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Abstract. We use a Monte Carlo code to generate synthetic near-IR reflection nebulae that resemble those (normally associated
with a bipolar outflow cavity) seen towards massive young stellar objects (YSOs). The 2D axi-symmetric calculations use an
analytic expression for a flattened infalling rotating envelope with a bipolar cavity representing an outflow. We are interested in
which aspects of the circumstellar density distribution can be constrained by observations of these reflection nebulae. We there-
fore keep the line of sight optical depth constant in the model grid, as this is often constrained independently by observations.
It is found that envelopes with density distributions corresponding to mass infall rates of ∼10−4 M� yr−1 (for an envelope radius
of 4700 AU) seen at an inclination angle of ∼45◦ approximately reproduce the morphology and extension of the sub-arcsecond
nebulae observed in massive YSOs. Based on the flux ratio between the approaching and receding lobe of the nebula, we can
constrain the system inclination angle. The cavity opening angle is well constrained from the nebula opening angle. Our sim-
ulations indicate that to constrain the outflow cavity shape and the degree of flattening in the envelope, near-IR imaging with
higher resolution and dynamic range than speckle imaging in 4 m-class telescopes is needed. The radiative transfer code is
also used to simulate the near-IR sub-arcsecond nebula seen in Mon R2 IRS3. We find indications of a shallower opacity law
in this massive YSO than in the interstellar medium, or possibly a sharp drop in the envelope density distribution at distances
of ∼1000 AU from the illuminating source.
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1. Introduction

Bipolar outflows appear to be a ubiquitous phenomenon dur-
ing the formation of stars in all mass ranges (Bally & Lada
1983; Henning et al. 2000; Ridge & Moore 2001; Beuther
et al. 2002). Low mass young stellar objects (YSOs) show
highly collimated bipolar jets from a few 10 AU (Burrows et al.
1996) to several parsec (Reipurth et al. 1997; Eislöffel 2000) in
length. These jets are thought to be magneto-hydrodynamically
collimated in a wind formed at the inner star-disk system (e.g.
X-wind, Shu et al. 1994). The jets are thought to drive the large
scale molecular outflow (Masson & Chernin 1994).

The formation and collimation of outflows in massive
YSOs is less well understood than in low mass YSOs. There
appears to be a lack of highly collimated parsec-scale jets
(Mundt & Ray 1994). In the near-IR, searches for shock-
excited H2 show traces of jets in massive star forming regions,
but probably driven by low mass young stars located in the
same cluster (Davis et al. 1998; Wang et al. 2003). A recent
search for optical shock-excited emission in the outer parts of
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the outflow, yielded no evidence of jet interaction (Alvarez
& Hoare, in preparation). Very close to the driving source,
there is also not clear evidence that jets are the rule in mas-
sive YSOs. In some cases, the free-free radio emission from
the inner wind shows a jet morphology (e.g. HH80-81, Marti
et al. 1993; Cep A, Torrelles et al. 1996). Such jets would
have to be magneto-hydrodynamically driven, even though the
OB stars themselves are not magnetically active. Magneto-
hydrodynamics in the infalling rotating cloud could set up bipo-
lar flows (Tomisaka 1998). In other cases, the ionised wind ap-
pears to be equatorial (e.g. Hoare et al. 1994; Hoare & Muxlow
1996; Hoare 2002). Theoretical models show that radiation
pressure in massive young stars can drive gas off the surface
of a disk, producing a predominantly equatorial wind (Drew
et al. 1998; Drew & Proga 2000). Any initial flow maybe hy-
drodynamically collimated into a bipolar flow by the flattened
surrounding cloud (e.g. Delamarter et al. 2000). These alterna-
tive theories will predict different morphologies for the base
of the outflow cavities carved out. These variations in mor-
phology occur at scales of a few 100 AU, which at the typi-
cal distances to massive YSOs of ∼1 kpc, correspond with an-
gular sizes of ∼0.′′1. Therefore, high resolution techniques are
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fundamental to study the impact of the the outflow in the sur-
rounding material.

In a related paper (Alvarez et al., in preparation, here-
after Paper I), we show high resolution near-IR speckle images
which trace the circumstellar matter around massive YSOs at
scales of a few 100 AU. The extended emission that is seen to-
wards some of the sources can be interpreted as scattered light
in an outflow cavity due to its monopolar morphology. This in-
terpretation is supported in some cases by the blue colours of
the nebula (e.g. Mon R2 IRS3, Paper I, Preibisch et al. 2002).
Furthermore, polarimetric speckle imaging of the reflection
nebula in the massive star forming region S140 IRS1 (Schertl
et al. 2000) shows a centrosymmetric pattern which is typical
of scattered light.

Intuitively, one can imagine that depending on the proper-
ties of the dust, the shape of the cavity, the density distribution
and the orientation of the system with respect to the observer,
the resulting reflection nebula will change. The morphology of
the cavity is particularly important because it is shaped by the
interplay between the infall and the outflow. For instance, it is
expected that an equatorial or wide-angled wind will produce a
cavity with a wide opening angle near the star. However, a jet
is expected to open a rather narrow cavity.

Radiative transfer simulations have been widely used to
generate synthetic nebulae that resemble the observations
(Lazareff et al. 1990; Whitney & Hartmann 1992; Kenyon et al.
1993; Fischer et al. 1994, 1996; Whitney et al. 1997; Lucas &
Roche 1997, 1998; Wolf et al. 2002). The work by Lazareff
et al. (1990) was based on a ray-tracing code and it was fo-
cused mainly on the effect produced by different disc models on
the synthetic nebulae. The authors compared the general fea-
tures of the model images with previous seeing-limited images
of the low mass systems HL Tau and L 1551 IRS5. Whitney
& Hartmann (1992), Kenyon et al. (1993) and Whitney et al.
(1997) developed a Monte Carlo code to investigate how the
nebula morphology and the near-IR colours of the synthetic
images vary with different model parameters. In particular,
Whitney et al. (1997) used their code to constrain the colours
of the central source, the dust model and the envelope density
distribution in a sample of ∼20 low mass YSOs. Fischer et al.
(1994) and Fischer et al. (1996) developed a new Monte Carlo
scattering code and they focused on exploring the effect of dif-
ferent dust models in the synthetic images. Lucas & Roche
(1997) and Lucas & Roche (1998) compared synthetic nebu-
lae produced with their Monte Carlo code with high resolu-
tion multi-colour observations of reflection nebulae associated
with low mass YSOs. From this comparison, they could con-
strain some parameters defining circumstellar density distribu-
tion as well as the dust model for several sources. Recently,
radiative transfer Monte Carlo codes have been developed to
simulate scattering by non-spherical dust particles Whitney &
Wolff (2002), Wolf et al. (2002) and Lucas (2003).

