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Abstract: We use data from M87* central black hole shadow, as well as from the S2 star observations,
in order to extract constraints on Barrow entropy. The latter is a modified entropy arising from
quantum-gravitational effects on the black hole horizon, quantified by the new parameter ∆. Such
a change in entropy leads to a change in temperature, as well as to the properties of the black hole
and its shadow. We investigate the photon sphere and the shadow of a black hole with Barrow
entropy, and assuming a simple model for infalling and radiating gas we estimate the corresponding
intensity. Furthermore, we use the radius in order to extract the real part of the quasinormal modes,
and for completeness we investigate the spherical accretion of matter onto the black hole, focusing on
isothermal and polytropic test fluids. We extract the allowed parameter region, and by applying a
Monte-Carlo-Markov Chains analysis we find that ∆ ' 0.0036+0.0792

−0.0145. Hence, our results place the
upper bound ∆ . 0.0828 at 1σ, a constraint that is less strong than the Big Bang Nucleosynthesis one,
but significantly stronger than the late-time cosmological constraints.

Keywords: modified gravity; barrow entropy; black holes shadow

1. Introduction

Black holes are currently the leading astrophysical laboratories for testing general
relativity as well as theories of modified and quantum gravity. In particular, recent advances
in optical, radio, X-ray and gravitational wave astronomy [1–3] have confirmed the presence
of supermassive black holes in the galactic centers of giant elliptical and spiral galaxies,
as well as small astrophysical black holes. Due to the observation of the first radio images
of the supermassive black hole that exists at the center of the M87* galaxy, by Event
Horizon Telescope (EHT), black-hole shadows have become a very useful tool to test general
relativity and examine whether possible deviations due to gravitational modifications [4,5]
could indeed be the case. In such researches, one first calculates the shadows of various
black hole solutions [6–37] and then confronts them with the M87* data [38–65].

On the other hand, one of the most intriguing discoveries is the theoretical connection
between thermodynamics and gravity, which may play a significant role to understand
more deeply the nature of black holes. In the classical relativistic picture, black holes
can decrease the entropy of the universe by swallowing objects and therefore violating
the second law of thermodynamics. To resolve this problem, Bekenstein [66] conjectured
that black holes should have entropy. This idea was shown by Hawking using the semi-
classical approach to be correct, and it was found that black holes radiate away energy
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and consequently the external observer would associate a temperature to the black hole
horizon [67]. The laws of black hole thermodynamics relate the horizon temperature with
the surface gravity. Hence, the black hole entropy, namely the Bekenstein-Hawking entropy,
is given by SB = A/4, where SB is the entropy and A the surface area of the black hole (in
units where h̄ = G = c = 1).

Recently, Barrow argued that quantum-gravitational effects induce a fractal structure
on the black hole horizon, which then acquires spatial dimension more than two but less
than three, quantified by the parameter ∆ [68]. Hence, such a complex structure leads to
a modification of the black hole entropy. This idea may have interesting consequences in
cosmological and holographic applications [69–80]. Nevertheless, it also has interesting
implications on the black hole properties itself, since it changes the black hole temperature
too [81–83].

In this work we are interested in extracting constraints on the Barrow exponent ∆,
using data form the M87* central black hole shadow, as well as from the S2 star observations.
The manuscript is organized as follows. In Section 2, we review Barrow entropy. In Section 3
we apply the involved expressions in order to find the black hole properties and the shadow
images. Moreover, in Section 4 we use the M87* observations and we analyze the motion of
the S2 star orbit to fit the data and improve the constraints on the Barrow parameter. Finally,
in Section 5 we conclude. For completeness, in the Appendix A, we consider the spherical
accretion of isothermal and polytropic fluids onto black holes with Barrow entropy.

2. Black Holes with Barrow Entropy

Barrow proposed a modification of Bekenstein-Hawking black hole entropy induced
by quantum gravity effects on its horizon [68]. The corresponding corrections change the
exponent of the entropy-area law, leading to

SB =

(
A
4

)1+ ∆
2

, (1)

where ∆ is the new parameter, and with A the usual area of the black hole’s event horizon. ∆
is restricted to the interval 0 ≤ ∆ ≤ 1, with ∆ = 0 giving the standard Bekenstein–Hawking
entropy, while ∆ = 1 corresponding to the maximal deformation of the horizon structure.

