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An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data
acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this
purpose. No significant signal is found in a total of ∼9 h of on-off observations. Upper limits on the
velocity averaged cross section, hσvi, for the annihilation of dark matter particles with masses in the range
of ∼300 GeV to ∼10 TeV are derived. In contrast to previous constraints derived from observations of the
Galactic center region, the constraints that are derived here apply also under the assumption of a central
core of constant dark matter density around the center of the Galaxy. Values of hσvi that are larger than
3 × 10−24 cm3=s are excluded for dark matter particles with masses between ∼1 and ∼4 TeV at 95% C.L.
if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint
that is derived on hσvi for annihilating TeV mass dark matter without the assumption of a centrally cusped
dark matter density distribution in the search region.

DOI: 10.1103/PhysRevLett.114.081301 PACS numbers: 95.35.+d, 14.80.Ly, 95.85.Pw, 98.35.Gi

Introduction.—The formation of the large scale structure
of the universe as well as the dynamics of galaxy clusters
and individual galaxies strongly suggest the presence of
dark matter on the respective length scale [1]. Many
extensions of the standard model of particle physics predict
a stable particle without electromagnetic coupling whose
presence can account for the missing mass that is apparent
in astrophysical environments [1]. The annihilation of dark
matter particles is expected to produce photons with
energies up to the mass of the dark matter particles [2].
The detection of γ rays from a given direction can thus
indirectly probe the presence of dark matter particles along
the corresponding line of sight.

The central region of the Milky Way is of particular
interest for indirect searches for annihilating dark matter
because the squared dark matter density integrated over the
line of sight towards the target region (i.e., the astrophysical
or J factor) is expected to be large [3]. The J factor for
observations of the Galactic center region depends strongly
on the dark matter density distribution within the
Milky Way. Simulations of the dynamics of the dark matter
content of galaxies predict to universal dark matter density
distributions. Towards the center of the galaxies, the
influence of baryons on the distribution of dark matter is
not yet resolved. The formation of pronounced density
cusps towards the center of galaxies ([4, 5]) and, more
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recently, the prediction that the dark matter density in the
central few hundred pc is almost constant [6–8] have been
discussed. The latter prediction of an almost constant dark
matter density in the central region of the Galaxy is
considered in this Letter.
The current strongest constraints on the velocity averaged

cross section for the self-annihilation of dark matter particles
with masses in the range of ∼400 GeV to ∼10 TeV result
from a search for an extended emission of γ rays in the
central region of the Milky Way with H.E.S.S. [9]. However,
the constraints apply only if the dark matter density
distribution in the central ∼500 pc of the Milky Way is
cusped (see dotted lines in Fig. 1). An alternative search for
the annihilation of dark matter particles is presented in this
Letter and strong constraints on hσvi are derived without the
assumption of a dark matter density profile that is cusped in
the central 500 pc of the Milky Way.
The high energy stereoscopic system.—The high energy

stereoscopic system (H.E.S.S.) is an array of imaging
atmospheric Cherenkov telescopes (IACT) in the
Namibian Khomas Highland. IACTs detect the Cherenkov
light emitted by electromagnetic showers that are induced
when primary γ rays interact with air nuclei in Earth’s
atmosphere. Charged cosmic rays also induce showers in
Earth’s atmosphere and constitute background for the IACT
detection of γ rays. Cosmic ray background events that
cannot be suppressed during the analysis of H.E.S.S. data
(see [11]) are typically treated with a background subtraction
technique [12]. The background subtraction relies on the
definition of a signal region for which a background region is
constructed. The construction of the background region must
be performed such that the ratio of the acceptance for
background events in the signal and the background region
is known from instrumental characteristics. The definition of

the background region enables a comparison between the
number of events that are detected in the signal region and
the number of background events that are expected in the
signal region. The acceptance for background events of
H.E.S.S. is in general strongly influenced by atmospheric
conditions, the pointing zenith angle and the night sky
background in the observed field of view. See [11] for more
information on the H.E.S.S. experiment.
On-off observations of the Galactic center region with

