
Constraints in Interactive Graphical Applications

Greg J. Badros
<gjb@cs.washington.edu>

Ph.D. General Examination
Department of Computer Science and Engineering

University of Washington, Box 352350
Seattle, WA 98195-2350

3 December 1998

Abstract

Constraints provide a declarative means for specifying relationships that we wish to hold
true. Interactive graphical applications give rise to varying kinds of constraints, and re-
searchers have developed diverse constraint solving techniques. I survey the classes of con-
straints used by numerous drawing, graph layout, visualization and animation systems. I
describe a taxonomy of the constraint solving methods used to satisfy these systems and
compare solver expressiveness and performance. Though backtracking algorithms have not
yet been used successfully in interactive graphical applications, I summarize work on vari-
ous backtracking algorithms and suggest ways to begin to improve their performance so they
might be used in the user interface domain.

1 Introduction

From the inception of graphical user interfaces, systems have tried to use constraints to maintain
relationships among on-screen entities [Sut63]. Constraints permit the designers or users of a
system to express what they wish to hold true, rather than detail how to maintain the desired
invariants procedurally. The fundamental strength of using constraints is this declarative specifi-
cation of desired relationships. Constraints are especially natural for managing geometric systems
including drawing, graph layout, visualization and animation.

Since any constraint system is limited by the expressibility and performance of its underlying
constraint solver, increasing the power of solvers is a popular research area. There is substantial
tension between the expressiveness of the constraints a solver can manage and its efficiency in
finding a solution. Because of this fragile balance, system implementors typically hand-tune the
tradeoff for each specific application involving constraints.

Numerous interactive graphical systems, including drawing, graph layout, visualization and
animation systems, embed a constraint solver to manage the geometric layout of on-screen objects.
These interactive and geometrically-based systems used in user interfaces make stringent demands
of the constraint solving technology—the solver must be powerful enough to handle geometric
constraints, fast enough for real-time interaction, and predictable enough to not confuse the user.

Section 2 of this paper discusses the classes of constraints occurring in various interactive
graphical applications. I then explain and categorize the supporting constraint-solving technologies

1



Constraints across applications Greg J. Badros

with respect to the kinds of constraints they support. Section 3 details this taxonomy, and
compares the expressiveness and performance of the solvers.

One class of constraints that no interactive graphical application yet attempts to solve is dis-
junctions. Batch constraint solvers (e.g., Prolog, CLP(<) [JMSY92]) employ back-tracking as a
means of exploring the space of alternatives. Section 4 summarizes the findings of an important
paper analyzing backtracking algorithms. Section 5 discusses re-targeting these algorithms’ for an
interactive constraint solver that permits disjunctions. Finally, Section 6 concludes by summariz-
ing important problems that future work must address.

2 Constraints across applications

Interactive graphical applications use constraints primarily to express desires in geometric layout.
All of these systems are similar in that they expose constraints to the end user. However, the
representations of constraints and to what they are attached vary substantially. Representation
can influence the expressiveness and efficiency of a constraint solver by altering what kinds of
relationships can be specified within the limitations of the solver.

For example, if line segments are represented using a starting point, direction, and length, a
constraint that two lines are the same length or parallel is easy to express using a simple linear
equality. Those same relationships will require non-linear equations if line segments are stored
as coordinates of the start and end of the segment. Since solving general non-linear constraints
is computationally difficult, systems often rely on domain-specific methods to handle the non-
linearities they deem most important.

I now examine constraints in applications for drawing, graph layout, visualization and an-
imation systems. For each application, I highlight the unique and interesting features of the
system while listing the class of constraints it handles. For an overview of the kinds of constraints
supported by each system, the solving technique employed, and the performance of the solver,
see Table 1. Most notably, this section will show that applications tend to pollute their use of
constraints based on limitations of the underlying solver. Comparing constraint expressiveness is
more meaningful relative to the satisfaction algorithms, rather than the application domains. That
discussion and details of each system’s particular solving algorithms are deferred until Section 3.

2.1 Drawing

Interactive drawing applications employing direct-manipulation [Sch83] techniques have been very
successful. For professional-looking diagrams and illustrations, however, they sometimes fall short
due to the lack of precision in the diagram. Most conventional drawing systems permit alignment
of objects, but such relationships are only enforced once—at the time the command is issued. If an
aligned object is later moved, the other objects do not follow. Constraint-based drawing systems
permit the persistence and maintenance of desired relationships to ease editing burden and ensure
precision in the diagram. To date, drawing programs are the most common interactive graphical
applications to use constraints.

Sutherland’s Sketchpad, the earliest interactive constraint-based system, permits constraints
to be explicitly specified about the objects in the figure. For example, a pair of lines can be made
equal in length, or an angle can be marked as a right angle [Sut63, App. A]. Additionally, the user
implicitly adds constraints through the use of the “pseudo-pen location” which locks the input
pointer position onto topologically-important locations in the diagram. A similar input technique
called “snap-dragging,” developed years later by Bier, uses the snapped-to positions only for their

2



Constraints across applications Greg J. Badros

S
y
st

e
m

A
u
th

o
r

(Y
e
a
r)

C
o
n
st

ra
in

ts
su

p
p

o
rt

e
d

S
o
lv

in
g

te
ch

n
iq

u
e

P
e
rf

o
rm

a
n
c
e

S
k
et

ch
p

a
d

S
u

th
er

la
n

d
(1

9
6
3
)

g
eo

m
et

ri
c

L
P

,
re

la
x
a
ti

o
n

O
(n

),
O

(n
2
)

ID
E

A
L

V
a
n

W
y
k

(1
9
8
2
)

g
eo

m
et

ri
c

in
co

m
p

le
x

p
la

n
e

L
P

w
/
o

p
la

n
n

in
g

O
(n

2
)

J
u

n
o

N
el

so
n

(1
9
8
5
)

C
O

N
G

,
P

A
R

A
,

H
O

R
,

V
E

R
it

er
a
ti

v
e

n
u

m
er

ic
O

(n
3
)

J
u

n
o
-2

H
ey

d
o
n

a
n

d
N

el
so

n
(1

9
9
4
)

C
O

N
G

,
P

A
R

A
,

H
O

R
,

V
E

R
o
p

ti
m

iz
ed

it
er

.
n
u

m
.

O
(n

3
)

B
ri

a
r

G
le

ic
h

er
a
n

d
W

it
k
in

(1
9
9
4
)

p
o
in

ts
-o

n
-o

b
je

ct
,c

o
in

ci
d

en
t

d
iff

er
en

ti
a
l

m
et

h
o
d

s
O

(n
3
)

U
n

id
ra

w
H

el
m

et
a
l.

(1
9
9
5
)

li
n

ea
r

(i
n

)e
q
u

a
li
ti

es
d

ir
ec

t
n
u

m
er

ic
(Q

O
C

A
)

O
(n

3
),
O

(n
2
)

G
C

E
K

ra
m

er
(1

9
9
2
)

g
eo

m
et

ri
c

D
O

F
a
n

a
ly

si
s

O
(n
g
),
O

(n
lo

g
n

)

C
h

im
er

a
K

u
rl

a
n

d
er

(1
9
9
1
)

g
eo

m
et

ri
c

sy
m

b
o
li
c,

n
u

m
er

ic
O

(n
2
)

Drawing

P
eg

a
su

s
Ig

a
ra

sh
i

et
a
l.

(1
9
9
7
)

g
eo

m
et

ri
c

C
L

P
(R

)-
li
k
e

O
(2
n

)

g
l
i
d
e

R
y
a
ll

et
a
l.

(1
9
9
7
)

V
O

F
s

sp
ri

n
g

si
m

u
la

ti
o
n

p
o
ly

n
o
m

ia
l

Graph

C
G

L
H

e
et

a
l.

(1
9
9
6
)

li
n

ea
r

(i
n

)e
q
u

a
li
ti

es
it

er
.

n
u

m
er

ic
>

1
se

c
(t

re
e
n

=
1
6
)

T
R

IP
N

,
IM

A
G

E
T

a
ka

h
a
sh

i
et

a
l.

(1
9
9
8
)

li
n

ea
r

g
eo

m
et

ri
c

g
ra

p
h

-l
ay

o
u

t,
d

ir
ec

t
&

it
er

a
ti

v
e

“
n

ee
d

s
to

b
e

fa
st

er
”

IC
O

L
A

O
st

er
&

K
u

sa
li
k

(1
9
9
8
)

li
n

ea
r

in
eq

u
a
li
ti

es
ex

tr
em

e-
b

o
u

n
d

p
ro

p
a
g
a
ti

o
n

O
(n

+
v
)

Visualization

P
en

g
u

in
s

C
h

o
k

&
M

a
rr

io
tt

(1
9
9
8
)

li
n

ea
r

(i
n

)e
q
u

a
li
ti

es
d

ir
ec

t
n
u

m
er

ic
(Q

O
C

A
)

in
te

ra
ct

iv
e

(n
≤

7
0
0
)

T
L

C
C

G
le

ic
h

er
&

W
it

k
in

(1
9
9
2
)

g
eo

m
et

ri
c

(o
n

ca
m

er
a

im
a
g
e)

d
iff

er
en

ti
a
l

m
et

h
o
d

s
O

(n
3
),

n
o
n

-i
n
te

ra
ct

iv
e

A
n

im
u

s
D

u
is

b
er

g
(1

9
8
7
)

a
rb

it
ra

ry
a
cy

cl
ic

L
P

,
re

la
x
a
ti

o
n

O
(n

),
O

(n
2
)

Animation

J
IM

,
P

a
rc

o
n

G
ri

eb
el

et
a
l.

(1
9
9
6
)

li
n

ea
r

(i
n

)e
q
u

a
li
ti

es
,

g
eo

m
et

ri
c

it
er

a
ti

v
e

n
u

m
er

ic
<

1
se

c
(n
≤

1
0
0
)

Table 1: Overview of constraints and solvers in interactive graphical applications.

3



Constraints across applications Greg J. Badros

absolute location [BS86]. Sketchpad, in contrast, stores and maintains the constraint relationships
as objects are rearranged.

Sketchpad was ahead of its time; IDEAL, the next constraint-based system specifically target-
ing drawing, appeared almost twenty years later [VW82]. Unlike Sketchpad, IDEAL is strictly a
textual language for specifying pictures—it is not an interactive system. IDEAL permits specify-
ing arbitrary non-simultaneous constraints on points in the complex plane. The drawing is then
created procedurally from a configuration of the points that satisfies the constraints.

Like Sketchpad, Juno and Juno-2 [Nel85, HN94] are interactive systems. Juno permits spec-
ifying constraints on points and line segments. There are only four predicates: HOR and VER
express the horizontal and vertical relationship between pairs of points, while CONG and PARA are
congruence and parallel relationships (both non-linear) between pairs of line segments. Juno’s
constraint relationships are specified at a higher level of abstraction than Sketchpad or IDEAL,
though internally they are maintained as numerical mathematical relationships. Juno provides
double-view editing, where both the graphical picture and the (partially declarative) program
that constructed it are viewed simultaneously. Interactive direct-manipulation of the picture is
reflected immediately as implicit edits of the program’s text.

Briar [GW94] is an interactive drawing editor that permits expressing exactly two geometric
constraints: points-on-object and points-coincident. Though this set of relations is limited, Briar
re-gains expressive power by allowing “alignment objects.” Such objects exist only as constraint-
assistance artifacts and are not part of the final drawing (e.g., alignment objects are not output
when the figure is printed). For example, the constraint that point p is distance k away from point
q can be expressed by placing an alignment circle centered at point q, and constraining point p to
be on that circle. Constraints among both regular and alignment objects are specified implicitly
through an extension of Bier’s snap-dragging suitably named “augmented snap-dragging” [Gle92].
Adding a constraint on a new object corresponds directly to creating that new object while the
pointer is snapped onto a pre-existing object or point. Unlike other systems, in Briar there is
never a need to manage constraints explicitly. Removing a constraint is performed by breaking
constraints through “ripping apart” objects—the user specifies only the desired effects and the
system chooses which constraints must be eliminated.

Unidraw [HHMV95] is an extension of an earlier direct-manipulation drawing program. It
permits arbitrary simultaneous linear equalities and inequalities among attributes of its various
predefined objects. This class of constraints is shared by the CDA [Not98] drawing application,
and Penguins [CM98], a drawing-editor construction framework (analogous to YACC for gener-
ating language parsers).1 Unidraw is the only drawing editor without any support for non-linear
constraints. Also, Unidraw is unique among constraint-based drawing editors in its support for
undo and redo operations. Though typically challenging to implement, these features are permit-
ted by Unidraw’s ability to easily enable and disable constraints and to save and restore the state
of the entire constraint system.

Kramer’s Geometric Constraint Engine [Kra92] (GCE is an extension of his earlier The Linkage
Assistant, or TLA) is not specifically a drawing editor, but solves the same class of geometric layout
problems. GCE permits five classes of binary constraints between geometric objects, or geoms :
distance between a point and a point, line, or plane; distance between line and a circle; and angle
between a pair of vectors. These constraints are tied to the geometric degrees-of-freedom analysis
performed in Kramer’s underlying solver (see Section 3.5).