In this work we will focus on Schwarzschild black hole solutions, with metric

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2

(
dθ2 + sin2 θdφ2

)
. (2)

If the mass parameter is M, the corresponding horizon is rH = 2M, and as usual
we can express its area as A = 4πr2

H = 16πM2. In this case (1) can be re-written as

SB(M) =
(
4πM2)1+ ∆

2 . Hence, using that 1
T = ∂SB

∂M , one can find the modified black hole
temperature [84] arising from the modified Barrow entropy as [81].

TB =
1

(∆ + 2)(4π)1+ ∆
2 M1+∆

. (3)

In summary, the effect of Barrow entropy is to change the black hole temperature too,
while in the case ∆ = 0 we re-obtain the standard Hawking temperature T = 1/(8πM).

Let us proceed by considering a standard Schwarzschild black hole solution that
would have the same temperature with the above Barrow temperature. Using the well-
known expression for the black hole temperature T = f ′(r)

4π |r=r̃H , with r̃H the horizon, we
can easily see that in this case the corresponding metric function should be

f (r) = 1− (∆ + 2)M∆+1(4π)
∆
2

r
, (4)
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and thus the horizon should be

r̃H = (4π)
∆
2 (∆ + 2)M∆+1, (5)

and the mass

M̃ = (4π)
∆
2

(
∆
2
+ 1
)

M∆+1. (6)

In the limiting case where Barrow entropy becomes standard Bekenstein-Hawking
entropy, i.e., for ∆ = 0, the above solution becomes the standard one.

Now, it is well known that the Hawking temperature can be also understood geomet-
rically by Wick-rotating the time coordinate t→ iτ and r → r̃H + δr. Thus,

f (r) =
r− r̃H

r
, (7)

and then near the horizon we have f (r) ' f ′(r)|r̃H (r− r̃H), and the metric (2) reads [84].

ds2 =
δr2

r̃H
dτ2 +

r̃H
δr

d(δr)2 + r̃2
H

(
dθ2 + sin2 θdφ2

)
. (8)

Defining a new radial coordinate ρ as ρ = 2
√

r̃Hδr, the line element acquires the form

ds2 ' ρ2

4r̃2
H

dτ2 + dρ2 + r̃2
H

(
dθ2 + sin2 θdφ2

)
. (9)

In order to avoid the conical singularity we can impose the periodicity of the Euclidean
time coordinate τ as

τ

2r̃H
∼ τ

2r̃H
+ 2π, (10)

and then we can identify the inverse of the period of the Euclidean time coordinate to
correspond to the temperature [84]. In particular, in the Euclidean path integral formulation
we can make the identification for the finite temperature field theory using the relation.∫

[Dφ]e
∫ t0

0 dt L(φ) = Tr
(

e−t0 H
)
= Tr

(
e−

H
T

)
, (11)

which holds for any field φ, with which one finds that the Schwarzschild black hole (2) has
temperature T = 1/(4πr̃H), which using (5) gives exactly a Hawking temperature that
coincides with (3).

3. Barrow Entropy Effect on Black Hole Shadows

In this section we use the Schwarzschild-like metric which we found by using the
Barrow corrected black hole temperature in order to study the shadow of a black hole
possessing Barrow entropy. As it is known, there are two constants of motion for particle
motion in spherically symmetric geometry, due to the existence of the timelike and spacelike
Killing vectors, namely the energy E and the angular momentum L of the particle, in our
case photon, respectively. Following the standard procedure it is straightforward to obtain
the equations of motion for the photon [12].

dt
dλ

=
E

f (r)
, (12)

dr
dλ

=

√
R(r)
r2 , (13)

dθ

dλ
=

√
Θ(θ)

r2 , (14)

dφ

dλ
=

L csc2 θ

r2 , (15)
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where

R(r) ≡ E2r4 − (K+ L2)r2 f (r), (16)

Θ(θ) ≡ K− L2 csc2 θ cos2 θ, (17)

where K is a constant of integration known as the Cartan constant. It simply follows from
the separation of the Hamilton-Jacobi equations into a radial part and a polar part setting
each part equal to K [85]. Using the above equations we can further study the radial
geodesics by introducing the effective potential Veff(r) as follows(

dr
dλ

)2
+ Veff(r) = 0, (18)

where

Veff(r) = −1 +
f (r)
r2 (ξ2 + η), (19)

and
ξ =

L
E

, η =
K
E2 . (20)

