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Abstract In this paper, we propose a new phenomeno-
logical two parameter parameterization of q(z) to constrain
barotropic dark energy models by considering a spatially flat
Universe, neglecting the radiation component, and recon-
structing the effective equation of state (EoS). This two
free-parameter EoS reconstruction shows a non-monotonic
behavior, pointing to a more general fitting for the scalar
field models, like thawing and freezing models. We constrain
the q(z) free parameters using the observational data of the
Hubble parameter obtained from cosmic chronometers, the
joint-light-analysis Type Ia Supernovae (SNIa) sample, the
Pantheon (SNIa) sample, and a joint analysis from these data.
We obtain, for the joint analysis with the Pantheon (SNIa)
sample a value of q(z) today, q0 = −0.51+0.09−0.10, and a tran-
sition redshift, zt = 0.65+0.19−0.17 (when the Universe change
from an decelerated phase to an accelerated one). The effec-
tive EoS reconstruction and the ω′–ω plane analysis point
towards a transition over the phantom divide, i.e. ω = −1,
which is consistent with a non parametric EoS reconstruction
reported by other authors.

1 Introduction

Several cosmological observations indicate that the Universe
experiments a late-time acceleration [1]. This feature was evi-
denced for the first time by the observations of distant Type
Ia Supernovae (SNIa) [2,3] and is one of the major puzzles in
modern cosmology. In general, there are two ways to explain
this mysterious cosmic phase: i) to postulate a fluid with
negative pressure, the so-called dark energy (DE), into the
canonical Einstein’s general relativity theory or ii) to mod-
ify the gravity laws. Between these two approaches, numer-
ous models have been proposed. Most of them can explain
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a wide range of the cosmological observations and distin-
guishing among them is not a trivial problem. Despite of this,
one simple model has been established as the standard, the
one with a cosmological constant associated to the quantum
vacuum fluctuations � with cold dark matter (�CDM). Nev-
ertheless, it has theoretical problems [4,5] which motivates
further studies of alternative models [6]. For instance, some
of those consider a dynamical DE involving scalar fields,
like quintessence [7–9], phantom [10,11], quintom [12], and
k-essence fields [13,14]. An advantage of these models is
that the DE equation of state (EoS) evolves with time, and
thus it can be parameterized by a function of the scale factor
(redshift, as proposed by [15,16]) to explore its cosmological
behavior.

The standard way to examine these models is to calculate
the Friedmann and Raychaudhuri equations in a background
cosmology to constrain their free parameters (see for exam-
ple [17]). A model-independent approach is to investigate the
cosmographic parameters that characterize the kinematics of
the cosmic expansion [18–23]. The advantage of this proce-
dure is that the only assumption is the Cosmological Prin-
ciple, i.e. an homogeneous and isotropic Universe, without
speculating about its composition. Indeed, it is very common
to consider the Hubble parameter, H ≡ ȧ/a, and the decel-
eration parameter, q(a) ≡ −äa/ȧ2.1 However, higher order
derivatives of the scale factor a, such as jerk and snap, can
be also considered, e.g. [25]. By probing the cosmographic
parameters using cosmological data, we can associate them
to a given dynamical DE entity and reconstruct its features as
well as the Universe dynamics. In this vein, several authors
have proposed a number of functions to parameterize the
deceleration parameter q(z) (see for example [25–30] for
recent studies) and associate its features to a some DE model.

1 Alan Sandage claimed that the cosmic expansion can be determined
by these two parameters at z = 0 [24].
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The motivation of the present work is to propose a new
parameterization of the deceleration parameter as function of
redshift, based only in the cosmological principle, and able
to generate an EoS which describes both, slowly and rapidly
behaviors [31]. The ansatz is a continuous and differentiable
function that is valid from the matter domination epoch until
the near future. We constrain the q(z) free parameter by per-
forming a Bayesian analysis for which we employ the latest
compilation of observational Hubble data (hereinafter OHD)
from cosmic chronometers and Type Ia Supernova. Using the
mean value parameters, we reconstruct an effective EoS to
the dynamical dark energy.