These previous models have focused predominantly on low
mass YSOs. Here, we apply the Monte Carlo code of Lucas
& Roche (1998) to high mass YSOs, where the infall rates are
much higher. We also adopt an observational approach, by pre-
senting a grid of models in which as each parameter is varied,
the overall density is scaled too to keep the optical depth along

the line of sight constant. This is because the line of sight opti-
cal depth is often well constrained from other data such as the
optical depth of the 9.7 µm silicate feature or the colour of the
star. The models are decribed in Sect. 2. The grid of models is
presented in Sect. 3. In Sect. 4, we use the models to constrain
the density distribution in Mon R2 IRS3. Some concluding re-
marks are shown in Sect. 5.

2. Models

We used the Monte Carlo code of Lucas & Roche (1997, 1998)
with a set of parameters adapted to massive YSOs. The mod-
els consist of a central star surrounded by a dusty flattened
envelope. A disc characterises the density distribution near
the equator. The model also includes an empty bipolar cavity
opened by the outflow in the circumstellar matter. The pho-
tons emerging from the central source are scattered off the dust
grains in the envelope and disc. Each photon can suffer sev-
eral scattering processes until it is either absorbed, or escapes.
All photons traveling in a particular direction are binned, and
projected onto the image plane.

The envelope is described by a density distribution result-
ing from the collapse of a slowly rotating cloud (Ulrich 1976;
Terebey et al. 1984). The density (ρ) at any point (r, µ) is given
by Eq. (1),

ρ(r, µ) ∼ Ṁ
8πrc(GM)1/2

· 1
(1 + µ0)1/2

· 1
r1/2

(1)

µ3
0 +

(
r
rc
− 1

)
µ0 − r

rc
µ = 0 (2)

where Ṁ represents the mass infall rate and M is the mass of
the central source. rc is the centrifugal radius, which determines
the degree of flattening of the distribution. Flatter density distri-
butions are characterised by larger centrifugal radii. µ = cos θ,
where θ is the position angle of each particle with respect to the
polar axis. µ0 = cos θ0 represents the initial position angle of
each infalling particle. The equation of motion of the infalling
particles (Eq. (2)) should be satisfied at every point (see Ulrich
1976, for details).

The disc plays a passive role in the models presented here.
It absorbs and scatters the radiation from the central star, but
it does not emit. We use Eq. (3) to describe the disc density
structure,

ρd(R, z) = ρ0(R/R∗)−αe
− z2

2H(R)2 (3)

where R and z satisfy the relation r2 = R2 + z2, ρ0 represents
the density in the midplane at the surface of the star, and R∗
is the radius of the star. H(R) = H0(R/R∗)β is the disc scale
height. β parametrises the degree of flaring on the disc. We tried
steady Keplerian discs (α = 15/8 and β = 9/8) as well as
geometrically thin and optically thick discs (α = 3/4 and β =
0) (Lazareff et al. 1990; Whitney & Hartmann 1992).

An empty cavity represents the material evacuated by the
outflow in the envelope. The shape of the cavity must be de-
termined by the interplay between the infall and outflow pro-
cesses. However, the lack of knowledge of these processes
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makes the choice of the cavity shape somewhat arbitrary. For
some of the models a conical cavity was used,

z = B · (R − Rcav) (4)

where B represents the tangent of the cavity half-opening an-
gle. For other models, a parabolic cavity was used, which is
represented by the expression,

z = A · (R2 − R2
cav) (5)

where the constant A determines the curvature of the parabola,
and Rcav represents the radius of the cavity at the equator.
The cavity opening angle (2θlim) is defined as twice the angle
formed by the z axis and the line connecting the intersection
between the parabola and the equator with the intersection be-
tween the parabola and the outer sphere.

For the dust, we used the mixture of Mathis et al. (1977).
The values of the opacities are obtained using a dust to gas
ratio by mass of ∼10−2. The optical constants and albedos
for this mixture were chosen from Draine & Lee (1984) and
Draine (1985). The values used for the opacity κext

λ are 2.0, 3.8
and 6.5 m2 kg−1, and the values for the albedoωλ are 0.22, 0.34
and 0.45, in the K, H and J bands respectively. The phase func-
tion that describes the scattering is within the Rayleigh approx-
imation in the K band, and becomes gradually forward throw-
ing towards the J band.

3. Grid of models

In this section, a grid of models is presented (see Table 1) to
illustrate how variations on the input parameters affect the mor-
phology of the model images. All models shown have an outer
radius Rout = 4700 AU, and are assumed to be located at a dis-
tance of 1 kpc. Since we aim to compare the model predictions
with typical speckle observations in 4 m-class telescopes, syn-
thetic images are generated with a size of 128× 128 pixels at a
pixel scale of 0.′′06. Our choice of Rout keeps the outer bound-
ary of the models outside the field of view of the synthetic
images. The images were convolved with a Gaussian with a
FWHM = 0.′′2, which is the typical resolution achieved with
speckle imaging in 4 m-class telescopes (see Paper I).

