m2

d̃R
+ m2

L̃
)2

4(m2
H2

+ m2
L̃
)

λ2

|Yd|2 − 2(m2
H2

+ m2
L̃
) + m2

S

]
. (B.17)

B.3. MSSM CCB-1 direction with gauge singlet

The MSSM CCB-1 with the gauge singlet direction is the direction along

S, H2, Q̃, ũR, L̃ �= 0. (B.18)
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The D-term potential along this direction is given by

VD =
1
6
g2
3(|ũL|2 + |ũR|2)2 +

1
8
g2
2(|ũL|2 + |L̃|2 − |H2|2)

+
1
8
g2
1

(
1
3
|ũL|2 − 4

3
|ũR|2 − |L̃|2 + |H2|2

)2

. (B.19a)

The minimum becomes deeper when the D-term vanishes. By parameterizing the
vevs as

|ũL| = α|H2|, |ũR| = β|H2|,
|L̃| = γL|H2|, |S| = σ|H2|,

(B.20)

the D-term vanishes when

α2 + γ2
L − 1 = 0, α = β. (B.21)

Along this direction, the potential is given by (23) with

F̂ (α, σ) = σ2(|λ|2 + σ2|κ|2) + |Yu|2α2(α2 + 2), (B.22a)

Â(α, σ) = α2|Au||Yu| + 1
3
σ3|κ||Aκ|, (B.22b)

m̂2(α, σ) = m2
H2

+ α2(m2
Q̃

+ m2
ũR

) + σ2m2
S + (1 − α2)m̂2

L̃
. (B.22c)

The constraint for avoiding this minimum is obtained as(
α2|Au||Yu| + 1

3
σ3|κ||Aκ|

)2

≤ [σ2(|λ|2 + σ2|κ|2) + |Yu|2α2(α2 + 2)
]

×
[
m2

H2
+ α2(m2

Q̃
+ m2

ũR
) + σ2m2

S + (1 − α2)m̂2
L̃

]
.

(B.23)

This condition cannot be solved analytically and hence the extremal values of α and
γ should be determined numerically.

References

1) J. E. Kim and H. P. Nilles, Phys. Lett. B 138 (1984), 150.
2) P. Fayet, Nucl. Phys. B 90 (1975), 104.
3) P. Fayet, Phys. Lett. B 64 (1976), 159.
4) P. Fayet, Phys. Lett. B 69 (1977), 489.
5) P. Fayet, Phys. Lett. B 84 (1979), 416.
6) H. P. Nilles, M. Srednicki and D. Wyler, Phys. Lett. B 120 (1983), 346.
7) J. M. Frere, D. R. T. Jones and S. Raby, Nucl. Phys. B 222 (1983), 11.
8) J. P. Derendinger and C. A. Savoy, Nucl. Phys. B 237 (1984), 307.
9) J. R. Ellis, J. F. Gunion, H. E. Haber, L. Roszkowski and F. Zwirner, Phys. Rev. D 39

(1989), 844.
10) M. Drees, Int. J. Mod. Phys. A 4 (1989), 3635.
11) U. Ellwanger, C. Hugonie and A. M. Teixeira, Phys. Rep. 496 (2010), 1, arXiv:0910.1785.
12) ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration

and The LEP Working Group for Higgs Boson Searches, Phys. Lett. B 565 (2003), 61,
hep-ex/0306033.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/126/6/1051/2938824 by guest on 21 August 2022



Constraints from Unrealistic Vacua 1075

13) Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. 85 (1991), 1.
14) H. E. Haber and R. Hempfling, Phys. Rev. Lett. 66 (1991), 1815.
15) J. R. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B 262 (1991), 477.
16) R. Barbieri and G. F. Giudice, Nucl. Phys. B 306 (1988), 63.
17) P. H. Chankowski, J. R. Ellis and S. Pokorski, Phys. Lett. B 423 (1988), 327, hep-

ph/9712234.
18) P. H. Chankowski, J. R. Ellis, M. Olechowski and S. Pokorski, Nucl. Phys. B 544 (1999),

39, hep-ph/9808275.
19) G. L. Kane and S. F. King, Phys. Lett. B 451 (1999), 113, hep-ph/9810374.
20) M. Bastero-Gil, G. L. Kane and S. F. King, Phys. Lett. B 474 (2000), 103, hep-ph/9910506.
21) G. L. Kane, J. D. Lykken and B. D. Nelson and L.-T. Wang, Phys. Lett. B 551 (2003),

146, hep-ph/0207168.
22) K. Agashe and M. Graesser, Nucl. Phys. B 507 (1997), 3, hep-ph/9704206.
23) A. Brignole, J. A. Casas, J. R. Espinosa and I. Navarro, Nucl. Phys. B 666 (2003), 105,

hep-ph/0301121.
24) J. A. Casas, J. R. Espinosa and I. Hidalgo, J. High Energy Phys. 11 (2004), 057, hep-

ph/0410298.
25) R. Kitano and Y. Nomura, Phys. Lett. B 631 (2005), 58, hep-ph/0509039.
26) K. Choi, K. S. Jeong and T. Kobayashi and K.-i. Okumura, Phys. Lett. B 633 (2006),