The paper is organized as follows. In Sect. 2 we state the
theoretical framework and present the parametric equation of
the deceleration parameter. Section 3 provides a description
of the data sets and the methodology used to constrain the
parameters of the deceleration parameter. Section 4 presents
the obtained EoS, and the tools to discriminate between dif-
ferent DE models. Finally, in Sect. 5 the remarks and con-
clusions are presented.

2 Theoretical framework

2.1 Proposed parameterization for the deceleration
parameter

The deceleration parameter as function of H(z) is

q = −
(

1 + Ḣ

H2

)
, (1)

if q > 0 the Universe is at a decelerated phase, otherwise
q < 0 corresponds to an accelerated phase. By integrating
the Eq. (1), the Hubble parameter can be written as:

H(z) = H0 exp

(∫ z

0

1 + q(z′)
1 + z′

dz′
)

, (2)

where H0 is the Hubble parameter at the present epoch and
z = (1/a) − 1 is the redshift.

The OHD suggest that q < 0 at the present epoch and
q > 0 during an early epoch when the matter dominates as
shown in Refs. [32,33]. The structure formation at this early
epoch is explained by a decelerated phase, so the value of
the deceleration parameter transit from positive in the past to
negative at the present. The parameterization of the deceler-
ation parameter is a useful method to reconstruct cosmolog-
ical parameters and constrain the dynamical evolution of the
universe in a general scheme [34]. There are several param-
eterizations for q(z) reported in the literature, see Refs. [25–
30,32,34–39]. We propose a new one as follows

q(z) = q1 + (q0 − q1)(z + 1)ez
2
c−(z+zc)2

, (3)

where, q0 and q1 are the values for the deceleration param-
eter at the present epoch, and at high redshift, respectively.
We set q1 = 0.5 to consider the matter-dominated epoch of
the Universe. The characteristic redshift, zc, is a free param-
eter related to the transition redshift, zt , the redshift at which
the Universe underwent a transition from deceleration to an
acceleration phase. This is a well behaved parameterization
(see Fig. 1) that can reproduce a soft step transition, as well
as changes in concavity in the deceleration parameter (notice
that both an accelerated and decelerated stage at z = 0
are allowed), and facilitates the analytical reconstruction of
other cosmological parameters like H(z), and w(z). Note
how combinations of q0 and zc can yield the same transition
redshift.

Substituting the Eq. (3) into the Eq. (2), we obtain the
analytical expression for the Hubble parameter in terms of z:

H(z) = H0(z + 1)q1+1eξη, (4)

where ξ = (
√

π/2)(q0 − q1)ez
2
c , η = erf(z + zc) − erf(zc),

and erf(x) is the error function of x . This is the expression
that is fitted to the data.

2.2 The effective equation of state

With the metric for a spatially flat Friedmann–Lemaître–
Robertson–Walker (FLRW) space-time,

ds2 = −dt2 + a2(t){dr2 + r2d�2}, (5)

and considering a space-time composed of a non-relativistic
component ρm and a barotropic fluid with an effective density
ρeff and an effective pressure peff, the Einstein field equations
in units of 8πG = c = 1 are obtained following Ref. [4] as

3H2 = ρm + ρeff, (6)

2Ḣ + 3H2 = −peff, (7)

and the effective EoS is written as

ω = peff

ρeff
. (8)

Substituting (6) and (7) in (8), the EoS in terms of q(z) and
H(z) is obtained following Ref. [30] as

ω(z) = 2

3

q(z) − 1
2

1 − �m,0(1 + z)3
(

H0
H(z)

)2 . (9)

where �m,0 is the matter density parameter �m = ρm/ρcri t
evaluated at z = 0.2

2 Here ρcri t is the standard critical density defined as 3H(z)2/8πG
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Fig. 1 Left panel: functional form of the proposed q(z) given by Eq. (3) for different (q0,zc) values. Notice that both an accelerated and decelerated
stage at z = 0 are allowed. Right panel: functional form of ω(z) calculated through Eq. (9)

By substituting Eqs. (3) and (4) in Eq. (9), we obtain the
expression

ω(z) = 2

3

(q0 − q1)(z + 1)exp(z2
c − (z + zc)2)

1 − �m,0(1 + z)1−q1exp(−2ξη)
. (10)