The input parameters are varied with respect to a fiducial
model (K01, in Table 1). The fiducial model consists of an en-
velope with a centrifugal radius of 50 AU and a mass infall rate
1.11×10−4 M� yr−1 (note that Ṁ ∼ 10−8−10−5 M� yr−1 are typ-
ically inferred for low mass YSOs; e.g., Kenyon et al. 1993;
Lucas & Roche 1997; Whitney et al. 1997). The mass infall
rates used in our grid are consistent with envelope models in
massive stars (Wolfire & Cassinelli 1986; Maeder & Behrend
2002). This mass infall rates, though, would be smaller for
models with a larger outer radius. The model also has a geo-
metrically thin but optically thick disc (α = 3/4 and β = 0)
of radius rd = 250 AU and ρ0 = 2 × 10−4 kg m−3. A conical
cavity with a radius at the equator of 100 AU and an opening
angle 2θlim = 20◦ represents the effect of the outflow in the en-
velope. The central source is assumed to be a 10 M� star with a
radius R∗ = 10 R�. The number of input photons in model K01
is 5 × 106. Only 8.7% of these photons form part of the output

Table 1. Grid of models.

Moda Rcav rc rd τlos/ ι Cavb Disc Ṁ Fout

K01 100 50 250 8 / 45 C20 T 1.11 0.087

K02 100 50 250 6 / 45 C20 T 0.47 0.119

K03 100 50 250 7 / 45 C20 T 0.77 0.093

K04 100 50 250 9 / 45 C20 T 1.38 0.173

K05 100 50 250 10 / 45 C20 T 1.44 0.066

K06 100 50 250 8 / 75 C20 T 0.47 0.068

K07 100 50 250 8 / 60 C20 T 0.77 0.138

K08 100 50 250 8 / 25 C20 T 1.80 0.350

K09 100 SPH 250 8 / 45 C20 T 1.17 0.087

K10 100 100 250 8 / 45 C20 T 1.30 0.080

K11 100 150 250 8 / 45 C20 T 1.47 0.077

K12 100 200 250 8 / 45 C20 T 1.62 0.074

K13 100 50 250 8 / 45 C10 T 1.06 0.058

K14 100 50 250 8 / 45 C30 T 1.18 0.124

K15 100 50 250 8 / 45 C40 T 1.28 0.167

K16 100 50 250 8 / 45 C50 T 1.41 0.214

K17 50 50 250 8 / 45 C20 T 0.83 0.075

K18 150 50 250 8 / 45 C20 T 1.39 0.094

K19 200 50 250 8 / 45 C20 T 1.66 0.101

K20 250 50 250 8 / 45 C20 T 1.93 0.106

K21 100 50 100 8 / 45 C20 T 1.11 0.087

K22 100 50 150 8 / 45 C20 T 1.11 0.087

K23 100 50 200 8 / 45 C20 T 1.11 0.087

K24 100 50 500 8 / 45 C20 T 1.11 0.087

K25 100 50 250 8 / 45 C20 F 1.11 0.087

K26 100 50 250 8 / 45 P20 T 1.58 0.150

J01 100 50 250 25 / 45 C20 T 1.11 0.097

H01 100 50 250 15 / 45 C20 T 1.11 0.055

HH01 100 50 250 12 / 45 C20 T 1.11 0.063

a Model name, composed of the filter used to generate the image,
and a serial number.

b Type of cavity; (P)arabolical or (C)onical, and opening angle (in
degrees).

c Type of disc; (F)lared or (T)hin.
Rcav, rc and rd are the cavity, centrifugal and disc radius in AU.
τlos represents the optical depth along the line of sight at the wave-
length of the model. The inclination of the line of sight in degrees
with respect to the system axis is represented by ι. Ṁ is the mass
accretion rate in units of 10−4 M� yr−1. Fout is the ratio between
the total number of output photons (i.e. the sum of scattered and
direct photons from the star) in all directions and the number of
input photons at the wavelength of the model.

(see Col. 9 in Table 1). The other 91.3% is absorbed either in
the disc (9.3% of the total) or in the envelope (79.2%). There is
a small fraction (2.8%) that is absorbed by the star itself after
being scattered. The optical depth along the line of sight of the
fiducial model in the K band (τlos = 8 in Table 1) corresponds
to an extinction in the K band of AK = 8.6 mag. If the extinction
law of He et al. (1995) is used, this corresponds to a visual ex-
tinction of ∼80 mag, i.e. an optical depth of the 9.7 µm silicate
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Fig. 1. K band images for models in which the infall rate has been var-
ied with respect to the fiducial model (K01 in Table 1, see Fig. 2c).
a) Model K02 with a 0.87 × 10−4 M� yr−1. b) Model K03 (1.06 ×
10−4 M� yr−1). c) Model K04 (1.30 × 10−4 M� yr−1). d) Model K05
(1.44 × 10−4 M� yr−1). The rest of the parameters remain unchanged
with respect to model K01. In the four panels, the line of sight forms
an angle of 45◦ with respect to the cavity axis. The 1′′ bar represents
a length of 1000 AU, and the resolution used is 0.′′2. The greyscale
varies from −5% (the lightest) to 20% of the maximum brightness
(the darkest). The contours are at 5, 10, 15, 30 and 50% of the maxi-
mum brightness. These contour levels have been chosen for compari-
son with typical near-IR speckle imaging in 4 m-class telescopes (see
Paper I). τlos represents the optical depth along the line of sight. These
and the other model images shown in this section are normalised to
the brightness peak, unless otherwise stated.

feature of τSi(9.7 µm) ∼ 4, (where τSi(9.7 µm) = 0.053Av from
Draine & Lee 1984 was used), which is typically observed in
massive YSOs.

3.1. Morphology

In this section, we investigate which parameters of the cir-
cumstellar density distribution can be constrained from the ob-
served morphology of the nebula. Figure 1 shows the effect
produced in the synthetic images by varying the overall opti-
cal depth in the envelope. This is done by changing the density
scaling through the mass infall rate (Ṁ) in the Ulrich formula.
At low optical depths (Fig. 1a), there is less dust available to
scatter the light, and also to absorb the direct light from the
star. Therefore, the nebula becomes relatively fainter than at
higher optical depths, and the only contribution to the image at
a 5% level is the central star. However, at higher optical depths,
the nebula becomes much more extended, since the central star
becomes highly obscured and there is more dust available for
scattering. Hence, only a change of 50% in the mass infall
rate has a dramatic change on the appearance of the system,

. .