Chimera [KF91] not only supports drawing constrained figures, but also provides a constraint
inference engine. Kurlander’s system permits the constraints shown in Table 2. Like GCE, the

1See Section 2.3 for more discussion of Penguins.

4



Constraints across applications Greg J. Badros

constraints supported by Chimera are directly related to a solving technique characterized by rea-
soning about transformational groups. Chimera’s inference engine works by comparing multiple
snapshots and constraining the things that are invariant (within a tolerance) across the snapshots.
Instead of explicitly stating what relationships one wants to hold, the user must vary all of the
degrees of freedom that are meant not to be constrained. The invariant-detection tolerance mecha-
nism employed by Chimera for detecting invariants is similar to Pavlidis’s automatic beautification
in PED [PVW85]. PED, however, only infers the constraints and makes the diagram more precise,
whereas Chimera dynamically and interactively maintains the constraints.

Absolute Constraints Relative Constraints

Fixed vertex location Coincident vertices

Distance between two vertices Relative distance between pairs of vertices

Distance between parallel lines Relative distance between pairs of parallel lines

Slope between two vertices Relative slope between two pairs of vertices

Angle between three vertices Equal angles between two pairs of three vertices

Table 2: Constraints permitted by Kurlander’s Chimera [KF91, p. 14]

Pegasus (Perceptually Enhanced Geometric Assistance Satisfies US) [IMKT97] is a rapid
sketching tool that also interactively infers constraints. Pegasus recognizes seven kinds of con-
straints: connection, parallelism, perpendicularity, alignment, congruence, symmetry, and interval
equality. Unlike Chimera, the constraints Pegasus infers are not maintained (i.e., they are one-shot
corrections, more akin to snap-dragging).

2.2 Graph layout

Graph layout is a particularly challenging application for use of constraints. The aesthetic criteria
by which a graph layout is judged is difficult to express using simple relationships. In general,
graph layout requires minimization of a non-quadratic objective for visually-pleasing results. Op-
timization criteria often includes eliminating node overlaps, minimizing edge crossings, and maxi-
mizing symmetries. Classical graph layout algorithms are expensive, batch-oriented computations
[DBETT94, DBETT99].

Wieqing He and Kim Marriott describe a non-interactive system for constrained graph layout
where the constraints are used to further specify requirements above and beyond a classical batch
layout algorithm’s aesthetic criteria [HM96, MCF98]. They use three different layout modules and
augment them with a constraint solver to enforce the user-specified simultaneous linear equality
and inequality constraints.

glide [RMS97] is an interactive system for graph layout which uses constraints in the form
of Visual Organization Features (VOFs). The VOFs it handles (inherited from earlier work by
Marks) include alignment, even spacing, sequence, cluster, T-shape, zone, symmetry, and hub-
shape [DFM93, KMS94]. Phantom nodes (similar to Gleicher’s alignment objects) are used as
alignment guides. All of these constraints specify local relationships among small groups of nodes.

Other interactive graph layout systems do not include any general constraints but simply pro-
vide an interactive means of viewing and manipulating constraints laid out through conventional
algorithms [HH91, Hen92].

5



Constraints across applications Greg J. Badros

2.3 Visualization

Visualization systems provide pictures for abstract data. These visual representations permit
viewers to exploit their perceptual skills in exploring data. Graph layout (see Section 2.2) is one
well-studied domain of visualization. Interactive visualization systems can use constraints to aid
in producing semantically meaningful pictures.

TRIP (TRanslate Into Pictures) [KK91] and its successors TRIP2, TRIP2a, TRIP3D, TRIP3,
and IMAGE [TMM+98] are all frameworks for visualizing abstract data. The TRIP systems
provide mapping rules to translate between an Abstract Structure Representation (ASR)2 and
a Visual Structure Representation (VSR). The VSR level includes graphical objects along with
geometric constraints. Some constraints span multiple objects: horizontal/vertical, spacing, and
averaging; another constraint specifies the position of objects (the at constraint). Finally, there
are graph-layout constraints for adjacency and for drawing edges to connect two nodes in the VSR.
From the VSR, a picture representation (PR) is generated by solving the constraints (using the
COnstraint-based Object Layout system, or COOL). Constrained editing of the resulting picture
is not be permitted. The TRIP systems’ constraints are very similar to those provided by the
glide graph layout system (see Section 2.2).

The Wand visualization system embeds ICOLA (Incremental Constraint-based Object Layout
Algorithm) [OK98]. Wand’s architecture is similar to TRIP, though it specifically targets visual-
ization of logic program execution. ICOLA provides only linear inequality constraints—there is no
way to enforce that two object attributes are equal. This inability to maintain equality constraints
is unique among the systems surveyed. ICOLA’s constraint language allows higher-level, “aliased,”
constraints which map into one or more of four basic constraints: left of, horizontal distance,
above, and vertical distance. The fifth basic constraint, connected, draws an arc or edge be-
tween two objects (as did the similar procedural “connects” constraint in TRIP). The DOODLE
(Draw an Object-Oriented Database LanguagE) [Cru95] system provides similar functionality and
constraints but provides a visual rather than textual specification language.

Penguins [CM98] is an intelligent diagram editor construction toolkit. It is to drawing editors
what YACC is to parsers. The Penguins system uses constraints in two separate ways. First, it uses
them for visual parsing, using the theory of constraint multi-set grammars (CMGs) [Mar94, CM95].
After building an internal abstract representation of a picture, editors created using Penguins
then permit direct manipulation of the picture while interactively maintaining the constraints.
Penguins-generated drawing editors permit arbitrary linear equality and inequality constraints.

2.4 Animation

Animation, like graph layout, is an especially challenging domain for the application of con-
straints. Much of the work on using constraints with animation systems is for non-interactive
solvers. Constraint-based motion adaptation [GL96], space-time constraints [WK88], and motion
interpolation methods [Bro88] all address solving huge multi-frame animation systems over time
to provide meaningful character or object movement subject to certain desires. These are batch
systems whose computation expense is justified in light of the resources required for subsequently
rendering the frames of the animation.

Numerous visualization systems, including TRIP (see Section 2.3), and widget toolkits (see
Section 2.5) provide animations meant to provide user-feedback for global changes made to the
visual state of the system. TRIP provides “transition mapping rules” which are abstractions of
procedures for interpolating between visual representations of two states. Artkit [HS93] provides a

2The ASR, in turn, is derived from an Application Representation (AR).

6



Constraints across applications Greg J. Badros

similar “transition” abstraction for animations to be used when an object’s state changes. Amulet
[MMMF96] exploits the constraint solving framework’s monitors guarding assignments to slots
(i.e., the ability to execute code on every assignment) to provide a similar interpolated animation
when a slot’s value is set.

Animus [Dui88, BD86] uses the ThingLab system [Bor79] and provides animations for its
simulations using constraints on time. In Animus, time is treated as a distinguished global vari-
able. Animus provides two time-related constraints: 1) time function constraints which act as
a declarative specification of events and responses to those events (similar to the Amulet moni-
tors mechanism, above); and 2) ordinary differential equations for describing continuous motion
(similar to Briar’s use of differential methods [GW94], see Section 3.5).

Griebel et al. undertook a similar use of constraints for animation within the Pictorial Janus
(PJ) visual programming language [GLM+96]. Other constraints they provide include linear
equalities and inequalities, product equalities and inequalities, point coincidence, and distance
constraints. They also provide a c-disjoint (circular-disjoint) relationship to prevent objects
from overlapping.

2.5 Other interactive graphical application domains

Other application domains have used geometric constraints with some success. Window layout sys-
tems employing constraints include the Constraint Window System (CWS) [EL88] for Smalltalk,
a constraint-based tiled window manager called RTL/CRTL (Research and Technology Laborato-
ries Constrained Rectangular Tiled Layout) [CSI86] for the Sapphire Window System, and Scwm

(Scheme Constraints Window Manager) [BS98] for the X11 window system. These systems permit
specification of constraints over the windows regarding their presence, size and location, adjacency
and alignment, and hierarchical organization. All systems restrict their constraints to rectangular
windows, but face stiff challenges due to the highly dynamic nature of windowing environments
where new objects come and go frequently.3

A similar application is web page layout. A prototype Java-based web browser permits page
layout and applet layout to be specified using linear equalities and inequalities [BLM97, MCF98].
For page layout, only rectangular bounding boxes are considered.4 The browser interactively
lays out the page again and again as the enclosing window size changes, preserving the desired
constraints.

User interface widget toolkits are second only to drawing editors in their aggressiveness us-
ing constraints. Numerous widget toolkits including Amulet [MM95, MMM+97], its predecessor
Garnet [MGD+90a], and OPUS of the Penguims5 user-interface management system [HM90] all
provide one-way constraint solvers for relating the components in a widget hierarchy. Bramble
[Gle93] is the toolkit with which the Briar (see Section 2.1) drawing editor is implemented.

Other constraint-based interactive systems have been used for graphical search and replace
[KF92], curve manipulation independent of representation [FB93], and colour management for
windowing interfaces [Mac91].

3Vander Zanden et al. discuss ways to cope with the dynamic relationships maintained by windowing systems
such as Scwm that may be worth integrating into its solvers [VZMGS]. That work is a generalization of Borning’s
“paths” [Bor79, p. 39–41].

4Some work has been done to extend the Cascading Style Sheets level 2 (CSS2) specification of box layout to
use constraints [Mic98].

5Not to be confused with Chok and Marriot’s Penguins intelligent diagram editor toolkit.

7



Interactive satisfaction algorithms Greg J. Badros

2.6 Summary of application domains

As Table 1 shows, constraints used by different systems within an application domain are generally
not especially closely related. The similarities that do exist result more from the underlying solver
than from the needs of a particular class of applications (see the following section). Another
dimension along which the applications varied is the level of abstraction that the constraints are
managed at.

Systems including Briar [GW94], GCE [Kra92], Chimera [KF91], Pegasus [IMKT97], and
glide [RMS97] express constraints on complete objects in the system. These constrain, e.g.,
angles between vectors, Euclidean distances between points and lines, coincidence of a point and
an object, or symmetries. Such constraints are the highest level of abstraction provided by any of
the systems considered.

Several drawing systems, such as IDEAL [VW82], Juno and Juno-2 [Nel85, HN94], permit
specifying constraints on points, and then parameterize drawings based on the locations of those
points. After the constraint satisfaction algorithm solves for absolute point locations, procedural
(i.e., not declarative) code fragments connect lines, draw circles, and otherwise flesh out the draw-
ing. These systems provide greater flexibility in final appearance, but expose a mixed declarative
and procedural interface to the end user. (A similar mix of paradigms is used by Animus [Dui88],
which is built on ThingLab [Bor79].)

A third general approach, used by Unidraw [HHMV95], CDA [Not98] and Penguins [CM98,
MCF98], involves expressing numerical constraints on attributes (also called reference points,
selectors, aspects, and landmarks) of objects which have an implicit visual representation. The
modification of a constrained attribute’s value (e.g., a rectangle’s northwest corner, or a circle’s
center) is reflected by updating the position of the corresponding on-screen object. “Internal”
constraints often implicitly relate attributes to each other, e.g., relating two corners of a box:
box.ne.x = box.nw.x + box.width.

The level of abstraction for specifying constraint relationship is significant because it can
decouple the application from the solver. Higher levels of abstractions may rely less on solver
dependencies, and permit substituting out a more efficient or powerful solver without influencing
the rest of the system. Limiting the constraints to simple linear numerical constraints may provide
a similar benefit, despite being at the opposite end of the abstraction level spectrum.

3 Interactive satisfaction algorithms

The preceding section demonstrates that the constraint types provided by specific genres of ap-
plications are not especially consistent. Different drawing programs, though attacking the same
problem, have different formulations of the relationships they provide: Gleicher’s Briar [GW94],
Kurlander’s Chimera [KF92], Nelson’s Juno [Nel85], and Unidraw [HHMV95] all provide differ-
ent constraint mechanisms. Conversely, Unidraw, Penguins [CM98], and Scwm [BS98] all expose
the same constraint-solving interface, yet they belong to different application domains. The con-
straints that a specific application permits the user to specify are dependent not on the kind of
application but on the underlying solving technology.

Juno provides an excellent example of the correlation between constraints permitted and the
underlying solving technology. Juno’s author, Greg Nelson, explains that he had attempted to
provide a fifth predicate, CC (counter-clockwise), to disambiguate under-constrained systems. How-
ever, because the counter-clockwise relationship translates into an inequality constraint which the
Newton-Rhapson solver Juno uses could not easily handle, he discarded that approach and instead
chose to exploit a “feature” of Juno’s underlying iterative numerical solver: the solution’s depen-

8



Interactive satisfaction algorithms Greg J. Badros

dence on the initial guess. Thus, Nelson added the ability to provide hints to the solver (which in
turn led to the need for REL construct) [Nel85, p. 238–239].