H.E.S.S.—The on-off observation mode (see also [13],
[12]) refers in this Letter to a special observation strategy
where a background (off1) region, the signal (on) region,
and another background (off2) region are observed con-
secutively for 33 min each. Figure 2 shows the observed
regions in galactic coordinates. The signal region has a
radius of 2° and centers at l ¼ 1°, b ¼ −0.7° in galactic
coordinates or α ¼ 267.7°, δ ¼ −28.4° in equatorial coor-
dinates (J2000). The centers of the two background regions
have a symmetric offset of �35 min in right ascension to
the signal region center. The two minute difference between
the right ascension offset between the signal and back-
ground regions and the observation length allows for a
transition time between the observations. The on-off
observation pattern allows the equalization of the azimuth
and zenith angles that are covered by array pointings in
each of the observations. Differences in the acceptance for
background events which result from differences in the
zenith angle array pointing range can thus be neglected.
The time difference of 35 min between the observations is a
compromise between the demand for small atmospheric
changes (i.e., small time differences) and a large offset in
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right ascension (i.e., large time differences). Two back-
ground regions are observed, to better control residual
imbalances in the acceptance for background events
between the observations. Figure 3 shows the J factor
for a given line of sight as a function of the angular
distance, θ, between the directions of the line of sight and
the Galactic center. The J factor is proportional to the
expected number of dark matter annihilation events in the
respective direction. The θ angle ranges that are covered by
the signal and background regions in the off1-on-off2
observations are indicated in Fig. 3. It is concluded from
this figure that the expected number of dark matter
annihilation events is larger in the signal than in the
background regions when the radius of the core of constant
dark matter density around the Galactic center is 500 pc or
less. This is a clear advantage of the on-off method when
compared to the background subtraction technique that is
applied in [9] which relies on the simultaneous observation
of the Galactic center region and a background region in the
same finite H.E.S.S. field of view with ∼2∘ radius.
The application of standard quality criteria for H.E.S.S.

data [11] and the additional requirement for compatible
instrumental and atmospheric conditions within an off1-on-
off2 observation result in a total of six off1-on-off2 data
sets. All data sets were taken within one week in 2010 with
the H.E.S.S. I array of four identical IACTs. The total dead
time corrected observation time for each of the three
observed regions is 3.05 h. The mean zenith angle of
the array pointing for the data sets is 12°.
Data analysis.—The image cleaning (see [11]) low and

high pixel intensity thresholds for the data are chosen to be
7 pe (photo electrons) and 10 pe. Using the observed

distribution of pixel intensities in cosmic ray events, it was
checked that these image cleaning cut criteria eliminate
effects due to differences in sky brightness between
the observed regions. Standard Hillas criteria [11] for the
selection of γ-ray events are applied to the data. The
thresholds used for image cleaning lead to an energy
threshold of 290 GeV. Only events with reconstructed
directions within the central 2° angular distance around the
pointing position of each observation are considered to
account for the truncation of γ-ray images near the edges of
the H.E.S.S. field of view. The Galactic plane (jbj < 0.3°) is
excluded from the analysis to avoid the detection of γ rays
from astrophysical sources (e.g., the Galactic center source
HESSJ1745-290, [14]) without relation to dark matter
annihilation. The exclusion region is shifted by the respec-
tive pointing position offset in right ascension into the two
background regions to equalize the acceptance in the signal
and background regions (see Fig. 2). To rule out the
detection of γ rays from astrophysical sources, the consid-
ered data with the chosen exclusion regions are analyzed
with the ring background [12] method and a correlation
radius of 0.1 deg prior to the on-off analysis. The resulting
skymaps of the three observed regions show no indication
for a significant excess. It is concluded from the analysis
with the ring background method that the chosen exclusion
regions are sufficient to exclude astrophysical sources of
gamma rays for the on-off analysis.
The mean exposure ratio, α ¼ 0.5, for the on-off data

analysis is the ratio of the live times for the observation of the
signal and background regions [12]. However, imbalances in
the acceptance for background events between the signal
region and the two background regions lead to a systematic
error, σα, on the exposure ratio. A conservative estimate
for the relative systematic error on the exposure ratio,
σα=α ¼ 2%, is derived. This estimate results from a com-
parison of the number of events which pass γ-ray event
selection criteria in the two background regions.
Results.—A total of Non ¼ 24268 signal and Noff ¼

49028 background events are measured that pass standard
Hillas criteria [11] for the selection of γ-ray events.
The total γ-ray signal s has a statistical significance of
−0.5σ. The statistical significance is calculated with the
log-likelihood ratio test statistic as described in [15] with
the likelihood function (see also [16])