..

Fig. 2. Synthetic K band images of reflection nebulae for the models
at different inclination angles (ι). The mass infall rate has been ad-
justed to yield the same optical depth along the line of sight (τlos = 8)
at all four inclination. Ṁ is expressed in units of 10−4 M� yr−1 and ι
in degrees. Panel a) corresponds with a near-edge-on model (K06 in
Table 1). The image in panel b) corresponds with an intermediate in-
clination (model K07). Panel c) shows the fiducial model (K01), which
is seen at an inclination angle of 45◦. d) Model with a near-pole-on
inclination (K08). The contours and the greyscale in all panels are de-
fined as in Fig. 1.

due mainly to the exponential dependence on the line of sight
optical depth of the central star brightness. Therefore, from an
observational point of view, the line of sight optical depth is the
most important parameter.

Figure 2 shows the K band images for different inclination
angles of the line of sight with respect to the system axis (i.e.
cavity axis). The overall density scaling has been adjusted in
each of the four models to yield the same optical depth along
the line of sight as the fiducial model (τlos = 8). For views near
edge-on (panel a in Fig. 2), the nebula is clearly bipolar at the
5% level. The receding lobe appears less bright than the ap-
proaching lobe. In this case (model K06 in Table 1), a mass
infall rate 2.3 times lower than for the fiducial model was used.
Even at this near-edge-on inclination, it is possible to see the
central star due to the low overall density scaling. At interme-
diate inclinations (panels b and c), the receding lobe is not de-
tected any more at the 5% level. At low inclinations, (panel d)
a faint monopolar nebula can still be seen.

The contrast between the approaching and receding neb-
ula (Fapp/Frec) is a useful quantity to estimate the system in-
clination angle. Figure 3a shows the variation of the Fapp/Frec

with the inclination angle. Each point in the plot represents a
model whose overall density scaling has been adjusted to yield
an optical depth along the line of sight of 8 at its corresponding
inclination. The flux ratio has been calculated using aperture
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a) b)

Fig. 3. a) Variation of the approaching to receding lobe flux ratio
with system inclination angle, where the line of sight optical depth
is kept constant. The system inclination angle varies from near-edge-
on (µ = 0.1) to near-face-on (µ = 0.9). b) Variation of the approaching
to receding lobe flux ratio with overall opacity.

photometry with an aperture radius of 1′′ in the synthetic im-
ages. The aperture on the approaching lobe was centered at 0.′′8
from the star along the cavity axis and it includes the star itself.
The aperture on the receding lobe was centered at 1.′′2 from the
star also along the cavity axis and it does not include the star.
This avoids sensitivity to the actual location of the apertures.
For near-edge-on views (small µ’s), the approaching and re-
ceding lobe have roughly the same brightness. Therefore, the
Fapp/Frec is nearly 1. As µ increases, the approaching lobe
becomes relatively brighter, and hence the value of Fapp/Frec

increases. The figure also shows that the ratio Fapp/Frec be-
comes 100 for values of µ in the range between 0.70 and 0.80
(i.e. for inclination angles in the range 35◦ and 45◦). Hence,
a 1% upper limit in the detection of the receding lobe indicates
that the system is seen under an inclination angle ≤45◦.

Figure 3b shows the change of Fapp/Frec due to variations
in the optical depth (i.e. variations in the Ṁ) for an inclination
angle of 45◦. At very low optical depths (τlos <∼ 5) the star dom-
inates the flux. As the opacity increases (6 <∼ τlos <∼ 9), the star
is increasingly obscured, and the counter-lobe starts to show
up. At larger optical depths (τlos >∼ 10), the approaching lobe
starts to dominate the emission, while the receding lobe hardly
changes. Hence, the ratio Fapp/Frec increases again. The con-
trast between the nebula lobes is less sensitive to changes in the
mass infall rate than to changes in the inclination angle. Hence,
in principle, the approaching to receding lobe flux ratio can be
used to constrain the inclination angle.

In Fig. 4, we investigate whether the shape of the enve-
lope can be derived. The images show models with an in-
creasing centrifugal radius (i.e. flattness of the envelope), from
panel a) to panel d). The mass infall rate for each model has
again been set such that the optical depth along a line of sight
at 45◦ remains the same as for the fiducial model (i.e. τlos = 8
in the K band). The fiducial model, with a centrifugal radius
of 50 AU, is shown in Fig. 2c. Figure 4a represents the case of
a spherical density distribution. The nebula becomes less bright
as the centrifugal radius increases (panels b–d in Fig. 4). Since
the material is predominantly concentrated on the equatorial
plane and there is less dust available in the polar regions of the
envelope, where a large fraction of the scattered light is gen-
erated. However, this is a very subtle change compared to that

. .

..

Fig. 4. K band images resulting from models with different centrifugal
radius seen at an inclination angle of 45◦. The mass accretion rate for
each model was set to keep the τlos = 8 along the line of sight at 45◦ in
the K band. The rest of the parameters remain unchanged with respect
to the fiducial model. In all panels, the value of rc is expressed in AU
and Ṁ is expressed in units of 10−4 M� yr−1. a) Model K09 in Table 1,
which represents a spherical envelope (i.e. the limiting case of a neg-
ligible centrifugal radius). b) Model K10, which has a rc = 100 AU.
c) Model K11, which has a rc = 150 AU. d) Model K12 with a rc =

200 AU. The contours and the greyscale in all four panels are defined
as in Fig. 1.

for the line of sight optical depth o inclination angle. Hence,
the reflection nebula tells us little about the degree of flattening
of the envelope.