The right panel of Fig. 1 shows how the EoS changes for
different values of q0 and zc. The reconstruction of ω(z)
yield distinct DE behaviors when the barotropic fluid is
associated to a minimally coupled scalar field: quintessence
(−1 ≤ ω(z) ≤ 1), phantom (ω(z) < −1) or even crossing
the phantom divide, ω = −1, e.g. quintom models (where
the DE component moves across the quintessence and phan-
tom regions through two scalar fields) see [4] and references
therein. In contrast to some ω(z) parameterizations analyzed
in the literature [15–17,40–44], our EoS concavity changes
from low to high z values if there is at least one inflexion
point at z > 0. Some authors have proposed a more general
form for the EoS parameterization, with a different approach
in which a transition function introduces a rapid evolution
of w(z) [31,45,46]. In the present work, we obtain a similar
result, however the main difference is that the behavior of
the EoS is a direct result of the proposed q(z) parameteri-
zation. Indeed, this further highlights the importance of the
proposed functional form for the deceleration parameter.

3 Observational data and methodology

In this section we introduce the cosmological data and the
methodology used to constraint the q(z) free parameters of
the Eq. (3).

3.1 Observational Hubble data from cosmic chronometers

Several authors have shown that the OHD can be used to con-
strain cosmological parameters. There are two techniques to
measure the cosmic expansion at different redshifts: using
the baryon acoustic oscillation analysis or applying the dif-
ferential age technique (DA) in cosmic chronometers, i.e.
passive-early-type galaxies. This last method was proposed
by [47] and measures H(z) using the following relation for
two early-type galaxies separated by a small redshift interval
	z

H(z) = − 1

1 + z

dz

dt
, (11)

where dz/dt is measured by estimating the differential age
	t with the 4000 Å break (D4000) feature in their spectra.

We employ the latest OHD obtained from DA in cos-
mic chronometers, which contains 31 data points covering
0 < z < 1.97, compiled by [48] and references therein. The
figure-of-merit for the OHD is written as

χ2
OHD =

31∑
i=1

[H(zi ) − HDA(zi )]2

σ 2
Hi

, (12)

where H(zi ) is the theoretical Hubble parameter, HDA(zi ) is
the observational one at redshift zi , and σHi is its uncertainty.

3.2 Type Ia Supernovae

The standard test to investigate the accelerating expansion is
employing the observations of type SNIa at high redshifts.
We use two of the latest SNIa compilations, the so-called
joint-light-curve-analysis (JLA) [49] sample, that contains
740 points spanning a redshift range 0.01 < z < 1.2, and the
Pantheon sample [50] containing 1048 points in the redshift
range 0.001 < z < 2.3.
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3.2.1 JLA SNIa sample

The figure-of-merit for the JLA data is given by

χ2
JLA = (

μ̂JLA − μqz
)† C−1

η

(
μ̂JLA − μqz

)
, (13)

where μqz = 5 log10(dL/10pc) is the theoretical distance
modulus for the q(z) parameterization and dL is the lumi-
nosity distance given by

dL = c(1 + z)
∫ z

0

dz′

H(z′)
. (14)

The observational distance modulus, μ̂, for the the JLA data
reads as

μ̂JLA = m�
b − (MB − α × X1 + β × C) , (15)

where m�
b corresponds to the observed peak magnitude, MB

is the B-band absolute magnitude. The X1 and C variables
describe the time stretching of the light-curve and the Super-
nova color at maximum brightness respectively. The α, and
β coefficients are nuisance parameters. For JLA sample, the
absolute magnitude MB is related to the host stellar mass,
Mstellar by the step function:

MB =
{
M1

B if Mstellar < 1010M� ,

M1
B + 	M otherwise.

(16)

Finally, Cη is the covariance matrix3 of μ̂ provided by [49],
which takes into account several statistical and systematic
errors in the SNIa data.