We can use the two parameters ξ and η in order to analyze the motion of photons
around the black hole. Since we are interested to explore the effect of the Barrow parameter
on the shadow of the black hole, we need to use the conditions for unstable orbit. As we
know, in the observer’s sky, we can observe the black hole shadow due to the fact that some
of the scattered photons escape from the black hole and some of the photons are captured
by the black hole geometry. In other words, the black hole shadow is obtained as a union
of the dark spots in the observer’s sky. While it is straightforward to see that the critical
orbits are characterized by certain critical values in terms of the impact parameters ξ and η.
To determine the critical orbits or the unstable circular photon orbits, we simply need to
study the effective potential, that is we need to find the maximum of the effective potential
Veff yielding the unstable orbits. Thees unstable circular photon orbits can be obtained by
applying the following conditions:

Veff = 0, V′eff(r) = 0, V′′eff(r) ≤ 0.

Using Equations (13) and (18) it is easy to combine Veff and R(r). If we express the
above conditions in terms of R(r) we obtain:

R(r) = 0,
dR(r)

dr
= 0,

d2R(r)
dr2 > 0. (21)

In terms of the above conditions one can easily show that the photon radius is deter-
mined by the following algebraic condition

2 f (r)− r f ′(r) = 0. (22)

By solving (22) under (4), we obtain a simple relation for the radius of the photon
sphere rph given by

rph =
3
2
(2 + ∆)M∆+1(4π)

∆
2 =

3
2

r̃H . (23)

The radius of the photon sphere can be used to find the size of black hole shadow. In
order to describe the shadow as seen by large distances, one introduces the two celestial
coordinates X and Y [85], namely X = limr∗→∞

(
−r2
∗ sin θ0

dφ
dr

)
and Y = limr∗→∞ r2

∗
dθ
dr ,

with r∗ the distance between the black hole and the observer, and θ0 the inclination angle
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between the observer’s line of sight and the black hole rotational axis. Using the geodesics
equations we finally obtain [86].

X = −ξ(rph) csc θ0 , (24)

Y =
√

η(rph)− ξ2(rph) cot2 θ0 , (25)

and thus we have X2 + Y2 = ξ2(rph) + η(rph). Hence, the event horizon (i.e., shadow)
radius Rsh can finally be found as [12].

Rsh(rph) =
√

ξ2(rph) + η(rph) =
rph√
f (rph)

, (26)

which explicitly yields

Rsh = 3
√

3(∆ + 2)2∆−1M∆+1(4π)
∆
2 . (27)

We can see that the event horizon radius is expected to increase due to the effect of
quantum gravity corrections, since M > 0 and ∆ ≥ 0.

We continue by using the inverse relationship between Rsh and the real part of quasi-
normal modes given by [87,88].

ω< = lim
l�1

l + 1
2

Rsh
, (28)

with l the multipole numbers, which in our case gives

ω< = lim
l�1

l + 1
2

3
√

3(∆ + 2)2∆−1M∆+1(4π)
∆
2

. (29)

In Table 1 we present the numerical values for the photon radius, the values for the
shadow radius, and the real part of quasinormal modes by varying the Barrow parameter.
One can see that while the shadow radius increases by increasing ∆, the value of ω<
decreases. As we already mentioned, relation (29) is precise in the eikonal limit, namely
l → ∞, however it has been shown that in many cases it gives satisfactory results even
for small l, which are most important for observations [87,88]. Finally, the decrease in
ω< is therefore simply explained from the inverse relation between the real part of the
quasinormal modes and the shadow radius, according to (28).

Table 1. The photon sphere radius rph, the event horizon radius Rsh and the real part of quasinormal
modes ω<, for different values of ∆, with M = 1 and l = 1.