Figure 5 shows the effect of varying the cavity opening
angle (10◦ ≤ 2θlim ≤ 50◦) on the synthetic nebulae. The
mass infall rate was increased with the cavity angle to keep
the same optical depth along the line of sight in all images.
Unsurprisingly, the nebula opening angle appears to be larger
for models with a wide-angled cavity. The significant changes
on the nebula shape occur for the external contours, while the
inner contours remain nearly unchanged. This is consistent
with the fact that variations in the cavity opening angle will
affect more the external regions of the envelope than the re-
gions close to the cavity base. At wider cavity opening angles,
more stellar photons can escape the system without being scat-
tered. This is shown in Col. 9 of Table 1, where the fraction of
photons (scattered and stellar) that leaves the system (Fout) is
listed.

The result of varying the cavity radius at the equator
from 50 to 250 AU is shown in Fig. 6. A radius of 50 AU
corresponds approximately to the sublimation radius for dust
in OB stars. Radiation pressure or wind interactions could in-
crease the size of the hole. The nebula appears fainter and
slightly wider for larger values of the Rcav. In this case,
the differences between nebulae can also be observed in the
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Fig. 5. K band images corresponding to models with different cavity
opening angles seen at an inclination angle of 45◦. The Ṁ for each
model (which is shown in units of 10−4 M� yr−1) has been set to yield
a K band optical depth of 8 along the line of sight. The conical cavity
opening angle increases from panel a) (10◦) to panel d) (50◦) (i.e.
models from K13 to K16 in Table 1). The greyscale and contours are
as in Fig. 1.

innermost contours. This is caused by the fact that changes in
Rcav will have a stronger impact in the regions of the envelope
closer to the equator than in the outer regions. The total number
of output photons increases by a factor of 1.4 from the model
with Rcav = 50 AU to the model with Rcav = 250 AU (see Col. 9
in Table 1). For larger values of Rcav, similar number of photons
are scattered of a larger surface. Hence, the surface brightness
of the nebula decreases from Figs. 6a to d.

We now investigate the effect of the detailed shape of the
base of the cavity. A parabolic cavity might be expected if
the central wind is initially equatorial, whilst a conical cavity
would arise from a jet-driven flow in low mass stars (Bachiller
et al. 1995). Figure 7a shows the K band image for a model with
a parabolic cavity compared with a conical nebula in Fig. 7b.
The other parameters have the same values as for the fiducial
model, except the overall opacity scaling, which has been en-
hanced by a factor of 1.4 to yield the same optical depth along
the line of sight as in the fiducial model. The parabolic shape
is clearly seen in the resulting nebula, as expected (Fig. 2). A
larger fraction of photons escape from the parabolic model than
from the conical model because the parabolic cavity is broader
near the star than the conical cavity. The concave shape of the
cavity walls, favours the scattering in the outer regions of the
envelope, which also contributes to make the parabolic nebula
more extended.

All models shown up to this point included an optically
thick, and geometrically thin flat disc of radius rd = 250 AU.
To investigate any dependence of the model images on the disc

.

.

.

.

Fig. 6. Variation of the nebula shape with the cavity radius at the equa-
tor (models K17 to K20 in Table 1). The mass infall rate was adjusted
to yield the same optical depth along the line of sight in all four im-
ages. The values for Rcav are expressed in AU. All panels represent a
line of sight at 45◦. The greyscale and contours are as in Fig. 1.

Fig. 7. a) Model with a parabolic cavity (K26 in Table 1) compared
with the fiducial model at an inclination of 45◦. The cavity open-
ing angle is the same as for the conical cavity in the fiducial model
(2θlim = 20◦). b) Fiducial model at an inclination of 45◦. This is the
same image as shown in Fig. 2c. The greyscale and contours are as in
Fig. 1. The density scaling is a factor of 1.4 larger in the model with
the parabolic cavity than in the conical cavity model.

radius, we have generated models with the same parameters
as the fiducial model (K01, Fig. 2a) but with varying disc ra-
dius (100 AU ≤ rd ≤ 500 AU). No significant differences were
found between the images resulting from these models and the
fiducial model. We also investigated whether the introduction
of a flaring disc may change the morphology of the reflection
nebulae. Model K25 in Table 1 has the same parameters as the
fiducial model except for a flaring in the inner disc. The val-
ues used for α and β in the disc equation (Eq. (3)) were 15/8
and 9/8 respectively (i.e. a Keplerian disc). No relevant differ-
ences were appreciated between these images and the fiducial
model. The reason is that the disc flaring angle for the value
of β = 9/8 is small compared with the line of sight inclination
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Fig. 8. Multi-band models. The two panels represent the fiducial
model in the J and H bands, seen at an inclination angle of 45◦. In
Table 1 they are labeled as J01 (panel a)), H01 (panel b)). τ is the op-
tical depth at an inclination of 45◦. The greyscale and the contours are
the same as in Fig. 1, and the grey cross indicates the position of the
star.

angle. The envelope density dominates the disc density for all
inclinations ≤77◦ (µ ≥ 0.22).

3.2. Dependence with wavelength

Figures 2c, 8a and 8b show the variation of the synthetic im-
ages with the wavelength (J, H and K band respectively). The
geometry and density distribution for the J and H band models
are the same as for the fiducial model. However, the opacities,
the albedos and the scattering matrix change with wavelength.
The opacities correspond with an extinction law (κext

λ ∝ λ−γ)
with an exponent γ = 2.3. The number of photons in the in-
put spectrum at H (N in

H ) is a factor of 2.00 times the num-
ber of photons at K (N in

K ), and the number of photons at J
(N in

J ) is 2.45 times the number of photons at K. The number
of input photons at each wavelength was calculated using the
model stellar atmospheres from Kurucz (1979). The spectral
energy distribution (SED) of model OB main sequence stars
were integrated in the J, H and K bands using the transmission
profiles of the filters J98, H98 and K98 at UKIRT. The ratio
between the number of photons emitted at two given bands ap-
proaches asymptotically to a constant value for earlier spectral
types. This limit corresponds with a slope in the stellar SED
of −2.4 (N in

λ ∝ λ−2.4), which is shallower than the theoreti-
cal Rayleigh-Jeans limit (N in

λ ∝ λ−3). This shallower SED is a
better representation of the colours of OB main sequence stars
than the Rayleigh-Jeans approximation (see the UKIRT web-
page: http://www.jach.hawaii.edu/JACpublic/UKIRT/).
Figures 2c, 8a and 8b show that the nebula appears more ex-
tended at short wavelengths, while the star becomes totally ob-
scured, due to the increase in the opacity. It can also be seen
that the separation between the star and the nebula apex de-
creases towards longer wavelengths, i.e. it is possible to probe
the circumstellar density distribution closer to the star at longer
wavelengths.