3.2.2 Pantheon SNIa sample

The observational distance modulus μPAN for Pantheon SNIa
can be measured as

μPAN = m�
b − MB + α × X1 − β × C + 	M + 	B, (17)

where the parameters m�
b, MB , α, X1, β, and C are the same

as the JLA sample. 	M is a distance correction based on the
host-galaxy mass of the SNIa and 	B is a distance correction
based on predicted biases from simulations. It is worthy to
note that [50] provided ˜μPAN = μPAN + MB , thus, we can
marginalize over the MB parameter. The marginalized figure-
of-merit for the Pantheon sample is given by

χ2
PanMmarg

= a + log
( e

2π

)
− b2

e
, (18)

where a = 	μ̃T ·C−1
P ·	μ̃, b = 	μ̃T ·C−1

P ·	1, e = 	1T ·
C−1
P ·	1, and 	μ̃ is the vector of residuals between the model

distance modulus and the observed ˜μPAN. The covariance
matrix CP can be constructed as CP = CP,stat + CP,sys,

3 Available at http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html.

where CP,sys is the systematic covariance matrix, and CP,stat

is a diagonal matrix which contains the statistical errors on
˜μPAN. We refer the interested reader to [50] for a detailed

description how these matrices are constructed.

3.3 Fitting the data

To estimate the values of the parameters q0 and zc from
Eq. (3), a Markov Chain Monte Carlo (MCMC) Bayesian
statistical analysis is performed using the Affine-Invariant
MCMC Ensemble sampler from the emcee Python module
[51]. We perform the following cases: using only the CC data,
only a SNIa sample (JLA or Pantheon), and the joint analysis
CC+SNIa (JLA or Pantheon).The computations are running
with 1500 steps to stabilize the estimations (burn-in phase),
and 5000 MCMC steps using 600 walkers. We assume the
following flat priors for all cases: h ∈ [0, 1], q0 ∈ [−1, 1],
zc ∈ [0, 2]. When the JLA sample is used in the analysis,
we also consider M1

b ∈ [−20.0 ,−18.0], 	M ∈ [−0.1, 0.1],
α ∈ [0.0, 0.2], and β ∈ [0.0, 4.0]. To assess the convergence
of our analysis, a Gelman–Rubin test is employed.

We assume a Gaussian likelihood when the parameter esti-
mation is performed using only a data set. The goodness of
the fit for the joint analysis is quantified by a total χ2 defined
as:

χ2
T = χ2

OHD + χ2
SNIa, (19)

where χ2
OHD is calculated using Eq. (12). And χ2

SNIa is cal-
culated using Eq. (13) or (18) for the JLA or Pantheon sam-
ple respectively. Thus, a joint Gaussian likelihood can be
expressed as:

Ljoint ∝ exp(−χ2
T /2), (20)

where Ljoint is the product of the likelihood functions of each
data set.

The mean values of the fits are presented in Table 1. Fig-
ure 2 shows the confidence contours obtained for the joint
analysis, for both, the JLA and the Pantheon samples. In the
left panel of Fig. 3 we show the OHD along with the func-
tion given by Eq. (4) using the mean values obtained from
the joint analysis (CC+Pantheon) fitting. In the right panel of
the same figure is the reconstructed deceleration parameter
with these same constraints.

Along with the narrow constraints obtained with the joint
analysis (see Fig. 2), we note an anticorrelation between
zc and q0 parameters. This degeneracy has a mathemati-
cal origin: as q0 becomes less negative, the transition red-
shift zt is larger,4 which in turn decreases zc (see Fig. 1).
The q0–zc contours at 3σ restrict the possible values of
the transition redshift approximately between 0.5 and 1.0,

4 The parameter zt is obtained solving the expression 0 = 0.5 + (q0 −
0.5)(zt + 1)ez

2
c−(zt+zc)2

.
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Table 1 Mean values for the model parameters (h, q0, zc) derived from OHD and SN Ia measurements

Data set χ2
min h q0 zc M1

b δM α β

OHD (CC) 15 0.726+0.015
−0.015 −0.79+0.20

−0.14 0.81+0.22
−0.26 – – – –

SNIa (JLA) 683 0.722+0.19
−0.18 −0.44+0.12

−0.15 0.51+0.40
−0.30 −18.98+0.50

−0.64 −0.07+0.02
−0.02 0.14+0.006

−0.006 3.10+0.08
−0.08

SNIa (Pantheon) 1035 0.50+0.34
−0.34 −0.54+0.12

−0.14 0.75+0.32
−0.28 – – – –

Joint (CC+JLA) 700 0.713+0.01
−0.01 −0.49+0.11

−0.12 0.51+0.22
−0.20 −19.01+0.04

−0.04 −0.07+0.02
−0.02 0.14+0.006

−0.006 3.11+0.08
−0.08

Joint (CC+Pantheon) 1054 0.710+0.01
−0.01 −0.51+0.09

−0.10 0.61+0.21
−0.18 – – – –

Fig. 2 1D marginalized
posterior distributions and the
2D 68%, 95%, and 99.7%
confidence levels for the h, q0
and zc parameters for the joint
analysis of SNIa+CC. The circle
and the star represent the
parameter mean values for the
CC+JLA and the CC+Pantheon
samples, respectively