∆ rph Rsh ω<

0 3 5.196152424 0.5000000000
0.001 3.005300838 5.205333745 0.4991180853
0.005 3.026590476 5.242208479 0.4956071896
0.008 3.042648663 5.270022075 0.4929915236
0.010 3.053397641 5.288639851 0.4912560290
0.030 3.162827055 5.478177156 0.4742592542
0.050 3.275860255 5.673956398 0.4578949904
0.080 3.452414952 5.979758107 0.4344784798
0.100 3.574958849 6.192010363 0.4195852494
0.120 3.701516690 6.411214974 0.4052392912
0.150 3.899154632 6.753533931 0.3846987723
0.170 4.036303659 6.991083014 0.3716271436
0.200 4.250450140 7.361995599 0.3529037985
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We close this section by considering the scenario where the black hole is surrounded
by an infalling/radiating accretion flow. Via this simple model, we can extract valuable
information about the intensity of the radiation which can be detected by a distant observer.
In order to achieve this we need to estimate the specific intensity at the observed photon
frequency νobs at the point (X, Y) of the observer’s image [37,47,89–92].

Iobs(νobs, X, Y) =
∫

γ
g3 j(νe)dlprop. (30)

The freely falling gas has the four-velocity components written as

uµ
e =

( 1
f (r)

,−
√

1− f (r), 0, 0
)

, (31)

with f (r) given in (4). In addition we need to use the condition pµ pµ = 0, from which one
can easily show that

pr

pt = ± f (r)

√
f (r)

(
1

f (r)
− b2

r2

)
, (32)

with b the impact parameter. It is important to mention here that sign +(−) describes
the case when the photon approaches (or draws away) from the black hole. The redshift
function g can be calculated using [37,47,89–92].

g =
pµuµ

obs
pνuν

e
, (33)

with uµ
obs the 4-velocity of the observer. For the specific emissivity we assume a simple

model in which the emission is monochromatic, with emitter’s-rest frame frequency ν?,
and the emission has a 1/r2 radial profile:

j(νe) ∝
δ(νe − ν?)

r2 , (34)

where δ denotes the Dirac delta function. Expressing the proper length in terms of radial
coordinate for observed flux, we find

Fobs(X, Y) ∝ −
∫

γ

g3 pt

r2 pr dr. (35)

In order to show all the above in a more transparent way, in Figure 1 we present the
black hole shadow for fixed M and various values of Barrow exponent ∆, according to (27).
Additionally, we have numerically calculated and depicted the intensity from (35). As we
observe, with increasing Barrow parameter the size of the shadow increases, while the
intensity decreases.

Lastly, since we have extracted the black hole profile and properties we can straight-
forwardly investigate the accretion of matter onto it. For completeness, we provide this
analysis in the Appendix A.
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Figure 1. The shadow images and intensities for various values of Barrow exponent ∆, for fixed
M = 1.

4. Observational Constraints on the Barrow Parameter

In this section we proceed to the use of the Event Horizon Telescope observations for
the shadow of the M87∗ central black hole in order to impose constraints on the Barrow
parameter ∆. As we will see, this will not be edequate and thus we need to incorporate
additional data from the S2 star orbit observations [93,94].

The M87∗ central black hole has angular diameter θsh = (42± 3)µas, is at distance
D = 16.8 Mpc, and its mass is (6.5± 0.9)× 109M�. We equate this to M̃ given in (6) in
terms of the parameters ∆ and M. Thus, we treat M as a parameter and not the true mass
of the system. From a theoretical point of view this can be advantageous, since spherical
solutions may be modeled differently, where each theoretical model introduces a set of
parameters that have to be constrained to fit observational data. In this work we model
M87∗ as a Barrow quantum-corrected two-parameter black hole, while one could model it
using alternative theories of gravity too (see e.g., [95,96]).

Combining the observational parameters allows us to introduce the single quantity
dM87∗, which accounts for the size of the M87*’s shadow in unit mass, as [48].

dM87 =
D θsh
M87

= 11.0± 1.5. (36)

In particular within 1σ confidence level one has the range 9.5 ≤ dM87 ≤ 12.5.
Let us now use the theoretically predicted shadows of the previous section, in order

to calculate the predicted diameter per unit mass dsh for black holes with Barrow entropy.
In Figure 2 we depict dsh as a function of ∆, for fixed M = 1, alongside the observational
bounds according to (36).
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0.00 0.05 0.10 0.15 0.20
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Δ

d
sh

Figure 2. The theoretically predicted diameter per unit mass dsh, for black holes with Barrow entropy,
as a function of ∆ and for fixed M = 1. The horizontal dashed lines at 9.5 and 12.5 mark the 1σ

bounds according to dM87∗ observations, given in (36), while the horizontal dashed line at 14 marks
the upper 2σ bound (the lower 2σ bound is not shown since it corresponds to the not physically
interested region ∆ < 0).