We now address the question of how the colours of the
synthetic images vary with the different model parameters.

a) b)

d)c)

Fig. 9. a) Variation of the model H − K colour (Eq. (6)) with the line
of sight inclination angle for the fiducial model. b)–d) The inclination
angle is fixed at 45◦ and the overall opacity, centrifugal radius and
cavity opening angle are varied. In panels c) and d) the mass infall rate
was also changed to keep the opacity along the line of sight constant.

The H − K colour for the models can be estimated using the
following expression,

(H − K)mod = −2.5 log

N
out
H

Nout
K

λK

λH

f 0
K

f 0
H

 (6)

where theN’s represent the number of photons within a certain
aperture on each band. The λ’s are the central wavelengths of
the filters, and the f 0’s are the zero magnitude fluxes. The val-
ues used for λ are 1.65 and 2.20 µm at H and K respectively,
and 1.12 × 10−9 W m−2 µm−1 and 4.07 × 10−10 W m−2 µm−1

are the values for f 0
H and f 0

K respectively (UKIRT web-page:
http://www.jach.hawaii.edu/JACpublic/UKIRT/). For
simplicity, the colours shown here assume that the foreground
extinction is negligible. Note that the presence of unknown
foreground extinction is an added complication when models
are compared with observations.

Figure 9a shows the change in the H − K colour with the
line of sight inclination angle for the fiducial model. An aper-
ture radius of 1′′ centered at the image centre was used. The
H − K colour at all inclinations, except for the very close to
pole-on, is clearly redder than the H − K colour of the input
spectrum ((H − K)inp = 0.04). At edge-on inclinations (µ ∼ 0),
no star is seen in either band, and the nebula at K is less ex-
tincted than the nebula at H. At intermediate inclinations, the
nebula at H becomes brighter because the stellar light passes
through a less dense part of the envelope. The star begins to ap-
pear at K but is not yet seen at H. The overall effect is that the
H − K colour becomes bluer. For µ > 0.65 the star brightens
quickly at K, dominating the flux in this band, while the star
just begins to appear at H. Hence, the H − K colour becomes
redder. At face-on views (i.e. µ ≥ 0.94) the H − K colour tends
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to the (H − K)inp because the star is now seen directly through
the cavity. The behaviour of the H − K colour with the incli-
nation angle in our simulations is different to that found by
Kenyon et al. (1993) and Whitney et al. (1997). Their mod-
els become bluer at high inclination angles, while ours become
redder due to the higher envelope optical depth (i.e. higher
mass infall rate) and due to the fact that, at high inclinations,
no star is seen in the H band.

Figure 9b illustrates how the H − K colour varies with the
overall opacity at a fixed inclination angle of 45◦. At large
opacities, the H − K colour is bluer because the reflection neb-
ula becomes relatively brighter than the star. In Fig. 9c, we rep-
resent models with different centrifugal radii seen at a fixed
inclination of 45◦. The mass accretion rate was adjusted so that
all of them have an optical depth along the line of sight of 8.
In the models with a larger centrifugal radius (i.e. a flatter den-
sity distribution) there is less dust available in the outer parts of
the envelope, since the dust is mainly concentrated at the equa-
tor. This density enhancement in the equatorial region allows
more direct light from the central star to escape (predominantly
in the K band due to the low opacity) than in models with a
small rc. The consequence is that the H − K colour becomes
slightly redder for models with large rc.

Figure 9d shows variations of the H − K colour with the
cavity opening angle. All models represented in this plot are
seen at an inclination of 45◦, and the overall density scaling was
adjusted to yield an τlos = 8. The general trend is that at wide
cavity opening angles the H − K colour becomes bluer because
more scattered photons in the outer parts of the envelope (at H,
not at K) can escape from the system. This general trend is
favoured by the fact that the direct light from the star is equally
extincted at all cavity opening angles shown in Fig. 9d. The
figure also illustrates that the H − K colour for models with
an 2θlim > 50◦ becomes even bluer than the H − K colour of
the input spectrum. In summary, the four panels in Fig. 9 show
that the change in the H − K colour is not higher than 1 mag
within the ranges of the parameter space investigated. Hence,
the integrated colour is not particularly sensitive to the density
distribution, and is unlikely to yield unique solutions for the
model parameters.

3.3. Dust in the cavity

Up to now, we have assumed that the cavity evacuated by
the outflow is empty. However, in a more realistic situation,
one would expect that some dust may remain inside the cav-
ity. We estimated the expected Av due to dust within the cav-
ity from the typical H2 column densities in massive outflows
as follows. Ridge & Moore (2001) show that the integrated
CO (J = 1−2) intensity in molecular outflows from 11 massive
YSOs is, on average, ∼200 K km s−1. If we use the expression
N(H2) (cm−2) = 3 × 1020

∫
Tmb dv, where

∫
Tmb dv represents

the integrated CO (J = 1−2) intensity (Osterloh et al. 1997;
Henning et al. 2000), typical H2 column densities in the out-
flow of 6 × 1022 cm−2 are obtained. This yields typical visual
extinctions of ∼3.5 mag, if the expression Av/N(H2) (cm−2) =
5.88 × 10−23 from Bohlin et al. (1978) is used. This implies an