reproducing an accelerated cosmic phase at late times. Addi-
tionally, notice that the principal axes of the h-q0 and h-
zc confidence contours are parallel to the coordinates axes,
indicating that these parameter pairs are uncorrelated. For
the case of a spatially flat universe filled with a barotropic
fluid (or more than one), it has been shown that q0 only
depends on the density parameters, and the corresponding
EoS of the fluid [18,19,21,22,52,53]. This characteristic is
also observed in our h-q0 constraints, which further supports
the proposed functional form for the deceleration parameter
and the assumption of a barotropic fluid. A similar analysis
can be obtained for the transition redshift zt (related to the
zc parameter) in the sense that such parameter is associated

with the density parameters of the Universe’s components.
The result for the h-zc constraints depicted in Fig. 2 shows
also a lack of correlation between both parameters, reinforc-
ing the proposed model in this work.

It is worth to note that the joint confidence contours
using the Pantheon sample are slightly narrower than those
obtained with the JLA sample. This feature is also present in
the 1D histograms, those estimated with the Pantheon sam-
ple are slightly more tight (see also errors in Table 1). This
is related to several systematic uncertainties in the measure-
ments of the SNIa (e.g., photometry, and astrometry calibra-
tion, SN modeling, Milky Way extinction model), see [50].
Our results are consistent with those of [50], i.e. Pantheon

123



890 Page 6 of 11 Eur. Phys. J. C (2019) 79 :890

Fig. 3 Fit to OHD (left panel) and the reconstructed q(z) (right panel)
using the joint analysis (CC+Pantheon) constraints. The dashed and
red shadow regions show the 1σ confidence limits estimated from a

MCMC analysis. The black dashed line in the right panel represents the
transitional redshift, zt , for the joint analysis mean value

Fig. 4 The matter and DE density parameter of the Universe using the
joint analysis mean values. The dashed regions show the 1σ confidence
limits estimated from a MCMC analysis

sample seems to provide tighter cosmological constraints
than the JLA sample, although the difference is not statis-
tically significant.

A numerical analysis of the roots of q(z) allows to esti-
mate the value of the transition redshift, zt = 0.65+0.19−0.17,
for the joint data set using the Pantheon sample (we will
only make use the results of this joint analysis hereinafter).
This result is consistent with values reported in literature
[25,36,39,54–58], indicating that the Universe passed from
a decelerated phase to an accelerated one at z ≈ 0.7. The
right panel of Fig. 3 illustrates the reconstructed q(z) for the
joint analysis constraints. Note that q0 = −0.51+0.09−0.10, and
the reconstructed �m(z) are in agreement with the dynamics
of the standard cosmological model, as well with [18,22,59–

63]. The matter component is dominant with respect to the
dark energy component for high redshift values, the opposite
occurs at late times (see Fig. 4).

4 Dynamical dark energy

4.1 The resulting EoS

The left panel in Fig. 5 presents the EoS constructed from the
Eq. (10) using the parameter mean values and �m,0 = 0.31
[64]

ω(z) = A(z) × 1

1 − B(z)
. (21)

where A(z) is a function of z, and B(z) could be expressed
as

B(z) = 0.31(1 + z)0.5

× e

(
−2ξ

(
erf

(
z+0.50+0.20

−0.19

)
−erf

(
0.50+0.20

−0.19

)))
. (22)

Although Eq. (21) is a well-behaved function, from Eq. (22)
is clear that the denominator may be zero, leading to a sin-
gularity in the EoS (see next section). A way to overcome
this problem is studying the derivative of the EoS [23]. From
Eq. (9), it is straightforward to show that

dω(z)

dz
= 2

3
(1 − �m(z))

(
q(z)

(
1

z + 1

−2(z + zc)) q1

(
2(z + zc) − 1

1 + z

))

+3

(
q(z) − 1

2

)
�m(z)

(
(1+z)(1−�m(z))2

)−1
.