Though ideally we would like to consider what constraint relationships our application needs
and provide exactly those capabilities, it is clear that satisfaction algorithms influence the sys-
tem’s design. This section discusses the various satisfaction algorithms developed for interactive
geometric applications, and relates them to one another while pointing out their strengths and
weaknesses. Figure 1 graphically depicts the relationships among the over twenty different con-
straint satisfaction algorithms considered here.

3.1 Common issues

The issues constraint solvers must address and some of the approaches for remaining efficient are
similar. All constraint systems must deal with under-constrained systems. An under-constrained
system has remaining degrees of freedom remain so multiple possible solutions exist. Constraint
hierarchies [BMMW89, FBWB92] provide a popular and well-studied means of removing ambiguity
by over-constraining the system with constraints at decreasing levels of preference. Then a simple
greedy algorithm permits using just enough constraints to maintain a fully-specified system and
a unique solution. An alternative technique for choosing a solution from many possibilities is to
use an objective optimization function to rank assignments, and choose the solution with the best
score.

A related concern for solvers is to maintain spatial stability of the system. When a geometric
system is under-constrained, successive solutions are more useful if they are sufficiently similar
to prior configurations. A satisfaction technique that alternates between two (visually) distantly
related solutions will be confusing to the end user. Supporting the “principle of least astonishment”
[GLM+96] is a ubiquitous goal for constraint satisfaction algorithms. “Stay” constraints are used
in solvers supporting constraint hierarchies to express the desire for things to remain where they
are unless some stronger constraint forces them to move. Numeric solvers often disambiguate
under-constrained systems and provide spatial stability by minimizing change from the previous
solution.

Another commonality among the solver implementations is that they exploit sharing of data
structures to provide the equality or coincidence-of-points constraint. Many systems manage their
data structures to alias related variables when such a constraint is added and to “explode” the
variables back into their unrelated instances when such a constraint is removed. This technique is
largely independent of the satisfaction algorithm itself and often provides a substantial performance
improvement by reducing the size of the system (equality constraints are especially common).

The variable aliasing optimization is generally beneficial because it performs work outside of the
constraint system. Other techniques external to the solver are used to increase expressiveness. For
example, the connects relationship (remember, this states that two objects in a diagram should
be connected by a line) for graph drawing and visualization systems is often not maintained by
adding constraints to compute appropriate positions for the edge endpoints. Instead procedural
code simply draws the requested edge, performing its own computations as necessary. At first
glance, this technique seems to defeat the beneficial declarative nature of constraints. However,
since the constraint solver is still responsible for ensuring that the relationship holds, it does
not matter to the end user whether the main constraint system is the engine that satisfies the
relationship. These special relationships, by necessity, must be disconnected from the rest of
the constraint graph, and the technique can be seen as simply a very restricted domain-specific
sub-solver, similar to the sub-solvers used by Ultraviolet [BFB98] or detail [HMT+94].6

6In contrast, the Juno systems [Nel85, HN94] take this approach to an extreme and permit the user to specify

9



Interactive satisfaction algorithms Greg J. Badros

G
re

en
fin

ite
 d

om
ai

n

Q
ui

ck
P

la
n

pr
op

ag
at

e 
fr

ee
do

m

D
el

ta
S

ta
r

ge
ne

ra
liz

ed
 C

H
ov

er
 fl

at
 s

ol
ve

rs S
ky

B
lu

e
m

ul
ti-

ou
tp

ut
, c

yc
le

s
(g

en
er

al
iz

e 
w

al
k-

st
re

ng
th

 to
 w

al
k 

bo
un

ds
)

U
ltr

aV
io

le
t

hy
br

id
 fr

am
ew

or
k

w
ith

 s
ub

so
lv

er
s

C
as

so
w

ar
y

in
cr

em
en

ta
l s

im
pl

ex

Q
O

C
A

m
et

ric
-s

pa
ce

op
tim

iz
at

io
ns

C
LP

(D
)

ba
ck

tr
ac

ki
ng

N
ew

to
n-

R
ha

ps
on

G
LI

D
E

sp
rin

g 
m

od
el

D
iff

er
en

tia
l

M
et

ho
ds

R
el

ax
at

io
n

G
ra

ph
 L

ay
ou

t

P
ur

pl
e

eq
ua

lit
y 

cy
cl

es
D

ee
pP

ur
pl

e
in

eq
ua

lit
y 

cy
cl

es

A
rb

itr
ar

y
do

m
ai

n
N

um
er

ic
on

ly
Ite

ra
tiv

e
P

hy
si

ca
lly

-
ba

se
d

G
eo

m
et

ric
LP

 o
f D

O
F

O
pt

im
iz

at
io

n

D
E

T
A

IL
su

bs
ol

ve
rs

fo
r 

cy
cl

es

O
ra

ng
e

si
m

pl
ex

-b
as

ed

O
ne

-w
ay

 L
P

ea
ge

r 
or

 la
zy

si
m

pl
e 

cy
cl

ic
 o

r 
ac

yc
lic

D
el

ta
B

lu
e

w
al

k 
st

re
ng

th
 to

pr
op

ag
at

e 
co

nf
lic

t

M
ul

ti-
w

ay
 L

P
 (

B
lu

e)
pr

op
ag

at
e 

fr
ee

do
m

 [S
ke

tc
hP

ad
]

or
 a

ls
o 

kn
ow

n 
st

at
e 

[T
hi

ng
La

b]

In
di

go
pr

op
ag

at
e 

bo
un

ds
fo

r 
ac

yc
lic

 in
eq

ua
lit

ie
s

Figure 1: Taxonomy of interactive constraint solvers. General classes of algorithms are demarcated
by dotted lines, containment of sub-solvers by light solid lines, arrows indicate evolving relationships,
and proximity roughly correlates with relatedness. Especially closely-related but independently designed
systems are connected by bi-directional dotted arrows.

10



Interactive satisfaction algorithms Greg J. Badros

Interactive constraint solvers are often split into a planning, or compilation, stage and an exe-
cution stage. During planning, the solver pre-computes all state that will remain fixed throughout
a class of executions. These restrictions permit the system to be more efficient during the corre-
sponding solver iterations.7 The basic idea is similar to loop-invariant code motion and dynamic
compilation techniques. Some time is spent in advance, when it is less precious, to increase the
performance during the tight interaction and animation loop.

The remainder of this section discusses the several constraint satisfaction algorithms and con-
siders their performance and expressiveness.

3.2 Local-propagation based solvers

Local propagation (LP) is one of the earliest-developed constraint solving techniques and is concep-
tually very simple. Sutherland’s initial formulation of local propagation, the “one-pass method,”
[Sut63, p. 58–59] is a highly efficient algorithm used whenever possible before falling back to his
more general (but slower) relaxation algorithm (see Section 3.3). The most significant limitation
of propagation-based solving is their inability to consider more than one constraint at the same
time. This prevents solving simultaneous linear equations and other systems which require manip-
ulations of multiple constraints at once. Such simultaneous interactions among constraints appear
as cycles in the constraint graph.

Local propagation techniques vary along several dimensions: one-way vs. multi-way; constraint
hierarchies vs. flat systems; acyclic vs. cycles allowed; single-output vs. multiple-output; and
equality (functional) relationships only vs. inequalities permitted. See Table 3 for an overview of
the systems described in this section.

3.2.1 One-way LP constraint solvers

The simplest local propagation solvers are embedded in widget layout kits such as ARTKit’s
Penguims [HM90], Amulet [MMM+97] and Garnet [MGD+90a]. These perform only one-way
solving—a constraint such as x = y + z + 10 will be maintained only by setting x (the output
variable) and never by setting y or z (the input variables). Though this example constraint is
numeric, one of local propagation’s strengths is that the relationships may be specified over an
arbitrary domain—the only restriction is that the output value is determined by a function (e.g.,
inequality constraints are non-functional and require a more powerful propagation algorithm).

Since one-way constraints are always maintained by evaluating the same assignment method,
the satisfaction algorithm must simply decide which constraints’ methods must be invoked and
in what order. Consider the example in Figure 2. The corresponding constraint graph with vari-
ables as nodes and directed (because we are discussing one-way solvers) multi-edges representing
constraints appears in Figure 3. After a variable is changed, all downstream variables must be
updated by enforcing the constraints in topological order.8 The one-way LP solver propagates
values along the constraint graph.

Thus, simple one-way constraint solvers can maintain their relationships using a standard

arbitrary code parameterized on the points. Here the benefits of declarative specification are largely lost to provide
greater flexibility in drawing.

7In some cases, solvers using dynamic languages actually compile the code of the inner loop.
8Alternatively, downstream variables may be marked invalid, and the constraints can be lazily enforced when a

variable’s value is requested. Experience suggests that for common layout tasks the cost in maintaining the invalid
bit exceeds the savings from unused evaluations [MGD+90b].

11



Interactive satisfaction algorithms Greg J. Badros

Solver Multi-way? C.H.? Cycles ok? Multi-output? Ineqs.?

Sketchpad yes no no no no

ThingLab yes noa no no no

ARTKit Penguims no no no no no

Garnet and Amulet no no partially no no

(Delta)Blue yes yes no no no

QuickPlan yes yes yes yes no

SkyBlue yes yes yes yes no

detail yes yes yes yes no

Indigo yes yes no no yes

Ultravioletb yes yes yes yes yes

aIn early work, Borning called these meta-constraints; he later integrated them into subsequent

simulation environments [Bor79, p. 94].
bUltraviolet is actually a meta-solver that is responsible for graph partitioning and invoking

sub-solvers. This chart reflects the capabilities of the various sub-solvers it embeds

Table 3: Overview of local propagation algorithms.

C1 : m = (x1+x2)
2

C2 : x1 = pointer position
C3 : x2 = x1 + 6
C4 : r = m2

Figure 2: Simple set of constraints for local propagation examples.

topological sort, based on a depth-first search of the directed constraint graph.9 Its computational
complexity is O(V + C), where V is the number of variables (i.e., nodes), and C is the number
of constraints (i.e., edges). Though the structure of the constraint graph only changes when
constraints are added or removed, the values propagated can change rapidly. For example, when
the user is interacting with the system shown in Figure 3, x1 will vary as the user moves the
mouse pointer. LP solvers optimize for this by maintaining the topologically sorted graph and
simply traversing it while executing the methods for each new position. This reflects the previously-
mentioned separation in planning (sorting the graph) and executing (firing the constraint-enforcing
methods) which we will see again and again. Readers fluent with linear algebra may recognize the
planning stage as the ordering of rows and the execution stage as the back-substitution phase in
the solving of a system of equations using Gaussian elimination. However, remember that LP is

9This algorithm only works because we restrict the constraint graph to not contain cycles—more powerful
techniques are required if constraints interact (see Section 3.4).

12



Interactive satisfaction algorithms Greg J. Badros

x1

x2

rm
C1

C4C3

C2pointer
position

Figure 3: One-way (directed) constraint graph for Figure 2.

not limited to numeric domains—a constraint relationship can, for example, specify that a string,
s, should always contain the printable form of the current color of a circle.

The separation of planning and execution is not essential, but is an optimization. Van Wyk’s
constraint satisfaction algorithm for IDEAL is a simple work-list approach which propagates state
using the current constraint if enough variables are already assigned values, and otherwise delays
that constraint by putting it back at the end of the work-list [VW82]. This worst-case O(n2)
algorithm is an inefficient implementation of LP.

3.2.2 Multi-way constraints and solvers

One-way constraint solvers are exceptionally fast and easy to implement, but they largely sacrifice
the declarative nature of constraints. Multi-way constraints are a generalization which permit the
constraint solver more freedom in choosing how to satisfy a given constraint. Consider C3 from
Figure 2: x2 = x1 +6. A one-way constraint solver may only change x2 in response to changes in
x1, while a multi-way solver is free to set x1 ← x2 − 6 instead. Sketchpad [Sut63] and Borning’s
ThingLab [Bor79] are both multi-way LP solvers.

In ThingLab, constraints are specified by predicates and one or more satisfaction methods
as in Figure 4. A multi-way LP algorithm not only has to choose the order by which to satisfy
constraints, but also which method should be invoked for each. Figure 5 is the (now largely
undirected) multi-way constraint graph that corresponds to Figure 3. Visually, the additional
chore of the multi-way LP solver is to put arrowheads on each undirected edge. Not all edges are
undirected—C2, which constrains x1 to the pointer position, can only be satisfied by changing
x1 so it remains represented as a directed edge.10 The selection of edge directions corresponds
to choosing a satisfaction method for each constraint. A solution to this planning stage assigns
directions to all edges such that no variable node has two incoming edges—that would signify a
conflict in that two constraints are competing to affect the same variable’s value.