Nevertheless, as one can see, in general the results depend on both ∆ and M. Indeed,
in Figure 3 we present the parameter region which is consistent with M87* data.

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

1.2

1.4

M

Figure 3. 1σ and 2σ parameter region consistent with M87∗ shadow observations.

Additionally, in Figure 4 we present the predicted combined diameter dsh as a function
of M and ∆.

In order to break the degeneracy, and constrain ∆ more efficiently, we have to use
the S2 star orbit data [93,94]. In particular, using solution (4), we can study the motion of
the S2 star restricted in the equatorial plane (θ = π/2, θ̇ = 0). From the Lagrangian it
follows that

2L = − f (r)ṫ2 +
ṙ2

f (r)
+ r2φ̇2.

For the two constants of motion, namely total energy E and total angular momentum
L of the star, we have ∂L

∂ṫ = −E and ∂L
∂φ̇

= L. Using the above we find that

ṫ =
E

1− (∆+2)M∆+1(4π)
∆
2

r

, (37)
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along with φ̇ = L
r2 . Finally, we have the following equation of motion for a massive particle

(S2 star in our case) [97–99].

r̈ =
1

2 g11(r)

[
g00,r(r) ṫ2 + g11,r(r) ṙ2 + g33,r(r)φ̇2

]
. (38)

In general, one cannot find an analytical expression for r(φ) and, therefore, one must
elaborate numerically the equations of motion. In the present work we apply the Bayesian
theorem with the likelihood function as given in [99,100], with the observational data for
(Xobs, Yobs) given in [94,97], considering ∆ and M as free parameters. In order to find the
best-fit values we use the Monte-Carlo-Markov Chains analysis. For the central mass object
we take 4.1× 106M� along with the uniform priors 0 < ∆ < 1 and 0 < M < 2. In Figure 5
we present the region of the parameter space in agreement with S2 star data. Concerning
Barrow parameter, in which we are interested in this manuscript, the best fit value and 1σ
errors are

∆ ' 0.0036+0.0792
−0.0145, (39)

which is the main result of the present work.

Figure 4. The predicted diameter per unit mass d, as a function of M and ∆. The black curves
correspond to the observationally determined upper 1σ and 2σ bounds given in (36) (the lower ones
are not shown since they correspond to the not physically interested region ∆ < 0).

0.00 0.02 0.04 0.06 0.08 0.10

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

M

Figure 5. 1σ and 2σ parameter region consistent with S2 star observations, after a Monte-Carlo-
Markov Chains analysis.
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We can now combine the above result with the black hole shadow. In particular,
applying the best-fit parameters we easily find the shadow radius Rsh = 5.3127, measured
in units of black hole mass. Hence, in Figure 6 we depict the shadow image and intensity
for a black hole with Barrow entropy, for the best-fit values of (39) and Figure 5.

Figure 6. The shadow image and intensity for a black hole with Barrow entropy, for the best-fit values
of (39) and Figure 5 arising from S2 star data with Monte-Carlo-Markov Chains analysis.

In summary, as we observe, although the standard value ∆ = 0, in which Barrow
entropy becomes Bekenstein-Hawking entropy, lies inside the obtained 1σ region, the
best-fit value is ∆ = 0.0036, while the 1σ upper bound is ∆ . 0.0828. Such constraint is
stronger than the late-time cosmological ones from Supernovae (SNIa) Pantheon sample
and cosmic chronometers (CC) datasets, namely ∆ . 0.188 [101,102], but less strong than
the Big Bang Nucleosynthesis (BBN) one, namely ∆ . 1.4× 10−4 [103], since the latter is
known to lead to very strong constraints. Hence, it reveals the capabilities of black hole
shadow and S2 star observations, since they can lead to significantly improved constraints
although the data points are for the currently relatively few.

5. Conclusions

In this work we used data from M87* central black hole shadow, as well as from the S2
star observations, in order to extract constraints on Barrow entropy. The latter is a modified
entropy relation arising from quantum-gravitational effects that induce a intricate, fractal
structure on the black hole horizon, quantified by the new Barrow parameter ∆. Such a
change in entropy leads to a change in temperature, as well as to the properties of the black
hole and its shadow.