(23)
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Fig. 5 The ω reconstruction using the joint analysis (CC+Pantheon)
mean values and its functional form (left panel). The horizontal black
dashed line represent the phantom divide. The right panel shows the

effective EoS (cyan) and its derivative with respect to z (magenta). The
regions delimited by dashed lines show the 1σ confidence limits esti-
mated from a MCMC analysis

The equation ω and the derivative dω/dz are shown in the
right panel of Fig. 5. The value of the EoS today, ω(z)|z=0 ≡
ω0 = −0.99+0.1−0.1 is consistent with the standard cosmological
model i.e. with the cosmological constant. Note that around
z ≈ 1 the EoS changes concavity (inflexion point), produc-
ing a maximum in dω/dz. Furthermore, the first derivative
of ω with respect z gives a value, as shown in Fig. 5, of
dω/dz|z=0 = −0.97+0.37−0.37, consistent with [54].

4.2 Discriminating dark energy models

The nature of DE is connected to the characteristics of the
EoS. The reconstruction of the EoS by Eq. (9) may have
singular points on its domain, i.e. it might diverge, which
occurs when the denominator is equal to zero. To find the
singular points we consider the next equation:

1 − �m,0(1 + z)3
(

H0

H(z)

)2

= 0, (24)

which can be written as (see A):

1 − �m(z) = 0. (25)

We expect �m(z) to be a monotonically increasing function
from the present (at z = 0), to a matter dominated epoch
when q(z) → q1 = 1/2 (see Appendix A). As Eq. (3)
asymptotically tends to q(z) ∼ q1 as z → ∞ [65], our EoS
reconstruction is valid only from today to an epoch of the
Universe when matter dominates. In future works, we expect
to study a more general parameterization of the deceleration
by using q1 as free parameter.

Fig. 6 Decision regions in the parameter space and the 68%, 95%,
99.7% confidence levels for the q0 and zc parameters for the joint anal-
ysis constraints. The classification of the EoS (depending on the given ω

value) is represented in different regions: green for quintesence models;
purple for quintom models; red for EoS with singular points. The black
star represents the joint analysis (CC + Pantheon) mean values for zc
and q0

The condition given by Eq. (25) is satisfied for z > 0. As
comment before, the EoS is valid too in a matter dominated
epoch, i.e., z >> 1, let us assume for simplicity that z → ∞.
Thus, by substituting the Eq. (4) into Eq. (29), the limit for
�m(z) at such epoch is:

lim
z→∞ �m(z) = �m,0 exp [2ξ(erf(zc) − 1)] . (26)
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Considering that the reconstruction of �m(z) for our
model is a monotonic increasing function for z ≥ 0 (see
Appendix A), for given a pair of fixed q0 and zc there exist
a real positive value of the redshift z for which Eq. (9) will
contain a singular point if

�m,0 exp [2ξ(erf(zc) − 1)] > 1. (27)

Figure 6 illustrates the q0 − zc region bounded for this
inequality, showing two regions of interest: the quintessence
region and, where the EoS crosses the phantom divide. In
the case that ω(z) ∈ [−1, 1], the bartropic fluid can be rep-
resented with a minimally coupled scalar field, known as
quintessence DE model and which is consistent with �CDM
[66], but if ω(z) < −1 the behavior of the fluid is represented
as a phantom DE [4]. Since in our proposed EoS (see Eq. 9)
does not exist an evident restriction for its codomain, it is
important to know whether the reconstruction go through
the phantom divide, defined as ω = −1. If the EoS cross the
phantom divide, the DE behavior can be represented by the
dynamics of more than a single scalar field [67], e.g. a com-
bination of a negative-kinetic and a normal scalar field, as
quintom DE [68]. Notice that our joint analysis mean values
for q0 and zc rely on both regions, panthom and quintessence.