The earliest solving algorithm for multi-way constraint graphs, the aforementioned one-pass
method, propagates freedom instead of values. Variables only constrained by a single relationship
(i.e., those with only a single adjacent edge) are called “free” variables. These variables have
enough degrees of freedom that they can be satisfied no matter what the assignments to the other
variables are, so their assignment method is chosen to execute last. The edge is directed to select
the method that assigns to the free variable, and that method is added to an execution list. Then
the free variable node and planned-to-be-satisfied constraint edge are removed from the graph, and
the process repeats. In this way, an execution plan is created in reverse order of ultimate execution
[Sut63, pp. 58–59] [BD86, p. 363]. The propagation of values popularized by widget toolkits (see

10Even this restriction could be removed if the user’s mouse had a motor so it could move around under program
control!

13



Interactive satisfaction algorithms Greg J. Badros

m = (x1+x2)
2

m ← (x1+x2)
2

x1 ← 2m− x2

x2 ← 2m− x1

Figure 4: Predicate and three satisfaction methods for specification of multi-way constraint.
In practice, for linear numeric constraints the satisfaction assignments can easily
be inferred. For other domains where inverses are harder to compute, the methods
may need to be explicitly programmed.

x1

x2

rm
C1

C4C3

C2
position
pointer

Figure 5: Multi-way constraint graph for Figure 2.

Section 3.2.1) is an extension introduced by Borning and originally called propagation of known
states [Bor79, p. 67]. While propagation of freedom exploits nodes with enough degrees of freedom
so they can assigned values last, propagation of known state proceeds towards a solution by finding
nodes that have no degrees of freedom so they can be assigned values immediately.

With the extra expressiveness of multi-way constraints comes a substantial complication: mul-
tiple possible plans may exist to solve the same system. If we remove C2 from Figure 2 there are
two possible plans for executing as m is changed (see Figure 6). This ambiguity is not just an
artifact of the solver, but is fundamental to the problem specification—it is under-constrained.
ThingLab has the notion of meta-constraints which control aspects of the solver’s behaviour. For
example, the user textually orders the listing of the satisfaction methods to indicate which as-
signment should be performed when multiple possibilities exist. This type of meta-constraint was
later refined into the now-classic notion of a constraint hierarchy [BMMW89, FBWB92] where
constraints may be specified at multiple levels of preference.11

“Blue” is a multi-way LP solver that respects constraint hierarchies by finding the “best” so-
lution [FBMB90]. Best is defined in terms of comparators. Blue uses the locally-predicate-better
notion to compare two solutions and determine which is best. A locally-predicate-better solu-
tion satisfies all the required constraints and successively weaker constraints at least as well as
its competing solutions, and satisfies at least one more constraint. For example, by the locally-
predicate-better comparator, it is more desirable to have a solution that satisfies all required
constraints and a single strong constraint rather than one that satisfies all the required constraints
and ten (or a million) weak constraints. The comparator is “local” in that it compares solutions
constraint by constraint, instead of computing some global measure of how satisfied all the con-

11The DeltaStar solver shown in Figure 1 was designed simply to aid research in constraint hierarchies by pa-
rameterizing a constraint-hierarchy by an arbitrary flat solver [FBWB92].

14



Interactive satisfaction algorithms Greg J. Badros

x1

x2

rm

x1

x2

rm
C1

C4C3
C1

C4C3

Figure 6: Two possible plans for executing Figure 5 as m changes.

straints are; the comparator is “predicate” in that all that matters is whether the constraint was
satisfied or not, without regard to how closely the constraint is satisfied (i.e., the error). The
locally-predicate better solution is designed to permit the use of a greedy algorithm for solving.

“DeltaBlue” is a suitably-named incremental version of the Blue algorithm. It maintains and
incrementally updates a solution graph which represents a plan for recomputing variables’ values
to satisfy all satiable constraints in a constraint hierarchy subject to the locally-predicate-better
comparator.

The key feature of DeltaBlue is its annotating of variable nodes in the method graph12 with
their “walkabout strength,” or, more simply, walk-strength. The walk-strength of a variable is the
weakest upstream constraint that could be un-enforced (i.e., removed or re-directed in the solution
graph) to permit a different constraint to change the variable’s value. Figure 7 shows a simple
example [FBMB90, p. 58]. In particular, variable D’s walk-strength is weak because constraint
C2 is weak, thus denoting that DeltaBlue would only need to break a weak constraint in order to
permit another (stronger) constraint to assign to D. Variable C’s walk-strength is strong despite
being the output of a required constraint because its input variable A’s walk-strength is only strong;
weaker walk-strengths propagate through stronger constraints.

A

B

C DC1 C2
req’d weak

strong

required

strong weak

Figure 7: Example of walk-strength assignments to variables. Constraint strengths are
below the constraint, current variable walk-strength assignments are in italics
above the variable nodes.

Walk-strengths encapsulate the global knowledge needed to permit preserving locally-predicate-
better solution plans across incremental constraint addition and removal. The key correlation
between walk-strengths and solutions involves the notion of a blocked constraint—a constraint that

12Method graph is an alternative name for the constraint graph. Some authors use “constraint graph” to refer to
the bi-partite graph with edges connecting constraints with the variables they constrain. In the bi-partite constraint
graph, both constraints and variables are nodes. (e.g., see Figure 8).

15



Interactive satisfaction algorithms Greg J. Badros

is unsatisfied but has a strength stronger than the walk-strength of a potential output variable.
The blocking constraint lemma states:

If there are no blocked constraints, then the set of satisfied constraints represents a
locally-predicate-better solution to the constraint hierarchy [FBMB90, p. 60]

This blocking lemma suggest the algorithm’s strategy—the propagation of conflict. DeltaBlue’s
incremental maintenance of the method graph plan is straightforward [FBMB90, SMFBB93]. The
algorithm’s complexity remains O(V +C) (as was simple LP). As mentioned before, assigning new
values given the same configuration (i.e., execution) is especially fast (only O(C) since at most
one method is fired per constraint).

3.2.3 Extensible local-propagation solvers

There are three main limitations of DeltaBlue: 1) it can handle only functional constraints (e.g., it
cannot manage inequalities); 2) it cannot solve cyclic constraint graphs; and 3) all methods must
have exactly one output variable. The “Indigo” solver [BFB98] relaxes the first restriction by
propagating bounds on value assignments instead of specific values—the bindings Indigo makes to
variables are intervals. This generalization requires the solver to fire multiple interval tightening
methods instead of just a single method performing a value assignment. Thus, if the constraints
a ≤ 20 and a ≥ 5 are applied in that order, Indigo will first tighten a interval to (−∞, 20] and
then to [5, 20]. These extra method invocations increase the complexity of the Indigo algorithm
to O(MC), where M is the maximum number of variables related by a constraint. The second
and third restrictions are relaxed by the enhanced solvers described below.

SkyBlue [San94b] is a multi-way, multi-output solver that is capable of supporting sub-solvers
for cyclic sub-graphs. Multi-output functions are useful for decomposing compound data structures
and maintaining interacting constraints across multiple variables. The standard example is a two-
input two-output constraint relating polar and Cartesian coordinates of a point. Support for
multi-output functions is a necessary (though not sufficient) feature for a solver to support cycle-
solvers.

As previously mentioned, cycles in the constraint graph correspond to simultaneous interac-
tions of variables in the underlying problem. For example, the two constraints: C1 : x + y = 6
and C2 : x− y = 2 correspond to the bi-partite constraint graph in Figure 8. Because both con-
straints relate both variables, the graph is cyclic.13 The primary shortcoming of all the LP solvers
mentioned above is that they are able to reason about individual constraints only in isolation.
When cycles appear in the constraint graph, more sophisticated algorithms must handle the more
complex interactions. Another potential cause of cycles is the existence of redundant constraints—
although such redundancies can often be eliminated by carefully analyzing the system, forcing the
constraint specifier (often the end-user for interactive graphical applications) to avoid redundan-
cies is unacceptable. Alternate views provide another approach to avoiding problems caused by
circularities [Gos83, p. 27].

Cycles of linear numerical equality constraints correspond to systems of simultaneous linear
equations which can be solved by such elementary algorithms as Gaussian elimination (see Section
3.4). The first challenge for the LP solver is in recognizing the cycles and invoking domain-specific
sub-solvers on the connected subgraphs that LP is incapable of solving. As cycle-handling LP
solvers find subgraphs with cycles, the solvers collapse those nodes into single meta-nodes and
use the solution type of the enclosed constraints to assign a domain-specific sub-solver the task of

13Cycles in the bi-partite graph correspond to cycles in the method graph; in this case the method graph is just
the two variable nodes connected by two distinct edges—one for each constraint.

16



Interactive satisfaction algorithms Greg J. Badros

y

x C1

C2

Figure 8: Bi-partite constraint graph showing constraints and the variables they relate.

assigning a valuation to the variables contained in the clumps. For the sub-solver to perform its
task, it might need to assign values to multiple variables along the frontier where a collapsed meta-
node interfaces with the full method graph. Thus, the main solver must permit multiple outputs
for a single constraint (the aforementioned necessary but not sufficient condition for cycle-solving
LP algorithms).

The SkyBlue solver’s main contribution is the relaxation of the single-output restriction of
DeltaBlue. In the presence of multi-output constraints, walk-strengths are no longer powerful
enough to capture the relevant global information. The SkyBlue algorithm instead computes
walkbounds—any strength equal to or weaker than the walk-strength—and maintains walkbounds
incrementally as constraints are added and removed. The algorithm then computes the solution
graph by building method vines using a backtracking algorithm [San94b]. Walkbounds and other
optimization techniques help to reduce the needed backtracking substantially, but not completely.
The backtracking makes SkyBlue’s complexity exponential in the worst case.

QuickPlan [VZ96] is similar to SkyBlue but uses propagation of degrees of freedom (instead of
propagation of conflict), searching for free variables and selecting methods to execute in reverse
order. As it encounters conflicts planning its solution, it retracts the weakest strength constraint
from the graph, saving it on a priority queue (ordered by strength). After the sequence of elimina-
tion and retraction steps, QuickPlan tries to re-add the retracted constraints in decreasing order
of strength. The QuickPlan algorithm has O(C2) worst case complexity, it typically runs in linear
time (recall that the single-output solver, DeltaBlue, is a linear-time algorithm).

detail [HMT+94] is yet another multi-output cycle-solver-capable LP algorithm. Its algorithm
is similar to the above, and it embeds three sub-solvers: one for locally-predicate-better constraints,
one for least-squares-better linear equality systems, and one that uses a spring model (similar to
glide [RMS97]).

Ultraviolet, a meta-solver for invoking sub-solvers, first partitions the top-level constraint
graph, and then solves the connected subgraphs independently while communicating through
shared variables. Unlike SkyBlue, Ultraviolet is not a solver itself, but only coordinates the
actions among its sub-solvers which include Blue (for functional LP), Indigo (for numeric inequal-
ities), Purple (for simultaneous linear equalities), and Deep Purple (a partial solver for simul-
taneous linear equalities and inequalities; cf. QOCA and Cassowary in Section 3.4.2). One key
advance of Ultraviolet was determining the order of invocation of sub-solvers to support constraint
hierarchies—the outer loop for satisfaction is ordered by decreasing strength of constraints with
each sub-solver potentially invoked multiple times [BFB98, p. 7].

Partitioning of the constraint graph is not only useful for increasing expressiveness but also
for improving performance. The more sophisticated algorithms that support multi-output and
cycles all have super-linear complexity, thus they may benefit from being subdivided into smaller

17



Interactive satisfaction algorithms Greg J. Badros

independent problems. Some evidence suggests that constraints in real applications tend to be
modular, and therefore amenable to this kind of decomposition [VZV96].

3.2.4 Geometric Degrees of Freedom Analysis

Kramer’s Geometric Constraint Engine (GCE) [Kra92] exploits symbolic analysis of geometric
degrees of freedom which insulates the technique from the underlying representation and equations,
and preserves the intuitive nature of the underlying problem. GCE’s solver is given the task of
constructing a “metaphorical assembly plan” (MAP) to describe how to satisfy a set of geometric
constraints. Though Kramer presents his technique as novel (and it certainly seems superficially
distinct from the other algorithms we have discussed), it is simply a local propagation algorithm at
its essence. GCE proceeds by searching for free geometric entities, and selecting transformations
to assign positions to those entities. It constructs the MAP in reverse order of ultimate execution,
exactly as Sutherland’s original LP algorithm for Sketchpad did. (In the forward direction, this
can be seen as the propagation of rigidity; Brunkart calls this method contraction [Bru94]).

Kramer’s propagation of geometric degrees of freedom is complicated by its need to infer the
appropriate geometric transformation to fix (i.e., make rigid) a specific previously-free motion (in
simple LP system, this requires only the evaluation of a pre-specified function, perhaps with some
simple inference for multi-way numerical constraints). The planning for the MAP [BKH96], and
the need to maintain a numerical model along with the symbolic geometric model distinguish
GCE’s geometric degrees of freedom analysis from other forms of local propagation.

3.2.5 LP strengths and weaknesses

Maximal efficiency and the ability to handle constraints over arbitrary domains are the primary
strengths of local propagations algorithms. As previously mentioned, the key weakness of local
propagation algorithms is their inability to simultaneously consider multiple constraints. These cy-
cles must be managed by domain-specific techniques; more sophisticated local propagation solvers
manage sub-solvers to provide this capability.