AK ∼ 0.4 mag which is about 200 times smaller than the AK =

8, used in our fiducial model.
To see the effect that dust in the cavity has in our simula-

tions, we have run three models with the same parameters as
our fiducial model but with an AK along the cavity axis of 0.1,
1 and 10 mag. A dusty density distribution within the cavity
given by the expression ρ(z) = (1 + |z|/Rcav)−2, which is ex-
pected in a disc wind with a constant flow density distribution
in a conical cavity, was chosen. The output from the models
with AK = 0.1 and 1 are hardly distinguishable from the fiducial
model. For AK = 10, only a few photons from the star can scape
the system, and the reflection nebula is not seen at all. However,
the latter value of AK is far larger than our previous estimate of
extinction due to dust in the cavity. Therefore, for the typical
extinction expected due to dust within the cavity in massive
YSOs, no noticeable effect on the observable properties of our
scattering models is detected. Note that this result depends on
the selected shape for the density distribution within the cav-
ity. If an optically thin uniform density distribution is chosen,
the resulting reflection nebula is expected to be more extended
than for an empty cavity (see Lucas & Roche 1996).

4. Model for Mon R2 IRS3 S

In Paper I, multi-colour (H and K band) speckle images of a
pair of outflow cavities in Mon R2 IRS3 were presented. In this
section, the data for IRS3 S are used to find observational con-
straints to the density distribution using the models presented
in the previous section. In Figs. 10a and b, we show the H and
K band images of Mon R2 IRS3 S shown from Paper I, with
the presumed cavity axis oriented along the vertical direction.
These images have a pixel scale of 0.′′057 and a resolution
of 0.′′19, which is comparable to the values used the simula-
tions. The procedure used to find a good fit model for these
data is the following. A sub-set of models that match the mor-
phology of IRS3 S at K are chosen amongst the grid shown in
Sect. 3. A model is searched amongst these that also matches
the morphology of the source in the H band. Finally, the
H − K colour of the model is compared with the observations.

Firstly, a reasonable match to the K band image for IRS3 S
was found, which is given by the fiducial model used in the grid
seen at an inclination angle of 45◦ (Fig. 2c). A zoom into the
central 2′′ of this model is shown in Fig. 10d. The H band im-
age for the fiducial model using the opacity κext

H = 3.8 m2 kg−1

(cf. Sect. 2) appears to be too extended (see Fig. 8b). Other
combinations of inclination angle and mass infall rate were also
too extended since the optical depth at H was always too high.
Therefore, a shallower opacity law was used in an attempt to
achieve a better fit to the IRS3 S H band image. The new value
used for κext

λ at H was 2.9 m2 kg−1 which corresponds with an
opacity law (κλ ∝ λ−γ) with γ = 1.3 between 1.65 µm and
2.2 µm (instead of the previous value of γ = 2.3). The expo-
nent 1.3 was chosen to yield an opacity law slightly flatter than
than the γ = 1.7 inferred from studies on the interstellar extinc-
tion in the near-IR (e.g. He et al. 1995). The model using the
shallower opacity law (HH01 in Table 1) is shown in Fig. 10.
It can be seen that this law still yields a rather extended neb-
ula compared with the H band image of IRS3 S. A shallower
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Fig. 10. a), b) H and K speckle images of Mon R2 IRS3 S. These im-
ages were obtained by rotating the images shown in Paper I by an
angle of 198◦. The orientation is such that the presumed cavity axis is
along the vertical axis. The greyscale varies from −5% (white) to 40%
(black) of the brightness peak. The contour levels are at 5, 10, 15, 30
and 50% of the peak. The images are normalised to the peak bright-
ness. c), d) Images for models K01 and HH01 seen at an inclination
angle of 45◦. These images are also normalised to their brightness
peak. The resolution, contours and greyscale are the same as on pan-
els a) and b). The cross in the H band images indicate the location of
the embedded star.

opacity law than the one given by Draine & Lee (1984) has
been used by other authors (e.g. Lucas & Roche 1998) to ex-
plain the small variation with wavelength of reflection nebulae
in low mass YSOs. This is possibly due to a different dust com-
position or grain size distribution in the circumstellar matter of
YSOs than in the interstellar medium. Another possible expla-
nation relies on the fact that speckle imaging acts as a spatial
filter for diffuse extended features of the same order and larger
than the seeing. Therefore, even if the nebula in the H band was
extended for a few arcseconds, the reconstructed speckle im-
age would only pick up the structure closer to the nebula peak,
which is dominated by the high spatial frequencies. It may also
be the case that the envelope density distribution is truncated
at a distance of ∼1000 from the central source, causing both H
and K images to have the same extent.

Even though a reasonably good fit was found to the K band
speckle image of IRS3 S, the synthetic nebula shows some
differences with respect to the observed nebula. In particular,
the observed nebula departs clearly from the axi-symmetry,
probably due to foreground extinction or the presence of a
clumpy envelope. Besides, the brightness of the synthetic neb-
ula (Fig. 10d) drops faster near the star than in the case of the
observed nebula (Fig. 10b). Further out, at ∼1′′ from the star,
the brightness of the synthetic nebula appears to drop more
smoothly than observed in IRS3 S. The sub-arcsecond nebula
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Fig. 11. K band profile along the cavity axis for IRS3 S. The speckle
data (filled triangles) are obtained from Fig. 10b. The solid circles
represent the data from the contour map shown by Aspin & Walther
(1990). The solid line corresponds with an extension of the fiducial
model‘up to a radius of 9.4× 104 AU. The speckle data and the model
are flux calibrated following the procedure explained in the text. The
offsets are in arcseconds from the position of the star. The errors for
the speckle data are smaller than the size of the plotting symbol.

is the inner region of a large reflection nebula (with a diame-
ter of ∼15′′) that is seen in the near-IR seeing limited images of
Mon R2 IRS3 (see Aspin & Walther 1990; Yao et al. 1997). The
large scale nebula is a halo of reflected light around the whole
cloud but its polarisation pattern indicates enhanced scattering
along an axis that coincides with the sub-arcsecond nebula axis
(PA ∼ 198◦) .