Quintessence models can be classified by the behavior of
the potential associated with the scalar field. The two cat-
egories are thawing models and freezing (tracking) models
(see [17,69] and references therein). In the thawing models,
the scalar field is frozen at early times due to the Hubble
parameter damping,5 while at late times the friction term
becomes subdominant. The ω(z) is a decreasing function
that asymptotically reaches the cosmological constant EoS
(i.e. ω ≈ −1) at early times. In the freezing models, the scalar
potential is steep enough at early times to develop the kinetic
term, while at late times it becomes shallower allowing the
slowing down of the scalar field. The ω(z) is an increasing
function that tends to the Cosmological Constant EoS at late
times. An effective tool to discriminate between these mod-
els is the ω′–ω plane, where ω′ = dω/dlna [70]; since
different models are bounded by different regions [70–72].

A phantom DE can be represented by a scalar field min-
imally coupled to gravity with a non-canonical negative-
kinetic energy term, and whose energy density grows with
time. Thus, the tracking behavior of a phantom model can
be depicted in the ω′–ω plane [71]. Because in the quintom
models the evolution equations of the negative-kinetic and
the normal scalar fields are independent [12], the potential
behavior can be classified by the quintessence and phan-
tom discrimination regions obtained separately. Figure 7
shows the discrimination regions for quintessence (thaw-

5 Indicates that the dynamics of the scalar field is governed by the
Klein–Gordon equation.
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(1 + ω)

3(1
+ ω)

Fig. 7 Discrimination regions for quintessence (thawing and freezing
behavior) and phantom models in the ω′–ω plane. The red dashed lines
represent the bounds for the thawing discrimination region, where ω′ =
3(1 + ω) is the upper bound and ω′ = (1 + ω) is the lower bound [70].
The black dashed lines in the quintessence region (ω > −1) are the
bounds for freezing models, where ω′ = 0.2ω(1 + ω) is the upper
bound, and ω′ = −3(1 −ω)(1 +ω) is the lower bound, see [72]. In the
phantom region (ω < −1), ω′ = 3ω(1 − ω)(1 + ω)/(1 − 2ω) is the
upper bound, and ω = −1 is the lower bound, see [71]. In shades of
blue are the 68%, 95%, 99.7% confidence levels for the reconstruction
of ω and ω′ using the joint constraints (CC++Pantheon), and the orange
line is the mean value of these reconstructions. The orange square is the
value at redshift z = 0

ing and freezing behavior) and phantom models in the ω′–
ω plane. The thawing discrimination region is delimited
between ω′ = 1+ω (lower bound) and ω′ = 3(1+ω) (upper
bound) [70]. The freezing quintessence limits are provided by
ω′ = 0.2ω(1+ω) (upper bound) and ω′ = −3(1−ω)(1+ω)

(lower bound) [71,72]. The upper bound for phantom region
is ω′ = 3ω(1 − ω)(1 + ω)/(1 − 2ω) [71]. As shown in
Fig. 7, our analysis exclude thawing behaviour of the scalar
field, being consistent with [73]. Notice that our joint con-
straints on the q(z) parameters crosses both the quintessence
and phantom regions, hence, confirming that our results are
consistent with DE models that crosses the phantom divide,
e.g. quintom DE.

5 Summary

There are several ways to approach the dynamical evolution
of the Universe with the aim of describing the late and early
epoch expansion. Many models of DE, such as canonical
and negative-kinetic scalar field models, are represented by
a barotropic fluid. Recent observations indicate a transition
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between a decelerated and an accelerated phase of the cosmic
expansion, from a matter dominated epoch to recent times,
respectively. In this work we proposed a new phenomenolog-
ical parameterization of the deceleration parameter, Eq. (3),
to approach the accelerated evolution of the cosmic expan-
sion. The proposed form of q(z) is a well behaved equation
that can represent a step-like transition for this parameter,
as well as being suitable for an analytical reconstruction of
the Hubble parameter and the DE EoS. The behaviour of
this new q(z) parameterization allows to constrain minimally
coupled scalar field DE models, as well as models which the
DE EoS crosses the phantom divide. For minimally coupled
scalar field models, as quintessence, the changes in the con-
cavity of the proposed q(z) points to a more general fitting
of the dynamics of the scalar field, as thawing and freezing
behaviours.

We performed an MCMC Bayesian analysis to constrain
the q(z) parameters using the OHD, and two SNIa samples:
the JLA, and Pantheon. For the join analysis (CC + Pan-
theon) we obtain q0 = −0.51+0.09−0.10, h = 0.710+0.01−0.01, and
zt = 0.65+0.19−0.17 , which are consistent with values reported
by other authors. The reconstruction of the EoS (see Fig. 6)
using these values crosses the phantom divide, rejecting the
quintessence DE models. Our result points to a quintom DE,
and it is consistent with a non parametric reconstruction of
the EoS using the latest cosmological observations (see Ref.
[74]) within the range of validity of the Eq. (9).