3.3 Iterative numeric solvers

Iterative numeric solvers have been used in constraint solving systems ever since Sketchpad. Their
primary strength is that they are very general, and thus widely applicable. In particular, nu-
meric techniques permit solving simultaneous non-linear constraints (such as maintaining equal
lengths or distances) which arise often in geometric applications. Sutherland’s Sketchpad ex-
ploits the representation of constraints directly in terms of the error, thus reducing constraint
satisfaction to the well-studied problem of functional minimization. However, since iterative opti-
mization techniques are often slow (their computational complexity is generally at least quadratic
and the constant factors are relatively large), they are not particularly well-suited for interactive
applications. Sutherland’s relaxation technique is only used when his one-pass local propagation
algorithm fails to find a solution [Sut63, p. 57]. ThingLab also relies on relaxation as a backup
technique when faster methods fail [Bor79, p. 68–69].

Recognizing that constraint solving via iterative numeric techniques can be viewed as classical
functional optimization opens up a world of techniques [Fle87]. Relaxation is simply an iterative
hill climbing (or equivalently a gradient, or steepest descent) algorithm. These optimizers are
reasonably good at finding a local minimum independent of the initial guess, but converge only
linearly to the local minimum. More importantly, the technique only finds a local minimum,
ignorant of the global search space.

18



Interactive satisfaction algorithms Greg J. Badros

Other systems’ solvers, including Juno and Juno-2 [Nel85, HN94], use (multidimensional)
Newton-Rhapson iteration to exploit derivative information. Some systems use automatic dif-
ferentiation to relieve the user from specifying derivatives [GW93], and others simply limit the set
of functions known to the underlying solver. Juno-2’s solver performs numerous optimizations,
including propagation of known state, unification of pair constraints, unpacking (to primitive
constraints separating numeric constraints from non-numeric constraints) and re-packing (reduc-
ing the number of constraints and unknowns before passing them along to the Newton-Rhapson
solver). Newton-Rhapson converges quadratically (faster than gradient descent), but relies on a
sufficiently accurate initial guess and an invertible Jacobian.14 The Levenberg-Marquardt method
[BF85] dynamically weights a combination of Newton-Rhapson and gradient descent, permitting
solvers to exploit the faster convergence of Newton-Rhapson once in the proximity of a local
minimum; this hybrid solver is used in maintaining the constraints in the Chimera editor [KF92].

Besides being relatively inefficient, iterative numeric solvers pose other problems for interactive
graphical application constraint solvers. Because of their iterative nature, it is sometimes difficult
to tell if convergence is slow, or if the system is insatiable. Because the methods are local opti-
mizers, the solution converged upon depends on the initial solution. Slight changes in the initial
conditions can result in finding radically different solutions. This behaviour is almost never what
the end-user expects.

Difficulty of implementation is yet another hindrance to the spread of iterative solving tech-
niques. Coding iterative numeric constraint solvers is not for the numerically-challenged. Vari-
ous numerical stability problems (e.g., singular or nearly-singular matrices) crop up repeatedly.
Only with an arsenal of carefully combined sophisticated algorithms (e.g., singular value decom-
position can be useful for under-constrained systems in place of Gaussian elimination) can the
techniques perform computations robustly. Bramble and its “Snap-Together Mathematics” pack-
age provides some of these tools in the context of Whisper—an extensible Scheme-like language
[Gle93, GW93].15

One of the more promising uses of iterative techniques is exemplified by the glide interac-
tive graph layout system [RMS97]. glide gives up on the difficult (and inefficient) problem of
global optimization of a graph layout. Instead, it focuses on exploiting the solver’s strength—local
minimization—and combining that with the interactive user’s strength—global layout. To make
this combination most useful, the numerical solver is physically-based, using a generalized spring
model. The visual organization features (see Section 2.2) are mapped to sets of spring-like ob-
jects16 among nodes. The energy minimization function uses varying spring-constants to provide
preferential constraint satisfaction similar to constraint hierarchies or weighting of errors (as in
QOCA [MCF98, BMSX97]).

glide’s iterative solver then simulates its physical model, trying to minimize the energy of the
system. It uses Euler’s method to compute the position and momentum of each node. During
solving iterations the configuration is animated, and a kinetic energy threshold shuts down the
system once it is stable, until the next user interaction. The animation reinforces the spring
metaphor, and aids the user in establishing an accurate mental model. The collaborative approach
of constraint solvers augmenting user interaction through physical models and understandable
metaphors seems to counteract many of the difficulties iterative techniques otherwise experience.
Differential methods are another physically-based technique; they are discussed in Section 3.5.

The constrained graph layout solver [HM96] takes a non-interactive approach and attempts to

14The Jacobian is the matrix of partial derivatives.
15

Scwm uses a similar extensible language called Guile Scheme.
16They are not physically-precise springs (i.e., they can violate Hooke’s Law) because some may have only a

repulsive force.

19



Interactive satisfaction algorithms Greg J. Badros

perform global optimization of a spring-model energy function (a simplified aesthetic criterion)
subject to arbitrary linear equality and inequality constraints. The first cost function He and
Marriott consider, Model A, is a non-polynomial metric suggested by Kamada [HM96, p. 221].
Because this function is expensive to compute partial derivatives for (a significant cost in many
iterative optimization algorithms) and lacks second-derivative continuity, He and Marriott propose
Model B, a polynomial approximation to the first model. Their expectation is that the smoothness
in the partial derivatives will permit better behaved solutions. The primary limitation of Model
B was weakening of inter-node repulsive forces; this results in layouts where nodes overlap.

He and Marriot’s layout algorithm is based on an active-set [Fle87] technique which is useful
for optimizations constrained by inequalities. The active set method is also used by QOCA
[BMSX97], and related to the simplex algorithm (see Section 3.4.1). As with simplex, finding
an initial feasible solution for the active set method for graph layout requires additional work.
Kamada’s unconstrained algorithm simply puts the n nodes onto a regular n-polygon. He and
Marriott augment this to simply find the least-squares closest solution which is feasible—this is a
quadratic (and thus convex) programming problem, so any of the numerous applicable techniques
suffices.17 Their algorithm, while only of polynomial complexity, is slow on even small problems
(a twenty node graph requires 33 seconds of computation on a 486DX/2-66).

Because of their generality, iterative numeric techniques are a useful method of last resort, and
some of their uses for physical simulations seems promising. However, given the limited progress
that has been made on general non-linear optimization techniques, it is likely that other, more
restrictive, algorithms are a more useful direction to pursue in future work.

3.4 Direct numeric solvers

Direct numeric constraint solvers avoid the difficulties of iterative numeric solvers by attempting
to find an exact solution through symbolic manipulation of the constraint equations. As with
iterative numeric solvers, the domain for constraints is restricted to numbers. Additionally, to
make solving manageable, direct numeric solvers further restrict the constraints they allow. The
most common restriction is to permit only linear equality relationships—linear systems of equations
have numerous applications, and there exist efficient algorithms for solving them.

The simplest algorithm for solving simultaneous linear systems of inequalities is Gaussian
elimination. In the equations’ matrix form, Gaussian elimination corresponds to computing the
row-reduced form. From this triangular form a value for a variable can be read off a row di-
rectly, then that variable’s value can be substituted into the other equations, and the process
repeats. This back-substitution corresponds to the local-propagation solver’s behaviour during
the execution phase (its planning phase corresponds to choosing the ordering of rows for the
back-substitution). The need to compute the row-reduced form arises from the desire to handle
simultaneous systems (i.e., those involving cycles in the constraint graph). If there are no cycles,
then Gaussian elimination is unnecessary and simple propagation of known-state (as LP solvers
do) suffices.

Gaussian elimination only finds a unique solution when a system is fully specified (i.e., the
corresponding matrix is of full rank) as with systems of n independent equalities with n variables.18

In constraint systems, however, under-constrained systems are far more common.
17Tree layout as formulated by their Model C is also only a quadratic programming problem. Again, He and

Marriott use a variant of the active set method.
18Independence assures that rows provide useful information; rows that are linear combinations of other rows are

not helpful in constraining the system.

20



Interactive satisfaction algorithms Greg J. Badros

3.4.1 Simplex algorithm

As mentioned earlier, under-constrained systems require a means of disambiguating possible so-
lutions. As we have seen, constraint hierarchies and optimization of a global error metric are two
useful ways of declaratively specifying preferred solutions. This leads to inverting the problem:
instead of talking about solving an under-constrained linear system, we can focus instead on the
error function and describe our goal as optimizing an objective function subject to a set of con-
straints. Dantzig’s famous simplex algorithm is a simple technique for optimizing a linear function
subject to linear equality constraints [MS98, pp. 63–72]. Though simplex works only on equalities,
an arbitrary inequality can be automatically rewritten using a non-negative slack variable. For
example, x > y becomes x = y + s1, where the slack variable s1 ≥ 0—this last non-negativity
restriction on s1 applies to all variables in the simplex tableau (the matrix on which the algorithm
operates).

The simplex algorithm is split into two phases. Phase I finds an initial solution to the con-
straints, and phase II finds an optimal solution. Consider the four constraints:

1 ≤ x ∧ x ≤ 3 ∧ 0 ≤ y ∧ 2y − x ≤ 3

These inequalities correspond to the darkened region of Figure 9. Since the optimization
function is linear, the optimal score must occur at a vertex of the enclosing polygon. In terms
of the picture, phase I finds any of those vertices (called a basic feasible solution), while phase
II involves pivoting the system to move between adjacent vertices, systematically and efficiently
searching for the optimal solution.

x

y

1 2 3

3

2

1

Figure 9: Simplex optimization problem [MS98, p. 64]

Finding an initial solution for simplex phase II is our original constraint satisfaction problem
without the optimization criteria. In an interesting self-reference, we solve the constraints using
the simplex algorithm on a modified problem. To avoid infinite regress, however, we must rely
on a different technique for finding the initial basic feasible solution of this new problem. This
is done by setting up our modified problem cleverly: given the initial constraints, we set each
equation to zero by rearranging terms, and then replace the zeroes with a sequence of distinct
artificial variables, and minimize the sum of those artificial variables. The artificial variables in
this potential initial solution correspond to the errors in satisfying the original constraints. Most
importantly, though, the modified system is already at a solution to the modified problem—that
there is some (possibly zero) error in satisfying the original constraints. Phase II for this modified
problem can proceed immediately in attempting to minimize the error, getting us closer to a

21



Interactive satisfaction algorithms Greg J. Badros

feasible solution to the original problem. If successful, all artificial variables are removed since
they are zero;19 if unsuccessful, the original constraint system is insatiable (i.e., over-constrained).

After phase II of the modified problem succeeds, we have a feasible, but not necessarily optimal,
solution to the original constraint problem—we have completed phase I of the original problem. If
we are only interested in any solution to a possibly under-constrained system, we need do no more;
otherwise we can proceed with phase II of the original problem to optimize our objective relative
to the original constraints, thus unambiguously achieving the solution we prefer (as declaratively
specified by the objective function we chose).

3.4.2 QOCA and Cassowary: Incremental simplex

In Borning’s spectrum of solvers, a variant of the simplex algorithm is dubbed “Orange,” and an
incremental version, DeltaOrange, is mentioned as a research direction [FBMB90]. Cassowary and
QOCA are two variants of an incremental simplex algorithm [MCF98, BMSX97].

As one would imagine, Cassowary and QOCA are very similar to the batch simplex algorithm.
Both lift the restriction of non-negativity on all variables by using two tableaus: an unrestricted
tableau and a restricted, simplex tableau. Only the variables in the simplex tableau have the
non-negativity restriction.20 Cassowary and QOCA are incremental in that they permit adding
and removing constraints while maintaining basic feasible solved form. Both algorithms proceed
identically until the optimization (of the original problem) phase. Adding a constraint involves
re-expressing inequalities as equalities, using an artificial variable to represent the error, and
minimizing that error in the added equation. If the error cannot be minimized to zero, the new
constraint is inconsistent and an exception is thrown. This is essentially an incremental version
of simplex’s phase I.

Removing a constraint is a bit more complicated because the effects of a single equation are
spread throughout the tableaus as they are manipulated. This difficulty is overcome by creating a
distinct “marker” variable for each constraint added to the tableau.21 A marker variable indicates
the effect of a constraint on the tableau, and that constraint can be removed by pivoting to make
the marker variable basic, and then removing that row. Clearly, removing a constraint cannot
make the system infeasible, so the tableau remains in basic feasible solved form.

The final incremental operation the algorithms provide is the ability to change a constraint.
Often this is done for simple constraint equations which track, e.g., pointer movement. In Cas-
sowary, these kinds of constraints are called “edit constraints.” Usually changing a edit constraint’s
value requires only changing a constant in the tableau. Occasionally, the change will make the
system infeasible; visually, this occurs when graphical objects first bump up against or leave other
objects. This corresponds to a new configuration at an optimal but infeasible solution (i.e., it
corresponds to an optimal point outside of the shaded region in Figure 9). When this occurs,
the dual simplex algorithm is used to restore feasibility—to move from an infeasible and optimal
solution to a feasible and still optimal solution. Typically this procedure requires only a single
pivot to restore feasibility. The efficiency of this operation is essential for interactive graphical
applications to maintain fluid animation while the user directly manipulates the system.