To investigate if the model that matches the sub-arcsecond
morphology of IRS3 S fits the outer part of the reflection neb-
ula, the outer radius of the fiducial model was doubled while
the mass infall rate was slightly reduced to 1.03×10−4 M� yr−1

to keep a K band optical depth of 8 at an inclination of 45◦.
The profile along the cavity axis for this model was compared
with the profile for the K band reconstructed image of IRS3 S
and with the profile along the same direction for the reflection
nebula studied by Aspin & Walther (1990). This comparison
is shown in Fig. 11. The data for the large scale nebula were
taken from the flux-calibrated contour map shown in Fig. 3 of
Aspin & Walther (1990). The error bars correspond to half of
the contour level separation in their map (0.25 mag/arcsec2).
The data points for the observed sub-arcsecond nebula were
calculated from a 0.′′2 wide line along the cavity axis passing
through the star in IRS3 S on the normalised speckle image.
The zero point offset for the magnitude scale was calculated by
assigning a K magnitude of 6.6 (obtained from the 2MASS sur-
vey) to the total number of counts within an aperture of ra-
dius 2.′′5 that included both IRS3 N and S. The statistical error
in the surface brightness is <∼0.2 mag/arcsec2.

The profile for the model was calculated from 0.′′2 wide line
along the cavity axis in the synthetic image normalised to the
brightness peak. The zero point offset for the magnitude scale
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was chosen such that it yields the same brightness at the peak
as the flux-calibrated speckle data.

Figure 11 shows that there may be a discrepancy of at
least 1 mag/arcsec2 between the data from Aspin et al. and
the speckle data. A possible explanation is that speckle imag-
ing filters out any background smooth emission, and hence less
counts in the speckle image than in the seeing limited image of
Aspin et al. appear to account for the same flux. The profiles
plotted in Fig. 11 show that the model predicts emission from
the outer parts of the nebula (at a distance from the star >1′′)
that is about 2 mag brighter than it is observed. This may be
caused by a drop in the density distribution of IRS3 at a ra-
dius ∼1000 AU that is not included in the models (cf. Figs. 10a
and b).

Willner et al. (1982) estimated an optical depth for the sil-
icate absorption feature at 9.7 µm of τSi(9.7 µm) = 4.30, using
a 27′′ aperture centered at Mon R2 IRS3. The same value is also
inferred from the ISO spectrum of the region (Jackie Keane pri-
vate communication). This value can be used as an estimate of
the total extinction (foreground and through the envelope) to-
wards IRS3 S. This τSi(9.7 µm) leads to an optical extinction of
Av ∼ 82 mag (Draine & Lee 1984) . This corresponds with an
extinction in the K band AK = 8.6 mag (i.e. τK ∼ 7.9) using the
reddening law of He et al. (1995), which is in good agreement
with the K band optical depth for the fiducial model (τK = 8).

We found that the H − K colour of IRS3 S is redder than
the H − K colour of any of the model images. This is proba-
bly caused by the fact that we used the SED of an OB main
sequence star to define the input spectrum. However, it is very
likely that the illuminating source has an excess in the K band
due to the presence of a possible accretion disc, and/or hot dust
near the star. The inclusion of an excess of K band photons
in the input spectrum may solve the discrepancy between the
observed and modeled colours. High resolution photometry at
longer wavelengths is required to constrain the input spectrum
in the simulations.

5. Conclusions

Radiative transfer Monte Carlo simulations have been used to
investigate the density distribution in massive YSOs at scales
where the outflow is generated. The assumed density distribu-
tion consists of a central massive star within a flattened dusty
envelope, with a cavity and an inner optically thick disc. It is
found that envelopes with density distributions corresponding
to typical mass infall rates of ∼10−4 M� yr−1 seen at an in-
clination angle of ∼45◦ approximately reproduce the morphol-
ogy and extension of the sub-arcsecond nebulae observed in
massive YSOs. The inclination angle can be constrained by
the measurement of the contrast between the approaching and
the receding nebular lobe, although observations with a high
dynamic range are required (e.g. adaptive optics). The cavity
opening angle is well constrained by the nebula opening angle.
The simulations indicate possibly some constraints on cavity
shape and radius at the equator, which could have implications
for the initial angle of the outflow (e.g. jet, wide-angled, equa-
torial). However, higher resolution than provided by speckle
imaging in 4 m-class telescopes is needed to achieve better

constraints of these two quantities. The models do not provide
significant constraints on the flattening in the envelope or the
size of the equatorial disc, which require direct observations
with millimetre interferometry.

The Monte Carlo code was also applied to the near-IR sub-
arcsecond reflection nebula seen in Mon R2 IRS3 S. An enve-
lope with a mass infall rate of 10−4 M� yr−1 that includes a con-
ical cavity with an opening angle of 20◦ seen at an inclination
angle of 45◦ provides a reasonable match for the K band image.
However, no set of input parameters was found that reproduces
both the H and K band images of IRS3 S. An opacity law with
an exponent γ = 2.3 (Draine & Lee 1984; Draine 1985) yields
H band nebulae that are too extended with respect to the obser-
vations. This would also be the case for the observed interstel-
lar extinction law (γ = 1.7; He et al. 1995). A shallower opacity
law (γ = 1.3) yields a better match to observed H band neb-
ula, although still too extended. This indicates that the dust in
the circumstellar envelope of massive YSOs may have a rather
different optical properties to the dust that forms part of the
interstellar medium. However, a truncated density distribution
could also explain the data.

Overall, this work shows that future high resolution
(∼0.′′05) high dynamic range (>100) near-IR imaging has the
potential to constrain the inclination angle and shape of the
base of the outflow cavity. In turn, this could test hydrodynamic
models of the interplay between the infall and outflow in mas-
sive YSOs.
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