The behavior of the two free-parameter reconstruction of
the EoS (Eq. 10) is a more general expression, including both
the thawing or freezing scalar field models. Indeed, the func-
tional form of ω does not impose an apriori category of scalar
field model for its entire domain. Furthermore, the discrimi-
nation analysis we presented in Fig. 7 is also consistent with
a quintom DE model. Quintom DE is only an example of a
model that need the dynamics of more than a single scalar
field to cross the phantom divide. Considering another set
of models would imply that the energy–momentum tensor
may deviate from the perfect-fluid form as those studied by
[75], which are related to Hordenski gravity [76], and con-
sistent with the recent GW observations [77]. Then we may
assume that these models should be non significant deviation
from the perfect-fluid form in order to remain the validity of
Eq. (9). Another possibility is to invoke non-linear physics
to explain the transition of the phantom divide with a single
scalar field, as mentioned in [67]. The confidence contours
for ω′ vs. ω, are not subsets of a single model region within
the regions delimited by thawing and freezing models. This
is a complex behavior of our two free parameter reconstruc-
tion of the EoS, in contrast to the parameterizations analyzed
in Ref. [17]

In a future work, we plan to extend the study presented
here, and analyze the consequences of the cosmic expansion
in a early epoch by setting q1 as a free parameter, and its

repercussions on the behavior of the effective EoS. Also to
consider a more general set of imperfect DE models.
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A The behavior of �m(z) and the singularities of ω

By considering the definition of the matter density in terms
of z:

�m(z) = ρm(z)

3H2(s)
, (28)

where ρm(z) = 3H2
0 �m,0(1 + z)3, Eq. (28) can be rewritten

as

�m(z) = �m,0 (1 + z)3
(

H0

H(z)

)2

. (29)

Let us calculate the first derivative of �m(z) with respect
of z

d�m(z)

dz
= 3�m,0

(
H0

H(z)

)2

(1 + z)2

−2�m,0
H2

0

H(z)3

dH(z)

dz
(1 + z)3, (30)

from Eq. (2) dH(z)
dz = H(z) 1+q(z)

1+z , simplifying Eq. (30)

d�m(z)

dz
= �m,0(1 + z)2

(
H0

H(z)

)2

(1 − 2q(z)), (31)

By the reconstruction of the Hubble parameter using the joint
dataset, H(z) > 0 and q(z) < 1/2 for z ≥ 0, see Fig. 3.
Introducing both considerations in Eq. (31), we obtain

d�m(z)

dz
> 0 ∀z ≥ 0, (32)
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for our model. Thus, in this case, �m(z) is a monotonic
increasing function for all z ≥ 0. Given Eq. (26) and
�m(0) = �m,0 < 1 [54], then the codomain of this function
is delimited:

�m(z) ∈ [ �m,0 , �m,0 exp(2ξ(erf(zc) − 1)) )

∀z ≥ 0. (33)

Let us consider the next cases:

– If �m,0 exp(2ξ(erf(zc) − 1)) < 1:

⇒�m(z) < 1 ∀z ≥ 0 (34)

⇒1 − �m(z) > 0∀z ≥ 0 (35)

then, there is not a value of z ≥ 0 such that ωeff(z)
diverges.

– If �m,0 exp(2ξ(erf(zc) − 1)) = 1:

⇒�m(z) ∼ 1 as z → ∞ (36)

⇒ωeff(z) → ∞ as z → ∞ (37)

then, ωeff(z) diverges as z → ∞.
– If �m,0 exp(2ξ(erf(zc) − 1)) > 1:

Because the codomain of �m(z) is delimited as Eq. (33),

1 ∈ [ �m,0 , �m,0 exp(2ξ(erf(zc) − 1)) ), (38)

then there is a value z′ > 0 such that �m(z′) = 1

⇒1 − �m(z′) = 0 where z′ > 0. (39)

Therefore, the last case gives the condition to have a sin-
gular point of ωeff.
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