The primary difference between QOCA and Cassowary is in how they choose among possible
solutions to the constraint hierarchy—how they perform phase II optimization. Cassowary permits

19If an artificial variable is still basic (i.e., appearing only once in the tableau, alone on one side of an equation)
after optimization of the modified problem, we can make it parametric (i.e., move it out of the basis) by pivoting.

20Since the optimization phase requires this restriction to find adjacent vertices, that phase of the algorithm is
restricted to only the simplex tableau.

21In implementations, other variables guaranteed to appear only in a single equation (e.g., slack variables) are
overloaded to serve as marker variables.

22



Interactive satisfaction algorithms Greg J. Badros

an error in each non-required constraint equation. Since the error can be either positive or negative,
we need two error variables associated with each equation: δ+ and δ−. Two variables are required
because the simplex algorithm’s non-negativity restriction on variables would otherwise prevent
the representation of negative errors. The optimization function is then chosen to be a weighted
sum of these error variables. The weighting is determined by the preferences of the constraints
using a constraint hierarchy specification. To ensure we satisfy one strong constraint in preference
to numerous weaker constraints, the objective function uses symbolic weights and lexicographical
ordering. Generally, weak stay constraints are added to force each variable to remain where it
is; these constraint values are then updated after each optimization of the system so that future
optimizations will keep the variables’ values the same unless they must be altered by some stronger
constraint.

Instead of using preferences on constraints to control the optimization function, QOCA uses
a global least-squares better comparator. QOCA’s goal is to minimize the weighted sum of the
squares of the error of each variable relative to its desired position. For this technique, each variable
has a preferred location (analogous to the stay constraint for Cassowary) and a numerical weight
of how strong the preference is. QOCA then must solve the quadratic programming problem of
minimizing

∑
wiδ

2
i , where wi is the weight of the ith variable, and δi is the error from its desired

location.
Convex quadratic programming is well-studied and two algorithms have been considered for

use by QOCA: the active set method (currently used), and linear complementary pivoting. Both
algorithms are related to the simplex technique.

The active set method [Fle87] is an iterative technique which maintains an active set of the
equality constraints and the subset of the inequalities that are tight in the sense that their slack
variables are parametric. At each step in the iteration, we either move as far towards an optimal
solution as possible while maintaining feasibility relative to some new inequality that we add to
the active set, or we move more toward optimality by removing a constraint from the active set.
When the active set can no longer by modified, we are at an optimal, feasible solution [BMSX97].

Linear complementary pivoting is another approach to solving convex quadratic optimization
problems. This technique works by first introducing dual slack variables and dual variables.
Each of these new variables is complementary to an existing variable in the primal (original)
problem; the dual slack variables to the primal parametric variables and the dual varaiables to
the primal basic variables. Then we augment the tableau of the primal problem with equations
relating the dual slack variables to the sum of partial derivatives of the objective function with
respect to the parametric variables and the dot product of rows of the primal problem with dual
variables. By maintaining the property that complementary variables may not both be positive
while pivoting this combined problem repeatedly, we achieve a feasible and optimal solution to the
primal problem. Because the partial derivative of the quadratic objective function is linear, we can
use simplex as a solution technique (this is similar to Gleicher’s differential method technique—see
Section 3.5). Borning et al. provide an illustrative example [BMSX97].

QOCA gives up the ability to express arbitrary constraints at varying preferences. It instead
guarantees a variable-weighted least-squares-better solution to the under-constrained problem.
This comparator is especially useful in geometric applications since it tries to place objects as
close as possible to where they are desired to be. The weighting function can be used to con-
trol which objects should be placed closest to their desired positions. Cassowary, on the other
hand, places weights on the constraints, not on the variables. This is more general as it permits
specifying preferences about arbitrary constraints, not just about stay constraints.22 QOCA’s

22The formulation of the quasi-linear error metric in the description of Cassowary as embedded in QOCA’s solving
framework does not permit this generalization. There, the authors associate δ+ and δ− with variables instead of

23



Backtracking algorithms for constraint satisfaction Greg J. Badros

least-squares comparator also comes at the price of using additional numerical techniques (com-
puting the derivative symbolically) and further implementation complexity. Performance for both
QOCA and Cassowary is good, handling re-solves (i.e., edit constraint changes) of systems of
around 600 constraints and 700 variables in under 30ms on average [MCF98].

3.5 Differential methods

Gleicher’s Bramble drawing program permits quadratic constraints to be expressed and solved
efficiently by using an approach he calls differential methods. The differential method technique
is enabled by limiting the problem only to maintenance of constraints that already hold. All other
systems discussed use a “specify-then-solve” methodology where the solver is responsible both
for producing an initial solution and for maintaining that solution as the system is perturbed.
Instead, Bramble requires that the user initially establish the desired relationship before adding
the corresponding constraint to the solver—augmented snap-dragging is the mechanism that aids
the user in establishing a desired relationship, and simultaneously permits adding the constraint
to those that the system will maintain (see Section 2.1).23

Offloading the establishment of the initial configuration from the constraint solver simplifies
the solver’s task—instead of maintaining relationships regarding the absolute positions of objects,
differential manipulation relates the motion of objects. Since the motion of an object is described
by its derivative with respect to time, quadratic relationships in position are reduced to linear
relationships in derivatives. Maintenance of linear constraints is a far easier job (see Section 3.4).
The linear systems are solved to minimize the derivative of the configuration. The one added
step in Briar is to solve an ordinary differential equation after solving for the unknown time
derivative; Euler’s method is one simple technique for computing an absolute position from the
initial conditions and the derivative.24

Another key benefit of differential manipulation is that it permits choosing an underlying
representation of an object’s state independent of the user-interface controls for that object. For
Gleicher’s Through-the-Lens Camera Control (TLCC), he expresses the three-dimensional location
and orientation of the camera via quaternions [Sho85] which are much better behaved numerically,
but far less intuitive to the user, and thus unsuitable for exposing directly [GW92]. Gleicher has
also applied differential manipulation techniques to character animation systems[GL96].

4 Backtracking algorithms for constraint satisfaction

Backtracking search is one of the simplest and most common global search strategies over fi-
nite domains. The generic constraint satisfaction problem (CSP) consists of constraints C over
n variables x1, x2, ..., xn, each with a finite (possibly distinct) domain of allowable value assign-
ments. To solve the CSP, an assignment, ā, must be found which associates each variable with
a value from its corresponding domain such that C (the set of constraints) is satisfied [MCF98].
Backtracking is a means of systematically searching the space of possible solutions for such satis-
fying assignments. Green, one of Borning’s spectrum of solvers, uses the related generate-and-test
methodology (combined with local propagation) for its finite-domain constraints [FBMB90, p. 57].

constraints.
23Adding an arbitrary constraint to the system that is not already satisfied may be confusing to the user, so

there is some evidence that this approach has usability benefits. Additionally, by knowing that the constraint is
already satisfied, the solver need not worry about over-constrained systems [GW94].

24Animus also uses differential equations for the specification of continuous motion of objects being animated
[BD86, Dui88].

24



Backtracking algorithms for constraint satisfaction Greg J. Badros

Backtracking algorithms have generally not been used for user interface applications because
of their poor performance. Yet, despite their exponential complexity, backtracking need not be
discarded out-of-hand as unsuitable for the strict real-time requirements of interactive systems.
SkyBlue [San94b] uses backtracking, but is able to maintain sufficient performance in the average
case by using walk-bounds as a domain-specific pruning technique (see Section 3.2.3).

Numerous variants of the basic (called chronological) backtracking algorithm have been sug-
gested and empirically analyzed for performance. The rest of this section summarizes a landmark
paper by Kondrak and van Beek that describes a principled approach to evaluating backtracking
algorithms [KvB97]. The next section discusses issues in using a backtracking approach to support
disjunctions in incremental constraint solvers.

Kondrak and van Beek describe several backtracking algorithms. They analyze them in terms
of two abstract performance measures: 1) the set of visited nodes in the search tree of possible
assignments (Figure 10); and 2) the number of consistency checks needed (Figure 11). Since
backtracking and consistency checking dominate the execution time of implementations of the
algorithms, these analytical metrics allow us to more finely compare expected performance of
algorithms.

BT = BM

BJ = BMJ = BMJ2

CBJ = BM-CBJ = BM-CBJ2
FC

FC-CBJ

Figure 10: Kondrak and van Beek’s hierarchy of the number of nodes visited for various
backtracking algorithms. Edge a → b is in the graph if the set of nodes visited
by algorithm b is always a subset of those visited by a [KvB97, p. 17, Figure 7].

Chronological backtracking (BT) is the simplest algorithm which assigns values to successive
variables, checking for consistency only against already-assigned variables. The recursive algo-
rithm backtracks when no instantiation for the current variable can preserve consistency—the
backtracking returns to attempt the next domain value for the previous variable.

A simple improvement to BT is back-jumping (BJ); it prunes some of the search space by
backtracking not to the immediately previous variable, but to the deepest past variable that has
an assignment that conflicts against the current variable (re-assignments to the non-conflicting
intermediate variables cannot jump us out from the dead-end). This pruning reduces the number
of nodes visited. Conflict-directed back-jumping (CBJ) also back-jumps, but maintains a conflict
set so that information gathered from further along in the tree is not discarded when back-jumping.
CBJ can behave more cleverly than BJ in choosing to what node to backtrack, and thus may visit
even fewer nodes. For all three of these algorithms, the consistency checks done at each node are
the same (but the total number of consistency checks reduces as the algorithm improves from BT
to BJ to CBJ). Both BJ and CBJ are backward-checking algorithms.

Forward checking (FC) filters the allowable domain of future variables based on the restrictions
imposed by the current assignment. If any unassigned variable’s domain is annihilated (i.e.,

25



Backtracking algorithms for constraint satisfaction Greg J. Badros

CBJBM BMJ

BM-CBJBMJ2

FC

FC-CBJ

BT

BM-CBJ2

BJ

Figure 11: Kondrak and van Beek’s hierarchy of the number of consistency checks for various
backtracking algorithms. Edge a→ b is in the graph if algorithm b never performs
more consistency checks than a does [KvB97, p. 18, Figure 8].

there is no satisfying extension of the current assignment), FC backtracks chronologically.25 FC’s
filtering lets it skip the same nodes that BJ avoids, but CBJ’s conflict set can provide information
permitting pruning that FC does not recognize. Thus FC visits a subset of the nodes that BJ visits,
but not necessarily a subset of the nodes that CBJ visits. A combination of FC and CBJ, FC-
CBJ, attempts to use information about variables that cause the current inconsistency to further
prune the search space. FC-CBJ is shown to visit no more nodes (and do no more consistency
checks) than FC, but could visit more nodes than CBJ (hence there is no edge CBJ → FC-CBJ
in Figure 10. Kondrak and van Beek prove FC-CBJ correct (i.e., both sound in that it finds only
solutions, and complete in that it finds all the solutions).

All of the above backtracking variants focus on reducing the number of nodes visited. While vis-
iting fewer nodes can reduce the number of consistency checks required, some enhanced algorithms
improve performance by reducing the number of consistency checks required. A back-marking
scheme caches results of consistency checks to avoid the actual (often expensive) consistency check.
Back-marking variants of BT, BJ, and CBJ exist and are called BM, BMJ, and BM-CBJ. Though
each of these algorithms visits the same set of nodes as their corresponding non-back-marking
cousin, each will perform no more consistency checks (and may require far fewer).

Though BMJ performs fewer consistency checks than BJ, it (somewhat surprisingly) may exe-
cute more checks than BM despite visiting fewer nodes. This results because the one-dimensional
marking table cannot adequately maintain all the relevant information of the back-mark table.
Intuitively, BM may have better caching behaviour than BMJ does. Kondrak and van Beek intro-
duce the BMJ2 algorithm: an enhancement to BMJ that uses a two-dimensional marking table to
ensure it never performs more consistency checks than BM does. BMJ2 still visits the same set of
nodes as BJ and BMJ. BM-CBJ2, also introduced in the paper, is the analogous modification to
BM-CBJ; it performs fewer consistency checks than both BMJ2 and BM-CBJ, while still visiting
the same nodes as CBJ and BM-CBJ.

Though Kondrak and van Beek mostly limit their analysis to static ordering of variable instan-
tiation, they do consider the popular minimum remaining values (MRV) heuristic which relaxes

25We can view known state propagation planning (see Section 3.2.1 and Section 3.2.2) as forward checking where
annihilation of a domain corresponds to conflicting assignments (i.e., two edges pointing at the same node). While
one-way LP solvers have no possible alternatives, multi-way solvers would need to backtrack if not for walk-strength
annotations.