We investigated the photon sphere and the shadow of a black hole with Barrow
entropy, and assuming a simple model for infalling and radiating gas we estimated the
corresponding intensity. Furthermore, we used the radius in order to extract the real part
of the quasinormal modes, and for completeness we investigated the spherical accretion of
matter onto the black hole, focusing on isothermal and polytropic test fluids.

We used the EHT data from the M87* black hole extracting the allowed parameter
region, and then we additionally incorporated data from the motion of S2 star around
the Sgr A* black hole, through a Monte-Carlo-Markov Chains analysis, in order to break
the degeneracies and extract the final constraints on the Barrow exponent. We found that
∆ ' 0.0036+0.0792

−0.0145 at 1σ confidence level. Hence, our analysis places the upper bound
∆ . 0.0828, a constraint that is less strong than the Big Bang Nucleosynthesis (BBN) one,
but significantly stronger than the late-time cosmological ones.
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In summary, black-hole related data can serve as a new tool in order to test general
relativity and examine if modifications of various kinds are allowed. Although the data
points are currently few, they can be very efficient in constraining the theoretical parame-
ters. The significant improvement of the datasets expected in the near future makes the
corresponding analyses both interesting and necessary.

Although the M87* is shown and expected to rotate, the Sgr A* black hole might
rotate very slowly compared to M87*. In most applications pertaining to Sgr A* rotation is
dropped from consideration as in Refs. [98,99,104]. In that sense, the constraint we found
for the S2 star is justified by assuming a nonrotating black hole in our galaxy. Rotation will
be considered in a subsequent work.
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Appendix A. Accretion of Matter onto Black Holes with Barrow Entropy

In this Appendix we investigate the accretion of matter onto black holes with Barrow
entropy. We consider spherical accretion of a perfect fluid, whose stress-energy tensor is of
the form Tµν = (e + p)uµuν + pgµν, where e and p denotes the energy density and pressure,
respectively. The black hole metric is assumed to be of the most general expression in
spherical coordinates

ds2 = −A(r)dt2 +
dr2

B(r)
+ C(r)(dθ2 + sin2 θdφ2). (A1)

The particle and energy conservation during the accretion procedure are∇µ(nuµ) = 0
and ∇µTµν = 0 respectively, where uµ = dxµ

dτ is the four-velocity of the fluid particles (τ
is the proper time) and n is the particle density. Introducing the three-velocity as [105]

v =
√

1
AB

ur

ut , and using the steps developed in [106–111], we obtain the location rc of the
critical point (CP) and the value of the corresponding three-velocity as

v2
c = a2

c and (1− a2
c )

A′

A

∣∣∣
r=rc

= 2a2
c

C′

C

∣∣∣
r=rc

, (A2)

where prime denotes derivative with respect to r, vc ≡ v|r=rc , and with ac ≡ a|r=rc the
three-dimensional speed of sound evaluated at the CP.

Appendix A.1. Isothermal Fluids

The equation of state of an isothermal fluid is of the form p = ωe with 0 < ω < 1
a constant. Since the sound speed a is defined by a2 = dp/de we obtain a2 = ω, which
depends of the particle’s position within the fluid. Since a is constant, the second equation
of (A2) is easily solved knowing the metric (2) and (4), namely with A(r) = f (r) and
C(r) = r2, extracting the critical radius as

r̃c =

(
3 +

1
a2

)
r̃H
4

=

(
3 +

1
a2

)
(4π)

∆
2 (∆ + 2)M∆+1

4
. (A3)

Thus, for isothermal fluids a CP always exists since r̃c > r̃H for a2 = ω < 1. Hence,
the isothermal fluid reaches the sound speed before it is absorbed by the black hole horizon.
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When ω = 1/3 = a2, we have r̃c = 3r̃H/2 which is the location of the photon sphere. This
correspondence is discussed later on.