355, hep-ph/0508029.
27) K. Choi, K. S. Jeong, T. Kobayashi and K.-i. Okumura, Phys. Rev. D 75 (2007), 095012,

hep-ph/0612258.
28) R. Dermisek and H. D. Kim, Phys. Rev. Lett. 96 (2006), 211803, hep-ph/0601036.
29) H. Abe, T. Kobayashi and Y. Omura, Phys. Rev. D 76 (2007), 015002, hep-ph/0703044.
30) D. Horton and G. G. Ross, Nucl. Phys. B 830 (2010), 221, arXiv:0908.0857.
31) T. Kobayashi, Y. Nakai and R. Takahashi, J. High Energy Phys. 09 (2010), 093,

arXiv:1006.4042.
32) J. R. Ellis et al., Phys. Lett. B 176 (1986), 403.
33) G. B. Gelmini, M. Gleiser and E. W. Kolb, Phys. Rev. D 39 (1989), 1558.
34) S. A. Abel, Nucl. Phys. B 480 (1996), 55, hep-ph/9609323.
35) C. F. Kolda, S. Pokorski and N. Polonsky, Phys. Rev. Lett. 80 (1998), 5263, hep-

ph/9803310.
36) C. Panagiotakopoulos and K. Tamvakis, Phys. Lett. B 446 (1999), 224, hep-ph/9809475.
37) D. G. Cerdeno, C. Hugonie, D. E. Lopez-Fogliani, C. Munoz and A. M. Teixeira, J. High

Energy Phys. 12 (2004), 048, hep-ph/0408102.
38) K. Funakubo and S. Tao, Prog. Theor. Phys. 113 (2005), 821, hep-ph/0409294.
39) D. G. Cerdeno, E. Gabrielli, D. E. Lopez-Fogliani, C. Munoz and A. M. Teixeira, J. Cosmol.

Astropart. Phys. 06 (2007), 008, hep-ph/0701271.
40) L. Alvarez-Gaume, J. Polchinski and M. B. Wise, Nucl. Phys. B 221 (1983), 495.
41) C. Kounnas, A. B. Lahanas, D. V. Nanopoulos and M. Quiros, Nucl. Phys. B 236 (1984),

438.
42) M. Claudson, L. J. Hall and I. Hinchliffe, Nucl. Phys. B 228 (1983), 501.
43) M. Drees, M. Gluck and K. Grassie, Phys. Lett. B 157 (1985), 164.
44) J. F. Gunion, H. E. Haber and M. Sher, Nucl. Phys. B 306 (1988), 1.
45) H. Komatsu, Phys. Lett. B 215 (1988), 323.
46) G. Gamberini, G. Ridolfi and F. Zwirner, Nucl. Phys. B 331 (1990), 331.
47) J. A. Casas, A. Lleyda and C. Munoz, Nucl. Phys. B 471 (1996), 3, hep-ph/9507294.
48) T. Kobayashi and T. Shimomura, Phys. Rev. D 82 (2010), 035008, arXiv:1006.0062.
49) Y. Kanehata, T. Kobayashi, Y. Konishi and T. Shimomura, Phys. Rev. D 82 (2010),

075018, arXiv:1008.0593.
50) J. A. Casas and S. Dimopoulos, Phys. Lett. B 387 (1996), 107, hep-ph/9606237.
51) J.-h. Park, Phys. Rev. D 83 (2011), 055015, arXiv:1011.4939.
52) J. Hisano and S. Sugiyama, Phys. Lett. B 696 (2011), 92, arXiv:1011.0260.
53) J. C. Romao, Phys. Lett. B 173 (1986), 309.
54) U. Ellwanger, M. Rausch de Traubenberg and C. A. Savoy, Nucl. Phys. B 492 (1997), 21,

hep-ph/9611251.
55) N. K. Falck, Z. Phys. C 30 (1986), 247.
56) D. J. Miller, R. Nevzorov and P. M. Zerwas, Nucl. Phys. B 681 (2004), 3, hep-ph/0304049.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/126/6/1051/2938824 by guest on 21 August 2022



1076 Y. Kanehata, T. Kobayashi, Y. Konishi, O. Seto and T. Shimomura

57) D. G. Cerdeno, C. Munoz and O. Seto, Phys. Rev. D 79 (2009), 023510, arXiv:0807.3029.
58) D. G. Cerdeno and O. Seto, J. Cosmol. Astropart. Phys. 08 (2009), 032, arXiv:0903.4677.
59) S. R. Coleman, Phys. Rev. D 15 (1977), 2929 [Errata; 16 (1977), 1248].
60) C. G. Callan Jr. and S. R. Coleman, Phys. Rev. D 16 (1977), 1762.
61) S. R. Coleman and F. De Luccia, Phys. Rev. D 21 (1980), 3305.
62) K.-M. Lee and E. J. Weinberg, Nucl. Phys. B 267 (1986), 181.
63) M. J. Duncan and L. G. Jensen, Phys. Lett. B 291 (1992), 109.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/126/6/1051/2938824 by guest on 21 August 2022