26



Incremental approaches for backtracking Greg J. Badros

that restriction. All of the backtracking algorithms can be combined with the MRV, as sug-
gested by Bacchus and van Run. The partial orders of Figures 10 and 11 both still hold, but can
be strengthened using a result from Bacchus and van Run. They note that MRV makes back-
jumping redundant. This fact collapses the top five nodes (BT and BJ and their derivatives) in
the node hierarchy, and merges BT+MRV/BJ+MRV and BM+MRV/BMJ+MRV/BMJ2+MRV
in the consistency checks hierarchy [KvB97].

5 Incremental approaches for backtracking

None of the interactive graphical applications discussed in Section 2 permit disjunctive constraints.
The ability to express the desire that either C1 or C2 (or both) holds is useful in geometric
applications. For web page layout, we may want to ensure that two figures are horizontally
adjacent and non-overlapping, but not care which is on the left and which on the right. Similarly,
users of window managers may want a window to stay at either the top of the screen or the bottom
of the screen [CSI86, p. 42]. To see how backtracking algorithms apply, let us formalize our problem
as an extension to a simultaneous linear equality and inequality solver such as Cassowary [BB98].

We would like to be able to solve constraint systems of the form:

(C1,1 ∨ C1,2 ∨ · · · ∨ C1,d1) ∧
(C2,1 ∨ C2,2 ∨ · · · ∨ C1,d2) ∧

...
(Cn,1 ∨ Cn,2 ∨ · · · ∨ Cn,dn)

where each Ci,j is a linear equality or inequality constraint. Of course, such a system with
∀i ∈ 1..n, di = 1 is the conjunction-only incremental simplex algorithm discussed in Section 3.4.2;
also, it is not necessary that each disjunction have the same number of terms.

If we ignore completeness, it is trivial to extend conjunctive solvers to soundly solve such a
system: we require all the constraints to hold. Obviously, we would like to exploit the disjunctions
to admit more solutions so that the solver is less restrictive (i.e., more complete). Since only one
constraint per disjunctive set needs to be satisfied, we need only choose one constraint from each
row to be satisfied. (Certainly more than one can be true, but we need only require one.) That is,
the constraint system above is satisfied if and only if ∀i ∈ 1..n, ∃si ∈ 1..di such that Ci,si holds.
The si variables are selectors which choose which constraint of row i is satisfied; the domain of si
is 1..di. We write an assignment to a subset of variables, as a tuple: e.g., ā = (s1 → 2, s3 → 1).
In an arbitrary assignment, not all variables need be given values, but a solution to the system
requires a full and consistent assignment.

For an assignment to be consistent, the set of selected linear equality and inequality constraints
must be soluble. In the context of an incremental simplex solver such as Cassowary, this corre-
sponds to successfully adding the selected constraints into the tableau. The incremental simplex
algorithm can add and remove constraints efficiently, so chronological backtracking can be used
to solve the system of conjunctions of disjunctions. We backtrack by removing a constraint, and
descend down the search tree by adding a constraint as we make the corresponding new variable
assignment.

Using the batch chronological backtracking algorithm is inefficient. We cannot expect real-time
performance as we are dragging a point around the screen if a full backtracking solve must be
performed for each iteration. We must make the algorithm incremental, and can learn from back-
tracking enhancements summarized in Section 4 and common incremental techniques described in

27



Incremental approaches for backtracking Greg J. Badros

Section 3.
A simple version of the minimum remaining values optimization is obviously useful. A de-

generate disjunction with a single constraint has a selector variable with only one element in its
domain. The selected constraint must be satisfied in the tableau for the system to be consistent,
so we can treat these constraints as we do in the conjunction-only situation. Thus, ∀di = 1 we
should leave Ci,1 in the tableau permanently (until it is removed by the end-user). An alternate
way (more natural in the implementation) to view this simplification is to partition the disjunction
constraints and only introduce selector variables for those.

For another optimization, we must observe that Cassowary and QOCA’s incremental simplex
algorithm permits discovery of a conflict set of an added constraint. Recall that to add a constraint
we introduce an artificial variable and equate it to the error in that constraint, then minimize the
artificial variable (and hence the error) to zero using simplex optimization (see Section 3.4.2). If
that process fails, the artificial objective will have a non-zero constant, and the marker variables
appearing there correspond to a set of constraints that are inconsistent with the constraint we
were trying to add. This is a conflict set, and can be used to support back-jumping (BJ) and CBJ.
Though I’m not yet convinced that this conflict set is minimal (in any sense), it need not be to
be correct—it may be a superset of the real conflict. To be a useful optimization when combined
with BJ, the conflict set must be sufficiently small relative to the total number of constraints that
it can permit useful pruning of the search tree.26

Another possibility for better supporting backtracking in interactive constraint solvers is pre-
serving data structures from prior solutions. In particular, if a constraint has not changed, the
unchanged constraints that conflicted with it will still conflict. A complication in exploiting this
fact is that edit and stay constraints change frequently, potentially invalidating our prior knowl-
edge.

Constraint hierarchies also complicate the use of disjunctions. Consider a non-required dis-
junction Ci,1 ∨ Ci,2. When we add Ci,1 to the tableau (because we are trying the assignment
si → 1), we need not make it a required constraint. Similarly, for the alternative assignment, Ci,2
need not be required. If neither can be satisfied exactly (i.e., an error variables of each, when
added, is non-zero) which should be selected as active?

One answer also suggests a faster way of adding and removing effects of constraints (i.e.,
reducing the time to move through the search tree). The constraints in a disjunction could all be
maintained in the tableau, and only their weights27 manipulated. If si = 2, then the weight of Ci,2
would be set to 1.0, and Ci,j , j 6= 2 would each get zero weights. Dynamically changing constraint
weights and re-optimizing seems like a plausible implementation strategy for controlling the effects
of non-required disjunctions. Unlike adding and removing the constraint from the tableau, it does
not require pivoting, and thus can execute more quickly.

Other possibilities to improve interactive backtracking performance include exploiting domain-
specific knowledge and performing additional preprocessing of the stable constraint set. Other no-
tions of consistency may be useful in guiding this research direction [DvB97, vBD97]. The latter
technique could perhaps recognize that a certain pair of consistent configurations toggle in applica-
bility as an object passes through a line or some other state changes. This corresponds to moving
directly from a consistent leaf node to another consistent leaf node in the search tree. Extending
the search tree with annotated transition edges would reduce the time spent backtracking and
re-descending down the search tree. Alternatively, online statistics could be used to dynamically
update transition weights or other prediction techniques could be used [ABG+94].

26When an experimental implementation of this technique was applied to an LPSAT engine that performs con-
sistency checks using Cassowary, a factor of ten speedup was observed [WW98].

27Weights in Cassowary are coefficients of symbolic strengths.

28



Conclusion Greg J. Badros

Support for disjunctions can be added incrementally. An initial implementation is straightfor-
ward, but inefficient. As our experience using disjunctive constraints in geometric layout applica-
tions increases, we can select the optimizations to best handle the kinds of disjunctions we find
most valuable.

6 Conclusion

Interactive graphical applications have explored using constraints for over thirty-five years, yet
none are completely successful, and numerous challenges remain. Two important problems not yet
well-addressed and not considered in-depth here include debugging constraints and reuse of solvers.
Debugging constraint systems is challenging, and must be made easier for users [Gle95, San94a].
Constraint solving libraries must be developed so that the implementation effort for applica-
tion programmers is minimized—software engineering research on system architectures [MT] and
solvers that stress simple and efficient28 interfaces [MCF98] can be exploited to improve this
situation.

This paper surveys several interactive graphical application domains that use constraint sys-
tems. Table 1 shows that several kinds of constraints are especially relevant for geometric applica-
tions, but that the constraints provided by an application are highly influenced and restricted by
its underlying solver. Thus, increasing expressiveness of constraint solvers is a primary concern.
The fundamental challenge is to not sacrifice performance while expanding the class of constraints
that solvers handle. Figure 1 relates all of the solvers by their techniques and expressiveness. Un-
derstanding the evolution of techniques, recognizing the similarities among the approaches, and
considering novel combinations of various systems exposes many areas for future work.

Extensible solvers are a useful and flexible mechanism for exploiting domain-dependent opti-
mizations while retaining generality. In particular, Ultraviolet [BFB98] provides a useful frame-
work for embedding solvers, but does not have an integrated, fully general linear equality and
inequality sub-solver. Combining Cassowary into the Ultraviolet system is a straightforward and
likely useful extension.

The relationships in interactive systems are often dynamic. Applications including web page
layout and window management can benefit from the automatic management of symbolic con-
straint relations. The work on paths [Bor79] and pointer variable extensions for constraint systems
[VZMGS91, VZMGS] may provide the basis for a similar system for Cassowary or Ultraviolet.

Physically-based systems such as the spring-layout of glide [RMS97] and differential meth-
ods of Briar [GW94, GW92] demonstrate advantages of using simulation-based solvers. Animating
other solvers’ solution processes may be beneficial to creating a seemingly more responsive system,
and providing a more understandable solution due to the physical metaphor. The collaborative
aspect of these two systems is also instructive: constraint solving technology need not do every-
thing. Users are good at direct manipulation and at global search and interactive systems should
permit leveraging those abilities

Finally, Section 5 discusses some ideas on how backtracking performance can be improved for
more general interactive constraint solvers. In particular, the ideas presented there will likely grow
into support for disjunctions in Cassowary, and possibly other solving systems.

Interactive graphical applications can benefit dramatically from fast, expressive, understand-
able, and reusable constraint solvers. Improving constraint satisfaction algorithms in these direc-

28The Janus In Motion (JIM) application communicates with its Parcon constraint solver via Unix named pipes.
Though this design certainly decouples the constraint solver from the application, the performance cost is hard to
accept in an interactive application [GLM+96].

29



References Greg J. Badros

tions is important if we are to fully exploit the benefits that the declarative nature of constraints
can provide.

References

[ABG+94] Salmon Azhar, Greg Badros, Arman Glodjo, M. Kao, and John Reif. Data compression
techniques for stock market prediction. In Proceedings of 1994 Data Compression Conference,
pages 72–82, Snowbird, UT, March 1994.

[BB98] Greg Badros and Alan Borning. The cassowary linear arithmetic constraint solving algo-
rithm: Interface and implementation. Technical Report UW-CSE-98-06-04, University of
Washington, Seattle, Washington, June 1998.

[BD86] Alan Borning and Robert Duisberg. Constraint-based tools for building user interfaces. ACM
Transactions on Graphics, 5(4):345–374, October 1986.

[BF85] Richard L. Burden and J. Douglas Faires. Numerical Analysis. PWS Publishing Company,
Boston, Massachusetts, fifth edition, 1985.

[BFB98] Alan Borning and Bjorn Freeman-Benson. Ultraviolet: A constraint satisfaction algorithm
for interactive graphics. Constraints: An International Jounal, 3:1–26, 1998.

[BKH96] Sanjay Bhansali, Glenn A. Kramer, and Tim J. Hoar. A principled approach toward symbolic
geometric constraint satisfaction. Journal of Artificial Intelligence Research, 4:419–443, 1996.

[BLM97] Alan Borning, Richard Lin, and Kim Marriott. Constraints for the web. In Proceedings of
1997 ACM Multimedia Conference, 1997.

[BMMW89] Alan Borning, Michael Maher, Amy Martindale, and Molly Wilson. Constraint hierarchies
and logic programming. In Proceedings of the Sixth International Conference on Logic Pro-
gramming, pages 149–164, Lisbon, June 1989.

[BMSX97] Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. Solving linear arithmetic con-
straints for user interface applications: Algorithm details. Technical Report 97-07-01, Uni-
versity of Washington, Seattle, WA, September 1997.

[Bor79] Alan Borning. ThingLab—A Constraint-Oriented Simulation Laboratory. PhD thesis, Stan-
ford University, March 1979. A revised version is published as Xerox Palo Alto Research
Center Report SSL-79-3 (July 1979).

[Bro88] Arun N. Brotman, Lynne Shapiro ann Netravali. Motion interpolation by optimal control.
In Proceedings of SIGGRAPH 1988, pages 309–315, Atlanta, GA, August 1988.

[Bru94] Mark W. Brunkhart. Interactive geometric constraint systems. Master’s thesis, University
of California, Berkeley, Berkeley, California, May 1994.

[BS86] Eric. A. Bier and Maureen C. Stone. Snap-dragging. In Proceedings of SIGGRAPH 1986,
Dallas, August 1986.

[BS98] Greg Badros and Maciej Stachowiak. Scwm—the scheme constraints window manager. Web
page, 1997–1998. http://huis-clos.mit.edu/scwm/.

[CM95] Sitt Sen Chok and Kim Marriott. Automatic construction of user interfaces from constraint
multiset grammars. In Proceedings of IEEE International Symposium on Visual Languages,
pages 242–249, Los Alamitos, CA, September 1995.

[CM98] Sitt Senn Chok and Kim Marriott. Automatic construction of intelligent diagram editors. In
Proceedings of UIST 1998, San Francisco, CA, November 1998.