Appendix A.2. Polytropic Fluids

The polytropic equation of state is

p ∝ nγ, (γ > 1). (A4)

The corresponding sound speed takes the form [106,107]

a2 =
(γ− 1)X

m(γ− 1) +X , (A5)

where X ∝ nγ−1, and with m the baryonic mass. Due to the particle conservation the
number density n is a function of (r, v), and thus a2 assumes the same dependence as n.
This dependence was given in [106] leading to a complex relation between a2 and (r, v),
namely

a2 =
Y(γ− 1)(

1−v2

AC2v2

) 1−γ
2

+ Y
, (A6)

where Y = const. > 0 has dimensions of length to the power 2(γ− 1), and depends on
(m, γ) and on the number density n0 at some initial point (e.g., the spatial infinity or the
CP [106]). In this case the solution of the second equation in (A2) is still given by (A3), but
with a2 replaced by a2

c since a2 is no longer constant. Thus, reversing it we obtain

a2
c =

r̃H
4r̃c − 3r̃H

. (A7)

It is usually admitted that γ ≤ 5/3 and since (A6) implies a2 < γ− 1 ≤ 2/3, we see
from (A3) that r̃c > r̃H and thus a CP always exists provided the r.h.s. of (A6) is positive
and less than 1.

At the CP we have v2
c = a2

c given by the r.h.s. of (A7). Substituting the above into (A6)
we obtain the following transcendental equation for r̃c:

r̃H
4r̃c − 3r̃H

=
Y(γ− 1)

1 + Y
(

4
r̃H r̃3

c

)(γ−1)/2

( 4
r̃H r̃3

c

)(γ−1)/2
. (A8)

For the most used γ value in astrophysics, namely γ = 5/3, Equation (A8) can be
solved explicitly as

r̃c =
9× 22/3Y

211/3Y − 3r̃4/3
H

r̃H . (A9)

To ensure that r̃c > r̃H and 0 < a2
c < 1 according to (A7) we require Y > 3r̃4/3

H /211/3.
This provides a constraint between the parameters on which Y depends and the parameters
on which r̃H depends. The sound speed at the PC is obtained inserting (A9) into (A7),
namely

a2
c =

211/3Y − 3r̃4/3
H

3× 28/3Y + 9r̃4/3
H

, (A10)

with Y > 3r̃4/3
H /211/3. Since r̃H increases with ∆, from (A9) we see that r̃c increases too

(respectively a2
c decreases). Hence, as ∆ increases the CP occurs at advanced positions

where the fluid particles acquire a lower critical speed vc = ac.
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Appendix A.3. Correspondence: The Critical Point versus the Photon Sphere

In order to determine the photon sphere for the general metric (A1) we can repeat the
steps of (12)–(22), finding that the radius of the photon sphere rps is determined by the
equation [112,113]

A′

A

∣∣∣
r=rps

=
C′

C

∣∣∣
r=rps

, (A11)

which generalizes Equation (22). Comparing (A11) with the second equation in (A2) we
see that the location of the CP would correspond to the radius of the photon sphere if

1− a2
c = 2a2

c ⇒ a2
c =

1
3

. (A12)

Since the sound speed a2 = dp/de is position-dependent, Equation (A12) would be
satisfied only if at the CP the value of a2

c = a2|r=rc was just 1/3, which would mean that
the CP occurs on the photon sphere.

There are special fluids where a2 is constant and we may consider the value 1/3. This
is indeed the case for the isothermal radiation fluid with an equation of state of the form
p = e/3 resulting to a2 ≡ 1/3. For such a fluid the CP always occurs on the photon sphere.
However, for polytropic fluids, under specific conditions such a correspondence exists
too. In particular, with a2

c = 1/3 from (A7) we obtain r̃c = 3r̃H/2, and thus substituting
into (A8) we extract the condition on Y and r̃H , namely

r̃4
H =

32
27
[
(3γ− 4)Y

]2/(γ−1), (A13)

alongside the previous condition (shown in (A10) for the case γ = 5/3). Hence, for the
case γ = 5/3 this reduces to

r̃4/3
H =

25/3

3
Y <

211/3

3
Y , (A14)

which could be alternatively derived from (A10) setting a2
c = 1/3. Equation (A13) is a kind

of fine-tuning condition between the parameters of the black hole, on the l.h.s., and the
parameters of the polytropic fluid, on the r.h.s.

Hence, the sound speed at the critical point decreases with increasing ∆ and thus the
location of the critical point advances away from the black hole. For both fluids we can
see that the critical point may occur on the photon sphere under specific conditions. For
isothermal fluids only the sound speed is constrained, while for polytropic fluids both the
black hole and the fluid parameters are constrained.
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