L ¼ PðNon; α̂bþ sÞPðNoff ; bÞGðα̂; α; σαÞ: ð1Þ
Here, P and G represent the Poisson and Gaussian
distributions. The parameters b (mean number of back-
ground events) and α̂ (exposure ratio with mean α) are
treated as nuisance parameters. For comparison, the sig-
nificance of the γ-ray event excess as calculated with
Eq. (17) in [17] without consideration of the systematic
error on the exposure ratio is −1.3σ. Since no significant
γ-ray signal is measured, an upper limit on the integrated
γ-ray signal for energies ranging from the instrumental
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energy threshold to a maximum energy Ê is derived. For the
calculation of the upper limit, the likelihood function that
is given by Eq. (1) is analyzed with the method described
in [15]. The upper limit on the energy integrated signal
translates (see, e.g., [18]) into an upper limit on the velocity
averaged dark matter self annihilation cross section,
hσviðMÞ, for a dark matter particle with mass M ¼ Ê.
The variation of the instrumental response with the zenith
and azimuth angles of the array pointing and within the
field of view is accounted for in the analysis. The consid-
eration of the 2% relative systematic error on the exposure
ratio increases the upper limit on hσvi by a factor of ∼3.
Upper limits on hσvi are presented in Fig. 4 for Einasto and
NFW dark matter density profiles with a 500 pc radius core
of constant dark matter density around the Galactic center.
The parameters for the NFW and Einasto density profiles
are taken from [10]. The derived upper limits on hσvi hold
for the γ-ray energy spectrum that is expected from the self
annihilation of dark matter particles into light quarks (see
[2], the same spectrum is assumed in [9]). For an Einasto
dark matter profile that is cored in the inner 500 pc around
the Galactic center, values of hσvi ∼ 3 × 10−24 cm3=s or
larger are excluded for dark matter particle masses in
between ∼1 to ∼4 TeV at 95% C.L. The upper limits on

hσvi that are derived for an Einasto dark matter density
distribution with a core radius of 500 pc are the most
constraining exclusions that are derived for TeV mass dark
matter without the assumption of a centrally cusped dark
matter density distribution in the search region. However,
these limits are one order of magnitude less constraining
than the current best limits for cusped dark matter density
distributions (see Fig. 4) and 2 orders of magnitudes weaker
than the expectation for thermal relic dark matter (see,
e.g., [1]).
For core radii different from 500 pc, the upper limit on

the velocity averaged dark matter self annihilation cross
section scales like hσviR ¼ ðΔJ500 pc=ΔJRÞhσvi500 pc where
ΔJ denotes the difference between the field of view
averaged astrophysical factors in the signal and background
region and the subscript is equal to the core radius. The
field of view averaged astrophysical factors in the signal
and background region of the considered on-off analysis for
different core radii are listed in Table I. The upper limits on
hσvi increase by a factor of 2 (5) if the radius of the central
core of constant dark matter density is 750 pc (1 kpc) when
compared to a core radius of 500 pc.
Summary.—A search for a signal from annihilating

dark matter around the Galactic center was performed.
For this purpose, data that were acquired in dedicated
on-off observations of the Galactic center region with
H.E.S.S. were analyzed. No significant signal was found.
The employed observation technique enabled the deriva-
tion of upper limits on hσvi that are significantly more
conservative in respect to the distribution of dark matter in
the Galactic center region than previous constraints. In
particular, the constraints apply also under the assumption
of a core of constant dark matter density around the
Galactic center. If the dark matter density in the central
500 pc around the Galactic center is constant and follows
outside of the core radius an Einasto profile, values of
hσvi that are larger than 3 × 10−24 cm3=s were excluded
for dark matter particle masses between ∼1 and ∼4 TeV at
95% C.L. This is currently the best constraint on hσvi that
has been derived without the assumption of a centrally
cusped dark matter density distribution in the search
region.
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FIG. 4. Upper limits on the velocity averaged dark matter self
annihilation cross section as a function of the dark matter particle
mass. The upper limits for the cored Einasto and NFW density
profiles hold for a core radius of 500 pc and the annihilation of
dark matter particles into light quarks ([2]). The filled area around
the upper limit curve for the cored Einasto dark matter profile
shows the �1σ variations around the upper limit that is expected
for this dark matter density profile when no annihilation signal is
detected. The derived upper limit is stronger than the expected
upper limit due to the negative significance of the measured
excess. For comparison, the velocity averaged annihilation cross
section of a thermal relic dark matter particle is shown. Addi-
tionally shown are the upper limits that are derived in [9] for
cusped Einasto and NFW profiles as well as the upper limit that is
derived in [19] for a cored dark matter density distribution around
the Sculptor dwarf galaxy.

TABLE I. Field of view averaged astrophysical factors for the
signal (subscript on) and for the live time weighted average of the
two background regions (subscript off). The values are in units of
GeV2 cm−6 kpc and are tabled for Einasto and NFW profiles as a
function of the radius (R) of the central dark matter core.

R (kpc) JEinastoon JEinastooff JNFWon JNFWoff

0 2167 268 559 78
0.5 1036 268 256 78
0.75 636 268 165 78
1 426 255 117 75
2 138 126 46 43
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