[Cru95] Isabel F. Cruz. Expressing constraints for data display specification: A visual approach. In
Principles and Practice of Constraint Programming, chapter 23, pages 445–469. MIT Press,
Cambridge, Massachusetts, 1995.

30



References Greg J. Badros

[CSI86] Ellis S. Cohen, Edward T. Smith, and Lee A. Iverson. Constraint-based tiled windows. IEEE
Computer Graphics and Applications, pages 35–45, May 1986.

[DBETT94] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Algorithms
for drawing graphcs: An annotated bibliography. Computational Geometry: Theory and
Applications, 4:235–282, 1994.

[DBETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs, New Jersey,
1999.

[DFM93] Ed Dengler, Mark Friedell, and Joe Marks. Constraint-driven diagram layout. In Proceedings
of the 1993 IEEE Symposium on Visual Languges, pages 330–335, Bergen, Norway, August
1993.

[Dui88] Robert Adámy Duisberg. Animation using temporal constraints: An overview of the Animus
system. Human-Computer Interaction, 3:275–307, 1987-1988.

[DvB97] Rina Dechter and Peter van Beek. Local and global relational consistency. Theoretical
Computer Science, 173:283–308, 1997.

[EL88] Danny Epstein and Wilf LaLonde. A Smalltalk window system based on constraints. In Pro-
ceedings of the 1988 ACM Conference on Object-Oriented Programming Systems, Languages
and Applications, pages 83–94, San Diego, September 1988. ACM.

[FB93] Barry Fowler and Richard Bartels. Constraint-based curve manipulation. IEEE Computer
Graphics and Applications, pages 43–49, September 1993.

[FBMB90] Bjorn N. Freeman-Benson, John Maloney, and Alan Borning. An incremental constraint
solver. Communications of the ACM, 33(1):54–63, January 1990.

[FBWB92] Bjorn Freeman-Benson, Molly Wilson, and Alan Borning. DeltaStar: A general algorithm for
incremental satisfaction of constraint hierarchies. In Eleventh Annual International Phoenix
Conference on Computers and Communications, pages 561–568, Phoenix, AZ, April 1992.

[Fle87] Roger Fletcher. Practical Methods of Optimization. John Wiley and Sons, New York, 1987.

[GL96] Michael Gleicher and Peter Litwinowicz. Constraint-based motion adaptation. Technical
Report TR 96-153, Apple Computer, June 1996.

[Gle92] Michael Gleicher. Integrating constraints and direct manipulation. In Proceeding 1992 Sym-
posium on Interactive 3D, pages 171–174, 1992.

[Gle93] Michael Gleicher. A graphics toolkit based on differential constraints. In Proceedings of UIST
1993, pages 109–120, Atlanta, GA, November 1993.

[Gle95] Michael Gleicher. Practical issues in graphical constraints. In Principles and Practice of
Constraint Programming, chapter 21, pages 407–426. MIT Press, Cambridge, Massachusetts,
1995.

[GLM+96] P. Griebel, G. Lehrenfeld, W. Mueller, C. Tahedl, and H. Uhr. Integrating a constraint
solver into a real-time animation environment. Proceedings of IEEE Symposium on Visual
Languages, September 1996.

[Gos83] James Gosling. Algebraic Constraints. PhD thesis, Carnegie Mellon University, Pittsburgh,
PA, May 1983.

[GW92] Michael Gleicher and Andrew Witkin. Through-the-lens camera control. In Proceedings of
SIGGRAPH 1992, July 1992.

[GW93] Michael Gleicher and Andrew Witkin. Supporting numerical computations in interactive
contexts. In Graphics Interface 1993, 1993.

[GW94] Michael Gleicher and Andrew Witkin. Drawing with constraints. Visual Computer, 11(1):39–
51, 1994.

31



References Greg J. Badros

[Hen92] Tyson R. Henry. Interactive Graph Layout: The Exploration of Large Graphs. PhD thesis,
University of Arizona, Tucson, Arizona, June 1992. Also TR-92-03.

[HH91] Tyson R. Henry and Scott E. Hudson. Interactive graph layout. In Proceedings of UIST
1991, pages 55–64, November 1991.

[HHMV95] Richard Helm, Tien Huynh, Kim Marriott, and John Vlissides. An Object-Oriented Archi-
tecture for Constraint-Based Graphical Editing, chapter 14, pages 217–238. Springer, 1995.

[HM90] Scott E. Hudson and Shamim P. Mohamed. Interactive specification of flexible user interface
displays. ACM Transactions on Information Systems, 8(3):269–288, July 1990.

[HM96] Weiqing He and Kim Marriott. Constrainted graph layout. In S. North, editor, Proceedings
of 1996 Graph Drawing Conference, pages 217–232, Berkeley, CA, September 1996. Springer
Verlag.

[HMT+94] Hiroshi Hosobe, Ken Miyashita, Shin Takahashi, Satoshi Matsuoka, and Akinori Yonezawa.
Locally simultaneous constraint satisfaction. In Alan Borning, editor, Principles and Practice
of Constraint Programming 1994, pages 51–62, Orcas Island, WA, 1994.

[HN94] Allan Heydon and Greg Nelson. The Juno-2 constraint-based drawing editor. Technical
Report 131a, Digital Systems Research Center, Palo Alto, California, December 1994.

[HS93] Scott E. Hudson and John T. Stasko. Animation support in a user interface toolkit: Flexible
robust and reusable abstractions. In Proceedings of UIST 1993, pages 57–67, Atlanta, GA,
November 1993.

[IMKT97] Takeo Igarashi, Satoshi Matsuoka, Sachiko Kawachiya, and Hidehiko Tanaka. Interactive
beautification: A technique for rapid geometric design. In Proceedings of UIST 1997, pages
105–114, Banff, Alberta, Canada, October 1997.

[JMSY92] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The CLP(<) language
and system. ACM Transactions on Programming Languages and Systems, 14(3):339–394,
July 1992.

[KF91] David Kurlander and Steven Feiner. Inferring constraints from multiple snapshots. Technical
Report CUCS-008-91, Columbia University, New York, NY, May 1991.

[KF92] David Kurlander and Steven Feiner. Interactive constraint-based search and replace. In CHI
1992 Proceedings, May 1992.

[KK91] Tomihisa Kamada and Satoru Kawai. A general framework for visualizing abstract objects
and relations. ACM Transactions on Graphics, 10(1):1–39, January 1991.

[KMS94] Corey Kosak, Joe Marks, and Stuart Shieber. Automating the layout of network diagrams
with specified visual organization. IEEE Transactions on Systems, Man, and Cybernetics,
24(3):440–454, March 1994.

[Kra92] Glenn A. Kramer. A geometric constraint engine. Artificial Intelligence, 58(1–3):327–360,
December 1992.

[KvB97] Grzegorz Kondrak and Peter van Beek. A theoretical evaluation of selected backtracking
algorithms. Artificial Intelligence, 89(2):365–387, 1997.

[Mac91] Blair MacIntyre. A constraint-based approach to dynamic colour management for windowing
interfaces. Master’s thesis, University of Waterloo, Waterloo, Ontario, Canada, 1991.

[Mar94] Kim Marriott. Constraint multiset grammars. In Proceedings of IEEE Symposium on Visual
Language, pages 118–125, Los Alamitos, CA, October 1994.

[MCF98] Kim Marriott, Sitt Sen Chok, and Alan Finlay. A tableau based constraint solving toolkit for
interactive graphical applications. In International Conference on Principles and Practice of
Constraint Programming, 1998.

32



References Greg J. Badros

[MGD+90a] Brad A. Myers, Dario Giuse, Roger B. Dannenberg, Brad Vander Zanden, David S. Kosbie,
Philippe Marchal, Ed Pervin, Andrew Mickish, and John A. Kolojejchick. The Garnet toolkit
reference manuals: Support for highly-interactive graphical user interfaces in Lisp. Technical
Report CMU-CS-90-117, Computer Science Dept, Carnegie Mellon University, March 1990.

[MGD+90b] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zanden, David S. Kosbie,
Edward Pervin, Andrew Mickish, and Philippe Marchal. Garnet: Comprehensive support
for graphical highly interactive user interfaces. IEEE Computer, November 1990.

[Mic98] Brian Michalowski. A constraint-based specification for box layout in CSS2. Technical Report
UW-CSE-98-06-03, University of Washington, June 1998.

[MM95] Rich McDaniel and Brad A. Myers. Amulet’s dynamic and flexible prototype-instance ob-
ject and constraint system in C++. Technical Report CMU-CS-95-176, Carnegie Mellon
University, Pittsburgh, PA, July 1995.

[MMM+97] Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan S. Ferrency, Andrew Faulring,
Bruce D. Kyle, Andrew Mickish, Alex Klimovitski, and Patrick Doane. The Amulet envi-
ronment: New models for effective user interface software development. IEEE Transactions
on Software Engineering, 23(6):347–365, June 1997.

[MMMF96] Brad Myers, Robert Miller, Rich McDaniel, and Alan Ferrency. Easily adding animations
to interfaces using constraints. In Proceedings of UIST 1996, pages 119–128, Seattle, WA,
November 1996.

[MS98] Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduction. MIT
Press, Cambridge, Massachusetts, 1998.

[MT] Nena Medvidovic and Richard N. Taylor. Reuse of off-the-shelf constraint solvers in C2-style
architectures. Available from neno@ics.uci.edu.

[Nel85] Greg Nelson. Juno, a constraint-based graphics system. In Proceedings of SIGGRAPH 1985,
San Francisco, July 1985.

[Not98] Michael Noth. Constraint drawing applet. Web page, 1998. http://www.cs.washington.edu/
research/constraints/cda/info.html.

[OK98] Gregory M. Oster and Anthony J. Kusalik. ICOLA—incremental constraint-based graphics
for visualization. Constraints: An International Jounal, 3:32–59, 1998.

[PVW85] T. Pavlidis and Christopher J. Van Wyk. An automatic beautifier for drawings and illustra-
tions. In Proceedings of SIGGRAPH 1985, July 1985.

[RMS97] Kathy Ryall, Joe Marks, and Stuart Shieber. An interactive constraint-based system for
drawing graphs. In Proceedings of UIST 1997, Banff, Alberta Canada, October 1997.

[San94a] Michael Sannella. Analyzing and debugging hierarchies of multi-way local propagation con-
straints. In Alan Borning, editor, Principles and Practice of Constraint Programming 1994,
pages 63–77, Orcas Island, WA, 1994.

[San94b] Michael Sannella. The SkyBlue constraint solver and its applications. In Proceedings of the
1994 Workshop on Principles and Practice of Constraint Programming, Cambridge, Mas-
sachusetts, 1994. MIT Press.

[Sch83] Ben Schneiderman. Direct manipulation: A step beyond programming languages. IEEE
Computer, 16(8):57–69, August 1983.

[Sho85] Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of SIGGRAPH
1985, pages 245–254, San Francisco, CA, July 1985.

[SMFBB93] Michael Sannella, John Maloney, Bjorne Freeman-Benson, and Alan Borning. Multi-way
versus one-way constraints in user interfaces: Experience with the deltablue algorithm.
Software—Practice and Experience, 23(5):529–566, May 1993.

33



References Greg J. Badros

[Sut63] Ivan Sutherland. Sketchpad: A Man-Machine Graphical Communication System. PhD thesis,
Department of Electrical Engineering, MIT, January 1963.

[TMM+98] Shin Takahashi, Satoshi Matsuoka, Ken Miyashita, Hiroshi Hosobe, and Tomihisa Kamada.
A constraint based approach for visualization and animation. Constraints: An International
Jounal, 3:61–86, 1998.

[vBD97] Peter van Beek and Rina Dechter. Constraint tightness and looseness versus local and global
consistency. Journal of the ACM, 1997.

[VW82] Christopher J. Van Wyk. A high-level language for specifying pictures. ACM Transactions
on Graphics, 1(2):163–182, April 1982.

[VZ96] Brad Vander Zanden. An incremental algorithm for satisfying hierarchies of multi-way
dataflow constraints. ACM Transactions on Programming Languages and Systems, 18(1):30–
72, January 1996.

[VZMGS] Brad Vander Zanden, Brad A. Myers, Dario A. Giuse, and Pedro Szekely. Integrating pointer
variables into one-way constraint models.

[VZMGS91] Brad Vander Zanden, Brad A. Myers, Dario A. Giuse, and Pedro Szekely. The importance of
pointer variables in constraint models. In Proceedings of UIST 1991, pages 155–164, Hilton
Head, SC, November 1991.

[VZV96] Brad Vander Zanden and Scott A. Venckus. An empirical study of constraint usage in
graphical applications. In Proceedings of UIST 1996, pages 137–146, Seattle, WA, November
1996.

[WK88] Andrew Witkin and Michael Kass. Spacetime constraints. In Proceedings of SIGGRAPH
1988, pages 159–168, Atlanta, GA, August 1988.

[WW98] Steve Wolfman and Dan Weld. The LPSAT engine and its application to resource planning.
To be submitted, IJCAI’99., 1998.

34


